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Abstract
In this paper we show that two-stage adjustable robust linear programs with affinely
adjustable data in the face of box data uncertainties under separable quadratic decision rules
admit exact semi-definite program (SDP) reformulations in the sense that they share the same
optimal values and admit a one-to-one correspondence between the optimal solutions. This
result allows adjustable robust solutions of these robust linear programs to be found by simply
numerically solving their SDP reformulations.We achieve this result by first proving a special
sum-of-squares representation of non-negativity of a separable non-convex quadratic func-
tion over box constraints. Our reformulation scheme is illustrated via numerical experiments
by applying it to an inventory-productionmanagement problemwith the demand uncertainty.
They demonstrate that our separable quadratic decision rule method to two-stage decision-
making performs better than the single-stage approach and is capable of solving the inventory
production problem with a greater degree of uncertainty in the demand.
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1 Introduction

Real-world optimization models of technical decision-making involve input data that are
often noisy or uncertain due to prediction or measurement errors. The conventional (single-
stage) robust optimization models for static decision-making contain only “here-and-now”
decision variables for which we have to determine their values now and cannot wait until we
have more or full information [3,6].

Many dynamic decision-making models, where the decision-maker is able to adjust her
strategy to information revealed over time (in stages), are difficult multi-stage robust opti-
mization problems [4,10]. They not only contain “here-and-now” (first-stage) decisions,
but also “wait-and-see” (later-stage) decisions. The values of “wait-and-see” variables can
be fixed after some of the uncertain parameters have revealed their values. Consider, for
instance, a multi-stage inventory system affected by uncertain demand. The replenishment
orders are made one at a time and the weekly replenishment order is made when we already
know the actual demands in the preceding weeks.

Adjustable robust optimization (ARO), pioneered by Ben-Tal and his collaborators in
the late 1990’s [5], is increasingly becoming an important deterministic methodology to
handle multi-stage optimization problems involving both “here-and-now” and “wait-and-
see” decision variables [11,23]. It offers less conservative decisions than the classical static
(single-stage) robust optimization [3,14,15,19] as some of the decisions can be adjusted at
later stages. However, even two-stage robust optimization problems with adjustable variables
are in general computationally intractable unless they are limited to satisfy some special rules,
called “decision rules” [3,4,25].

A great deal of attention has recently been focused on studying two-stage adjustable robust
linear programs with linear (or affine) decision rules by transforming them into single-stage
problems as they lead, in many cases, to computationally tractable reformulations [4,9,25].
On the other hand, the transformations of these two-stage linear programs with quadratic
decision rules to single-stage robust problems result in numerically intractable non-convex
quadratic optimization problems unless the decision rules or uncertainty sets are restricted
to certain class of rules or sets respectively.

Some progress has recently beenmade in transforming an adjustable robust linear program
with general quadratic decision rules [22,24] into equivalent semi-definite programs in the
case of an ellipsoid uncertainty set. An equivalent second-order cone program reformulation
has also been established in [22] for such a program under a separable quadratic decision rule.
These results were achieved by employing a numerically tractable linear matrix inequality
representation of a non-negative non-convex quadratic function over an ellipsoid, known as
S-lemma [3,21].

Unfortunately, no numerically tractable representation exists for a general non-negative
non-convex quadratic function over boxes because a non-convex quadratic optimization
problem over box constraints is a fundamental NP-hard global optimization problem [13].
Consequently, an adjustable robust linear program with box uncertainty sets under a general
quadratic decision rule remains a hard problem to study, theoretically and computationally.
In this paper, by restricting the quadratic decision rule to a separable quadratic rule, we
examine an affinely adjustable two-stage robust linear program under the box uncertainty set
and make the following contributions.

(i) Firstly, we establish a special sum-of-squares (SOS) representation and semi-definite
representation conditions for the non-negativity of a separable non-convex quadratic
function over box constraints. We do this by exploiting the separability and employing
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a surjective transformation from an interval to the real line. We also show that this
SOS representation condition is equivalent to the existence of a solution to a system of
semi-definite linear inequalities which can easily be verified numerically by solving a
semi-definite linear program.

(ii) By employing the SOS representation conditions, we then show that an affinely
adjustable robust linear program (AARLP) in the face of box data uncertainty under
a separable quadratic decision rule (QDR) is numerically tractable by presenting an
exact semi-definite program reformulation in the sense that they share the same optimal
values. This result shows how adjustable robust solutions of uncertain linear programs
can readily be found by solving their SDP reformulations. Our approach in this paper
differs from the exact second order cone program reformulation, established recently in
[22] for the AARLPs with the separable QDR in the face of ellipsoidal data uncertainty,
where S-lemma [22] and the Schur’s complement played important roles.

(iii) Finally, we illustrate our reformulation approach by applying it to an inventory-
production management problem with demand uncertainty. Numerical experiments
demonstrate that our QDR approach to two-stage decision-making performs better than
the single-stage approach and is capable of solving the inventory production problem
with a greater degree of uncertainty in the demand.

The outline of the paper is as follows. Section 2 provides sum-of-squares and semi-definite
representations of non-negativity of separable quadratic functions over box constraints. Sec-
tion 3 presents an exact semi-definite program reformulation of an affinely adjustable robust
linear programwith a quadratic decision rule. Section 4 illustrates the quadratic decision rule
approach by applying it to an inventory-production management problem with the demand
uncertainty. Section 5 concludes with a brief discussion on further research.

2 Numerically tractable SOS representations

Consider the following uncertain linear program with adjustable variables

inf
x,y(·){c

T x + ϕT y(z) | A(z)x + By(z) ≤ d(z)}, (U)

where c ∈ R
n and ϕ := (ϕ1, . . . , ϕs) ∈ R

s are fixed, x ∈ R
n is the first-stage decision

variable, y(·) is the second-stage decision. It is represented as an adjustable decision variable
that depends on the uncertain parameter z which lies in a box uncertainty set, Ubox :=∏q

j=1[β j , γ j ] with β j , γ j ∈ R and β j ≤ γ j , j = 1, . . . , q , A : Rq → R
p×n and d : Rq →

R
p are affine maps given, respectively, by

A(z) := A0 +
q∑

j=1

z j A
j , d(z) := d0 +

q∑

j=1

z j d j , z := (z1, . . . , zq), (2.1)

for givenmatrices A j ∈ R
p×n and d j ∈ R

p, j = 0, 1, . . . , q . Thematrix B ∈ R
p×s is a fixed

recourse matrix; that is, B is independent of the uncertain variable z. Two-stage adjustable
linear programming models of the form (U) under these assumptions commonly appear
in real-world decision-making problems [4,23] such as the inventory production problems
examined in Sect. 4.

The robust counterpart of the two-stage adjustable linear programs (i.e. robust programs)
withaffine decision rules can be transformed into computationally tractable single-stage prob-
lems in many cases, including box uncertainty sets [4,9,24,25]. In the case of an ellipsoidal
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uncertainty set, making use of the well-known semi-definite representation of non-negative
quadratic function over a single quadratic constraint [3,21], the authors in [22] reformu-
lated an adjustable robust linear program under quadratic decision rules into a numerically
tractable semi-definite program. In particular, for such a problem with a separable quadratic
decision rule, an equivalent second-order cone program has also been given in [22]. Unfortu-
nately, no numerically tractable representation exists for a general non-negative non-convex
quadratic function over boxes because a non-convex quadratic optimization problem over
box constraints is, in general, a fundamental NP-hard global optimization problem [13].

In this section we present a sum-of squares (SOS) representation as well as a semi-definite
representation of the non-negativity of a separable non-convex quadratic function over box
constraints. This representation plays a key role in transforming an adjustable robust problem
into a numerically tractable optimization problem in the next section. The role of SOS
representations in solving hard polynomial optimization problems can be found in [2,7,8].

Recall that the symbol Im ∈ R
m×m stands for the (m × m) identity matrix. 0m ∈ R

m

denotes them-dimensional (column) vector of all zeros. Let Sm be the space of all symmetric
(m × m) matrices. A matrix A ∈ R

m×n can be denoted as A := (a1, . . . , am)T for its rows
ai ∈ R

n, i = 1, . . . ,m or as A := (a1, . . . , an) for its columns a j ∈ R
m, j = 1, . . . , n. A

matrix A ∈ S
m is said to be positive semidefinite, denoted by A � 0, whenever xT Ax ≥ 0

for all x ∈ R
m . If xT Ax > 0 for all x ∈ R

m\{0m}, then A is called positive definite, denoted
by A � 0. The matrix M = diag(v) ∈ R

m×m is a diagonal matrix whose elements are given
by the vector v ∈ R

m .

Theorem 2.1 (Semi-definite and SOS Representations) Let α ∈ R, u := (u1, . . . , uq) ∈ R
q

and W := diag(w1, . . . , wq) be a diagonal matrix, where w j ∈ R, j = 1, . . . , q. Then, the
following statements are equivalent:

(a) The following implication holds:

z := (z1, . . . , zq) ∈
q∏

j=1

[β j , γ j ] �⇒ α + uT z + zT Wz ≥ 0,

where β j , γ j ∈ R with β j ≤ γ j , j = 1, . . . , q.
(b) There exist α j ∈ R, j = 1, . . . , q, such that

∑q
j=1 α j ≤ α and

α j h
1
j + u j h

2
j + w j h

3
j ∈ �2

4 [z j ], j = 1, . . . , q,

where �2
4 [z j ] denotes the set consisting of all the sum of squares polynomials with

variable z j and degree at most 4, h1j (z j ) := (1 + z2j )
2, h2j (z j ) := (β j + γ j z2j )(1 + z2j )

and h3j (z j ) := (β j + γ j z2j )
2 for z j ∈ R.

(c) There exist α j ∈ R, j = 1, . . . , q and

X j :=
⎛

⎜
⎝

X j
11 X j

12 X j
13

X j
12 X j

22 X j
23

X j
13 X j

23 X j
33

⎞

⎟
⎠ � 0, j = 1, . . . , q
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such that
∑q

j=1 α j ≤ α and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X j
11 = α j + u jβ j + w jβ

2
j ,

X j
12 = 0,

2X j
13 + X j

22 = 2α j + u j (β j + γ j ) + 2w jβ jγ j ,

X j
23 = 0,

X j
33 = α j + u jγ j + w jγ

2
j .

Proof [(a) ⇔ (b)] We first note that (a) is equivalent to

0 ≤ min{α + uT z +
q∑

j=1

w j z
2
j | z ∈

q∏

j=1

[β j , γ j ]} = α +
q∑

j=1

min{u j z j + w j z
2
j | z j ∈ [β j , γ j ]}.

Then, (a) is further equivalent to the fact that there exist α j ∈ R, j = 1, . . . , q , such that

min{u j z j + w j z
2
j | z j ∈ [β j , γ j ]} ≥ −α j , j = 1, . . . , q and

q∑

j=1

α j ≤ α.

For each j ∈ {1, . . . , q}, defining
f j (z j ) := α j + u j z j + w j z

2
j ,

we arrive at the assertion that (a) is equivalent to f j (z j ) ≥ 0 for all z j ∈ [β j , γ j ], j =
1, . . . , q and

∑q
j=1 α j ≤ α. Now, let

g j (z j ) := (1 + z2j )
2 f j

(
β j + γ j z

2
j

1 + z2j

)

= α j (1 + z2j )
2 + u j (β j + γ j z

2
j )(1 + z2j ) + w j (β j + γ j z

2
j )
2.

We see that each g j is a real polynomial onRwith degree at most 4. Since β j ≤ γ j , we have
the following two cases:

Case 1 Let β j < γ j . As z j �→ β j+γ j z2j
1+z2j

is a surjective map from R to [β j , γ j ), we obtain

that

f j (z j ) ≥ 0 ∀z j ∈ [β j , γ j ] ⇔ f j (z j ) ≥ 0 ∀z j ∈ [β j , γ j )

⇔ g j (z j ) ≥ 0 ∀ z j ∈ R.

where the first equivalence follows by the continuity of f j .
Case 2 Let β j = γ j . We can verify directly that

f j (z j ) ≥ 0 ∀z j ∈ [β j , γ j ] ⇔ g j (z j ) ≥ 0 ∀ z j ∈ R.

Note that a one-variable polynomial is nonnegative if and only if it is a sums-of-squares
polynomial [17, Theorem 2.5]. Then, g j ∈ �2

4 [z j ], and so we arrive at the conclusion that

α j h
1
j + u j h

2
j + w j h

3
j ∈ �2

4 [z j ], j = 1, . . . , q,

where h1j (z j ) := (1+ z2j )
2, h2j (z j ) := (β j + γ j z2j )(1+ z2j ) and h

3
j (z j ) := (β j + γ j z2j )

2 for
z j ∈ R.
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[(b) ⇔ (c)] To see the equivalence of (b) and (c), note that each g j is a sums-of-squares

one variable polynomial if and only if there exists X j := (X j
kl)1≤k,l≤3 ∈ S

3 such that X j � 0
and

α j (1 + z2j )
2 + u j (β j + γ j z

2
j )(1 + z2j ) + w j (β j + γ j z

2
j )
2 =

⎛

⎝
1
z j
z2j

⎞

⎠

T ⎛

⎜
⎝

X j
11 X j

12 X j
13

X j
12 X j

22 X j
23

X j
13 X j

23 X j
33

⎞

⎟
⎠

⎛

⎝
1
z j
z2j

⎞

⎠ .

for all z j ∈ R (for example, see [17, Proposition 2.1]). Thus, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X j
11 = α j + u jβ j + w jβ

2
j ,

X j
12 = 0,

2X j
13 + X j

22 = 2α j + u j (β j + γ j ) + 2w jβ jγ j ,

X j
23 = 0,

X j
33 = α j + u jγ j + w jγ

2
j .

Consequently, the equivalence of (b) and (c) holds, and the proof is complete. �

3 Separable QDRs and box uncertainties

In this section, we begin with the formulation of the robust counterpart of the affinely
adjustable robust linear program (U) with fixed recourse under the box uncertainty set. We
assume that the adjustable variable y(·) admits a separable quadratic decision rule of the
form:

y(z) := y0 + Pz +
⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠ , (3.1)

where y0 ∈ R
s , P ∈ R

s×q and Qr ∈ S
q , r = 1, . . . , s, are (non-adjustable) variables. More-

over, Qr , r = 1, . . . , s are assumed to be diagonalmatrices given by Qr := diag(ξ1r , . . . , ξ
q
r )

with ξ
j
r ∈ R, j = 1, . . . , q .

Let us consider the robust counterpart of (U) as

inf
x∈Rn ,y0∈Rs ,

P∈Rs×q ,Qr∈Sq

{
cT x+ max

z∈Ubox
ϕT y(z) | (P)

A(z)x + By(z) ≤ d(z),

y(z) = y0 + Pz +
⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠ , ∀z ∈ Ubox,

Qr := diag(ξ1r , . . . , ξ
q
r ), ξ

j
r ∈ R, j = 1, . . . , q, r = 1, . . . , s

}
.

Denote B := (b1, . . . , bp)T for its rows bi := (bi1, . . . , bis) ∈ R
s, i = 1, . . . , p.

Denoting by a j
i ∈ R

n, i = 1, . . . , p the rows of A j for j = 0, 1, . . . , q , i.e, A j :=
(a j

1 , . . . , a
j
p)

T , j = 0, 1, . . . , q, we let Wi := (a1i , . . . , a
q
i ), i = 1, . . . , p. Then, A(z)
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becomes

A(z) =
⎛

⎜
⎝

(a01 + W1z)T

...

(a0p + Wpz)T

⎞

⎟
⎠ . (3.2)

Similarly, denoting d j := (d j1, . . . , d jp), j = 0, 1, . . . , q , we let vi := (d1i , . . . , dqi ), i =
1, . . . , p. Then d(z) is given by

d(z) =
⎛

⎜
⎝

d01 + vT1 z
...

d0p + vTp z

⎞

⎟
⎠ . (3.3)

We associate with (P) the following semidefinite programming (SDP) problem:

inf
x∈Rn ,τ∈R,y0∈Rs ,

αi, j∈R,Xi, j∈S3,
σ j∈R,Y j∈S3

{
cT x + τ | Xi, j :=

⎛

⎜
⎝

Xi, j
11 Xi, j

12 Xi, j
13

Xi, j
12 Xi, j

22 Xi, j
23

Xi, j
13 Xi, j

23 Xi, j
33

⎞

⎟
⎠ � 0, i = 1, . . . , p, j = 1, . . . , q,

(SDP)

Xi, j
11 = αi, j − (WT

i x + PT bi − vi ) jβ j −
s∑

r=1

bir ξ
j
r β2

j ,

2Xi, j
13 + Xi, j

22 = 2αi, j − (WT
i x + PT bi − vi ) j (β j + γ j ) − 2

s∑

r=1

bir ξ
j
r β jγ j ,

Xi, j
33 = αi, j − (WT

i x + PT bi − vi ) jγ j −
s∑

r=1

bir ξ
j
r γ 2

j ,

Xi, j
12 = 0, Xi, j

23 = 0,
q∑

j=1

αi, j ≤ −(a0i )T x − bTi y0 + d0i ,

Y j :=
⎛

⎜
⎝

Y j
11 Y j

12 Y j
13

Y j
12 Y j

22 Y j
23

Y j
13 Y j

23 Y j
33

⎞

⎟
⎠ � 0, j = 1, . . . , q,

Y j
11 = σ j − (PT t) jβ j −

s∑

r=1

ϕr ξ
j
r β2

j ,

2Y j
13 + Y j

22 = 2σ j − (PT ϕ) j (β j + γ j ) − 2
s∑

r=1

ϕr ξ
j
r β jγ j ,

Y j
33 = σ j − (PT ϕ) jγ j −

s∑

r=1

tr ξ
j
r γ 2

j ,

Y j
12 = 0, Y j

23 = 0,
q∑

j=1

σ j ≤ τ − ϕT y0
}
,

where Wi and P are given in (3.2) and (3.1) respectively, and vi is defined as in (3.3).

Theorem 3.1 (Exact SDPReformulation)Consider the adjustable robust linear programwith
the separable quadratic decision rule under the box data uncertainty (P) and the semidefinite
programming problem (SDP). Then,

inf(P) = inf(SDP).
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Moreover, (x∗, y∗
0 , P

∗, Q∗
1, . . . , Q

∗
s ), where Q∗

r := diag(ξ1r
∗
, . . . , ξ

q
r

∗
) with ξ

j
r

∗ ∈ R, j =
1, . . . , q, r = 1, . . . , s, is an optimal solution of problem (P) if and only if there exist
τ ∈ R, αi, j ∈ R, Xi, j ∈ S

3, σ j ∈ R, Y j ∈ S
3, i = 1, . . . , p, j = 1, . . . , q such that

(x∗, y∗
0 , P

∗, Q∗
1, . . . , Q

∗
s , τ,α

1,1, . . . , α p,q , X1,1, . . . , X p,q , σ 1, . . . , σ q , Y 1, . . . , Yq) is an
optimal solution of problem (SDP).

Proof Observe first that (P) is equivalent to the adjustable robust linear program

inf
x∈Rn ,τ∈R,y0∈Rs ,

P∈Rs×q ,Qr∈Sq

{
cT x + τ | A(z)x + By(z) ≤ d(z),

ϕT y(z)≤ τ,

y(z) = y0 + Pz +
⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠ , ∀z ∈ Ubox,

Qr := diag(ξ1r , . . . , ξ
q
r ), ξ

j
r ∈ R, j = 1, . . . , q, r = 1, . . . , s

}
, (3.4)

where τ is an introduced auxiliary (here-and-now) decision variable which does not alter the
optimal value. It is therefore sufficient to show that the feasible regions of (3.4) and (SDP)
are equivalent. Problem (3.4) can be written in a standard form:

inf
x̃∈Rn+1,y0∈Rs ,

P∈Rs×q ,Qr∈Sq

{
c̃T x̃ | Ã(z)x̃ + B̃ y(z) ≤ d̃(z),

y(z) = y0 + Pz +
⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠ , ∀z ∈ Ubox,

Qr := diag(ξ1r , . . . , ξ
q
r ), ξ

j
r ∈ R, j = 1, . . . , q, r = 1, . . . , s

}
, (3.5)

where

c̃ =
(
c
1

)

∈ R
n+1, x̃ =

(
x
τ

)

∈ R
n+1, Ã(z) =

(
A(z) 0p
0Tn −1

)

∈ R
(p+1)×(n+1),

B̃ =
(
B
ϕT

)

∈ R
(p+1)×s, d̃(z) =

(
d(z)
0

)

∈ R
p+1. (3.6)

Note that problem (3.5) has p+1 robust inequality constraints. We handle these in two cases.
Case 1 Let i = 1, . . . , p. By (3.2), (3.3) and (3.6), the i th inequality constraint of (3.5)

is of the form

(a0i + Wi z)
T x + bTi

⎛

⎜
⎝y0 + Pz +

⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠

⎞

⎟
⎠ ≤ d0i + vTi z, ∀z ∈ Ubox. (3.7)

As each Qr is a (q × q) diagonal matrix with Qr = diag(ξ1r , . . . , ξ
q
r ), r = 1, . . . , s, it

follows that
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s∑

r=1

bir Qr = diag
( s∑

r=1

bir ξ
1
r , . . . ,

s∑

r=1

bir ξ
q
r

)

is also a (q × q) diagonal matrix.
Note that (3.7) amounts to

−
(

(a0i )
T x + bTi y0 − d0i + (WT

i x + PT bi − vi )
T z + zT

( s∑

r=1

bir Qr

)
z

)

≥ 0, ∀z ∈ Ubox.

Applying Theorem 2.1 with α := −((a0i )
T x + bTi y0 − d0i ), u := −(WT

i x + PT bi − vi ) and
W := −∑s

r=1 bir Qr , we find αi, j ∈ R, j = 1, . . . , q and

Xi, j =
⎛

⎜
⎝

Xi, j
11 Xi, j

12 Xi, j
13

Xi, j
12 Xi, j

22 Xi, j
23

Xi, j
13 Xi, j

23 Xi, j
33

⎞

⎟
⎠ � 0, j = 1, . . . , q,

such that
∑q

j=1 αi, j ≤ −((a0i )
T x + bTi y0 − d0i ) and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xi, j
11 = αi, j − (WT

i x + PT bi − vi ) jβ j −∑s
r=1 bir ξ

j
r β2

j ,

Xi, j
12 = 0,

2Xi, j
13 + Xi, j

22 = 2αi, j − (WT
i x + PT bi − vi ) j (β j + γ j ) − 2

∑s
r=1 bir ξ

j
r β jγ j ,

Xi, j
23 = 0,

Xi, j
33 = αi, j − (WT

i x + PT bi − vi ) jγ j −∑s
r=1 bir ξ

j
r γ 2

j .

(3.8)

Case 2 Let i = p + 1. By (3.6) the (p + 1)th inequality constraint of (3.5) is

− τ + ϕT

⎛

⎜
⎝y0 + Pz +

⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠

⎞

⎟
⎠ ≤ 0, ∀z ∈ Ubox. (3.9)

In the same manner as Case 1, we apply Theorem 2.1 to (3.9) with α := τ − ϕT y0,
u := −PTϕ and W := −∑s

r=1 ϕr Qr , we see that (3.9) is equivalent to the assertion that
there exist σ j ∈ R, j = 1, . . . , q and

Y j =
⎛

⎜
⎝

Y j
11 Y j

12 Y j
13

Y j
12 Y j

22 Y j
23

Y j
13 Y j

23 Y j
33

⎞

⎟
⎠ � 0, j = 1, . . . , q

such that
∑q

j=1 σ j ≤ τ − ϕT y0 and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y j
11 = σ j − (PTϕ) jβ j −∑s

r=1 ϕr ξ
j
r β2

j ,

Y j
12 = 0,

2Y j
13 + Y j

22 = 2σ j − (PTϕ) j (β j + γ j ) − 2
∑s

r=1 ϕr ξ
j
r β jγ j ,

Y j
23 = 0,

Y j
33 = σ j − (PTϕ) jγ j −∑s

r=1 ϕr ξ
j
r γ 2

j .

Now, let (x, y0, P, Q1, . . . , Qs) be a feasible point of problem (P). Taking Case
1 and Case 2 into account, we assert that the feasibility of (x, y0, P, Q1, . . . , Qs) is
equivalent to the assertion that (x, y0, P, Q1, . . . , Qs, τ, α

1,1, . . . , α p,q , X1,1, . . . , X p,q ,
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σ 1, . . . , σ q , Y 1, . . . , Yq) is a feasible point of problem (SDP), which completes the proof.
�

Remark 3.2 As an easy consequence of Theorem 3.1 we see that the following adjustable
robust linear program

inf
x∈Rn ,y0∈Rs ,

P∈Rs×q ,Qr∈Sq

{
cT x | A(z)x + By(z) ≤ d(z),

y(z) = y0 + Pz +
⎛

⎜
⎝

zT Q1z
...

zT Qsz

⎞

⎟
⎠ , ∀z ∈ Ubox

Qr := diag(ξ1r , . . . , ξ
q
r ), ξ

j
r ∈ R, j = 1, . . . , q, r = 1, . . . , s

}

admits the following exact SDP reformulation:

inf
x∈Rn ,y0∈Rs ,

αi, j∈R,Xi, j∈S3

{
cT x | Xi, j :=

⎛

⎜
⎝

Xi, j
11 Xi, j

12 Xi, j
13

Xi, j
12 Xi, j

22 Xi, j
23

Xi, j
13 Xi, j

23 Xi, j
33

⎞

⎟
⎠ � 0, i = 1, . . . , p, j = 1, . . . , q,

Xi, j
11 = αi, j − (WT

i x + PT bi − vi ) jβ j −
s∑

r=1

bir ξ
j
r β2

j ,

2Xi, j
13 + Xi, j

22 = 2αi, j − (WT
i x + PT bi − vi ) j (β j + γ j ) − 2

s∑

r=1

bir ξ
j
r β jγ j ,

Xi, j
33 = αi, j − (WT

i x + PT bi − vi ) jγ j −
s∑

r=1

bir ξ
j
r γ 2

j ,

Xi, j
12 = 0, Xi, j

23 = 0,
q∑

j=1

αi, j ≤ −(a0i )
T x − bTi y0 + d0i

}
.

This can be seen by setting ϕ := 0s in (P).

Single-Stage Robust Linear Programs Let us consider a particular case of problem (P)
where ϕ := 0s and B := 0p×s . In this case, we arrive at the (single-stage) robust linear
program:

inf
x∈Rn

{
cT x | A(z)x ≤ d(z), ∀z ∈ Ubox

}
, (LP)

where A(z) and d(z) are given as in (2.1). The corresponding problem (SDP) results in the
following form:

inf
x∈Rn ,αi, j∈R,

Xi, j∈S3

{
cT x | Xi, j :=

⎛

⎜
⎝

Xi, j
11 Xi, j

12 Xi, j
13

Xi, j
12 Xi, j

22 Xi, j
23

Xi, j
13 Xi, j

23 Xi, j
33

⎞

⎟
⎠ � 0, i = 1, . . . , p, j = 1, . . . , q,

(SDPL)

Xi, j
11 = αi, j − (WT

i x − vi ) jβ j ,

2Xi, j
13 + Xi, j

22 = 2αi, j − (WT
i x − vi ) j (β j + γ j ),
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Xi, j
33 = αi, j − (WT

i x − vi ) jγ j ,

Xi, j
12 = 0, Xi, j

23 = 0,
q∑

j=1

αi, j ≤ −(a0i )
T x + d0i

}
.

As we see in the following corollary, our SDP reformulation and the well-known LP
reformulation [3] for the problem (LP) share the same value.

Corollary 3.3 (Exact LP Reformulation) For the problem (LP), it holds that

inf(LP) = inf(SDPL) = inf(LDP),

where (LDP) is the following linear program

inf
x∈Rn ,αi, j∈R

{
cT x | (a0i )T x − d0i +

q∑

j=1

γ j + β j

2
(WT

i x − vi ) j +
q∑

j=1

γ j − β j

2
αi, j ≤ 0, i = 1, . . . , p,

(LDP)

− αi, j ≤ (WT
i x − vi ) j ≤ αi, j , j = 1, . . . , q, i = 1, . . . , p

}
.

Moreover, x∗ is an optimal solution of problem (LP) if and only if there exist αi, j ∈ R, Xi, j ∈
S
3, i = 1, . . . , p, j = 1, . . . , q such that (x∗, α1,1, . . . , α p,q , X1,1, . . . , X p,q) is an optimal

solution of problem (SDPL) or if and only if there exist αi, j ∈ R, i = 1, . . . , p, j = 1, . . . , q
such that (x∗, α1,1, . . . , α p,q) is an optimal solution of problem (LDP).

Proof ByTheorem 3.1, we first obtain the equality that inf(LP) = inf(SDPL).The equality
inf(LP) = inf(LDP) can be derived from a more general result in [3]. Here, we give a short
proof for the purpose of self-containment and completeness. Let x be a feasible point of
problem (LP). Then x is a solution to the following inequalities

(a0i + Wi z)
T x ≤ d0i + vTi z, ∀z ∈ Ubox, i = 1, . . . , p, (3.10)

where a j
i ∈ R

n, i = 1, . . . , p are the rows of A j for j = 0, 1, . . . , q , i.e,

A j := (a j
1 , . . . , a

j
p)

T , j = 0, 1, . . . , q,, Wi := (a1i , . . . , a
q
i ), i = 1, . . . , p, d j :=

(d j1, . . . , d jp), j = 0, 1, . . . , q , and vi := (d1i , . . . , dqi ), i = 1, . . . , p are denoted as
per (3.2) and (3.3). Note that (3.10) can be written as

(a0i )
T x − d0i +

q∑

j=1

z j (W
T
i x − vi ) j ≤ 0, ∀z j ∈ [β j , γ j ], j = 1, . . . , q, i = 1, . . . , p,

and so

(a0i )
T x − d0i + max

β j≤z j≤γ j , j=1,...,q

( q∑

j=1

z j (W
T
i x − vi ) j

)
≤ 0, i = 1, . . . , p. (3.11)

Letting z̃ j := z j − γ j+β j
2 , j = 1, . . . , q, we see that (3.11) is equivalent to the following

ones:

(a0i )
T x − d0i +

q∑

j=1

γ j + β j

2
(WT

i x − vi ) j + max
|z̃ j |≤ γ j−β j

2 , j=1,...,q

( q∑

j=1

z̃ j (W
T
i x − vi ) j

)
≤ 0,

i = 1, . . . , p. (3.12)

123



1106 Journal of Global Optimization (2021) 81:1095–1117

Moreover, it is easy to see that

max
|z̃ j |≤ γ j−β j

2 , j=1,...,q

( q∑

j=1

z̃ j (W
T
i x − vi ) j

)
=

q∑

j=1

γ j − β j

2
|(WT

i x − vi ) j |, i = 1, . . . , p,

and so, (3.12) amounts to the assertion that there exist αi, j ∈ R, i = 1, . . . , p, j = 1, . . . , q
(cf. [3, Page 19] for a similar linear inequality representation) such that

(a0i )
T x − d0i +

q∑

j=1

γ j + β j

2
(WT

i x − vi ) j +
q∑

j=1

γ j − β j

2
αi, j ≤ 0,

− αi, j ≤ (WT
i x − vi ) j ≤ αi, j , j = 1, . . . , q, i = 1, . . . , p.

This shows that (x, α1,1, . . . , α p,q) is a feasible point of problem (LDP), which completes
the proof. �

The following example illustrates how to obtain adjustable robust solutions and the cor-
responding values of a two-stage robust linear program in the face of box data uncertainty
using our results of this section.

Example 3.4 (Adjustable Robust Solutions) Consider an adjustable uncertain problem of
the form:

inf
x∈R2,y(·)

{
x1 + 2x2 | − 3x1 − x2 + z1x1 + z2x2 + eT1 y(z) + z2 − 2 ≤ 0,−x2 + z1 ≤ 0,

(EU)

− x1 − z1 + z2 ≤ 0,−x2 + 2eT2 y(z) + z1 − z2 ≤ 0
}
,

where e1, e2 ∈ R
2, are fixed recourse parameters, x := (x1, x2) is the first-stage here-

and-now decision, y(·) is the second-stage wait-and-see decision, which is an adjustable
decision variable depending on uncertain z := (z1, z2) ∈ [−1, 1]× [0, 2]. Here, we consider
a separable quadratic decision rule y(·) given by

y(z) := y0 + Pz +
(
zT Q1z
zT Q2z

)

,

where y0 ∈ R
2, P ∈ R

2×2 and Qr := diag(ξ1r , ξ2r ) with ξ
j
r ∈ R, r = 1, 2, j = 1, 2 are

(static) variables.
The adjustable robust counterpart of (EU) is given by:

inf
x∈R2,y0∈R2,

P∈R2×2,Qr∈S2

{
x1 + 2x2 | −3x1 − x2 + z1x1 + z2x2 + eT1 y(z) + z2 − 2 ≤ 0, −x2 + z1 ≤ 0, (ER)

− x1 − z1 + z2 ≤ 0, −x2 + 2eT2 y(z) + z1 − z2 ≤ 0,

y(z) := y0 + Pz +
(
zT Q1z
zT Q2z

)

,∀z := (z1, z2) ∈ [−1, 1] × [0, 2],

Qr := diag(ξ1r , ξ2r ), ξ
j
r ∈ R, r = 1, 2, j = 1, 2

}
.

(i) Let e1 := (1, 0), e2 := (0, 1). In this setting, we can verify directly that the problem (ER)
admits optimal solutions (for example, (x̄, ȳ0, P̄, Q̄1, Q̄2) with x̄ := (3, 1), ȳ0 := 02, P̄ :=
02×2, Q̄1 := Q̄2 := 02×2), and its optimal value is min(ER) = 5.
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Let us now employ Theorem 3.1 to verify the optimal value or find an optimal solution of
problem (ER). To do this, let β1 := −1, β2 := 0, γ1 := 1, γ2 := 2,

A0 :=

⎛

⎜
⎜
⎝

−3 − 1
0 − 1

− 1 0
0 − 1

⎞

⎟
⎟
⎠ , A1 :=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠ , A2 :=

⎛

⎜
⎜
⎝

0 1
0 0
0 0
0 0

⎞

⎟
⎟
⎠ , B :=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 2

⎞

⎟
⎟
⎠

and d0 := (2, 0, 0, 0), d1 := (0,−1, 1,−1), d2 = (−1, 0,−1, 1). The problem (ER)
becomes the following one:

inf
x∈R2,y0∈R2,

P∈R2×2,Qr∈S2

{
x1 + 2x2 | A(z)x + By(z) ≤ d(z), (EP)

y(u) = y0 + Pu +
(
zT Q1z
zT Q2z

)

,∀z ∈ Ubox :=
2∏

j=1

[β j , γ j ],

Qr := diag(ξ1r , ξ2r ), , ξ
j
r ∈ R, r = 1, 2, j = 1, 2

}
,

where A(z) := A0 +∑2
j=1 z j A

j and d(z) := d0 +∑2
j=1 z j d j for z := (z1, z2) ∈ Ubox.

Clearly, the problem (EP) is in the form of problem (P), and so its corresponding SDP
relaxation program is given by

inf
x∈R2,y0∈R2,

αi, j∈R,Xi, j∈S3

{
x1 + 2x2 | Xi, j :=

⎛

⎜
⎝

Xi, j
11 Xi, j

12 Xi, j
13

Xi, j
12 Xi, j

22 Xi, j
23

Xi, j
13 Xi, j

23 Xi, j
33

⎞

⎟
⎠ � 0, i = 1, 2, 3, 4, j = 1, 2,

(SDP)

Xi, j
11 = αi, j − (WT

i x + PT bi − vi ) jβ j −
2∑

r=1

bir ξ
j
r β2

j ,

2Xi, j
13 + Xi, j

22 = 2αi, j − (WT
i x + PT bi − vi ) j (β j + γ j ) − 2

2∑

r=1

bir ξ
j
r β jγ j ,

Xi, j
33 = αi, j − (WT

i x + PT bi − vi ) jγ j −
2∑

r=1

bir ξ
j
r γ 2

j ,

Xi, j
12 = 0, Xi, j

23 = 0,
2∑

j=1

αi, j ≤ −(a0i )
T x − bTi y0 + d0i

}
,

where W1 = I2,W2 = W3 = W4 = 02×2, a01 = (−3,−1), a02 = (0,−1), a03 =
(−1, 0), a04 = (0,−1), b1 = (b11, b12) = (1, 0), b2 = (b21, b22) = b3 = (b31, b32) =
(0, 0), b4 = (b41, b42) = (0, 2), v1 = (0,−1), v2 = (−1, 0), v3 = (1,−1), v4 = (−1, 1)
and d01 = 2, d02 = d03 = d04 = 0.

Using the Matlab toolbox CVX [12], we solve the SDP problem (SDP). The solver
returns the optimal value of problem (ER) as +5 = min(ER). Moreover, on account
of Theorem 3.1, the output gives a corresponding optimal solution of problem (ER) as
(x∗, y∗

0 , P
∗, Q∗

1, Q
∗
2), where x

∗ = (3.0000, 1.0000), y∗
0 = (−62.1975,−21.1526), P∗ :=(

57.7064 −0.5000
10.3729 6.6865

)

, Q∗
1 :=

(−36.7992 0.0000
0.0000 −6.1865

)

and Q∗
2 :=

(−3.0932 0.0000
0.0000 −3.0932

)

.
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(ii) Let e1 := 02, e2 := 02. In this case, the two-stage robust problem (EP) reduces to the
following (single-state) robust linear program:

inf
x∈R2

{
x1 + 2x2 | A(z)x ≤ d(z)

}
, (LP)

where A(z) := A0 +∑2
j=1 z j A

j and d(z) := d0 +∑2
j=1 z j d j for z := (z1, z2) ∈ Ubox.

Similarly as above, we can verify directly that the problem (LP) admits optimal solutions
(for example, x̄ := (3, 1)) and its optimal value is min(LP) = 5.

Let us now employ Corollary 3.3 to verify the optimal value or find an optimal solution of
problem (LP). Since the problem (LP) is the formof (LP), the correspondingLP reformulation
of problem (LP) is given by

inf
x∈R2,αi, j∈R

{
x1 + 2x2 | (a0i )

T x − d0i +
2∑

j=1

γ j + β j

2
(WT

i x − vi ) j +
2∑

j=1

γ j − β j

2
αi, j

(LDP)

≤ 0, i = 1, 2, 3, 4,

− αi, j ≤ (WT
i x − vi ) j ≤ αi, j , j = 1, 2, i = 1, 2, 3, 4

}
.

Using theMatlab toolboxCVX again, we solve the LP problem (LDP). The solver returns the
optimal value of problem (LP) as+5 = min(LP). Moreover, on account of Corollary 3.3, the
output gives a corresponding optimal solution of problem (LP) as x∗ := (3.0000, 1.0000).

4 Applications: inventory-productionmanagement

The following nominal model of an inventory-production management problem is adapted
from [4]. Consider a single product inventory system, comprised of a warehouse and I
factories. Also consider a planning horizon comprised of T time periods. We define:

• dt : the demand for the product at the end of period t .
• vt : the amount of product in the warehouse at the end of period t . v0 is given as the initial

amount of product in the warehouse.
• pti : the amount of product to be produced in factory i during period t .
• Pt

i : the maximal production capacity of factory i during period t .
• κi : the maximal cumulative production capacity of factory i over the planning horizon.
• cti : the cost of producing one unit of product in factory i during period t .
• Vmin: the minimal allowed level of inventory in the warehouse at all times.
• Vmax: the maximal allowed level of inventory in the warehouse at all times.

The problem is to satisfy the demand at all time periods whilst minimising the total cost.
Eliminating variables vt as in [4], we arrive at the following linear program:

(I P) min
pti∈R

T∑

t=1

I∑

i=1

cti p
t
i

subject to 0 ≤ pti ≤ Pt
i , i = 1, . . . , I t = 1, . . . , T ,

T∑

t=1

pti ≤ κi , i = 1, . . . , I ,
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Vmin ≤ v0 +
t∑

s=1

I∑

i=1

psi −
t∑

s=1

ds ≤ Vmax, t = 1, . . . , T .

Affinely Adjustable Robust Optimisation Model with Separable QDRs In practice, the
demand at period t is not revealed until the period is concluded. In this respect, dt , t =
1, . . . , T are regarded as uncertain parameters, lying within a box around a chosen nominal
value d∗

t :

dt ∈ [(1 − δ)d∗
t , (1 + δ)d∗

t

]
, δ ∈ [0, 1].

We therefore allow our optimisation variables pti to becomewait-and-see variables depending
on the uncertain demand. Assuming that the decision on supplies pti is to be made at the
beginning of period t , we allow the decision pti to be based on the demands up to (but not
including) time t . That is, defining our information basis [4] as

It = {1, . . . , t − 1}
and defining1 dIt = [

d1 . . . dt−1
]�

, we have

pti : Rt−1 → R, pti = pti (dIt )

and so (I P) can be written as an adjustable robust linear program

(I P − ARO) min
pti :Rt−1→R

max
d∈D

{
T∑

t=1

I∑

i=1

cti p
t
i (dIt )

}

subject to 0 ≤ pti (dIt ) ≤ Pt
i , i = 1, . . . , I t = 1, . . . , T , ∀d ∈ D,

T∑

t=1

pti (dIt ) ≤ κi , i = 1, . . . , I , ∀d ∈ D,

Vmin ≤ v0 +
t∑

s=1

I∑

i=1

psi (dIs ) −
t∑

s=1

ds ≤ Vmax, t = 1, . . . , T , ∀d ∈ D,

where D =
T∏

t=1

[(1 − δ)d∗
t , (1 + δ)d∗

t ].
We wish to solve (I P − ARO) via a separable QDR of the form

pti (dIt ) = pti (d) = yti + (wt
i )

�d + d�Qt
i d,

wherewt
i ∈ R

T , (wt
i ) j = 0 for j ≥ t , andQt

i ∈ R
T×T , Qt

i = diag
(
ξ ti1, ξ ti2, . . . , ξ ti(t−1), 0,

. . . , 0) (in order to maintain dependency on only d1, . . . , dt−1) . Problem (I P − ARO)

can then be written in the form

(I P − QDR) min
yti ∈R, wt

i∈RT

Qt
i∈RT×T , F

F

1 Note that, for the remainder of this paper, we now use the symbol � to stand for the transpose of a vector
or matrix. This is to avoid confusion with the number of periods in the planning horizon, T .
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subject to aF + B

⎛

⎜
⎝

⎡

⎢
⎣

y11
...

yTI

⎤

⎥
⎦+

⎡

⎢
⎣

(w1
1)

�
...

(wT
I )�

⎤

⎥
⎦ d +

⎡

⎢
⎣

d�Q1
1d

...

d�QT
I d

⎤

⎥
⎦

⎞

⎟
⎠ ≤ g0 + Gd, ∀d ∈ D,

where F is introduced as an auxiliary (here-and-now) variable as in Theorem 3.1,
a ∈ R

2I T+2T+I+1 is fixed, B ∈ R
(2I T+2T+I+1)×I T is fixed recourse, g0 ∈ R

2I T+2T+I+1,
G ∈ R

(2I T+2T+I+1)×T , and wt
i and Qt

i are constrained as above. For details see Appendix.
We can now apply Theorem 3.1 to (I P−QDR) and obtain its solution by solving an SDP

(see Appendix for the formulation). Note that (I P − QDR) cannot be solved by a standard
LP as in [4] since we now have quadratic terms in d .
Data Sets We use the same dataset as in the illustrative example in [4], as well as two other
values of I (with appropriate generalisations). We will solve (I P − QDR), and compare the
realised cost to that generated by both the single-stage robust optimisation formulation (as
in Corollary 3.3), the adjustable ADR cost (as in [4]), and the ideal solution to (I P).

For I factories, I = 3, 5, 10, producing a seasonal product over a period 48 weeks, let
decisions be made fortnightly (that is, T = 24). Suppose the nominal demand is seasonal,
taking the form

d∗
t = 1000

(

1 + 1

2
sin

(
π(t − 1)

12

))

, t = 1, . . . , 24

and likewise, production costs (see Fig. 1) are of the form

cti = αi

(

1 + 1

2
sin

(
π(t − 1)

12

))

, t = 1, . . . , 24,

αi = 1 + i − 1

I − 1
, i = 1, . . . , I .

Also let the maximal production capacity of each factory at each period be Pt
i = 567 units,

and the cumulative production capacity of each factory be κi = 13,600. Finally, the inventory
at the warehouse must be between 500 and 2000 units (inclusive) at all times.
Experimental Results We consider three policies to compute a solution to the prob-
lem: the QDR policy (outlined above); an affine decision rule (ADR) policy, solved as a
conic program via the reformulations obtained in [4]; and the single-stage solution, that
is, pti (d) = pti constant. There are 4 experiments performed, for uncertainty set D =
∏T

i=1 [(1 − δ)d∗
t , (1 + δ)d∗

t ] and different uncertainty levels δ = 10%, 7.5%, 5%, 2.5%.
For each δ we generate 500 instances of our uncertain demand (500 simulated demand tra-
jectories, see Fig. 2) and use these to compute the average costs for each policy, as well as the
average price of robustness (in comparison to the ideal solution); that is, for each simulated
demand trajectory we calculate the price of robustness as

c1 − c2
c2

,

where c1 is the realised cost for the policy, and c2 is the ideal cost.
All our programs were solved using the MOSEK toolbox (see, e.g. [20]), handled through

the YALMIP interface [18]. All computations were performed on a machine equipped with
2.6GHz Intel(R) Core(TM) i7-9750H, 32GB of DDR4 RAM, and MATLAB R2019b.
Numerical Results

Table 1 presents average policy costs and performances across different uncertainty levels
and number of factories. Columns are interpreted as follows: Policy Mean, the average cost
over all 500 simulations, per policy, per instance; P.O.R., the average price of robustness
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Fig. 1 Production costs: I = 3

Fig. 2 Asample demand trajectory (red) and the nominal demand trajectory (solid), enclosedwithin a “demand
tube” (dashed): nominal demand ± 20% (δ = 0.2)
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Table 1 Average policy costs and performances across different uncertainty levels and number of factories

I δ (%) QDR ADR Static Ideal QDR ADR Static
mean mean mean mean P.O.R. (%) P.O.R. (%) P.O.R.

3 2.5 35007.00 35064.30 35279.10 33839.22 3.45 3.62 4.26%

5 36013.82 36230.67 Infeasible 33823.70 6.48 7.12 Infeasible

7.5 37035.30 37282.99 Infeasible 33861.21 9.37 10.11 Infeasible

10 37795.45 38105.59 Infeasible 33818.06 11.76 12.68 Infeasible

5 2.5 30827.01 30845.02 31116.39 29871.13 3.20 3.26 4.17%

5 31657.37 31809.75 Infeasible 29878.03 5.96 6.47 Infeasible

7.5 32456.92 32659.42 Infeasible 29870.62 8.66 9.34 Infeasible

10 33029.12 33402.18 Infeasible 29839.59 10.69 11.94 Infeasible

10 2.5 28464.38 28467.28 28784.54 27646.99 2.96 2.97 4.11%

5 29247.88 29288.36 Infeasible 27648.12 5.79 5.93 Infeasible

7.5 30029.22 30103.65 Infeasible 27656.04 8.58 8.85 Infeasible

10 30653.01 30866.45 Infeasible 27664.83 10.80 11.57 Infeasible

over all 500 simulations. The Ideal Mean, listed in the 6th column, is the lowest possible
achievable cost.

As expected, the higher the level of uncertainty (δ), the higher the price of robustness,
across all policies. However, it is clear that our adjustable QDR policy well outperforms
the classic static approach, since the static problem is not even feasible for δ greater than
2.5%. It is also consistently better than the adjustable ADR policy, which is to be expected
(since the QDR is a generalisation of the ADR). Further, the price of robustness for our QDR
policy is reasonably low relative to the uncertainty itself: beginning at approximately 3%
for uncertainty 2.5%, and moving to approximately 10% for uncertainty 10%. The price of
robustness tends to decrease as more factories are added to the network; this is in line with
the decrease in overall cost. It seems also that the ADR approaches the performance of the
QDR as I increases, suggesting that a QDR approach is preferred (when also considering
computational effort) for smaller, more reasonable sized networks.

In Table 2 we present the problem sizes and computational times required for the different
instances. Note that δ has no effect on problem size or computational time. The time reported
(in seconds) is the average over all (four) problems solved for each instance, per policy.

As demonstrated in Table 2, whilst the problem sizes grow linearly in I (this can be
directly verified from the formulations also), they are non-trivial. This is particularly the case
for the QDR, whose reformulation is considerably larger due tomatrix variables and semidef-
inite constraints, and takes several minutes to solve. In comparison to the ideal solution, in
which all demands are known exactly before making any decisions, the problem sizes and
computational times for all robust methods are considerably larger, which is a by-product of
robustness.

Figures 3, 4 and 5 below show the individual results, for δ = 2.5%, over every (fifth)
simulation, for each of the problem instances. We see, in fact, that the relationships from
Table 2 do not just hold on average, but also consistently across every simulation; i.e. the
QDR outperforms the ADR on every individual simulation.

Remark 4.1 We note that there are several means to deal with the multi-stage setting of the
problem. In our approach, we have used a reduction to a two-stage problem by stacking
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Table 2 Problem instance sizes and the average time required to solve one such instance, for each policy

I Policy Num. constraints Num. variables CPU time (s)

3 QDR 36,457 53,740 75.561

ADR 6505 10,504 3.086

Static 4777 9604 1.645

Ideal 196 73 0.090

5 QDR 55,273 80,910 150.685

ADR 10,057 15,906 4.506

Static 7177 14,406 2.272

Ideal 295 121 0.075

10 QDR 102,313 148,835 363.488

ADR 18,937 29,411 8.152

Static 13,177 26,411 3.163

Ideal 539 241 0.040

Fig. 3 Price of robustness for all policies, for each of the 500 simulated demand trajectories, for uncertainty
level δ = 2.5% and I = 3

Fig. 4 Price of robustness for all policies, for each of the 500 simulated demand trajectories, for uncertainty
level δ = 2.5% and I = 5
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Fig. 5 Price of robustness for all policies, for each of the 500 simulated demand trajectories, for uncertainty
level δ = 2.5% and I = 10

each of our time-dependent adjustable decisions into a single vector, which is solved for
simultaneously. An alternative method, as used in [4] would be to solve the problem by some
iterative algorithm (for example, a rolling horizon approach), where decisions are made in
stages, each incorporating the revealed information and optimal solution of the previous time
step. This approach can result in better optimal solutions (compare, e.g. Table 1 for I = 3
with [4, Table 1]), but takes considerably longer to solve, as a problem instance must be
solved at each time step.

We also note that similar numerical experiments on inventory-production management
were performed in [1] where only a single factory was considered in comparison to our
multi-factory model. It is therefore difficult to draw comparisons of the performance of
our QDR method against the piecewise linear functions method SDP-RC presented in [1].
However, in comparison to the AARC method (the same as what we have labelled the ADR
method), our QDR and the SDP-RC have similar performances and are both solved by an
SDP. Moreover, our method is capable of solving problems with T ≥ 24 and I = 10, whilst
the SDP-RC solves problems with T = 10 and I = 1.

5 Conclusion and further work

In this paper by establishing a sum-of-squares representation for the non-negativity of a sep-
arable non-convex quadratic function over box constraints, we were able to prove that an
adjustable robust linear program with a separable quadratic decision rule admits an equiva-
lent semi-definite program reformulation. Our result also showed how an adjustable robust
solution to such a program can be found by simply solving an equivalent semidefinite pro-
gram. We illustrated our reformulation scheme via numerical experiments by applying it to
an inventory-production management problem with the demand uncertainty. They showed
that our QDR approach to two-stage decision-making performs better than the single-stage
approach and is capable of solving the inventory production problem with a greater degree
of uncertainty in the demand.

Our approach may be extended to study adjustable robust linear programs over box data
uncertainty sets under a more general separable polynomial decision rule and will be inves-
tigated in a further study together with applications to two-stage decision-making problems,
such us the lot-sizing problems with demand uncertainty.
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6 Appendix: Exact reformulations for the inventory production
problem

Standard Formulation In order to transform the problem (I P) into a standard matrix form,
we further define:

pt =

⎡

⎢
⎢
⎣

pt1
.
.
.

ptI

⎤

⎥
⎥
⎦ , p =

⎡

⎢
⎢
⎣

p1

.

.

.

pT

⎤

⎥
⎥
⎦ , ct =

⎡

⎢
⎢
⎣

ct1
.
.
.

ctI

⎤

⎥
⎥
⎦ , c =

⎡

⎢
⎢
⎣

c1

.

.

.

cT

⎤

⎥
⎥
⎦ , Pt =

⎡

⎢
⎢
⎣

Pt
1
.
.
.

Pt
I

⎤

⎥
⎥
⎦ , P =

⎡

⎢
⎢
⎣

P1

.

.

.

PT

⎤

⎥
⎥
⎦ , κ =

⎡

⎢
⎢
⎣

κ1
.
.
.

κI

⎤

⎥
⎥
⎦ .

After also introducing the auxiliary (here-and-now) variable F as per the methodology in the
proof of Theorem 3.1, (I P) is equivalently rewritten as

(I P)min
p, F

F

subject to − F + c� p ≤ 0,

−p ≤ 0I T ,

p≤ P,
(
1�
T ⊗ Id I

)
p ≤ κ,

[
1I t

0I (T−t)

]�
p ≤ Vmax − v0 +

[
1t

0T−t

]�
d, t = 1, . . . , T ,

−
[

1I t
0I (T−t)

]�
p ≤ −Vmin + v0 −

[
1t

0T−t

]�
d, t = 1, . . . , T ,

or in a standard form,

(I P)min
p, F

F

subject to aF + Bp ≤ g0 + Gd,

where

a =
[ −1
02I T+2T+I

]

∈ R
2I T+2T+I+1, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c�
−Id I T
Id I T

1�
T ⊗ Id I

(1T×T )∇ ⊗ 1�
I

−(1T×T )∇ ⊗ 1�
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(2I T+2T+I+1)×T ,

g0 =

⎡

⎢
⎢
⎢
⎢
⎣

0I T+1
P
κ

1T (Vmax − v0)

−1T (Vmin − v0)

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
2I T+2T+I1, G =

⎡

⎣
0(2I T+I+1)×T

(1T×T )∇
−(1T×T )∇

⎤

⎦ ∈ R
(2I T+2T+I+1)×T ,
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where Id n is the n × n identity matrix, ⊗ refers to the Kronecker product, and M∇ is the
lower triangular part of matrix M .

Recall we wish to solve (I P − ARO) via a separable QDR of the form

pti (dIt ) = pti (d) = yti + (wt
i )

�d + d�Qt
i d,

where wt
i ∈ R

T , (wt
i ) j = 0 for j ≥ t , and Qt

i ∈ R
T×T , Qt

i = diag (ξ ti1, ξ ti2, . . . , ξ ti(t−1),

0, . . . , 0). Let

yt =
⎡

⎢
⎣

yt1
...

ytI

⎤

⎥
⎦ , y =

⎡

⎢
⎣

y1

...

yT

⎤

⎥
⎦ , Wt =

⎡

⎢
⎣

(wt
1)

�
...

(wt
I )�

⎤

⎥
⎦ , W =

⎡

⎢
⎣

W 1

...

WT

⎤

⎥
⎦ .

Then (I P − QDR) can be written as

(I P − QDR) min
y∈RI T ,W∈RI T×T

Qr∈RT×T , F∈R

F

subject to aF + B

⎛

⎜
⎝y + Wd +

⎡

⎢
⎣

d�Q1d
...

d�QIT d

⎤

⎥
⎦

⎞

⎟
⎠ ≤ g0 + Gd, ∀d ∈ D,

where Wi j = 0 for j ≥ � i
I �, Qr = Qt

i for r = I (t − 1) + i and Qr =
diag (ξ

(1)
r , . . . , ξ

(t−1)
r , 0, . . . , 0). The problem is now in a standard form. Notice that the

coefficient matrix of the here-and-now variable F is also fixed, and has no affine dependence
on the uncertainty d .
Exact SDP Reformulation Applying Theorem 3.1 to (I P − QDR) we find that the exact
SDP reformulation is

(I P − SDP)

min
F∈R, λit∈R,

y∈RI T ,W∈RI T×T

Qr∈RT×T , Mi,t∈S3×3

F

subject to Mi,t =
⎡

⎢
⎣

Mi,t
1,1 Mi,t

1,2 Mi,t
1,3

Mi,t
1,2 Mi,t

2,2 Mi,t
2,3

Mi,t
1,3 Mi,t

2,3 Mi,t
3,3

⎤

⎥
⎦ � 0,

Mi,t
1,1 = λit − (1 − δ)

(
W�bi − gi

)

t
d∗
t −

I T∑

r=1

(bi )r ξ
(t)
r

(
(1 − δ)d∗

t

)2
,

Mi,t
1,2 = 0,

2Mi,t
1,3 + Mi,t

2,2 = 2λit − 2d∗
t

(
W�bi − gi

)

t
− 2

I T∑

r=1

(bi )r ξ
(t)
r (1 − δ)(1 + δ)d∗

t
2
,

Mi,t
2,3 = 0,

Mi,t
3,3 = λit − (1 + δ)

(
W�bi − gi

)

t
d∗
t −

I T∑

r=1

(bi )r ξ
(t)
r

(
(1 + δ)d∗

t

)2
,
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T∑

t=1

λit ≤ −
(
ai F + b�

i y − (g0)i
)

,

for i = 1, . . . ,m t = 1, . . . , T .
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