
Journal of Global Optimization (2021) 81:861–880
https://doi.org/10.1007/s10898-021-01027-w

Branch-and-price for a class of nonconvex mixed-integer
nonlinear programs

Andrew Allman1 ·Qi Zhang1

Received: 6 January 2020 / Accepted: 24 April 2021 / Published online: 7 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Thiswork attempts to combine the strengths of twomajor technologies that havematured over
the last three decades: global mixed-integer nonlinear optimization and branch-and-price.
We consider a class of generally nonconvex mixed-integer nonlinear programs (MINLPs)
with linear complicating constraints and integer linking variables. If the complicating con-
straints are removed, the problem becomes easy to solve, e.g. due to decomposable structure.
Integrality of the linking variables allows us to apply a discretization approach to derive
a Dantzig-Wolfe reformulation and solve the problem to global optimality using branch-
andprice. It is a remarkably simple idea; but to our surprise, it has barely found any application
in the literature. In this work, we show that many relevant problems directly fall or can be
reformulated into this class of MINLPs. We present the branch-and-price algorithm and
demonstrate its effectiveness (and sometimes ineffectiveness) in an extensive computational
study consideringmultiple large-scale problems of practical relevance, showing that, inmany
cases, orders-of-magnitude reductions in solution time can be achieved.

Keywords Mixed-integer nonlinear programming · Branch-and-price · Decomposition ·
Nonconvex optimization

1 Introduction

Mixed-integer nonlinear programming (MINLP) has proven to be a powerful modeling
paradigm and has received increased attention in recent years. However, despite the tremen-
dous advances in the theoretical and algorithmic treatment of MINLPs, they are still
significantly less scalable than their linear counterparts such that solving MINLPs of large
sizes remains a challenge. In this work, we consider the exact solution of a class of generally
nonconvex MINLPs whose structure is amenable to branch-and-price, hence allowing us to
combine the strengths of two key enabling technologies: column generation for large-scale
integer programming and global optimization ofMINLPs. Specifically,we consider problems
of the following form:

B Qi Zhang
qizh@umn.edu

1 Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities,
Minneapolis, MN 55455, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01027-w&domain=pdf
http://orcid.org/0000-0001-8862-4675

862 Journal of Global Optimization (2021) 81:861–880

minimize
x,y,z

c�x + f (y, z) (1a)

subject to Ax + Dy ≥ b (1b)

g(y, z) ≤ 0 (1c)

ymin ≤ y ≤ ymax (1d)

x ∈ R
m+ × Z

m̄+, y ∈ Z
p, z ∈ R

q × Z
q̄ , (1e)

where the vectors x and z can contain both continuous and integer variables, while the
y-variables are all integer. Note that without loss of generality, x are constrained to be
nonnegative. The objective function (1a) consists of a linear term, c�x , and a nonlinear
term, f (y, z). While the linear constraints (1b) involve x and y, g(y, z) in (1c) are nonlinear
functions of y and z. The functions f and g can be nonconvex. Constraints (1d) ensure that y
are bounded. We assume that problem (1) can be efficiently solved if constraints (1b), which
we call the complicating constraints, are removed.

We are particularly interested in problems that, without the complicating constraints,
result in smaller MINLPs that can be solved using state-of-the-art global solvers. This most
commonly occurs when the problem has a decomposable structure, such that multiple inde-
pendent subproblems are generated when the complicating constraints are removed, but can
also occur when the number of linear constraints is much larger than the number of nonlinear
constraints. We find that many relevant problems directly fall or can be reformulated into
the aforementioned class of MINLPs. Examples can be found in process and product design,
production capacity planning, dynamic facility location, stochastic programming, statistical
learning, and many more application domains.

In this work, we investigate the computational feasibility of a branch-and-price approach
to solving MINLPs of the given form. While the suitability of the proposed algorithm has
been indicated in the literature [1–3], it has barely found any application. We hence aim
to systematically analyze the theoretical basis of the branch-and-price approach, highlight
critical algorithmic considerations, and examine the algorithm’s performance in extensive
computational experiments.

The remainder of this paper is organized as follows: In Sect. 2, we review existing works
for finding the exact solution of MINLPs and solving large-scale MILPs using branch-and-
price. Next, we present an approach for reformulating problems of the form presented in. (1)
using discretization in Sect. 3. This reformulation makes the problem amenable for solution
using branch-and-price, and the algorithm for doing so is presented in Sect. 4. We show how
this approach can be extended to problems where the pricing subproblem is decomposable
in Sect. 5. In Sect. 6, the performance of the branch-and-price approach is assessed in four
representative case studies. Finally, in Sect. 7 we provide some concluding remarks.

2 Literature review

The development of exactmethods for the solution ofmixed-integer linear programs (MILPs)
dates back to the 1950s [4,5] (for more details on the history of integer programming, see
[6]). Over the last decades, MILP has reached a level of maturity that has made it the pri-
mary approach to solving many industrial and scientific problems of high complexity and
dimensionality. Mixed-integer nonlinear programming is a more recent development and
was initially motivated by applications in chemical and process systems engineering [7].

123

Journal of Global Optimization (2021) 81:861–880 863

The development of MINLP algorithms has initially focused on the convex case, i.e.
problems in which, loosely speaking, the continuous relaxation of the MINLP is convex.
Methods for solving convex MINLPs include branch-and-bound [8,9], generalized Benders
decomposition [10], outer approximation [11,12], LP/NLP-based branch-and-bound [13],
extended cutting plane [14], and extended supporting hyperplane [15]. For recent reviews on
convex MINLP, we refer the reader to Grossmann [16], Bonami et al. [17], and Kronqvist et
al. [18].

Compared to convex MINLPs, solving nonconvex MINLPs is significantly more chal-
lenging due to the nonconvexity that remains even after relaxing the integer restrictions.
Exact algorithms for nonconvex MINLP incorporate concepts from global continuous
optimization, such as convex relaxations and spatial branch-and-bound [19]. Major improve-
ments have been achieved with the development of the branch-and-reduce [20,21] and
α-branch-and-bound methods [22,23]. Furthermore, incorporating MILP relaxations and
integer programming techniques for generating cutting planes has proven to be very effec-
tive [24]. These and other algorithmic advances are implemented in state-of-the-art global
MINLP solvers, such as BARON [24], Couenne [25], LINDOGlobal [26], ANTIGONE [27],
and SCIP [28]. For recent reviews focusing on nonconvex MINLP, see [29,30].

Although the performance of global MINLP solvers has improved significantly over the
last two decades, they are still by far not as scalable as state-of-the-art MILP solvers. Hence,
to solve large-scale nonconvex MINLPs, one often resorts to decomposition methods that
exploit specialmodel structures. Popular decomposition approaches include different variants
of Lagrangean decomposition [31] and progressive hedging [32]. However, these methods
have to be considered heuristics since, although they can provide lower and upper bounds,
it is not guaranteed that the duality gap can be closed. Exact decomposition algorithms for
nonconvexMINLP are a rarity. One of those is bilevel decomposition, which iterates between
a master MILP that is a relaxation of the original MINLP and an NLP or MINLP subproblem
obtained byfixing integer variables. Integer andouter-approximation cuts (or tailored cuts that
can be interpreted as such) are added to the master MILP at each iteration. The convergence
behavior of bilevel decomposition strongly depends on the quality of the MILP relaxation
and is therefore very application-specific [33–35]. Generalized Benders decomposition has
been extended to solve two-stage stochastic nonconvex separable MINLPs in which only the
continuous variables are involved in the nonconvex terms [36]. Cao and Zavala[37] propose
a branch-and-bound scheme to address two-stage stochastic nonconvex MINLP with mixed-
integer first-stage and continuous second-stage variables. Combining generalized Benders
decomposition and branch-and-cut, Li and Grossmann [38] are able to consider the case with
nonconvex constraints and mixed-binary variables in both stages. Finally, Rebennack et al.
[39] propose a decomposition method based on column enumeration for nonconvexMINLPs
with an assignment constraint; however, since the number of columns grows exponentially
with the number of assignment decisions, this method is only suited for problems with a few
assignment variables.

In the same spirit of decomposition, we apply in this work branch-and-price, which has its
origin in the pioneering works of Dantzig and Wolfe [40], who introduced the fundamental
idea of column generation for linear programming, and Desrosiers et al. [41], who were the
first to embed column generation in a branch-and-bound framework to solve a large-scale
MILP. Branch-and-price has been a success story in large-scale mixed-integer optimization,
with applications in vehicle routing [42,43], crew scheduling [44,45], and fleet assignment
[46,47], to just name a few. For reviews on branch-and-price, see [1,48].

The vast majority of existing works on branch-and-price consider integer and mixed-
integer linear problems.However, there is significantflexibility in incorporatingnonlinearities

123

864 Journal of Global Optimization (2021) 81:861–880

Fig. 1 The two-dimensional
feasible set Y is given by the set
of dark-colored points. The
shaded area represents set Y
without the integrality restrictions
on y

1

2

in the pricing problem, which has beenmentioned (in form of brief side notes) in the literature
[1,2]. It is all the more surprising that there seems to be almost no published work on applying
branch-and-price with mixed-integer nonlinear pricing problems. The only notable exception
that we have been able to find is the work by Nowak et al. [3] in which a column-generation-
based method for generating inner and outer approximations for nonconvex MINLPs is
developed. We believe that there is considerable room for theory and algorithm development
in the application of branch-and-price concepts to solving MINLPs.

3 Reformulation via discretization

To make the problem amenable to branch-and-price, we first apply a discretization approach
[49] to derive an extensive formulation of problem (1). Consider the feasible set for y when
disregarding constraints (1b):

Y :=
{
y : ∃z ∈ R

q × Z
q̄ such that g(y, z) ≤ 0, ymin ≤ y ≤ ymax, y ∈ Z

p
}

, (2)

which is a finite set of integer points with cardinality K := |Y|. Hence, Y can be equivalently
expressed as:

Y = {ȳ1, . . . , ȳK } =
{
y : y =

∑
k∈K

λk ȳk,
∑
k∈K

λk = 1, λk ∈ {0, 1} ∀ k ∈ K
}

, (3)

where ȳk denotes a specific point in Y and K := {1, . . . , K }. Here, the binary variable λk is
equal to 1 if y = ȳk and otherwise 0. Figure 1 shows a two-dimensional example of Y , which
is given by the dark-colored points. In this representative example, the shaded area, which
represents one possible set Y without integrality restrictions on y, is clearly nonconvex.

Remark 1 Note that in the example shown in Fig. 1, Y �= conv(Y) ∩ Z
p , where conv(Y)

denotes the convex hull of Y . In general, Y ⊆ conv(Y) ∩ Z
p , which is due to nonconvex

constraint functions g or integer components in z. Hence, the traditional convexification tech-
nique [1] that is often used in Dantzig–Wolfe reformulations does not apply here. However, in
the special case where all integer variables are binary, that is, where ymin = 0 and ymax = 1,
the equality Y = conv(Y) ∩ Z

p is guaranteed to hold.

123

Journal of Global Optimization (2021) 81:861–880 865

For each k ∈ K, we can define an optimal cost:

f̄k := min
z∈Rq×Zq̄

{ f (ȳk, z) : g(ȳk, z) ≤ 0} , (4)

which is the last ingredient that we need to reformulate (1) into the followingmaster problem:

(MP) : vMP := min
x,λ

c�x +
∑
k∈K

λk f̄k (5a)

s.t. Ax + D
∑
k∈K

λk ȳk ≥ b (5b)

∑
k∈K

λk = 1 (5c)

x ∈ R
m+ × Z

m̄+ (5d)

λk ∈ {0, 1} ∀ k ∈ K, (5e)

which is a large-scale MILP as K grows exponentially with the dimension of y. Problems
(MP) and (1) are equivalent in a sense that they have the same optimal value, vMP, and
every solution of (MP) can be mapped to a unique solution of (1) in the (x, y)-space and a
corresponding set of z-values that provide the same optimal value (the converse is trivially
true).

4 The branch-and-price algorithm

In the branch-and-price algorithm, we solve (MP) using branch-and-bound, but solve the
LP relaxation at each node via column generation. In the following, we describe the major
elements of the algorithm.

4.1 Column generation

Consider the LP relaxation of (MP), whichwe denote by (MP). The large number of variables
in (MP) typically prohibits solving it in full-space. Instead, we consider a restricted master
problem, denoted by (RMP), which involves only a subset of columns K̂ ⊆ K. The LP
relaxation of (RMP), denoted by (RMP), can be solved efficiently as long as the size of K̂
is sufficiently small. New columns are generated as needed by solving the following pricing
problem:

(PP) : ζ := min
y,z

f (y, z) − π�Dy − μ (6a)

s.t. g(y, z) ≤ 0 (6b)

ymin ≤ y ≤ ymax (6c)

y ∈ Z
p, z ∈ R

q × Z
q̄ , (6d)

where π and μ denote the values of the dual variables associated with constraints (5b) and
(5c), respectively, at the optimal solution of (RMP). Problem (PP) minimizes the reduced
cost; hence, if ζ < 0, the corresponding y∗ may improve the solution to (MP) and is therefore
added as a new column to K̂. Note that (PP) is a generally nonconvex MINLP.

123

866 Journal of Global Optimization (2021) 81:861–880

Since (RMP) considers a restricted set of columns, its optimal value, vRMP, is an upper
bound on the optimal value of (MP), vMP. Following standard duality arguments [50, p.
189], one can show that a lower bound is given by vRMP + ζ . Hence, we have the following
relationship:

vRMP + ζ ≤ vMP ≤ vRMP. (7)

Algorithm 1 shows the pseudocode of the algorithm for solving (MP). Here, the current
lower and upper bounds on vMP are denoted by LBMP and UBMP, respectively. The column
generation algorithm is finite and exact. If we set the tolerance ε̄ to zero, ζ will be zero at
the last iteration and the algorithm terminates at the optimal solution of (MP).

Algorithm 1 Column generation algorithm for solving (MP).

1: function solveRelaxedMP((MP), (PP), K̂)
2: Set tolerance ε̄

3: Initialize: LBMP ← −∞, UBMP ← ∞, k ← |K̂|
4: while UBMP − LBMP > ε̄ do
5: Solve (RMP), obtain x∗, λ∗, π , μ, and vRMP

6: Update upper bound: UBMP ← vRMP

7: Solve (PP), obtain y∗ and ζ

8: if ζ < 0 then add column
9: k ← k + 1
10: ȳk ← y∗, f̄k ← ζ + π�Dy∗ + μ, and K̂ ← K̂ ∪ {k}
11: end if
12: Update lower bound: LBMP ← max{LBMP, vRMP + ζ }
13: end while
14: return x∗, λ∗, vMP ← vRMP

15: end function

Remark 2 If we solve (PP) using a global MINLP solver such as BARON, we obtain, if
available, lower (l) and upper (u) bounds on ζ at every iteration of the branch-and-bound
algorithm. Using these bounds, we can generate new columns and compute valid bounds on
vMP without solving (PP) to optimality as follows: A column is added if u < 0. In line 10
of Algorithm 1, f̄k is computed using u, i.e. f̄k ← u + π�Dy∗ + μ. Then the following
bounds can be computed:

vRMP + l ≤ vRMP + ζ ≤ vMP ≤ vRMP. (8)

Only in the last iteration, (PP) has to be solved to ε̄-optimality in order to achieve a desired
optimality gap. Not solving (PP) to optimality at every iteration can mitigate the impact of
the tailing-off effect in solving the MINLP and significantly speed up the overall algorithm.

4.2 Branch-and-bound

If the solution of (MP) is integer feasible, it is also the optimal solution to (MP); remarkably,
our computational experiments (see Sect. 6) show that solving (MP) often returns integer
feasible solutions. In general, however, the solutionmay not satisfy the integrality restrictions,
in which case we have to apply branch-and-bound. It is well known that branching on the
λ-variables leads to unbalanced branch-and-bound trees; hence, it is recommended to design
branching rules based on the original variables [49]. We comment, whenever appropriate, on

123

Journal of Global Optimization (2021) 81:861–880 867

branching rules in the case studies in Sect. 6 as they often have to be tailored to the specific
application.

An outline of the branch-and-price algorithm is shown in Algorithm 2. Here, N denotes
the set of nodes generated in the branch-and-bound tree, which is initialized with the root
node 1. Furthermore, we start with a nonempty set of feasible columns K̂. At each node n,
we solve the linear relaxation of the master problem associated with that node, denoted by
(MP)n , using the corresponding pricing problem (PP)n . The solution of (MP)n can be used
to update the overall lower bound LBMP, and if it is integer feasible, it also provides an upper
bound on vMP; otherwise, we can solve (RMP)n , which considers the integrality constraints,
to obtain a feasible solution to (MP) and hence an upper bound. The incumbent solution
(x̂∗, λ̂∗) is updated every time a new feasible solution is found. The algorithm terminates
when an optimality gap smaller than ε is reached; otherwise, branching rules are applied to
update the node set N , and the next node n to be evaluated is selected.

Algorithm 2 Branch-and-price algorithm for solving (MP).
1: Set tolerance ε

2: Initialize: LBMP ← −∞, UBMP ← ∞, N ← {1}, n ← 1, K̂
3: while |N | > 0 do
4: solveRelaxedMP((MP)n , (PP)n , K̂)
5: Update lower bound LBMP

6: if solution not integer feasible then
7: Solve (RMP)n , obtain x∗, λ∗, vRMP

8: end if
9: Update upper bound UBMP and incumbent solution (x̂∗, λ̂∗)

10: if UBMP − LBMP > ε then
11: Apply branching rules and update N
12: Select next node n
13: else
14: return x̂∗, λ̂∗, LBMP, UBMP

15: end if
16: end while

Remark 3 As mentioned in Remark 2, a lower bound on v(MP)n is obtained at every iteration
of solveRelaxedMP((MP)n , (PP)n , K̂). This information can be used to potentially prune
the node before the column generation algorithm terminates.

Remark 4 Solving (RMP)n after solving (MP)n at every node (line 7 of Algorithm 2) is not
required for convergence; however, it provides upper bounds that can help reduce the total
number of nodes that need to be evaluated. In fact, (RMP)n can be solved at any column
generation iteration, but this is typically not worth the computational effort.

Remark 5 For ease of exposition, a global set of columns, K̂, is used inAlgorithm 2.However,
it is usually beneficial to consider node-specific column sets. For example, branching can
render some of the columns infeasible, in which case they should be removed from the set.

5 Decomposable pricing problems

Most problems of interest that can be effectively solved using branch-and-price have a decom-
posable structure. Specifically, this means that the pricing problem decomposes into multiple

123

868 Journal of Global Optimization (2021) 81:861–880

smaller subproblems that can be solved independently and in parallel. Such an MINLP is of
the following form:

minimize
x,y,z

c�x +
∑
i∈I

fi (yi , zi) (9a)

subject to Ax +
∑
i∈I

Di yi ≥ b (9b)

gi (yi , zi) ≤ 0 ∀ i ∈ I (9c)

ymin
i ≤ yi ≤ ymax

i ∀ i ∈ I (9d)

x ∈ R
m+ × Z

m̄+ (9e)

yi ∈ Z
pi , zi ∈ R

qi × Z
q̄i ∀ i ∈ I, (9f)

where I denotes the set of subproblems. One can see that the problem decomposes into |I|
independent subproblems if constraints (9b) are removed.

Following an analogous derivation as in Sect. 3, we reformulate (9) into the following
master problem:

vMP = min
x,λ

c�x +
∑
i∈I

∑
k∈Ki

λik f̄ik (10a)

s.t. Ax +
∑
i∈I

Di

∑
k∈Ki

λik ȳik ≥ b (10b)

∑
k∈Ki

λik = 1 ∀ i ∈ I (10c)

x ∈ R
m+ × Z

m̄+ (10d)

λik ∈ {0, 1} ∀ i ∈ I, k ∈ Ki , (10e)

where Ki denotes the set of feasible columns in subproblem i , and each k ∈ Ki is associated
with a solution ȳik and an optimal cost f̄ik . The corresponding pricing subproblem i is as
follows:

ζi := min
yi ,zi

fi (yi , zi) − π�Di yi − μi (11a)

s.t. gi (yi , zi) ≤ 0 (11b)

ymin
i ≤ yi ≤ ymax

i (11c)

yi ∈ Z
pi , zi ∈ R

qi × Z
q̄i . (11d)

In the decomposable case, the pricing subproblems are solved independently and columns
are generated for each subproblem. The optimal value vMP can then be bounded as follows:

vRMP +
∑
i∈I

ζi ≤ vMP ≤ vRMP. (12)

Note that not all ζi have to be nonpositive, but their sum will be.

6 Computational experiments

In this section, the computational performance of solving many problem instances from
four different case studies using the proposed branch-and-price algorithm is compared to

123

Journal of Global Optimization (2021) 81:861–880 869

the performance when solving the full-space problem using a state-of-the-art, off-the shelf
global MINLP solver, BARON 19.7.9 [24]. All problems are solved using 25 cores on the
Mesabi cluster of the Minnesota Supercomputing Institute, a Linux cluster equipped with a
set of 2.5GHz Intel Hasewell E5-2680v3 processors. For solving full-space problemswithout
decomposition, BARON is used with the Threads option set to 25, allowing for the MILP
subsolver (CPLEX) tomake use of parallelization to speed up solution times.When problems
are solved using branch-and-price, CPLEX 12.8 is used to solve restricted master problems,
while BARON with a single thread is used to solve pricing subproblems in parallel. All
computations are implemented in Julia using the JuMP modeling language, version 0.17.1
[51]. The stopping criteria used for all instances are a 0.1When the desired optimality gap is
reached, we report wall time to reach that gap, and when the maximum wall time is passed,
we report the optimality gap achieved at that time. For each case study presented, model
formulations for the full-space problem, master problem, and pricing subproblems, as well
as distributions used for the generation of random parameters, are given in the supplementary
material. The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

6.1 Example 1: cutting circles from rectangles

This problem considers cutting out a set of circles J of different sizes from a set of given
rectangles R, which are also of different sizes. It decides which rectangles should be used
and which circles should be cut from these rectangles in order to minimize the total trim
loss, which is the area of the used rectangles that was not cut into circles. More generally, it
is a simple nonlinear example of a generalized assignment problem, where tasks need to be
assigned to different available resources, and can also be thought of as a nonlinear example
of the cutting stock problem, one of the motivating examples for the development of branch-
and-price [52]. This problem was originally considered by Rebennack et al. [39], where it is
solved using column enumeration, which differs from the column generation approach used
in this paper in that the master problem (5) is solved considering the full set of columns K,
instead of a dynamically updated subset of columns.

This problem decomposes into one pricing subproblem for each rectangle r ∈ R which
decides which circles should be cut from each respective rectangle. These decisions are
returned as a column to the master problem, which decides which rectangles should actually
be used given complicating assignment constraints that state that each circle must be assigned
to exactly one rectangle. For this case study, the master problem convexity constraint (5c)
can be relaxed to an inequality, where it is possible to not choose any column for a given
rectangle if no circles are cut from that rectangle in the optimal solution. The overall size of the
problem can be increased in two ways: increasing the number of rectangles, which increases
the number of subproblems in the branch-and-price algorithm and should haveminimal effect
on solution times when subproblems are parallelized, and increasing the number of circles,
which increases the size of subproblems in the branch-and-price algorithm and should result
in an increase in solution times. Computational results for 25 instances of varying problem
size are presented in Table 1. Note that for this case study, random problem instances are
generated in the same way as in the previous work analyzing this problem.

For this case study, a feasible initial set of columns is required to ensure feasibility of
the master problem in early iterations. The initial columns chosen are feasible (but likely
suboptimal) cases where a single circle is cut from a rectangle, as optimal column costs can
be trivially calculated for these cases as the rectangle area minus the circle area. The “number

123

870 Journal of Global Optimization (2021) 81:861–880

of columns generated” information presented in Table 1 includes these initial columns. To
ensure a fair comparison between the two methods, the full-space problem is also initialized
with a feasible (but likely suboptimal) solution where different rectangles are each assigned
one circle. Nonetheless, for many of the problem instances with a large number of rectangles,
BARON is unable to determine an upper bound on the objective for the problem within the
time allotted. Overall, the performance of the branch-and-price algorithm is clearly superior
to solving the full-space problem in BARON for the problems tested in this case study, as the
full-space model cannot be solved to optimality in under 10,000 s for any instance, and only
returns solutions with very large optimality gaps after that time. Conversely, 16 of the 25
instances are solved to global optimality using branch-and-price, and the worst gap returned
from branch-and-price (78.8%) is still better than the best gap returned from the full-space
solution (95.1%). We also note that, as expected, our solution times for the branch-and-price
algorithm seem to scale greatly with the number of circles, or subproblem size, but only
minimally with the number of rectangles, or number of subproblems. Note that 12 of the 25
instances tested in this case study require branching to solve to global optimality; here, the
branching strategy used is to find the circle of the largest size with a noninteger assignment
to a rectangle, and to branch on this variable.

6.2 Example 2: multiperiod capacity planning with congestion effects

This problem considers capacity planning at a facility that can use a set of candidate produc-
tion units K to produce a set of demanded products J . Demands for these products change
over time throughout a set of time periods T . Demands are placed into a production queue,
and congestion within this queue results in uncertainties in lead times for meeting demands.
It decides which units to build during which time points in order to meet demands at mini-
mum cost. Nonlinear chance constraints are used to ensure lead times remain below a given
threshold with some probability. This problem is a multiperiod extension of the capacity
planning with congestion problem considered by Rajagopalan and Yu [53].

In extending the original formulation to the multiperiod case, we define two different sets
of variables which are related to a unit being available for use: zkt , which corresponds to the
number of units k newly built during time period t , and ykt , which corresponds to the number
of units k that are actively used during time period t . These variables are related according
to the following conservation equation:

yk,t ≤ y0k +
t∑

t ′=1

zkt ′ ∀ k ∈ K, t ∈ T , (13)

where y0k is the number of units k initially present. This problem decomposes into one pricing
subproblem for each time period t ∈ T which decides the assignment of orders to production
units such that demands are met within the respective time periods. Subproblems are linked
to the master problem via number of units actively used at each time period, and the master
problem then determines which units should be built when subject to constraints (13). We
again increase the overall size of the problem in two ways: by increasing the number of
subproblems (increasing |T |) and by increasing the size of subproblems (increasing |K| and
|J |). Computational results for 20 instances of varying problem size are presented in Table 2.
Note that for this case study, random parameters for problem instances are generated in the
same way as in the previous work analyzing this problem, with the exception that demand

123

Journal of Global Optimization (2021) 81:861–880 871

Ta
bl
e
1

C
om

pu
ta
tio

na
lp

er
fo
rm

an
ce

of
25

in
st
an
ce
s
of

cu
tti
ng

ci
rc
le
s
fr
om

re
ct
an
gl
es

|J
|

|R
|

B
ra
nc
h-
an
d-
pr
ic
e
no

de
s

C
ol
um

n
ge
ne
ra
tio

n
ite
ra
tio

ns

N
um

be
r
of

co
lu
m
ns

ge
ne
ra
te
d

B
ra
nc
h-
an
d-

pr
ic
e
tim

e
(s
)

or
*g

ap
*(
%
)

B
ra
nc
h-
an
d-

pr
ic
e

ob
je
ct
iv
e

Fu
ll-
sp
ac
e
ga
p

(%
)

Fu
ll-
sp
ac
e

ob
je
ct
iv
e

6
20

3
7

12
2

33
5

10
.2

95
.1

11
.2

6
40

1
5

18
5

37
7

9.
4

98
.5

12
.4

6
60

1
5

30
7

57
6

10
.3

99
.9

13
.0

6
80

3
7

44
8

94
6

9.
5

N
/A

N
ot

fo
un

d

6
10

0
1

5
50

7
73

3
8.
0

99
.5

12
.5

7
20

9
19

16
1

32
29

11
.9

98
.9

14
.3

7
40

13
21

32
3

40
47

10
.2

99
.3

12
.1

7
60

1
4

36
5

14
89

9.
5

N
/A

N
ot

fo
un

d

7
80

3
6

50
9

23
91

9.
9

N
/A

N
ot

fo
un

d

7
10

0
1

3
67

4
11

12
9.
3

N
/A

N
ot

fo
un

d

8
20

1
5

18
2

13
90

10
.5

98
.7

13
.2

8
40

1
4

30
9

15
44

10
.2

99
.5

13
.0

8
60

1
6

47
7

25
62

9.
9

N
/A

N
ot

fo
un

d

8
80

9
12

63
9

*0
.6
7*

9.
2

N
/A

N
ot

fo
un

d

8
10

0
7

8
76

8
*2

.3
*

9.
3

N
/A

N
ot

fo
un

d

123

872 Journal of Global Optimization (2021) 81:861–880

Ta
bl
e
1

co
nt
in
ue
d

|J
|

|R
|

B
ra
nc
h-
an
d-
pr
ic
e
no

de
s

C
ol
um

n
ge
ne
ra
tio

n
ite
ra
tio

ns

N
um

be
r
of

co
lu
m
ns

ge
ne
ra
te
d

B
ra
nc
h-
an
d-

pr
ic
e
tim

e
(s
)

or
*g

ap
*(
%
)

B
ra
nc
h-
an
d-

pr
ic
e

ob
je
ct
iv
e

Fu
ll-
sp
ac
e
ga
p

(%
)

Fu
ll-
sp
ac
e

ob
je
ct
iv
e

9
20

7
20

28
1

99
62

9.
9

99
.6

19
.2

9
40

11
20

42
1

*4
.7
*

9.
8

N
/A

N
ot

fo
un

d

9
60

5
10

59
5

*3
.3
*

10
.2

N
/A

N
ot

fo
un

d

9
80

1
6

71
5

*4
8.
5*

9.
6

N
/A

N
ot

fo
un

d

9
10

0
5

7
98

6
*1

.7
*

9.
2

N
/A

N
ot

fo
un

d

10
20

1
8

25
4

20
75

9.
7

N
/A

N
ot

fo
un

d

10
40

1
9

45
9

98
78

8.
6

99
.9

16
.0

10
60

3
8

69
8

*6
.0
*

9.
1

N
/A

N
ot

fo
un

d

10
80

1
6

85
9

*6
4.
8*

8.
9

N
/A

N
ot

fo
un

d

10
10

0
1

8
10

56
*7

8.
8*

8.
7

N
/A

N
ot

fo
un

d

O
pt
im

al
ity

ga
ps

af
te
r
10
,0
00

s
ar
e
re
po
rt
ed

w
he
n
pr
ob
le
m

is
no
ts
ol
ve
d
w
ith

in
th
is
tim

e

123

Journal of Global Optimization (2021) 81:861–880 873

Table 2 Computational performance of 20 instances of capacity planning with congestion

|K| |J | |T | Column
generation
iterations

Number of
columns generated

Branch-and-price
time (s) or
gap(%)

Branch-and-price
objective (∗103)

5 10 6 10 50 338 5.8

5 10 12 19 138 917 5.8

5 10 24 22 196 1741 9.0

5 10 36 28 233 2682 10.9

8 15 6 34 165 5886 7.7

8 15 12 27 303 *0.36* 9.6

8 15 24 18 346 *18.8* 14.0

8 15 36 10 313 *46.4* 15.4

10 20 6 2 18 389 22.7

10 20 12 8 57 1970 19.6

10 20 24 6 83 3874 26.0

10 20 36 7 114 3661 22.4

12 25 6 2 15 485 22.7

12 25 12 2 37 448 25.7

12 25 24 7 78 3482 27.8

12 25 36 3 106 2145 31.8

15 30 6 3 15 772 30.7

15 30 12 3 39 705 38.4

15 30 24 13 125 4652 29.8

15 30 36 3 90 3434 37.3

Optimality gaps after 10,000 s are reported when problem is not solved within this time

is modified to ensure that it increases, on average, over time, and installation costs decrease
over time in a manner consistent with typical notions of time value of money.

To obtain an initial set of columns for the branch-and-price algorithm, the pricing sub-
problems were solved in the case where all dual variables are set to zero. We do not explicitly
define starting values for the variables in either the initial subproblems or in the full-space
problem.While subproblems are solved relatively quickly, we note that in all instances tested,
we are unable to obtain even a feasible solution when solving the full-space problem using
BARON. For this case study it is again seen that the branch-and-price approach is superior,
with feasible solutions found in all instances and globally optimal solutions found in 17
of the 20 instances tested. Interestingly, we find that solution times tend to increase more
strongly with number of subproblems than size of subproblems, which is the opposite of what
is expected. We note that this is likely due to the fact that instances with smaller subprob-
lem sizes seem to require more column generation iterations to converge, and that the time
required per iteration of column generation seems to better conform to the expected trends.
We also note that in all instances tested only column generation is needed to solve the prob-
lems, as the root node solutions of the relaxed master problem are integer. This observation
will also be true for the next two case studies tested.

123

874 Journal of Global Optimization (2021) 81:861–880

6.3 Example 3: multiscenario synthesis of integrated water networks

This problem considers the optimal design of a waste water network with process units which
add impurities to the water, as well as remediation units which remove these impurities. It
considers uncertainties in the amount of impurities added by the process units and removed
by remediation units, which are manifested through a set of different scenarios S. It decides
which pipes should be used to connect different units and which remediation units should be
installed in order to satisfy constraints on the allowable amount of impurities in the process
inputs and system output at minimum cost. The problem considered here is an adaptation of
the original problem presented by Karuppiah and Grossmann [54], using the same network
structure but assuming that allowable unit and pipe sizes come from a discrete set V , rather
than being allowed to vary continuously.

To solve this problem using branch-and-price, we introduce copies of the design variables
for each scenario s ∈ S. These variables are constrained by non-anticipativity constraints,
which take into account the fact that we do not know a priori which of the scenarios will
actually be realized when making design decisions, and as such designs must be the same
for all scenarios:

yivs = yivs′ ∀ i ∈ I, v ∈ V, (s, s′) ∈ S, (14)

where yivs refers to a design decision to build unit or pipe i of size v in scenario s. Note
that the set I refers to all different pipes and units. The problem then decomposes to one
pricing subproblem for each scenario s ∈ S which decides the optimal network design
for a specific scenario. The master problem then considers the weights of all scenarios and
finds a design which minimizes the expected cost subject to non-anticipativity constraints
(14). The number of subproblems is increased by increasing |S|, and the subproblem size
is increased by increasing |V|. Computational results for 20 instances of varying size are
presented in Table 3. Note that for this case study, random parameters are used for different
scenarios in different instances based on the ranges used in the previous work analyzing this
problem.

For this problem, the knowledge of the non-anticipativity constraints is used to modify
the algorithm for generating columns. Whenever a column with negative reduced cost is
generated for one scenario, a cost for that column from each scenario is found by solving
each pricing subproblemwith design variables fixed at the value given by the new column. As
such, this problem only consists of one set of columns, instead of multiple sets corresponding
to each respective subproblem. Initial columns are generated using this strategy with dual
variables equal to zero. This approach ensures that the master problem is always feasible.
However, it is possible that columns generated from one scenario may be infeasible for
another. These infeasible columns are kept in a separate set and integer cuts are introduced to
the subproblems to ensure that they are not generated again.Note that the number of infeasible
columns increases as the number of discrete unit sizes increases, which makes sense as this
introduces a larger number columns that may be infeasible for a scenario. Again, the branch-
and-price algorithmoutperforms solving the full-spacemodel usingBARONfor all instances.
However, the time equired to solve the problem clearly scales very poorly with subproblem
size in this case, to the point where when |V| ≥ 3, no instance is solved to optimality within
the time limit. Branch-and-price still finds a feasible solution in all cases, which is not the
case when solving the full-space problem, w hich only finds a feasible solution in 10 out of
20 instances.

123

Journal of Global Optimization (2021) 81:861–880 875

Ta
bl
e
3

C
om

pu
at
io
na
lp

er
fo
rm

an
ce

of
20

in
st
an
ce
s
of

m
ul
tis
ce
na
ri
o
w
at
er

ne
tw
or
k
sy
nt
he
si
s

|V
|

|S
|

C
ol
um

n
ge
ne
ra
tio

n
ite
ra
tio

ns

N
um

be
r
of

co
lu
m
ns

ge
ne
ra
te
d

In
fe
as
ib
le

co
lu
m
ns

ge
ne
ra
te
d

B
ra
nc
h-
an
d-
pr
ic
e

tim
e
(s
)
or

*g
ap

*
(%

)
B
ra
nc
h-
an
d-
pr
ic
e

ob
je
ct
iv
e
(∗1

05
)

Fu
ll
sp
ac
e
ga
p
(%

)
Fu

ll
sp
ac
e

ob
je
ct
iv
e
(∗1

05
)

1
5

2
3

1
17

2
6.
9

37
.2

6.
9

1
10

7
39

1
14

51
6.
6

73
.1

6.
9

1
15

7
34

1
21

97
6.
9

N
/A

N
ot

fo
un

d

1
20

7
38

1
15

37
6.
6

N
/A

N
ot

fo
un

d

1
25

3
30

1
61

8
6.
7

N
/A

N
ot

fo
un

d

2
5

12
47

1
28

57
6.
7

68
.9

6.
7

2
10

16
11

4
1

49
09

6.
5

70
.6

6.
5

2
15

9
66

1
52

54
6.
7

71
.2

6.
7

2
20

17
11

6
1

*1
.9
*

6.
7

72
.5

6.
7

2
25

14
10

4
1

94
56

6.
7

72
.4

6.
7

3
5

19
91

3
*1

3.
6*

6.
9

70
.9

7.
2

3
10

13
12

5
7

*3
8.
8*

6.
7

73
.6

6.
9

3
15

11
13

7
5

*4
6.
2*

6.
9

N
/A

N
ot

fo
un

d

3
20

8
12

7
2

*2
8.
1*

6.
6

N
/A

N
ot

fo
un

d

3
25

6
12

9
1

*3
4.
3*

6.
7

N
/A

N
ot

fo
un

d

4
5

25
73

29
*5

2.
0*

6.
7

74
.8

7.
0

4
10

14
99

19
*1

2.
7*

6.
8

N
/A

N
ot

fo
un

d

4
15

10
12

1
8

*4
1.
5*

6.
7

N
/A

N
ot

fo
un

d

4
20

8
12

2
18

*1
5.
0*

6.
6

N
/A

N
ot

fo
un

d

4
25

12
22

7
22

*3
3.
2*

6.
6

N
/A

N
ot

fo
un

d

O
pt
im

al
ity

ga
ps

af
te
r
10
,0
00

s
ar
e
re
po
rt
ed

w
he
n
pr
ob
le
m

is
no
ts
ol
ve
d
w
ith

in
th
is
tim

e

123

876 Journal of Global Optimization (2021) 81:861–880

6.4 Example 4: multiscenario design of multiproduct batch plants

This problem considers the optimal design of a batch plant with a set of stages J that can
producemultiple products. It considers uncertainties in the demands for each product, as well
as in the operating parameters of each of the different batch stages, which are manifested
through a set of different scenarios S. It decides the number of batch units to include at each
stage, as well as the batch sizes and times for each product, such that demands are met at
minimum cost. The problem presented here is an adaptation of a problem presented in [7],
assuming that the volume of the batch unit is fixed instead of being a decision variable, and
adding a nonlinear operating cost term to the objective function.

To solve this problem using branch-and-price, we introduce copies of the variable corre-
sponding to number of batch units built for each scenario s ∈ S. Like the previous example,
these variables are constrained by non-anticipativity constraints. As such, we use the same
modified algorithm for generating columns. To combat the possibility of generating infea-
sible columns, scenarios are grouped together into a set of bunches B such that each bunch
roughly contains an equal amount of “easy-to-satisfy” scenarios where demands are low and
“hard-to-satisfy” scenarios where demands are high. Additionally, we add logical cuts to all
subproblems when an infeasible column is generated which state that if a certain design is
infeasible, any new design must build more batch units than in the infeasible design in at
least one stage:

N j + Nin f
jc z jc ≥ Nin f

jc + 1 ∀ j ∈ J , c ∈ Ci , (15)
∑
j∈J

z jc ≤ |J | − 1 ∀ c ∈ Ci , (16)

where N j is the number of units built for stage j , Nin f
jc is the number of units built for stage

j in infeasible column c, z jc is a binary variable which is 0 only if N j > Nin f
jc , and Ci is a set

of infeasible columns. The problem then decomposes into one pricing subproblem for each
scenario bunch b ∈ B which decides the optimal system design for the corresponding group
of scenarios. The master problem then considers the weights of all scenario bunches and
finds a design which minimizes the expected cost subject to non-anticipativity constraints.
The number of subproblems is increased by increasing |B|, where each bunch contains 5
scenarios, and the size of subproblems is increased by increasing |J |. Computational results
for 20 instances of varying size are presented in Table 4. Note that for this case study,
the randomly generated stochastic parameters for different instances are generated using
the deterministic parameter values from the previous work as a starting point for random
perturbations.

For this problem, unlike the other three examples presented, the branch-and-price approach
performs very similarly to solving the full-space problem using BARON, particularly as the
subproblem size increases. For all problems, both approaches are able to find the same
objective upper bound. We note that for some instances, BARON is able to find a slightly
better objective value than the branch-and-price approach, although in all instances these
differences are within either the 0.1% gap used as a global optimality stopping criteria,
or within the reported gap after 10,000 s. It is also apparent that as the number of stages
increases, the number of infeasible columns generated also increases, contributing to the
added difficulty for solving this problem using branch and price. However, we do note the
number of infeasible columns generated is reduced by bunching columns and adding logical

123

Journal of Global Optimization (2021) 81:861–880 877

Ta
bl
e
4

C
om

pu
at
io
na
lp

er
fo
rm

an
ce

of
20

in
st
an
ce
s
of

m
ul
tis
ce
na
ri
o
ba
tc
h
sy
st
em

de
si
gn

|J
|

|B
|

C
ol
um

n
ge
ne
ra
tio

n
ite
ra
tio

ns

N
um

be
r
of

co
lu
m
ns

ge
ne
ra
te
d

In
fe
as
ib
le

co
lu
m
ns

ge
ne
ra
te
d

B
ra
nc
h-
an
d-
pr
ic
e

tim
e
(s
)
or

*g
ap

*(
%
)

B
ra
nc
h-
an
d-
pr
ic
e

ob
je
ct
iv
e
(∗1

05
)

Fu
ll-
sp
ac
e
ga
p

(%
)

Fu
ll-
sp
ac
e

ob
je
ct
iv
e
(∗1

05
)

3
10

9
47

0
19

34
8.
3

1.
11

8.
3

3
20

9
42

25
31

20
8.
6

8.
03

8.
6

30
7

58
16

24
71

8.
4

1.
31

8.
4

3
40

5
45

0
13

49
8.
5

1.
44

8.
5

3
50

5
43

39
22

71
8.
6

0.
30

8.
6

4
10

39
57

26
*0

.1
3*

16
.0

3.
77

16
.0

4
20

8
41

35
24

58
17

.2
1.
14

17
.2

4
30

9
10

1
70

*1
.4
2*

15
.6

3.
12

15
.6

4
40

12
69

91
*0

.1
3*

16
.7

0.
43

16
.7

4
50

6
61

53
34

49
16

.4
0.
22

16
.4

5
10

25
11

9
79

*2
.4
9*

17
.8

2.
63

17
.8

5
20

25
23

7
14

6
*1

.3
6*

17
.5

2.
99

17
.5

5
30

15
18

7
96

*4
.0
0*

18
.0

4.
46

18
.0

5
40

12
18

3
13

3
*2

.4
7*

17
.9

1.
64

17
.9

5
50

10
13

9
16

6
*2

.7
7*

18
.9

2.
61

18
.9

6
10

33
14

9
15

5
*5

.3
3*

21
.9

4.
03

21
.9

6
20

32
23

8
30

1
*4

.7
8*

22
.5

3.
16

22
.5

6
30

18
24

2
19

2
*3

.1
6*

23
.1

3.
01

23
.1

6
40

14
21

2
27

4
*4

.4
4*

23
.0

2.
26

23
.0

6
50

12
22

1
23

8
*3

.2
9*

24
.4

4.
86

24
.3

O
pt
im

al
ity

ga
ps

af
te
r
10
,0
00

s
ar
e
re
po
rt
ed

w
he
n
pr
ob
le
m

is
no
ts
ol
ve
d
w
ith

in
th
is
tim

e

123

878 Journal of Global Optimization (2021) 81:861–880

infeasibility cuts, as this number can be as much as an order of magnitude greater when these
options are not used.

7 Conclusions

Applied branch-and-price to a class of nonconvex MINLPs with linear complicating con-
straints and integer linking variables. We exploit the structure of the problem to construct a
Dantzig-Wolfe reformulation via a discretization approach, which then allows the problem
to be solved using a branch-and-price scheme. This approach is especially effective in cases
where the pricing problem decomposes into multiple small subproblems such that solving
each subproblem using a global MINLP solver is considerably more tractable than solving
the original full-space MINLP. Through several case studies, we have shown that many rele-
vant problems directly fall or can be reformulated into the given class of MINLPs, and have
demonstrated the computational feasibility of the proposed algorithm. In most tested model
instances, the branch-and- price algorithm clearly outperforms solving the full-space problem
directly using a global MINLP solver, often achieving orders-of-magnitude speedups.

Acknowledgements The authors gratefully acknowledge financial support from the University of Minnesota
and the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources
that contributed to the research results reported within this paper. We also thank Angela Flores-Quiroz for
insightful discussions on our work.

References

1. Lübbecke,M.E.,Desrosiers, J.: Selected topics in columngeneration.Oper.Res.53(6), 1007–1023 (2005).
https://doi.org/10.1287/opre.1050.0234

2. Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig–Wolfe decomposition for solving multistage stochastic
capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009). https://doi.org/10.1287/opre.1080.
0678

3. Nowak, I., Breitfeld, N., Hendrix, E.M., Njacheun-Njanzoua, G.: Decomposition-based inner- and outer-
refinement algorithms for global optimization. J. Glob. Optim. 72(2), 305–321 (2018). https://doi.org/10.
1007/s10898-018-0633-2

4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res.
2(4), 393–410 (1954)

5. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc.
64(5), 275–278 (1958)

6. Jünger, M., Liebling, T., Naddef, D., Nemhauser, G.L., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey,
L.A.: 50Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer
(2009)

7. Grossmann, I.E., Sargent, R.W.: Optimum design of multipurpose chemical plants. Ind. Eng. Chem.
Process Des. Dev. 18(2), 343–348 (1979). https://doi.org/10.1021/i260070a031

8. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming
author. Manag. Sci. 31(12), 1533–1546 (1985)

9. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Progr.,
Ser. B 86(3), 515–532 (1999). https://doi.org/10.1007/s101070050103

10. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972).
https://doi.org/10.1097/ACI.0000000000000254

11. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Progr. 36, 307–339 (1986). https://doi.org/10.1007/BF02592064

12. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Progr.
66, 327–349 (1994)

123

https://doi.org/10.1287/opre.1050.0234
https://doi.org/10.1287/opre.1080.0678
https://doi.org/10.1287/opre.1080.0678
https://doi.org/10.1007/s10898-018-0633-2
https://doi.org/10.1007/s10898-018-0633-2
https://doi.org/10.1021/i260070a031
https://doi.org/10.1007/s101070050103
https://doi.org/10.1097/ACI.0000000000000254
https://doi.org/10.1007/BF02592064

Journal of Global Optimization (2021) 81:861–880 879

13. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP opti-
mization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992). https://doi.org/10.1016/0098-
1354(92)80028-8

14. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems.
Comput. Chem. Eng. 19(Suppl. 1), 131–136 (1995). https://doi.org/10.1016/0098-1354(95)87027-X

15. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex
mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016). https://doi.org/10.1007/
s10898-015-0322-3

16. Grossmann, I.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng.
3(3), 227–252 (2002). https://doi.org/10.1023/A:1021039126272

17. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear pro-
grams. In: Mixed Integer Nonlinear Programming, pp. 1–39. Springer (2012). https://doi.org/10.1007/
978-1-4614-1927-3

18. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A Review and Comparison of Solvers for
Convex MINLP, vol. 20. Springer (2019). https://doi.org/10.1007/s11081-018-9411-8

19. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex
underestimating problems. Math. Progr. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665

20. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2),
107–138 (1996). https://doi.org/10.1007/bf00138689

21. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical
and computational study. Math. Progr. 591, 563–591 (2004)

22. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general con-
strained nonconvexproblems. J.Glob.Optim.7(4), 337–363 (1995). https://doi.org/10.1007/BF01099647

23. Adjiman,C.S.,Androulakis, I.P., Floudas,C.A.:Global optimizationofmixed-integer nonlinear problems.
AIChE J. 46(9), 1769–1797 (2000)

24. Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of mixed-integer nonlinear
programming problems with BARON. Optim. Methods Softw. 33(3), 540–562 (2018). https://doi.org/
10.1080/10556788.2017.1350178

25. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tighteningtechniques
for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009). https://doi.org/10.1080/
10556780903087124

26. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668
(2009). https://doi.org/10.1080/10556780902753221

27. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization
of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014). https://doi.org/10.1007/s10898-014-
0166-2

28. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-
and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2018). https://doi.org/10.1080/10556788.
2017.1335312

29. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res.
Manag. Sci. 17(2), 97–106 (2012). https://doi.org/10.1016/j.sorms.2012.08.001

30. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear
programming, MINLP, and constrained derivative-free optimization. CDFO. Eur. J. Oper. Res. 252(3),
701–727 (2016). https://doi.org/10.1016/j.ejor.2015.12.018

31. Guignard, M.: Lagrangean relaxation. Top 11(2), 151–200 (2003). https://doi.org/10.1007/BF02579036
32. Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer

resource allocation problems. Comput. Manag. Sci. 8(4), 355–370 (2011). https://doi.org/10.1007/
s10287-010-0125-4

33. Lotero, I., Trespalacios, F., Grossmann, I.E., Papageorgiou, D.J., Cheon, M.S.: AnMILP-MINLP decom-
position method for the global optimization of a source based model of the multiperiod blending problem.
Comput. Chem. Eng. 87, 13–35 (2016). https://doi.org/10.1016/j.compchemeng.2015.12.017

34. Lara, C.L., Trespalacios, F., Grossmann, I.E.: Global optimization algorithm for capacitated multi-facility
continuous location-allocation problems. J. Glob. Optim. 71(4), 871–889 (2018). https://doi.org/10.1007/
s10898-018-0621-6

35. Elsido, C., Martelli, E., Grossmann, I.E.: A bilevel decomposition method for the simultaneous heat
integration and synthesis of steam/organic Rankine cycles. Comput. Chem. Eng. 128, 228–245 (2019).
https://doi.org/10.1016/j.compchemeng.2019.05.041

36. Li,X., Tomasgard,A.,Barton, P.I.:Nonconvexgeneralized benders decomposition for stochastic separable
mixed-integer nonlinear programs. J. Optim. Theory Appl. 151(3), 425–454 (2011). https://doi.org/10.
1007/s10957-011-9888-1

123

https://doi.org/10.1016/0098-1354(92)80028-8
https://doi.org/10.1016/0098-1354(92)80028-8
https://doi.org/10.1016/0098-1354(95)87027-X
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1023/A:1021039126272
https://doi.org/10.1007/978-1-4614-1927-3
https://doi.org/10.1007/978-1-4614-1927-3
https://doi.org/10.1007/s11081-018-9411-8
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/bf00138689
https://doi.org/10.1007/BF01099647
https://doi.org/10.1080/10556788.2017.1350178
https://doi.org/10.1080/10556788.2017.1350178
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1080/10556780902753221
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1016/j.sorms.2012.08.001
https://doi.org/10.1016/j.ejor.2015.12.018
https://doi.org/10.1007/BF02579036
https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1016/j.compchemeng.2015.12.017
https://doi.org/10.1007/s10898-018-0621-6
https://doi.org/10.1007/s10898-018-0621-6
https://doi.org/10.1016/j.compchemeng.2019.05.041
https://doi.org/10.1007/s10957-011-9888-1
https://doi.org/10.1007/s10957-011-9888-1

880 Journal of Global Optimization (2021) 81:861–880

37. Cao, Y., Zavala, V.M.: A scalable global optimization algorithm for stochastic nonlinear programs. J.
Glob. Optim. 75(2), 393–416 (2019). https://doi.org/10.1007/s10898-019-00769-y

38. Li, C., Grossmann, I.E.: A generalized Benders decomposition-based branch and cut algorithm for two-
stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables.
J. Glob. Optim. 75(2), 247–272 (2019). https://doi.org/10.1007/s10898-019-00816-8

39. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for
a class of non-convex MINLP problems. J. Glob. Optim. 43(2–3), 277–297 (2009). https://doi.org/10.
1007/s10898-007-9271-9

40. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)
41. Desrosiers, J., Soumis, F., Desrochers, M.: Routing with time windows by column generation. Networks

14(4), 545–565 (1984). https://doi.org/10.1002/net.3230140406
42. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing

problem with time windows. Oper. Res. 40(2), 342–354 (1992)
43. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Accelerating strategies in column generation methods

for vehicle routing and crew scheduling problems. In: Essays and Surveys inMetaheuristics, pp. 309–324.
Springer (2002)

44. Desrochers, M., Soumis, F.: A column generation approach to the urban transit crew scheduling problem.
Transp. Sci. 23(1), 1–13 (1989). https://doi.org/10.1287/trsc.23.1.1

45. Stojković, M., Soumis, F., Desrosiers, J.: The operational airline crew scheduling problem. Transp. Sci.
32(3), 232–245 (1998). https://doi.org/10.1287/trsc.1090.0306

46. Ioachim, I., Desrosiers, J., Soumis, F., Bélanger, N.: Fleet assignment and routing with schedule
synchronization constraints. Eur. J. Oper. Res. 119(1), 75–90 (1999). https://doi.org/10.1016/S0377-
2217(98)00343-9

47. Bélanger, N., Desaulniers, G., Soumis, F., Desrosiers, J.: Periodic airline fleet assignment with time
windows, spacing constraints, and time dependent revenues. Eur. J. Oper. Res. 175(3), 1754–1766 (2006).
https://doi.org/10.1016/j.ejor.2004.04.051

48. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price:
column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998). https://doi.org/
10.1287/opre.46.3.316

49. Vanderbeck, F.: OnDantzig-Wolfe decomposition in integer programming andways to perform branching
in a branch-and-price algorithm. Oper. Res. 48(1), 111–128 (2000). https://doi.org/10.1287/opre.48.1.
111.12453

50. Wolsey, L.A.: Integer Programming. Wiley (1998)
51. Lubin,M., Dunning, I.: Computing in operations research using Julia. INFORMS J. Comput. 27, 237–248

(2015)
52. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res.

9, 849–859 (1961)
53. Rajagopalan, S., Yu, H.L.: Capacity planning with congestion effects. Eur. J. Oper. Res. 134(2), 365–377

(2001). https://doi.org/10.1016/S0377-2217(00)00254-X
54. Karuppiah, R., Grossmann, I.E.: Global optimization of multiscenario mixed integer nonlinear program-

ming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem.
Eng. 32, 145–160 (2008). https://doi.org/10.1016/j.compchemeng.2007.03.007

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10898-019-00769-y
https://doi.org/10.1007/s10898-019-00816-8
https://doi.org/10.1007/s10898-007-9271-9
https://doi.org/10.1007/s10898-007-9271-9
https://doi.org/10.1002/net.3230140406
https://doi.org/10.1287/trsc.23.1.1
https://doi.org/10.1287/trsc.1090.0306
https://doi.org/10.1016/S0377-2217(98)00343-9
https://doi.org/10.1016/S0377-2217(98)00343-9
https://doi.org/10.1016/j.ejor.2004.04.051
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.48.1.111.12453
https://doi.org/10.1287/opre.48.1.111.12453
https://doi.org/10.1016/S0377-2217(00)00254-X
https://doi.org/10.1016/j.compchemeng.2007.03.007

	Branch-and-price for a class of nonconvex mixed-integer nonlinear programs
	Abstract
	1 Introduction
	2 Literature review
	3 Reformulation via discretization
	4 The branch-and-price algorithm
	4.1 Column generation
	4.2 Branch-and-bound

	5 Decomposable pricing problems
	6 Computational experiments
	6.1 Example 1: cutting circles from rectangles
	6.2 Example 2: multiperiod capacity planning with congestion effects
	6.3 Example 3: multiscenario synthesis of integrated water networks
	6.4 Example 4: multiscenario design of multiproduct batch plants

	7 Conclusions
	Acknowledgements
	References

