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Abstract
A framework is proposed to simultaneously cluster objects and detect anomalies in attributed
graph data. Our objective function along with the carefully constructed constraints promotes
interpretability of both the clustering and anomalydetection components, aswell as scalability
of our method. In addition, we developed an algorithm called Outlier detection and Robust
Clustering forAttributedgraphs (ORCA)within this framework.ORCAis fast and convergent
under mild conditions, produces high quality clustering results, and discovers anomalies that
can be mapped back naturally to the features of the input data. The efficacy and efficiency of
ORCA is demonstrated on real world datasets against multiple state-of-the-art techniques.
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1 Introduction

We consider the problem of simultaneously detecting the anomalous objects and producing
robust clusters in attributed graph data [1,2,4]. By an “attributed graph” we mean a network
with features attached to the objects (the vertices), which has numerous applications in the
analysis and mining of social networks, gene regulatory networks, document corpora, image
datasets, and infrastructure networks, to name a few [4,13,33,38,39,48]. For example, our
case study in Sect. 5.7 considers a corpus of patents represented in an attributed graph. In
this graph, the nodes are the patents whose attributes are the keywords associated with each
patent, and the edges show the patent-patent citation network information. The analysis task
is to (a) cluster the patents, and simultaneously (b) identify patents that are anomalies or
outliers in the sense that they do not appear to “fit” within the clusters or corpus. Indeed, the
presence of outliers are often detrimental to finding good clusters [41].

There is a variety of previously proposed work on simultaneous clustering and anomaly
detection, most notablymethods based on robust statistics [6,7,20,46,47]. However, they tend
to produce clusters or anomalies (or both) that may be difficult for an end-user analyst to
interpret in terms of the input data (see Sect. 3.2). For instance, a patent analyst might want
to knowwhich keywords or citations raise suspicions about a patent and to what degree. Prior
methods often transform the input data into a form that is easier to mine algorithmically in
a black-box manner, which cannot be readily translated back into the natural features of the
input problem. This transformation makes the detection mechanism, while accurate, difficult
to interpret and trust. For example, a particular patent may be flagged as suspicious due to
the absence of certain keywords rather than highlighting relevant parts of the document. Our
patent analyst must then examine the entire document.

We propose a new framework that addresses this limitation and permits interpretable
and simultaneous clustering and anomaly detection (Sect. 3). Our work extends nonnegative
matrix factorization (NMF) techniques [13,29], which have a similar philosophy of inter-
pretability as their goal. Our key insight lies in our problem formulation. Like prior work, we
use a matrix-based formulation that decomposes the input matrices (features and the graph)
into a low rank plus sparse form, where the low rank component captures clusters and the
sparse component captures anomalies. All the components are nonnegative and computed by
solving a suitable optimization problem. However, our novel formulation imposes constraints
that give the interpretability of both components equal billing. In contrast, the formalisms of
prior state-of-the-art methods emphasize the low rank (clustering) component. While they
are able to identify anomalies, they fail to do so in a way that can be understood directly in
terms of the original features of the input. Consequently, they might, for instance, indicate
that a patent is anomalous but trace it to edges that do not exist in the original graph. Our
approach mitigates such issues.

In addition to our problem formulation, we develop a fast and convergent algorithm,
ORCA (Outlier detection and Robust Clustering for Attributed graphs), in this framework
and show both its efficacy and efficiency on real-world data. The main contributions of our
work may be summarized as follows.

– We carefully develop a model for simultaneous clustering and anomaly detection, taking
care to promote interpretability of the both types of results produced. In particular, we
are able to describe why a certain node is flagged as an anomaly (Sect. 3).

– We develop an algorithm ORCA according to this model. ORCA utilizes both attribute
and network information in a joint optimization framework that is better than using the
different data types individually (Sect. 4).
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– ORCA is a fast and convergent algorithm guaranteed to converge to a stationary point
under mild conditions (Sect. 4.1).

– We conduct extensive experimental comparisons and demonstrate ORCA’s efficacy
and efficiency against multiple methods, including state-of-the-art techniques such as
Nonnegative Residual Matrix Facotrization (NrMF) [42], Accelerated Local Anomaly
Detection [33], TextOutlierNonnegativeMatrix Factorization [22],ANOMALOUS [38],
and Robust Principal Components Analysis [46]. We show that ORCA can be faster by
a factor up to 100× when compared to ANOMALOUS (Sect. 5).

Taken together, our approach extends simultaneous clustering and anomaly detection with
better interpretability and scalability for end-user analysts.

2 Related work

Graph mining methods can largely be categorized into two groups: those involving matrix
low rank approximations and others [9]. In matrix approximation methods the adjacency
matrix of the graph, or some function of it like the Laplacian [9,43], is approximated via a
low rank matrix.

Low rank approximation of the adjacency matrix provides embeddings for every node
present in the graph. These embeddings can then be used in various data mining tasks like
clustering, anomaly detection, node ranking among others [1,2,4]. Spectral clustering [11,43]
basedon the eigenvaluedecomposition is one the classicalmethods used to cluster the nodes of
a graph. Singular value decomposition (SVD) [12], nonnegative matrix factorization (NMF)
[14,26], and the CUR decomposition [35] are other popular matrix approximation techniques
used for clustering.Matrix approximationmethods have also been used for anomaly detection
in graphs by examining the residual obtained by subtracting the low rank matrix from the
input [4,41,42]. Tong and Lin impose nonnegativity on both the matrix approximation and
the residual to detect anomalous nodes [42].

This matrix-based framework was extended to attributed graphs in a joint optimization
formulation over both the attribute and connection matrices [13,33,38]. Du et al. describe a
method to cluster attributed graphs using a variation of NMF [13]. Liu et al. have a similar
formulation for detecting local anomalies in attributed graphs [33]. Peng et al. use a CUR
decomposition based approach forthe sameproblem [38]Manypopularmatrix approximation
based methods have been extended to tensor based methods for hypergraphs [9,15,45].

With the recent introduction of seminal works on robust principal component analysis by
Candes et al. it became possible to decompose a data matrix into a low rank “signal” matrix
and a sparse “corruptions”matrix [7,8]. There has beenmuch research on employing this idea
in many data mining tasks [6]. Most of the original work in robust methods are theoretical
[7,8,46,47] and study conditions for convergence and nature of “corruptions” captured.Many
of these results come from computer vision tasks [6] but can be directly translated to graph
mining. Kannan et al. impose nonnegativity constraints on the low rank matrix and penalize
columns with large norms in the corruptions matrix to detect outliers in text data [22]. The
primary differentiating factor of thiswork from existingmethods described above is imposing
the same constraints on the residual matrix as those found on the inputs. This allows us to
interpret the anomalies detected directly instead of dealing with outlier scores alone.

Apart from the matrix approximation based techniques there exist a lot of other graph
mining algorithms for clustering and anomaly detection.Methods often generate node embed-
dings based on local information, like degree, edge weights, egonet characteristics, etc., and
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are commonly used in spam filters, fake review detectors, network intrusion detectors, and
web indexers [3,17,19,25,27,44]. Graph clustering has also been studied under different
formulations [31] based on network flows [30] and probabilistic graphical models [18,48],
among others [16].

3 Model formulation

We assume that the input data is an attributed network with n nodes and m features. It is
represented as a nonnegative feature-data matrixX ∈ R

m×n+ and data-data connection matrix
S ∈ R

n×n+ , where R+ denotes the nonnegative real numbers. Bold text is used to represent
matrices and I, 1 and 0 refers to the identity matrix, all ones matrix, and all zeros matrix,
respectively. Matrix rows and columns are represented using MATLAB notation as X(i, :)
and X(:, j) for the i-th row and j-th column respectively. The (i, j)-th entry of X is xi j . For

A ∈ R
m×n we define ‖A‖p,q =

(∑n
j=1

(∑m
i=1

∣∣ai j
∣∣p) q

p
) 1

q
, ‖A‖max = max

i, j

∣∣ai j
∣∣, and ‖A‖∗

=
∑

i σi (A) where σi (A) is the i th singular value of A.

3.1 Datamodel

Empirical observations can be considered to have three separate components, underlying
signal, noise, and corruption such as anomalies/outliers [7]. The underlying signal is often
assumed to be generated from a known process that can be modelled. Noise is a broad term
encompassing other factors like imprecise measuring devices, background factors and ran-
dom errors. In general, noise can affect all measurements and carry no useful information.
Corruptions on the other hand affect a few observations and are more “structural” or “deliber-
ate” in nature in contrast to “random” noise. A key shift from standard models of observation
here is to separate the “noise” and “corruptions” components of the data. An intuitive exam-
ple of such a difference would be from natural images: unsteady handling of the camera may
cause some noise via blurring of the entire image whereas a few faulty pixels will cause
corruption that will appear black in images.

Formalizing this data model in matrix notation, we are given a data matrix A and want to
decompose it into three components: signal L, corruptions Z, and noise N such that,

A = L + Z + N. (1)

We assume that the true signal is generated with a small number of parameters far less than
the number of data items. Therefore, we impose a low rank constraint on L. We would like
to highlight some key differences between corruptions and noise. First, the corruptions are
rare and affect only a few entries. Second, the corrupted entries can be grossly affected and
can have large magnitude unlike the small noise term. Little is known about these corrupted
entries except that they are rare. Therefore, we can only impose sparsity constraints on Z.
Often, we tackle this optimization problem by solving A ≈ L + Z by minimizing N.

Our work is concerned with attributed graphs, and the data matrices we deal with are the
feature matrix X and connection matrix S. X has the feature vector for every data item as its
columns and S is an adjacency matrix representing the connections between the data items.
In real applications, often both of these matrices are sparse, as seen in Table 1.
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Table 1 Data size, sparsity, and number of outliers returned from RPCA and TONMF

Input Size Nonzeros (in %) RPCA TONMF

Karate Club (S) 34 × 34 156 (13.5 %) 156 34

Polblogs (S) 1490 × 1490 19025 (0.86%) 19025 37250

US Patents-F22 (S) 3040 × 3040 15954 (0.17%) 15954 9.2 × 106

US Patents-F22 (X) 6387 × 3040 314215 (1.6%) 2.73 × 105 1.94 × 107

DBLP-CS (S) 6559 × 8663 14943 (0.03%) 14943 1.79 × 107

DBLP-CS (X) 199147 × 8663 4.44 × 105 (0.03%) 4.44 × 105 1.71 × 109

3.2 Shortcomings of classical methods

We give a brief overview of two prior methods which deal with data corrupted in the manner
described in Eq. (1). Candes et al. have shown that under certain conditions we are able
to decompose a data matrix A into low rank and sparse components using standard convex
optimization procedures and developed the seminal method of Robust Principal Component
Analysis (RPCA) [7]. The RPCA formulation is as follows,

min ‖L‖∗ + λ ‖Z‖1,1
s.t. A = L + Z .

Notice that RPCA does not account for noise in the data.
Kannan et al. modified this general formulation and applied the technique to detect anoma-

lous documents in a text corpus via the Text Outlier Nonnegative Matrix Factorization
algorithm (TONMF) [22]. Their formulation is,

min ‖A − WH − Z‖2F + λ ‖Z‖2,1
s.t. {W,H} ≥ 0 .

Here W ∈ R
m×k+ and H ∈ R

k×n+ are constrained to have low rank by letting k � min(m, n)

be an input to the algorithm.
Disentangling the low rank and sparse components can be tricky if the input is both

“sparse and low rank”. This difficulty results in an identifiability issue for RPCA and in order
to make the problem meaningful they impose the general notion of incoherence on the low
rank component L [7]. Conceptually, these conditions ensure that L is not sparse. The rank
r of the m × n matrix L is inversely proportional to its incoherence condition parameter μ

via the following formula with a positive constant C [7],

r ≤ C
n

μ (logm)2
. (2)
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Fig. 1 Incoherence criteria on
A ∈ R
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Formally, taking the singular value decomposition of L = U�VT = ∑r
i=1 σiuivTi with

rank r and U ∈ R
m×r ,V ∈ R

n×r , the incoherence condition with parameter μ states that,

max
i

∥∥∥UT ei
∥∥∥
2

≤
√

μr

m

max
i

∥∥∥VT ei
∥∥∥
2

≤
√

μr

n
∥∥∥UVT

∥∥∥
max

≤
√

μr

mn
.

From Eq. (2) large values of μ limit the maximum rank of L that RPCA can discover.
Therefore small values of μ are desired which enables RPCA to separate L and Z. Smaller
μ also causes the singular vectors ui and vi to spread out their norms over multiple elements
and become less “spiky” [7,8].

Unfortunately these conditions do not hold for typical “sparse and low rank” inputs.
From Fig. 1 we can seeμ is quite large especially in the extremely sparse and low rank cases.
This large μ causes of the singular vectors to become concentrated on a few entries making
it difficult for RPCA to disentangle the low rank and sparse components. TONMF doesn’t
suffer from this drawback as the low rank parameter is considered as an input and therefore
can be tuned to the problem at hand.

A second major drawback with both RPCA and TONMF is that an inordinate number of
outliers may be returned when presented with sparse inputs. Table 1 provides the number of
nonzero entries present in Z from RPCA and TONMF for some standard input datasets. We
used the dual RPCA algorithm [46] to generate Table 1. In our tests, often RPCA places the
entire input as the sparse component and assigns L to 0 when density is less than 1%. Large
μ coupled with the hard constraint of A = L + Z places an extremely low upper limit on
permissible ranks for RPCA.AssigningL to 0 defeats the purpose of low rank approximation.

TONMF often returns the corruption matrix Z with nonzero entries in locations where
there are zeros in the input. These corruptions are difficult to interpret as they cannot be
traced back to the input. This issue is also present in RPCA albeit to a much lesser degree
than TONMF.

The problem of incoherence is hard to solve. One way to get around this is to assume
that the low rank is given as an input to algorithm as in TONMF. Imposing nonnegativity
constraints on the low rank factors also helps in alleviating this problem. This constrained
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WH, like in TONMF, forms a conewhich wraps the input data from outside. The nonnegative
columns ofW form the extreme rays of this cone. This “spiky”-ness would violate the inco-
herence conditions on U and V. Handling fill-ins for Z also involves imposing nonnegativity
constraints which forces the nonzeros of Z to only appear from the set of nonzeros ofA. This
restriction becomes apparent when we describe the update rules for Z.

3.3 Proposedmodel for attributed graphs

Assume that an attributed graph with m features and n samples is represented in the feature
matrix X ∈ R

m×n+ and connection matrix S ∈ R
n×n+ . The connection matrix S is assumed to

have proper scaling, for example scaling every edge in the adjacency matrix with the degrees
of their end points. We assume that the signal is well approximated by low rank matrices
W ∈ R

m×k+ and H ∈ R
n×k+ with k � min (m, n).

Here W is the cluster basis matrix and H is the cluster indicator matrix. The location of
the maximum entry in each row of H indicates the sample’s cluster. The matrix H is shared
between the low rank approximation of the feature matrix and the low rank approximation
of the connection matrix, resulting in the following,

X ≈ WHT + Z1

S ≈ HHT + Z2 .

The sparse matrices Z1 and Z2 are expected to capture the outliers in each of the different
modalities, respectively. Together, Z1 and Z2 form the anomalous attributed subgraph. We
impose nonnegativity constraints onW andH for two reasons. First, it aids in interpretability
of the discovered factors by promoting additive parts based approximations [28]. Second,
it alleviates the problem of incoherence as discussed in Sect. 3.2. We also stipulate that
Z1 and Z2 be nonnegative. Additionally, symmetric constraints are placed on Z2. These
constraints ensure that nonzeros/outliers in Z1 and Z2 are only detected from the existing
nonzero entries of X and S respectively. No spurious fill-ins, like in the case of TONMF (see
Sect. 3.2), can occur in the corruption matrices making them easy to interpret. This property
is shown mathematically in the next section.

The remaining part of the data is considered as noise and needs to be minimized. We are
now left with the following optimization problem,

min
∥∥∥X − WHT − Z1

∥∥∥
2

F
+ α

∥∥∥S − HHT − Z2

∥∥∥
2

F

+ λ1 ‖Z1‖1,1 + λ2 ‖Z2‖1,1
s.t.

H ≥ 0,W ≥ 0

Z1 ≥ 0,Z2 ≥ 0,Z2 = ZT
2 . (3)

The parameter α controls the relative weight given to the connection and feature infor-
mation [13]. λ1 and λ2 control the relative sparsity of the anomalous nodes detected and can
be tuned to return fewer or more nodes as needed. Using Z1 and Z2 we can define various
outlier scores for the data items. In ORCA we simply sum entries of Z1 and Z2 column-wise
to get the final outlier scores for each data item. More advanced aggregation methods can be
designed based on the nature of the data being analyzed.
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4 Algorithm

There are multiple ways to solve the optimization problem introduced in Eq. (3). We solve
it via block coordinate descent (BCD) using the algorithmic framework introduced by Kim
et al. [13,23]. The symmetric nonnegative matrix factorization subproblem arising due to
symmetricS and sharedH is tackled by adding an auxiliary variable Ĥ similar to the SymNMF
[26] and Joint NMF formulations [13]. Therefore we reformulate Eq. (3) as the following
optimization problem.

min
∥∥∥X − WHT − Z1

∥∥∥
2

F
+ α

∥∥∥S − ĤHT − Z2

∥∥∥
2

F
+ β

∥∥∥Ĥ − H
∥∥∥
2

F

+ λ1 ‖Z1‖1,1 + λ2 ‖Z2‖1,1
s.t.

W ≥ 0, H ≥ 0, Ĥ ≥ 0

Z1 ≥ 0, Z2 ≥ 0,Z2 = ZT
2 . (4)

Considering the matricesW,H, Ĥ,Z1 andZ2 as the five unknown blocks in the BCD frame-
work, we alternate fixing four other blocks and updating the remaining block.

Solving for Cluster Basis (W): Fixing Z1,Z2,H and Ĥ and setting Y1 = X−Z1, we solve
the following nonnegative least squares (NLS) problem,

W ← argmin
W≥0

∥∥∥Y1 − WHT
∥∥∥
2

F
. (5)

Solving for Cluster Membership (H and Ĥ): Similarly setting Y2 = S− Z2 and fixing
the other blocks, the objective function for H and Ĥ is,

min
H≥0

∥∥∥Y1 − WHT
∥∥∥
2

F
+ α

∥∥∥Y2 − ĤHT
∥∥∥
2

F
+ β

∥∥∥H − Ĥ
∥∥∥
2

F
.

These blocks can be solved as multiple NLS subproblems,

H ← argmin
H≥0

∥∥∥∥∥∥

⎡
⎣

W√
αĤ√
βIk

⎤
⎦HT −

⎡
⎣

Y1√
αY2√
βĤ

T

⎤
⎦

∥∥∥∥∥∥

2

F

(6)

Ĥ ← argmin
Ĥ≥0

∥∥∥∥
[√

αH√
βIk

]
Ĥ

T −
[√

αY2√
βHT

]∥∥∥∥
2

F
. (7)

Each NLS subproblem is a convex optimization problem with efficient algorithmic solutions
[23]. We solve each subproblem using the Block Principal Pivoting (BPP) algorithm [24].

Solving for Attribute Outlier Component (Z1): Denoting D = X − WHT and fixing all
the other blocks and looking at the objective for Z1 we get,

min
Z1≥0

‖D − Z1‖2F + λ1 ‖Z1‖1,1 . (8)
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This objective can be optimized by using the following elementwise update rule,

Z1 = max

(
D − λ1

2
1, 0

)
. (9)

This rule can be derived considering two cases. Let us denote Eq. (8) by,

f (Z1) =
∑
i, j

f (zi j ) =
∑
i, j

(
di j − zi j

)2 + λ1zi j .

Then f can be decomposed into an elementwise optimization problem. We can solve this by
simply setting the derivative to 0 which results in Eq. (9).

f (zi j ) = (
di j − zi j

)2 + λ1zi j ,
d f

dzi j
= −2

(
di j − zi j

) + λ1

�⇒ zi j = di j − λ1

2
.

When the value di j − λ
2 is negative, the closest nonnegative solution would be 0. This function

f (zi j ) is a simple quadratic polynomial and if its minima is negative it is monotonically
increasing in the positive axis. Therefore we get the projectionmax(di j − λ

2 , 0) as the solution
and the following update rule,

Z1 = max

(
X − WHT − λ1

2
1, 0

)
. (10)

Solving for Connection Outlier Component (Z2): Updating Z2 follows almost exactly
the same steps as updating Z1. With D = S − ĤHT we need to optimize the following
objective,

min
Z2≥0,Z2=ZT

2

α ‖D − Z2‖2F + λ2 ‖Z2‖1,1 .

We must be careful to handle the symmetric constraint on Z2. Using g to represent the part
of Eq. (4) contributed fromZ2, we can split the objective element-wise. SinceZ2 is symmetric
we can reduce the number of independent terms,

g(Z2) =
∑
i, j

g(zi j ) =
∑
i, j

α
(
di j − zi j

)2 + λ2zi j

=
∑
i≤ j

α
((
di j − zi j

)2 + (
d ji − zi j

)2) + 2λ2zi j .

This formulation of the objective handles the symmetric constraint explicitly. Taking the
derivative and setting it to 0 gives us the final update rule for Z2,

Z2 = max

(
S −

(
HĤ

T + ĤHT

2

)
− λ2

2α
1, 0

)
. (11)

The final algorithm combining Eqs. (5)–(7), (10) and (11), called Outlier detection and
Robust Clustering for Attributed graphs (ORCA), can be found in Algorithm 1. We initialize
H, Ĥ with random nonnegative values and Z1,Z2 as zero matrices. Finally outlier scores
for every data item is obtained by summing up the elements of Z1 and Z2 in a columnwise
manner.
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Algorithm 1 Outlier detection and Robust Clustering for Attributed graphs (ORCA)

1: initialize H(0), Ĥ
(0)

,Z(0)
1 ,Z(0)

2
2: procedure ORCA(X,S, k, λ1, λ2, α, β)
3: t ← 0
4: while stopping criteria not satisfied do
5:  Updating Low-rank components

6: Y1 ← X − Z(t)
1

7: Y2 ← S − Z(t)
2

8: W(t+1) ← NLS(H(t),Y1)

9: U1 ←
⎡
⎣

W√
αĤ√
βIk

⎤
⎦

10: V1 ←
⎡
⎣

Y1√
αY2√
βĤ

T

⎤
⎦

11: H(t+1) ← NLS(U1,V1)

12: U2 ←
[√

αH√
βIk

]

13: V2 ←
[√

αY2√
βHT

]

14: Ĥ
(t+1) ← NLS(U2,V2)

15:  Updating Sparse components
16: D1 ← X − W(t+1)(H(t+1))T

17: D2 ← S − Ĥ
(t+1)

(H(t+1))T

18: D2 ← D2+DT
2

2

19: Z(t+1)
1 ← max(D1 − λ1

2 1,0)

20: Z(t+1)
2 ← max(D2 − λ2

2α 1,0)
21: t ← t + 1
22: end while
23: t ← t − 1
24:  Calculating outlier scores (c)
25: for all i ← 1, n do
26: ci ← ∑m

j=1 Z
(t)
1 ( j, i) + ∑n

j=1 Z
(t)
2 ( j, i)

27: end for
28: return W(t),H(t), Ĥ

(t)
,Z(t)

1 ,Z(t)
2 , c

29: end procedure

4.1 Convergence analysis

We shall examine the convergence of ORCA in the BCD framework [5,23]. Our prob-
lem formulation described in Eq. (4) has been divided into 5 blocks of variables, namely
W,H, Ĥ,Z1 andZ2. According to Theorem 1 by Kim et al. [23], if the sequence of solutions

{W(t),H(t), Ĥ
(t)

,Z(t)
1 ,Z(t)

2 } generated by the BCD method attains a unique minimum at all
steps t then every limit point of the sequence is a stationary point. We now need to show that
every update step of Algorithm 1 achieves both these conditions. The update steps can be
separated into NLS updates [Eqs. (5)–(7)] and thresholding updates [Eqs. (10) and (11)].

The NLS problems, of the form min
G≥0

∥∥FGT − C
∥∥2
F , are convex and have unique minima

when F is full rank. This computation is denoted by NLS(F,C) in Algorithm 1. The full rank
condition is trivially true for Eqs. (6) and (7) due to the presence of

√
βIk in F. For Eq. (5) we
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need to assumeH remains full rank throughout the BCDmethod, which is a mild assumption
on the cluster indicator matrix. The thresholding updates are shown to have a closed form
solution that automatically satisfy the conditions for Theorem 1. Thus we can show that
ORCA converges to a stationary point under mild assumptions. It should be pointed out
that algorithms based on the BCD framework converge to a stationary point unlike popular
methods like Multiplicative Updating (MU) which may not converge [23].

4.2 Computational complexity

The runtime of Algorithm 1 can be broken down into NLS and thresholding steps. ORCA
performs three NLS solves and two thresholding steps per iteration using the BPP algorithm
[24] as the NLS solver. Setting up the normal equations for BPP requires applying Y1 to
WT and H as well as Y2 to HT and Ĥ which take O (

mnk + n2k
)
flops. We also need

to compute gramians of the factor matrices which takes O (
(m + n) k2

)
flops. While BPP

doesn’t have a closed form solution for runtime, it is empirically shown to be faster than
algorithms which run inO (

(m + n)k2
)
flops [21]. The thresholding steps by themselves are

element-wise operations and takeO (mn) flops. However creating the intermediate matrices
D1 and D2 involves an outer product of two low-rank matrices which takes O (mnk) and
O (

n2k
)
flops which could become expensive. Therefore the overall expected per iteration

runtime is O (
mnk + n2k + (m + n)k2

)
.

5 Experiments

We compare the proposed algorithm ORCA and other existing methods on real world
attributed graphs. Our graphs are from the data sets of Cora [34], Disney [37], US Patents
[13], Enron [32], Amazon [38] and DBLP-CS [40].

5.1 Data sets

We used the following datasets in our experiments.

– Cora: Cora data set contains 2708machine learning publications classified into 7 Classes
[34,36] Citation information among the publications is also present.

– Disney: A subset of the Amazon co-purchase network specifically created for anomaly
detection [37]. Only Disney products were selected from the network and clustered using
a modularity based technique [37].

– US Patents: Du, Drake and Park [13] collected and cleaned a subset of US patent data
fromPatentsView.1 The data set contains a term-frequency vector for each patent claim as
well as the patent citation information. Patents were classified into 13 different categories
(e.g., B09, F22 etc.) with each category containingmultiple classes.We use the individual
categories as separate datasets with classes as labels for individual patents.2

– DBLP-CS:DBLPscientific publication information is obtained fromAminer3 andparsed
using the pipeline developed by Revelle et al. [40]. The dataset contains term-frequency
information extracted from the abstracts for eachdocument aswell paper citation informa-

1 http://www.patentsview.org.
2 https://github.com/smallk/.
3 https://aminer.org/

123

http://www.patentsview.org
https://github.com/smallk/
https://aminer.org/


978 Journal of Global Optimization (2021) 81:967–989

Table 2 Our evaluation datasets vary in size, no. of clusters, and no. of outliers to thoroughly test the different
detection methods

Name Features Samples Clusters Outliers Outlier (%)

A22 8451 1620 30 25 1.54

B09 10610 1436 10 31 2.16

B68 3487 385 10 10 2.60

C06 8777 1093 20 20 1.83

C13 4728 406 10 10 2.46

D02 7032 1427 40 20 1.40

F22 6387 1306 40 20 1.53

Y04 8142 740 5 45 6.08

Amazon 21 1418 – 28 1.97

Cora 1433 2023 4 10 0.49

DBLP-CS 199147 4196 3 10 0.24

Disney 347 124 8 6 4.84

Enron 18 13533 – 5 0.04

tion.We sampled the papers from the years 1990-2010 and from the conference—FOCS,
ICML, IPDPS, ISCA andVLDB.We treat the publication venue as labels for this dataset.

– Amazon: This data set contains theAmazon co-purchase network of bookswith attributes
like prices, ratings, number of reviews, etc. [32]. The anomalies are obtained using the
amazonfail tag information.

– Enron: The Enron dataset4 is an email network with message content information and
connection information built from recipient data [32]. Spam messages are treated as
the anomalies. The number of true clusters are unknown, but we estimated the rank of
the dataset to be 5 by looking at the singular values of both the message content and
connection matrices.

Since Cora, US Patents, and DBLP-CS do not contain outlier samples, we explicitly
inject outliers into the datasets. We randomly choose some fixed number of classes from the
datasets and treat the subset of the attribute and graph which contain those classes as the non-
anomalous attribute and network information. Then we select a few data samples from the
remaining classes and inject them into the dataset. These are labelled as the outlier samples.
For example, the B09 dataset from US Patents originally contained 38 different classes. We
selected the top 10 classes with highest number of documents as our “true” clusters and
subsampled both the attribute and graph matrices for these 10 classes. Then we randomly
picked 31 patents from other classes and injected them as outliers in the final dataset for
B09.5 We ensure that the injected outliers do not come from the same class since we do
not intend to have any correlations between outliers. Since Amazon and Enron data sets do
not contain cluster information, we do not include them in the clustering experiments. The
details of these networks can be found in Table 2.

All the graphs’ adjacency matrices were normalized into the symmetric form S =
D− 1

2AD− 1
2 where A is the adjacency matrix and D = diag (d1, . . . , dn) is a diagonal matrix

4 https://www.cs.cmu.edu/~enron/
5 Our code and datasets are publicly available at https://gitlab.com/seswar3/orca.
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containing the degrees of each vertex along its diagonal. The attributes matrix X is also
normalized so that every column vector has unit �2-norm.

5.2 Baseline algorithms

We compare our proposed ORCA method to the following baseline algorithms:

– Accelerated Local Anomaly Detection (ALAD) uses NMF to jointly cluster both the
attribute and network inputs and uses the inverse of cosine similarity between data points
and cluster centroids as a score for outlierness [33].

– Nonnegative ResidualMatrix Factorization (NrMF) approximates the connectionmatrix
as the product of two low rank matrices. The residual matrix, obtained by subtracting the
low rank approximation from the input matrix, is constrained to be nonnegative on those
entries where the input matrix is positive. We consider Algorithm-3 presented by Tong
and Lin [42] as the baseline.

– Robust Principal Components Analysis (RPCA) decomposes the input matrix into a low
rank component and sparse factor via convex optimization (see Sect. 3.2). We use the
dual RPCA algorithm introduced by Wright et al. [46].

– TextOutlierNonnegativeMatrix Factorization algorithm (TONMF) is an anomaly detec-
tion algorithm designed for text data [22]. It uses a robust formulation of NMF to capture
anomalous documents in a column-wise sparse outlier matrix Z. Outlier scores are cap-
tured as �2 norms of columns of Z.

– ANOMALOUS (ANOM) is a method that simultaneously filters irrelevant node
attributes and performs anomaly detection [38]. It uses a modified form of the CUR
decomposition [35] to separate the signal and outlier matrices.

NrMF, RPCA and TONMF are designed to work only on a single view of input, either
attribute or connection information. We run each of these algorithms twice using X and S
as input separately each time, and then aggregate the results to obtain the final outlier and
cluster scores. This aggregation ensures that results, for the above algorithms, are produced
on the same amount of information for fair comparison even though they were not designed
to utilize multiple views of the data.

5.3 Evaluation criteria

We evaluate the methods by ranking every node in descending order of outlier scores. A data
item is labelled as an outlier if its score exceeds a certain threshold.We use theAreaUnder the
Precision-Recall Curve (PR-AUC) as the metric for comparison of performance. PR-AUC
is a metric that is widely used as an alternate to the Receiver Operator Characteristic curve
(ROC-AUC) in cases of binary classification with a large skew in class distribution [10,33]
like in anomaly detection. In our test datasets, the range for the number of anomalous data
items is from 0.24 to 6.08 % of the total data, which is a clear skew in class distributions.
ROC-AUC statistics are also captured. Higher AUC values indicate better anomaly detection.

We utilize the Normalized Mutual Information (NMI) and Adjusted Rand Index (RI)
metrics for measuring clustering accuracy. ORCA, TONMF, NrMF and ALAD all provide
nonnegative cluster indicator matrices. For TONMF and NrMFwe sum up the cluster indica-
tor matrices returned from running the methods on bothX and S. Each of the methods ORCA
andALAD returns only a single cluster indicator matrix. RPCA does not return a cluster indi-
cator matrix but provides embeddings for each node of the graph. We run K-Means on these
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embeddings from RPCA in a manner similar to spectral clustering [43]. We exclude ANOM
from this comparison as it does not provide node embeddings or clustering assignments to
the vertices of the graph.

All our experiments were performed on a server with two Intel(R) Xeon(R) CPU E5-2680
v3 CPUs and 377GB memory.

5.4 Hyperparameter setting

For ORCA, we found that setting λ1 = 0.7max (X) and λ2 = 0.7αmax (S) results in
good performance, and α, β were selected according to Du et al. [13]. Tuning λ1, λ2 to the
problem instance can help improve the performance of ORCA, but we used the fixed values
throughout our tests as tuning them would give ORCA an unfair advantage. Note that setting
λ1 ≥ 2max (X) or λ2 ≥ 2max (S) will result in returning 0 for the outlier matrices.

For theALADandANOMalgorithmsweused the default settings present in the algorithm.
Since TONMF didn’t provide any defaults we did a grid search to tune the penalty term for its
sparse component. NrMF and RPCA do not have any hyperparameters. We limit the number
of iterations of RPCA to 200, ALAD to 700, ORCA to 50, ANOM to 20, and TONMF to
10. These limits were either specified by the original authors (for ALAD and TONMF) or
chosen to roughly let the algorithms all run for a reasonable amount of time (RPCA, ANOM,
and ORCA). NrMF only runs for k iterations. RPCAwould stop if the relative reconstruction
error, i.e., the Frobenius norm of the low rank and sparse component divided by the Frobenius
norm of the input matrix, is less than 2×10−5. ALAD, ANOM, andORCA also stop iterating
if the objective increases and return the current iterate as the solution.

5.5 Results

5.5.1 Outlier detection

The ROC-AUC and PR-AUC values for the various real world graphs are presented in
Tables 3 and 4 respectively. We average the results over 5 runs with different initializations.
The top performing algorithm for each dataset is highlighted in bold text. The second best
method is underlined.

We should look at both the PR-AUC and ROC-AUC values in conjunction to evaluate the
performance of the methods. Ideally both of the PR-AUC and ROC-AUC values should be
high if the detection algorithm is performing as expected. If ROC-AUC is high and PR-AUC
is low it indicates that the algorithm is able to classify the non-anomalous items correctly
but misses out on the anomalous entries. If the AUC-PR is high and ROC-AUC is low the
opposite effect is taking place. This condition implies that the detection algorithm is flagging
too many nodes as outliers.

We can observe that ANOM seems to be the best performing algorithm over both metrics
with ORCA and ALAD the next best. Looking at both AUC metrics we can observe the
shortcomings of ALAD. In our experiments we observed that ALAD would classify a large
number of nodes with large outlier scores and thereby perform well on the PR-AUC metric.
Algorithms such as TONMF, RPCA, and NrMF, which do not explicitly couple the attribute
and connection data, perform significantly worse than others. This poor performance is
expected and highlights the importance of fusing and utilising all the available information.
Our results further verify it empirically. Finally, the running time of ANOM includes k matrix
inversions every iteration which is very expensive and does not scale. For example, it did not
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Table 3 ROC-AUC performance for outlier detection. The top performing algorithm is highlighted in bold
text and the second best method is underlined

Dataset ORCA TONMF RPCA NrMF ALAD ANOM

A22 0.567 0.493 0.341 0.443 0.491 0.745

B09 0.549 0.503 0.483 0.499 0.477 0.570

B68 0.774 0.524 0.434 0.501 0.227 0.782

C06 0.674 0.515 0.379 0.400 0.501 0.785

C13 0.547 0.514 0.419 0.248 0.175 0.908

D02 0.642 0.466 0.407 0.436 0.512 0.750

F22 0.571 0.450 0.296 0.420 0.503 0.809

Y04 0.458 0.515 0.540 0.538 0.321 0.695

Amazon 0.497 0.000 0.340 0.554 0.490 0.627

Cora 0.602 0.000 0.367 0.467 0.550 0.859

DBLP-CS 0.573 0.492 0.301 0.359 0.545 -

Disney 0.712 0.000 0.556 0.263 0.291 0.596

Enron 0.579 0.552 0.571 0.475 0.466 0.457

Average 0.596 0.386 0.418 0.431 0.427 0.715

Table 4 PR-AUC performance for outlier detection. The top performing algorithm is highlighted in bold text
and the second best method is underlined

Dataset ORCA TONMF RPCA NrMF ALAD ANOM

A22 0.018 0.024 0.011 0.013 0.456 0.089

B09 0.025 0.033 0.038 0.021 0.081 0.025

B68 0.118 0.044 0.023 0.025 0.037 0.118

C06 0.058 0.026 0.015 0.014 0.445 0.049

C13 0.031 0.026 0.019 0.015 0.014 0.338

D02 0.054 0.019 0.012 0.013 0.492 0.075

F22 0.018 0.019 0.010 0.039 0.468 0.079

Y04 0.072 0.162 0.072 0.077 0.041 0.146

Amazon 0.019 NaN 0.014 0.020 0.114 0.029

Cora 0.008 NaN 0.004 0.004 0.038 0.229

DBLP-CS 0.006 0.005 0.003 0.003 0.440 -

Disney 0.241 NaN 0.216 0.031 0.032 0.072

Enron 0.001 0.080 0.001 0.000 0.180 0.000

Average 0.051 0.044 0.034 0.021 0.218 0.104

finish for the DBLP-CS dataset within 8 hours. On the other hand, ORCA is able to scale up
to ∼ 200,000 features linearly (Sect. 4.2).

After considering these factors we believe that ANOM and ORCA are the most effective
anomaly detection methods. ANOM performs very well in terms of accuracy but can become
computationally prohibitive for large datasets.
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Table 5 Clustering performance
measured in NMI. The top
performing algorithm is
highlighted in bold text and the
second best method is underlined

Dataset ORCA TONMF RPCA NrMF ALAD

A22 0.620 0.067 0.296 0.112 0.124

B09 0.388 0.012 0.143 0.028 0.019

B68 0.809 0.035 0.256 0.136 0.712

C06 0.511 0.045 0.313 0.107 0.090

C13 0.500 0.035 0.278 0.080 0.293

D02 0.515 0.128 0.297 0.142 0.189

F22 0.533 0.139 0.350 0.132 0.191

Y04 0.441 0.037 0.188 0.009 0.291

Cora 0.179 0.105 0.015 0.004 0.301

DBLP-CS 0.441 0.000 0.040 0.008 0.004

Disney 0.544 0.222 0.239 0.094 0.508

Average 0.498 0.075 0.22 0.077 0.247

Table 6 Clustering performance
measured in Adjusted Rand
Index. The top performing
algorithm is highlighted in bold
text and the second best method
is underlined

Dataset ORCA TONMF RPCA NrMF ALAD

A22 0.373 0.000 0.097 − 0.002 0.009

B09 0.303 − 0.000 0.085 − 0.005 0.002

B68 0.727 − 0.001 0.103 0.023 0.567

C06 0.299 0.000 0.114 0.005 0.009

C13 0.272 0.001 0.072 0.001 0.070

D02 0.241 − 0.000 0.061 0.001 0.012

F22 0.215 0.001 0.074 0.000 0.005

Y04 0.418 0.004 0.183 − 0.000 0.127

Cora 0.148 0.054 0.000 0.004 0.266

DBLP-CS 0.448 − 0.000 0.027 − 0.006 0.002

Disney 0.419 0.055 0.042 0.005 0.364

Average 0.351 0.01 0.078 0.002 0.13

5.5.2 Clustering

The results based on NMI and RI metrics are presented in Tables 5 and 6 respectively. Similar
to the outlier results, themeasurements are averaged over 5 runs with different starting points.
The top performing algorithm for each dataset is highlighted in bold text. The second best
method is underlined.

Unlike the outlier case there is a clear winner in clustering. ORCA performs consistently
better than the other methods. RPCA and ALAD are the next best performing method.
Both ORCA and RPCA formulations involve an explicit “outlier” matrix Z which helps the
algorithms produce robust clusters less affected by the outliers. ALAD performs better than
RPCA on datasets with relatively larger number of outliers (outlier percentage of 2% or
more). ORCA is more robust to these varying percentage of outliers and consistently clusters
well. ANOM is excluded from this experiment as it does not provide node embeddings or
clustering assignments to the vertices of the graph.
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Fig. 2 Scaling performance for the two best performing algorithmsORCAandANOM.The x− axis represents
the number of features (m) with n = 100 for solid graphs and the number of samples (n) with m = 100 for
dashed graphs. ORCA is significantly faster than ANOM and scales gracefully according to the expected
complexity bounds

5.6 Scaling experiments

We run scaling experiments to highlight the runtime differences between ANOM and ORCA
as they were the best performing methods for outlier detection and warrant further study. For
these experiments we fix either the number of features (m) or number of samples (n) and
vary the other dimension. The low rank parameter was fixed to 50. The stopping criteria for
the methods were the same as used in the real world experiments (Sect. 5.4).

Figure 2a shows the total time needed for both algorithms to stop. We see that ORCA is
consistently faster than ANOM achieving a maximum speedup of nearly a factor of 1000.
Since both algorithms are solving different objective functions we measure time per iteration
as another runtime characterization. We fix the number of iterations to 5. The stopping
criteria for both these methods were primarily based on maximum iterations on the real-
world experiments. Figure 2b shows that ORCA is faster than ANOM by a factor of 5 and a
factor of 100, respectively. Figure 2b also shows the run times of ORCA growmore gradually
than that of ANOM. Even when the inputs to ORCA are 50 times larger than that of ANOM,
as shown in Fig. 3, the per iteration times of ORCA are lower than that of ANOM. Figure
3 also shows that ORCA scales better with respect to features than samples. This is in line
with the complexity analysis shown in Sect. 4.2. The slowness of ANOM is also expected
since it performs k matrix inversions costing O (

mn2
)
flops every outer iteration which is

extremely expensive. The lack of an explicit low rank term in their formulation leads to this
computational bottleneck.

5.7 Case study

We conduct a case study to illustrate how ORCA operates on an attributed graph. The B68
group of the US Patents dataset [13] is considered, on which ORCA performed well as seen
in Tables 3, 4, 5 and 6. This group contains patents pertaining to methods for manufactur-
ing articles from leather such as harnesses and saddles. The patents are divided in to 118
subgroups (for example making upholstery, stirrups, whips, saddles, etc.). Each patent is a
technical document that cites other patents. We process the set as described in Sect. 5.1 and
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Fig. 3 Scaling plots for ORCA
on larger inputs. The x-axis
represents the number of features
(m) with n = 100 for blue graphs
and the number samples (n) with
m = 100 for red graphs. ORCA
scales better with respect to
features than samples. (Color
figure online)
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Table 7 Topics present in the B68 group

Topic Topic top words Discovered topic

1 Pad, layer, saddle, back, Pad, layer, saddle, panel

panel, area, cushion back, area, cushion

2 Coil, spring, pocket, fabric, Coil, spring, pocket, fabric,

row, weld, apparatus row, weld, string

3 Cinch, girth, buckle, strap, Cinch, girth, buckle, strap,

saddle, belt, fastening saddle, belt, fastening

4 Halter, nose, loop, animal, Nose, halter, loop, cheek,

cheek, strap, lead strap, head, animal

5 Bit, mouthpiece, shank, mouth, mouthpiece, bit, shank, bridle,

cheek, bridle, ring cheek, mouth, ring

6 Seat, cover, cushion, frame, Seat, cover, cushion, machine,

die, prong, machine frame, support, trim

7 Bit, bridle, head, horse, Composite, lubricant, object, spherical,

strap, rein, ring mixture, fluid, flow

8 Fiber, aggregate, spherical, mixture, Fiber, aggregate, spherical, natural,

percent, pillow, filling insulation, bonded, filament

9 Rack, frame, saddle, arm, Rack, frame, arm, saddle,

support, vertical, horizontal support, vertical, horizontal

10 Saddle, horn, tree, Substrate, pillow, viscoelastic, m3, filler,

section, aperture, flap nominal, kilogram, foam

Each topic is represented by its seven top key words. The left column shows the ground truth topics and the
right column shows the topics discovered by ORCA. Topics 7 and 10 found by ORCA are shown in italic as
they are different from the ground truth topics

the final dataset includes 10 randomly selected subgroups, which we call topics, and 10 out-
liers from the remaining subgroups. The top keywords from each of these topics are shown
in Table 7.

Table 7 display the top-7 keywords from the true topics and the topics discovered by
ORCA. These are generated from the columns of the cluster representative matrixW. ORCA
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Fig. 4 Outlier ranking in the B68
dataset. Every marker is an
outlier found. The samples are
arranged in decreasing order of
outlier scores and we plot the %
of outliers captured. We would
expect a perfect ranking
algorithm to capture 100 % of the
outliers by #outliers
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Table 8 Example outliers and inliers in the B68 group

Example Top words ORCA Output Neighbours

Outlier (88) Fire, conductive, upholster, substance, Outlier 8

article, resistant, fibrous

Inlier (304) Dee, latigo, feature, billet, Outlier 3

Topic 10 Holding, increment, enclosure Topic 9

Outlier (370) Gel, stretch, deviation, plot, Inlier 8, 8, 8, 8, 8

individual, cushion, rebound Topic 1

Inlier (223) Ply, retainer, receptacle, block, Inlier 2, −1, 2, 2

Topic 2 Bedding, string, strings Topic 2

The example outputs for individual patents are italic if they are incorrectly classified as an outlier and bolditalic
otherwise. Bold words and edges are the entries in Z1 and Z2 responsible for the outlier score of a patent

is able to detect 8 of 10 topics accuratelywhich contributes to the good clustering performance
in Tables 5 and 6. The two topics that were not discovered are highlighted in italic.

Next we look at the entries flagged as outliers by ORCA. Figure 4 displays the number of
outliers found in descending order of outlier scores. Recall that outlier scores are generated
by summing up entries of Z1 and Z2 in a columnwise manner. We can see that ORCA is
quickly able to detect 5 of the 10 outlier nodes. These are found within the first 52 flagged
items (13.5% of data items) but the last 5 are more difficult to capture. The final outlier is
flagged only at the 208th position (54% of data items).

Finally we show an example result in Table 8. The Example column provides the index,
true topic, and outlier labels for each patent. Top words are the most weighted words in the
document vector. Bold words indicate that they were captured inZ1. The Neighbours column
in Table 8 shows the topics of the neighbouring patents in the citation network. For example,
data item 370 has connections with 5 other patents all of whom are from Topic 8. Outliers
appear as Topic −1. Bold edges indicate that they were captured in Z2. We consider the
patents with the 10 largest outlier scores as the outliers returned by ORCA.

We look at a representative example from each of the categories (true positive, false
positive, false negative, and true negative) of flagged results. For the outlier (data item 88)
the top words in the document do not seem to correlate with any topic and results in a high
score from Z1 and similarly its connection to a patent from Topic 8 looks arbitrary and is
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captured by Z2. ORCA is able to flag this sample as an outlier successfully. Data item 304 is
incorrectly flagged as an outlier. It belongs to Topic 10 which was not discovered by ORCA.
The top words look different from the Topic 10 and it has an edge to a patent from Topic
3, which explains some of the difficulty categorizing it. Data item 370 is one of the outliers
that was flagged last by ORCA at position 168. The data item has a lot of connections to
patents from Topic 8 and is matched to the erroneously discovered Topic 7 by ORCA. It is
still considered partially an outlier due to the word “gel”. Finally, data item 223 is categorized
as an inlier and placed in the correct category by ORCA even though it has a connection to
an outlier.

5.8 Discussion

The results fromSect. 5.5 show the importance using both connection and feature information
for clustering and anomaly detection in attributed graphs, as well as simultaneous consid-
eration of clustering and anomaly detection rather than in two stages. The best performing
algorithms, ORCA, ANOM, and ALAD, effectively use both views of data. Methods that
independently run on both types of inputs are not as effective in both clustering and anomaly
detection. From the case study conducted on ORCA we are able to see that a poorly discov-
ered or missed topic can cause ORCA to mislabel certain inliers even as we simultaneously
optimizewith both kinds of data. ORCA is effective in both clustering and anomaly detection,
and its performance can be further improved by tuning hyperparameters λ1 and λ2 via grid
searches. This tuning can become expensive.

ANOM [38], while slow, performs the best at anomaly detection. Instead of performing
an exact CUR decomposition on the input they regularize their objective function to pro-
mote a CUR like internal representation [35]. This regularization is done by approximating
W ≈ CUR and regularisingW andWT via the �2,1 norm. We noticed thatW is often close
to full rank in our experiments. This full rank approximation seems to aid in anomaly detec-
tion and might be an interesting addition to our framework. However this flexibility causes
the computational complexity to increase dramatically compared to algorithms that use an
explicit low rank formulation.

6 Conclusions and future work

In this paper, we develop a general framework for clustering and anomaly detection in
attributed graphs. We developed an efficient algorithm (ORCA) within this framework and
used this for simultaneously mining clusters and anomalies in text datasets which have con-
nection information. Experiments on real world datasets show that utilizing both attribute and
connection modalities outperforms mining on individual inputs. ORCA extends simultane-
ous clustering and anomaly detection with better interpretability and scalability for end-user
analysts. In the future, wewould like to implement efficient distributed versions of these algo-
rithms to analyse internet scale graphs. Modeling different norms for penalizing anomalies
is also an interesting future extension of this work.
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