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Abstract
3D protein structures and nanostructures can be obtained by exploiting distance informa-
tion provided by experimental techniques, such as nuclear magnetic resonance and the pair
distribution function method. These are examples of instances of the unassigned distance
geometry problem (uDGP), where the aim is to calculate the position of some points using
a list of associated distance values not previoulsy assigned to the pair of points. We pro-
pose new mathematical programming formulations and a new heuristic to solve the uDGP
related to molecular structure calculations. In addition to theoretical results, computational
experiments are also provided.

Keywords Unassigned distance geometry problem · Nonlinear optimization · Molecular
conformation

1 Introduction

Distance geometry (DG) started when Menger characterized geometric concepts using the
idea of distance [35]. In the majority of applications of DG, the input data consists of an
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incomplete list of distance values and the output is a set of positions in some Euclidean space
realizing those given distances [6]. Other applications are given in [36,39].

When distances are pre-assigned to pairs of objects, we have the assigned Distance
Geometry Problem (aDGP), also called just DGP [28,37], defined as follows:

Definition 1 Given a simple undirected graph G = (V , E, δ), whose edges are weighted by
δ : E → (0,∞), and an integer K > 0, find a function x : V → R

K such that

∀{u, v} ∈ E, ||xi − x j ||2 = δi, j , (1)

where xi = x(i), x j = x( j), and δi, j = δ({i, j}).
Depending on the application, the embedding space can be very general, but for problems

related to molecular geometry, we will fix it to R
3. For example, 3D protein structures

and nanostructures can be obtained by exploiting distance information between atom pairs
provided by experimental techniques, such as nuclear magnetic resonance (NMR) [28] and
the pair distribution function (PDF) method [15], respectively.

In general, in the context of molecular conformations, it is considered that the graph G
is known a priori, but the information that is actually given by NMR experiments and PDF
methods consists of a list of distance values that are only subsequently assigned to atom pairs
[7].

In other words, while the distance is given, we do not know the two vertices having such
a distance. That is, the associated graph is actually unknown and the only input is a vertex
set and a list of distance values. This is the unassigned Distance Geometry Problem (uDGP),
which has received much less attention than the aDGP [4,6].

The formal definition of the uDGP is the following (since δi, j = δ j,i , we will write {i, j}
instead of (i, j)):

Definition 2 Given a set of vertices V and a list of associated distance values d1, . . . , dm ,
find an injective function g : {1, . . . ,m} → V × V and a function x : V → R

3 such that,
∀{i, j} ∈ g({1, . . . ,m}),

δi, j = dg−1({i, j}) (2)

and

||xi − x j ||2 = δi, j .

Note that g is an assignment function that defines a set E ⊂ V ×V , the edges of the graph
associated to the uDGP.

For historical notes and surveys on methods to solve DGPs, see [6,7,28,29], respectively.
Also see the recent books [21,22,30].

In 1979, Saxe proved that the aDGP is NP-hard [40]. The uDGP is even more challenging
in practice, because the graph itself and the graph realization must both be determined at the
same time.

Although the uDGP is not new to mathematics [41], the literature focuses predominantly
on one-dimensional problems motivated by DNA sequencing, often called partial digest
problems [12].

For nanostructure calculations, there are two heuristics that have been proposed: TRI-
BOND [11,14] and LIGA [15]. Both methods are based on build-up approaches and suppose
that sufficient distance constraints are available to ensure a unique solution at each step of
the procedure.
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In the context of molecular geometry, we propose mathematical programming formu-
lations for the uDGP, one of the open problems in DG mentioned in [31]. In addition to
theoretical results related to these formulations, we also propose a new heuristic for the prob-
lem (Sect. 2). Section 3 presents computational experiments and Sect. 4 concludes the paper
with new research directions.

2 New formulations for the uDGP

In this section, we present mathematical programming models for the uDGP, with associated
theoretical results, and a heuristic to solve it.

2.1 Mathematical programmingmodels

To take into account the assignment function g (Definition 2), we introduce binary variables
aki, j such that

aki, j = 1 ⇔ distance dk is assigned to the pair (i, j) ∈ V × V .

Considering vertices v1, . . . , vn ∈ V and distance values d1, . . . , dm related to a uDGP
instance, we propose the following model to the uDGP:

min
x1,...,xn ,aki, j

n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

(||xi − x j ||22 − d2k
)2

))

s.t.

n−1∑

i=1

n∑

j=i+1
aki, j = 1, k = 1, . . . ,m,

m∑

k=1
aki, j ≤ 1, i = 1, . . . , n − 1, j = i + 1, . . . , n,

xi ∈ R
3, aki, j ∈ {0, 1},

k = 1, . . . ,m, i = 1, . . . , n − 1, j = i + 1, . . . , n.

(3)

Our first result states a relationship between a uDGP solution and a solution to model (3).

Theorem 1 Apair (g, x) is a solution for a uDGP instance associated to a graphG = (V , E),
with |V | = n, |E | = m, g : {1, . . . ,m} → V × V , and x : V → R

3, if and only if (x, a) is
a global optimal solution to (3).

Proof If (g, x) is a solution for a given uDGP associated to a graph G = (V , E), with
|V | = n, |E | = m, g : {1, . . . ,m} → V × V , x : V → R

3, and distance values d1, . . . , dm
related to binary variables aki, j , such that

||xi − x j ||2 = δi, j ,

where δi, j = dg−1({i, j}), then it is easy to see that (x, a) is a global optimal solution to (3).

Considering now that (x1, . . . , xn, aki, j ) is a global optimal solution to (3), for i =
1, . . . , n − 1, j = i + 1, . . . , n, and k = 1, . . . ,m, we have that

m∑

k=1

(
aki, j

(||xi − x j ||22 − d2k
)2) = 0
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and, by constraints of problem (3), the values aki, j assign pairs (i, j) ∈ V × V such that

||xi − x j ||2 = dk , k = 1, . . . ,m. (4)

This implicitly defines a weighted graphG = (V , E, d), d : E → R, with vertices and edges
related to x1, . . . , xn and pairs (i, j), respectively, an injective function g : {1, . . . ,m} →
V × V , such that

δi, j = dg−1({i, j}),

and a realization of G, x : V → R
3, that satisfies ( 4). Thus, (g, x) is a solution of the uDGP

associated to the distance values d1, . . . , dm and the graph G = (V , E, d). 	


In order to avoid the huge number of binary variables of the model (3) and inspired by
the Solid Isotropic Material with Penalization (SIMP) method [5] and the ideas proposed in
[34], we introduce a new formulation with only continuous variables:

min
t,x1,...,xn ,aki, j

t −
n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

)2
)

s.t.

n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

(||xi − x j ||22 − d2k
)2

))

= t,

n−1∑

i=1

n∑

j=i+1
aki, j = 1, k = 1, . . . ,m,

m∑

k=1
aki, j ≤ 1, i = 1, . . . , n − 1, j = i + 1, . . . , n,

t ≥ 0, xi ∈ R
3, 0 ≤ aki, j ≤ 1,

k = 1, . . . ,m, i = 1, . . . , n − 1, j = i + 1, . . . , n.

(5)

The next result gives a relationship between a uDGP solution and a solution to model (5).

Theorem 2 A pair (g, x) is a solution for a feasible uDGP instance associated to a graph
G = (V , E), with |V | = n, |E | = m, g : {1, . . . ,m} → V × V , and x : V → R

3, if and
only if (t, x, a) is a global optimal solution to (5) with globally optimal objective function
value equal to −m.

Proof If (g, x) is a solution for a given uDGP associated to a graph G = (V , E), with
|V | = n, |E | = m, g : {1, . . . ,m} → V × V , x : V → R

3, and distance values d1, . . . , dm
related to binary variables aki, j , such that

||xi − x j || = δi, j ,

where δi, j = dg−1({i, j}), we obtain, from Theorem 3, that (x, a) is a global optimal solution

to (3). Considering this solution in model (5), we have aki, j ∈ {0, 1} and
n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

(||xi − x j ||2 − d2k
)2)

)

= 0,

which implies that t = 0 and that (0, x, a) is also a global optimum solution to model (5),
with globally optimal objective function value equal to −m.
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Let us consider the other direction of the theorem. For a global optimal solution (t, x, a)

of the model (5), if there exist positive integers l1, l2, l3 with l1 ≤ n − 1, l2 ≤ n, l3 ≤ m,
such that

0 < al3l1,l2 < 1,

then
n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

)2
)

<

n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

aki, j

)

. (6)

Since we are considering a feasible uDGP, for k = 1, . . . ,m,

n−1∑

i=1

n∑

j=i+1

aki, j = 1 ⇒
n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

aki, j

)

= m,

implying that, from (6) and t ≥ 0,

n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

)2
)

< m ⇒ t −
n−1∑

i=1

n∑

j=i+1

(
m∑

k=1

(
aki, j

)2
)

> t − m,

which is a contradiction, because we already know that −m is the optimal value for model
(5). Thus,

aki, j ∈ {0, 1},
for i = 1, . . . , n − 1, j = i + 1, . . . , n, and k = 1, . . . ,m. From the constraints of problem
(5), the values aki, j assign pairs (i, j) ∈ V × V such that

||xi − x j || = dk , k = 1, . . . ,m. (7)

This implicitly defines a weighted graph G = (V , E, δ), δ : E → R, with vertices and edges
related to x1, . . . , xn and pairs (i, j), respectively, an injective function g : {1, . . . ,m} →
V × V , such that

δi, j = dg−1({i, j}),

and a realization of G, x : V → R
3, that satisfies ( 7). Thus, (g, x) is a solution of the uDGP

associated to the distance values d1, . . . , dm and the graph G = (V , E, d). 	

From the proof above, note that model (5) also provides a “certificate” of infeasibility of

the uDGP instance if the globally optimal objective function value is strictly greater than
−m.

2.2 A heuristic approach

Model (5) can solve larger instances, compared to model (3), but to solve instances with
hundreds of atoms, we propose a new heuristic inspired by the TRIBOND method [14] and
model (5).

First, we need to find a “core” (positions inR3 for five verticeswith ten associated distances
provided from the list of distance values), solving model (5) considering just five points, and
then increase its size by adding one vertex position at a time solving a modification of model
(5), where four random points (already fixed) are used in order to find the next position:
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1. Find a core x1, . . . , x5 ∈ R
3 solving the problem

min
t,x1,...,x5,a

k
i, j

t −
4∑

i=1

5∑

j=i+1

(
m∑

k=1

(
aki, j

)2
)

s.t.

4∑

i=1

5∑

j=i+1

(
m∑

k=1

(
aki, j

(||xi − x j ||22 − d2k
)2

))

= t,

4∑

i=1

5∑

j=i+1
aki, j = 1, k = 1, . . . ,m,

m∑

k=1
aki, j ≤ 1, i = 1, . . . , 4, j = i + 1, . . . , 5,

t ≥ 0, x1, . . . , x5 ∈ R
3, 0 ≤ aki, j ≤ 1, k = 1, . . . ,m.

(8)

2. For i = 6, . . . , n, solve the problem

min
t,xi ,aki, j

t −
mi∑

k=1

(
∑

j∈J

(
aki, j

)2
)

s.t.

∑

j∈J

mi∑

k=1

(
aki, j

(||xi − y j ||22 − d2k
)2

)
= t

∑

j∈J
aki, j = 1, k = 1, . . . ,mi ,

mi∑

k=1
aki, j ≤ 1, j ∈ J ,

t ≥ 0, xi ∈ R
3, 0 ≤ aki, j ≤ 1, k = 1, . . . ,mi , j ∈ J ,

(9)

where xi ∈ R
3 is the position to be determined, J is a random set with four indices related

to already fixed points y j ∈ R
3, j ∈ J ⊂ {1, . . . , i−1}, andmi is the number of available

distances.
3. If a set of compatible distances cannot be found for some i = 6, . . . , n, find a new core

(go to Step 1) and restart.

The importance of a core in Step 1 is to allow, with high probability [14], to start correctly
the reconstruction of the molecular structure. After finding a core, the geometric idea of Step
2 is to intersect fours spheres [32] (centered at points y j ), which gives one point if there are
consistent distance values (radii of the spheres) from the list of distances.

3 Computational results

We generate uDGP instances in the following way. We consider a sequence of covalently
connected atoms indexed by 1, . . . , n. The 3D structure of the instance can be defined in
terms of the lengths of the covalent bonds d1,2, . . . , dn−1,n , covalent angles θ1,3, . . . , θn−2,n

(formed by three consecutive atoms), and torsion angles ω1,4, . . . , ωn−3,n (formed by four
consecutive atoms).

By fixing the lengths of the covalent bonds (di−1,i = 1.0) and the values of the covalent
angles (θi−2,i = 2.0 radians), a 3D molecular structure is determined by the torsion angles
ω1,4, . . . , ωn−3,n ∈ [0, 2π ], randomly chosen from the set {π

3 , π, 5π
3 }. More details about

instance generation are given in [16,20].
Differently from TRIBOND and LIGA methods, instances with incomplete list of dis-

tances, i.e. m <
n(n−1)

2 , can be easier to solve by the proposed approach, since there will
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Table 1 Number of solutions
found with time limit = 3,000 min

n M1 M2 M3

5 5 5 5

10 0 3 5

20 0 0 5

50 0 0 5

100 0 0 5

200 0 0 5

300 0 0 5

400 0 0 5

Table 2 Computational time in
minutes

Number of atoms M1 M2 M3

5 0.97 0.72 0.72

10 – 2850.03 3.99

20 – – 9.39

50 – – 60.52

100 – – 114.57

200 – – 256.24

300 – – 427.87

400 – – 792.63

be many global optimum solutions for the model (5). Thus, in order to guarantee a unique
solution, we consider instances with all the distances d1, . . . , dm , where m = n(n−1)

2 .
We used the software AMPL with the solver Baron 17.4.1 on a Lenovo notebook, with 6

MB RAM and intel celeron 1.6 GHz, to solve the three models proposed: M1 (3), M2 (5),
and M3 (9).

For all values of n, we generated 5 random instances according to the procedure described
above.

For models M1 and M2, we stopped with n = 5 and n = 10, respectively, because no
solution was found considering 3000 minutes as the limit time (see Table 1).

For each n, Table 2 shows the average of the computational time, in minutes, necessary
to solve all the 5 instances randomly generated.

From Tables 1 and 2, we notice that the proposed heuristic for solving problem (5) finds
the global optimum solutions, in all the cases, in a reasonable time. This means that, during
the execution of the heuristic, for a core found in Step 1, problem (9) was solved in Step 2,
for all i = 6, . . . , n.

4 Conclusions

TRIBONDandLIGA are the first generationmethods to solve the uDGP applied tomolecular
conformation problems and computational results presented in this paper point to different
approaches that could be starting points for new research directions.

We are particularly interested in such kind of problems related to protein structure calcu-
lations using distance information given by NMR experiments, called the Molecular DGP
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(MDGP) [28]. Many methods applied to the MDGP suppose that the available distances are
pre-assigned to the pairs of atoms. However, as we mentioned in the Introduction, the data
that is actually provided by NMR consists of just a list of distances.

The geometry of proteins allows us to define vertex orders v1, . . . , vn on the associated
graph G = (V , E) [8,25] such that

1. The first four vertices can be fixed in R3, since they define a clique;
2. Each vertex with rank greater than four is adjacent to at least two contiguous predecessors,

i.e.

∀i > 4, {vi−2, vi }, {vi−1, vi } ∈ E .

Property 1 can help to define the core (instead of solving problem (8)) and property 2 can
be useful in the definition of the set J in the model (9).

In [23], the authors propose a new vertex order for proteinmoleculeswhere pairs {vi−3, vi }
can also be included in the set of edges of the associated graph.When distances di−3,i are also
known, the search space of the problem can be discretized and if the assignment function g is
defined in advance, we have the so-called Discretizable MDGP (DMDGP) [17,18], allowing
the application of a combinatorial method, called Branch-and-Prune (BP) [27].

As mentioned in the recent survey on DGP’s [7], experiences with TRIBOND and LIGA,
together with recent results on BP methods for DGP’s [13,26,33], emphasize the importance
of vertex orders in molecular reconstruction from distance information.

Ourmain research direction now is to consider protein vertex orders in themodels proposed
in this work to deal with uncertainties in the NMR distance information, already discussed
in many approaches to the aDGP [1–3,9,10,19,24,38,42].

The proposed models can also incorporate uncertainties representing distance values as
interval distances [dk, dk], 0 < dk ≤ dk , where precise distance values dk are replaced by
dk +λkwk , with 0 ≤ λk ≤ 1 andwk = dk −dk [38], implying that λk would be new variables
and wk new input data.

Acknowledgements We would like to thank the Brazilian research agencies CNPq and FAPESP, for their
financial support, and the reviewers for their valuable comments.
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