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Abstract
In this paper, we give necessary conditions for the existence of a strict local minimum of
order two for multiobjective optimization problems with equality and inequality constraints.
We suppose that the objective function and the active inequality constraints are only locally
Lipschitz. We consider both regular equality constraints and degenerate equality constraints.
This article could be considered as a continuation of [E. Constantin, Necessary Conditions
for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J.
Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity
condition, and we show that under each of them, the dual necessary conditions for a weak
local minimum of the aforementioned article become of Kuhn-Tucker type.

Keywords Weak local minimum · Strict local minimum of order two · Nonsmooth
multiobjective optimization · Degenerate equality constraints · Locally Lipschitz
optimization problems · Kuhn-Tucker dual necessary optimality conditions
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1 Introduction

We consider the following optimization problem

Minimize f (x) subject to x ∈ D, and gi (x) ≤ 0, i = 1, 2, ..., m, (P)

where X is a Banach space, f = ( f1, ..., f p) : U → R
p , the functions fk , k = 1, ..., p,

gi : U → R, i = 1, ..., m, are locally Lipschitz on an open set U , and D is an arbitrary set,
D ⊆ U ⊆ X .
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Also we consider problem (P1), which is a particular case of problem (P), obtained from
(P) by taking D = Dh = {z ∈ X; h(z) = 0}, where h : X → Y , and Y is a Banach space.

Minimize f (x) subject to gi (x) ≤ 0, i = 1, 2, ..., m, and h(x) = 0. (P1)

We suppose that the objective function and the active inequality constraint functions are
only locally Lipschitz. We consider both regular and degenerate equality constraints. An
equality constraint given as the null-set of a Fréchet differentiable operator is said to be
regular at a point in this set, if the derivative of the operator at that point is onto. Otherwise,
the equality constraint is said to be degenerate (irregular, abnormal).

In the literature there exist only a few papers concerning degenerate optimization prob-
lems with both inequality and equality constraints, namely Ledzewicz-Schattler, [21,22],
which deal with scalar problems with sufficiently often continuously differentiable data, and
Constantin, [12], which deals with nonsmooth multiobjective problems.

In [12], we established dual necessary conditions (Fritz-John type Lagrange multiplier
rules) for a weak local minimum to problem (P1) with inequality constraints, and degen-
erate equality constraints that are 2-regular in the sense of Tret’yakov, [33]. We presented
a constraint qualification under which our dual necessary optimality conditions became of
Kuhn-Tucker type (i.e., at least one of the multipliers associated to the components of the
objective function is nonzero). Also, in [12], we gave a necessary condition for a degenerate
equality constraint function to be 2-regular.

In this paper, we complete the work from [12]. We introduce one more constraint qualifi-
cation and a regularity condition, and we prove that, under each of them, our dual Fritz-John
necessary conditions, established in [12] for the existence of a weak local minimum for prob-
lem (P1), become of Kuhn-Tucker type. We show that our necessary condition of [12] for
a degenerate function to be 2-regular is sufficient too. We extend some results from Sect. 5,
[25].

Moreover, we continue the investigations from [12]. We develop necessary conditions for
a strict local minimum of order two for multiobjective optimization problems with inequal-
ity constraints, and with an arbitrary set constraint or with equality constraints. This type
of minimum is useful for studying the convergence of iterative numerical procedures and
for providing stability conditions in optimization problems. Optimality conditions for such
minima for nonsmooth scalar optimization problems have been derived by many authors
including Ginchev-Ivanov, [14], Ivanov, [16–18], Constantin, [7,8,11]. Sufficient conditions
for a higher-order strict local minimum for nonsmooth multiobjective problems have been
given very recently in [11,18,19]. Necessary conditions for a strict local minimum of order
two for nonsmooth constrained multiobjective optimization problems have been presented
in [13,20,23,24]. The paper [13] deals with locally Lipschitz multiobjective problems with
only inequality constraints. The results in [20,23,24] concern multiobjective optimization
problems with an arbitrary set constraint and/or inclusion constraints, and are formulated
in terms of first-order tangent cones to the constraint set. None of the existing papers give
necessary conditions for a strict local minimum of order two for optimization problems with
equality constraints. Our necessary conditions for such minima involve the second-order tan-
gent cones to the arbitrary constraint set. Our characterizations of the second-order tangent
cones [6,9,12], allow us to deal with regular equality constraints and also with degenerate
equality constraints.

In Sect. 2, we give some preliminaries, and a sufficient condition for a function to be
2-regular (Lemma 1). In Sect. 3, we introduce a constraint qualification and a regularity
condition for (P1), and we show that, under each of them, the dual necessary conditions for a
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weak local minimum of [12] become of Kuhn-Tucker type. In Sect. 4, we give some primal
necessary conditions for a strict local minimum of order two for (P) and (P1).

2 Preliminaries

We begin with some preliminary definitions and notations.
In this paper, we accept 0 × (−∞) = 0 and 0 × ∞ = 0.
For a subset A, cl A denotes the closure of A and conv A denotes the convex hull of A.
Denote C := {x ∈ U ; gi (x) ≤ 0, i = 1, 2, .., m}, and the feasible set of problem (P)

by S := C ∩ D.
Let us recall that a point x̄ ∈ S is a weak local minimum to problem (P), if there exists

a neighborhood V of x̄ such that no x ∈ V ∩ S satisfies fi (x) < fi (x̄) for all i = 1, . . . , p.
The notion of local weak minimum is the concept of local minimum when f : X → R in
problem (P).

A point x̄ ∈ S is a strict local minimum of order two for (P) (Jiménez, [20]), if there
exists a constant α > 0 and a neighborhood V of x̄ such that

( f (x) + R
p
+) ∩ B( f (x̄), α‖x − x̄‖2) = ∅, ∀ x ∈ S ∩ V , x �= x̄,

where B( f (x̄), α‖x − x̄‖2) denotes the open ball of center f (x̄) and radius
α‖x − x̄‖2, R

p is the p-dimensional Euclidean space, and
R

p
+ = {x = (x1, . . . , x p) ∈ R

p : xi ≥ 0, i = 1, . . . , p}.
A point x̄ ∈ S is a strict local minimum for (P) (Jimenez, [20]), if there exists a neigh-

borhood V of x̄ such that f (x) − f (x̄) /∈ −R
p
+, ∀ x ∈ S ∩ V , x �= x̄ .

If x̄ is a strict local minimum of order two, then x̄ is a strict local minimum, and thus, x̄
is a weak local minimum.

Definition 1 Let F be a real-valued locally Lipschitz mapping on an open set U of X , and
x ∈ U . Then,
i) ([5]) Clarke’s generalized derivative of F at x is defined by

F◦(x; v) = lim sup
(u,t)→(x,0+)

F(u + tv) − F(u)

t
, v ∈ X .

ii) ( [29]) Páles and Zeidan’s second-order upper generalized directional derivative of F at x
is defined by

F◦◦(x; v) = lim sup
t→0+

2
F(x + tv) − F(x) − t F◦(x; v)

t2
, v ∈ X .

Here, h : X → Y , X , Y linear normed spaces, is said to be Fréchet differentiable at x ( [1]),
if given an arbitrary ε > 0, there is δ > 0 for which the inequality ‖h(x +u)−h(x)−Λu‖ ≤
ε‖u‖ holds for some operator Λ ∈ L(X , Y ) and for all u ∈ X such that ‖u‖ < δ. Here,
Λ ∈ L(X , Y ) stands for the space of linear continuous operators from X to Y . The operator
Λ is called the Fréchet derivative of h at x and is denoted by h′(x). A function h : X → Y
is twice Fréchet differentiable at x , if h′(u) exists for all u in a neighborhood of x , and
h′′(x) := (h′)′(x) ∈ L(X , L(X , Y )) exists. The higher-order derivatives h(l)(x), l ≥ 3, are
defined by induction. If h(l)(x) exists at each point x in an open set U ⊆ X and the mapping
x → h(l)(x) is continuous in the uniform topology of the space L(X , . . . , L(X , Y ), . . .)

(generated by the norm), then h is said to be l-times continuously differentiable on U (or of
class C (l)(U )).
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If F : X → R is Fréchet differentiable at x , then F is Gâteaux differentiable at x and
F ′(x) = ∇F(x). If F : X → R is continuously differentiable on an open set U , then F
is locally Lipschitz on U and F◦(x; v) = ∇F(x)(v) = F ′(x)(v), for all v ∈ X , x ∈ U .
If F is twice Fréchet differentiable on U , and locally Lipschitz on U , then F◦ ◦(x; v) =
F ′′(x)(v)(v), for all v ∈ X , x ∈ U .

Definition 2 ([33]) Let h : X → Y be twice Fréchet differentiable at x ∈ X . Then, h is said to
be 2-regular at x if, given any v ∈ X , v �= 0 with h′′(x)(v)(v) = 0, we have h′′(x)(v)X = Y .

We give a necessary and sufficient condition for a function to be 2-regular.

Lemma 1 Let h = (h1, . . . , hr ) : X → R
r , r positive integer, X an Hilbert space, and

v ∈ R
q , v �= 0. The mapping h′′(x̄)(v)(·) : X → R

r is onto, if and only if the vectors
h′′
1(x)(v),. . ., h′′

r (x)(v) are linearly independent.
Then, h is 2-regular at x, if and only if, given any v ∈ X, v �= 0 with h′′(x)(v)(v) = 0,

the vectors h′′
1(x)(v),. . ., h′′

r (x)(v) are linearly independent.

Proof In Lemma 2, [12], we have shown that if h′′(x̄)(v)(·) is onto, then the vectors
h′′
1(x)(v),. . ., h′′

r (x)(v) must be linearly independent. This implication holds even if X is
a general linear normed space.

Conversely, we prove that if X is a Hilbert space and the vectors h′′
1(x)(v),

. . ., h′′
r (x)(v) are linearly independent, then the mapping h′′(x̄)(v)(·) : X → R

r must be
onto.

We will show that given w = (w1, . . . , wr ) ∈ R
r , we can find real numbers λ1, . . ., λr

such that u = λ1h′′
1(x)(v) + . . . + λr h′′

r (x)(v) satisfies

h′′(x)(v)(u) = w, (1)

that is, ⎧
⎪⎨

⎪⎩

< h′′
1(x)(v), λ1h′′

1(x)(v) + . . . + λr h′′
r (x)(v) >= w1

...

< h′′
r (x)(v), λ1h′′

1(x)(v) + . . . + λr h′′
r (x)(v) >= wr ,

(2)

where <,> denotes the dot product in X .
The above system can be rewritten as

⎧
⎪⎨

⎪⎩

< h′′
1(x)(v), h′′

1(x)(v) > λ1 + . . . + < h′′
1(x)(v), h′′

r (x)(v) > λr = w1
...

< h′′
r (x)(v), h′′

1(x)(v) > λ1 + . . . + < h′′
r (x)(v), h′′

r (x)(v) > λr = wr

(3)

We will show that the determinant

Δ = det

⎡

⎢
⎣

< h′′
1(x)(v), h′′

1(x)(v) > . . . < h′′
1(x)(v), h′′

r (x)(v) >
...

< h′′
r (x)(v), h′′

1(x)(v) > . . . < h′′
r (x)(v), h′′

r (x)(v) >

⎤

⎥
⎦ �= 0. (4)

We have Δ �= 0 because its columns are linearly independent. Indeed, for any j =

1, . . . , r , set C j =
⎡

⎢
⎣

< h′′
1(x)(v), h′′

j (x)(v) >

...

< h′′
r (x)(v), h′′

j (x)(v) >

⎤

⎥
⎦ .

Suppose
α1C1 + . . . + αr Cr = 0, (5)
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for some real numbers α1, . . ., αr . We will prove that α1 = . . . = αr = 0.
Equation (5) means

⎧
⎪⎨

⎪⎩

α1 < h′′
1(x)(v), h′′

1(x)(v) > + . . . + αr < h′′
1(x)(v), h′′

r (x)(v) >= 0
...

α1 < h′′
r (x)(v), h′′

1(x)(v) > + . . . + αr < h′′
r (x)(v), h′′

r (x)(v) >= 0.

(6)

Equivalently, the system (6) can be written as
⎧
⎪⎨

⎪⎩

< h′′
1(x)(v), α1h′′

1(x)(v) + . . . + αr h′′
r (x)(v) >= 0

...

< h′′
r (x)(v), α1h′′

1(x)(v) + . . . + αr h′′
r (x)(v) >= 0.

(7)

We denote b = α1h′′
1(x)(v) + . . . + αr h′′

r (x)(v).
We multiply the j-th equation of (7) by α j , 1 ≤ j ≤ r , to get

⎧
⎪⎨

⎪⎩

< α1h′′
1(x)(v), b >= 0

...

< αr h′′
r (x)(v), b >= 0.

(8)

Adding the equations of system (8), we obtain < b, b >= 0, so b = 0.
Since the vectors h′′

1(x)(v),. . ., h′′
r (x)(v) are assumed to be linearly independent, it follows

that α j = 0, 1 ≤ j ≤ r . Thus, the columns C1, . . ., Cr of the determinant Δ are linearly
independent, which implies Δ �= 0.

Therefore, system (3) has a unique solution λ1, . . ., λr . Since system (2) and equation (1)
are each equivalent to system (3), we have showed that, given w ∈ R

r , there exists a vector
u = λ1h′′

1(x)(v) + . . . + λr h′′
r (x)(v) ∈ X , which satisfies h′′(x)(v)(u) = w, that is, the

mapping h′′(x̄)(v) : X → R
r is onto. ��

Definition 3 i) (Ursescu, [32]) An element v ∈ X is called a tangent vector to D at x , if

lim
t→0+

1

t
d(x + tv; D) = 0. (9)

ii) (Pavel-Ursescu, [31]) An element w ∈ X is called a second-order tangent vector to D at
x ∈ D, if there is v ∈ X such that

lim
t→0+

1

t2
d(x + tv + t2

2
w; D) = 0, (10)

where d(x; D) = inf{‖x − y‖; y ∈ D}.
The vector v is said to be associated to w. The tangent cone is also known as the adjacent

cone or Ursescu cone.
The sets of all first and second-order tangent vectors to D at x ∈ D are denoted by Tx D

and T 2
x D, respectively. It is known that Tx D is a closed cone in X (Proposition 1.2, [28]),

and T 2
x D is a cone in X (Proposition 1.8 ii), [28]). If w ∈ T 2

x D with associated vector v,
then v ∈ Tx D (Proposition 1.8, i), [28]).

It is obvious that if x is an interior point of D, then Tx D = T 2
x D = X .

Proposition 1 [30] i) A vector v belongs to Tx D, if and only if there exists a function γ1 :
(0,∞) → X such that γ1(t) → 0 as t → 0+, and

x + t (v + γ1(t)) ∈ D, ∀ t > 0. (11)
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ii) A vector w belongs to T 2
x D with the corespondent vector v ∈ X , if and only if there exists

a function γ2 : (0,∞) → X with γ2(t) → 0 as t → 0+, and

x + tv + t2

2
(w + γ2(t)) ∈ D, ∀ t > 0. (12)

It can easily be seen that 0 ∈ Tx D (take γ1 ≡ 0), and 0 ∈ T 2
x D (take γ2 ≡ 0, v = 0).

There are known several situations when the tangent cones to the null-set of a mapping
h : X → Y , i.e., D = Dh = {z ∈ X; h(z) = 0}, can be determined (see [1], Pavel-Ursescu,
[31], Constantin, [6,9,12]). We recall the known characterization of the first and second-
order tangent vectors because they will be used to analyze some examples and to formulate
necessary conditions for a strict local minimum of order two for problem (P1).

Theorem 1 (Lyusternik’sTheorem, [1])Let X , Y be Banach spaces, let U be a neighborhood
of a point x ∈ X, and let h : U → Y , h(x) = 0.

If h is strictly differentiable at x and h′(x) is onto, then the tangent space to the set
Dh = {z ∈ X; h(z) = 0} at the point x is given by

Tx Dh = {v ∈ X; h′(x)(v) = 0
}
.

Here, a mapping h : X → Y is said to be strictly differentiable at a point x ( [1]), if there
exists a linear continuous operator Λ ∈ L(X , Y ) with the property that, for any ε > 0, there
is δ > 0 such that for all x1 and x2 satisfying the inequalities ‖x1− x‖ < δ and ‖x2− x‖ < δ,
the inequality ‖h(x1) − h(x2) − Λ(x1 − x2)‖ ≤ ε‖x1 − x2‖ holds.

If h : X → Y is strictly differentiable at a point x , then h is Fréchet differentiable at x .

Theorem 2 (Constantin, Theorem 3.5, [9]) Let X and Y be Banach spaces, let U be a neigh-
borhood of a point x in X.

Assume that h : U → Y is strictly differentiable at x ∈ U with h(x) = 0, its derivative
h

′
(x) : X → Y is onto, and h is twice Fréchet differentiable at x ∈ Dh = {z ∈ X; h(z) = 0}.
Then, w ∈ T 2

x Dh with associated v ∈ Tx Dh, if and only if

h
′
(x)(v) = 0, and

h
′′
(x)(v)(v) + h

′
(x)(w) = 0.

Theorem 3 (i) (Pavel-Ursescu, Corollary 3.1, [31]) Assume that X is a linear normed space,
Y is a finite dimensional normed space, h : X → Y is Fréchet differentiable at x, h(x) = 0,
h

′
(x) is onto, and h is continuous near x. Let Dh = {z ∈ X; h(z) = 0}.
Then, v ∈ Tx Dh, if and only if h′(x)(v) = 0.
(ii) (Pavel-Ursescu, Corollary 3.2, [31]) Assume that X is a linear normed space, Y is

a finite dimensional normed space, h : X → Y is twice Fréchet differentiable at x and
continuous near x, h(x) = 0, and h

′
(x) is onto.

Then, w ∈ T 2
x Dh with associated vector v ∈ Tx Dh, if and only if

h′(x)(v) = 0,

h′(x)(w) + h′′(x)(v)(v) = 0.

The following result is well-known.

Lemma 2 If h = (h1, . . . , hr ) : R
q → R

r , r , q positive integers, then h′(x̄) is onto, if and
only if the gradient vectors h′

1(x̄), . . . , h′
r (x̄) are linearly independent.
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Theorem 4 (Constantin, Theorem 1, [12]) Assume that X is a linear normed space, Y is a
finite dimensional normed space, h : X → Y is continuous near x ∈ Dh and three times
Fréchet differentiable at x, and h is 2-regular at x.

Then, w ∈ T 2
x Dh with associated vector v �= 0, if and only if

h
′′
(x)(v)(v) = 0, v �= 0, and

h
′′′
(x)(v)(v)(v) + 3h

′′
(x)(v)(w) = 0.

The following result is needed for the proof of Theorem 9.

Theorem 5 (Jimenez, Theorem 3.7, a), [20]) Let f : Ω → R
p be a function and x̄ ∈ S ⊆

Ω ⊆ X, where Ω is an open set. Then, x̄ is a strict local minimum of order two of f on
an arbitrary set S, if and only if there exist α > 0, Ū a neighborhood of x̄ , and at most
p sets Vk, k ∈ K ′ ⊂ K , such that {Vk : k ∈ K ′} is a covering of S ∩ Ū \ {x̄}, and
fk(x) > fk(x̄) + α‖x − x̄‖2,∀ x ∈ S̄k \ {x̄}, where S̄k = (S ∩ Ū ∩ Vk) ∪ {x̄}.
Theorem 6 (Theorem 5, Constantin, [12]) Let U be an open set in R

q , q positive integer,
and the functions fk , k ∈ K = {1, . . . , p} and gi , i ∈ I = {1, . . . , m} be defined on U.
Suppose that x̄ ∈ S is a local weak minimum for problem (P1), the functions gi , i /∈ I (x̄)

are continuous at x̄ , and the functions fk , k ∈ K and gi , i ∈ I (x̄) are locally Lipschitz near
x̄ , Gâteaux differentiable, and regular in the sense of Clarke at x̄ .

Suppose that the mapping h : R
q → R

r , r positive integer, is continuous near x̄ and three
times Fréchet differentiable at x̄ , h′(x̄) = 0, and h is 2-regular at x̄ .

Then, corresponding to every critical direction v �= 0 with h′′(x̄)(v)(v) = 0, f ◦◦
k (x̄; v) <

∞, k ∈ K (x̄; v) and g◦◦
i (x̄; v) < ∞, i ∈ I (x̄; v), there are real numbers e ≥ 0, ν j ,

j ∈ J = {1, . . . , r}, λk ≥ 0, k ∈ K , and μi ≥ 0, i ∈ I , {λk, μi : k ∈ K , i ∈ I (x̄)} not all
equal to zero, such that

μi gi (x̄) = 0, i ∈ I , (13)
∑

k∈K

λk∇ fk(x̄) +
∑

i∈I (x̄)

μi∇gi (x̄) +
∑

j∈J

3ν j h
′′
j (x̄)(v) = 0, (14)

λk∇ fk(x̄)(v) = 0, k ∈ K , μi∇gi (x̄)(v) = 0, i ∈ I (x̄), (15)
∑

k∈K

λk f ◦◦
k (x̄; v) +

∑

i∈I (x̄)

μi g◦◦
i (x̄; v) +

∑

j∈J

ν j h
(3)
j (x̄)(v)(v)(v) = e ≥ 0. (16)

Denote I := {1, 2, . . . , m}, K := {1, 2, . . . , p}.
For every point x̄ ∈ C = {x ∈ U : gi (x) ≤ 0, i = 1, 2, . . . , m}, let I (x̄) be the set of

active constraints I (x̄) := {i ∈ {1, 2, . . . , m} : gi (x̄) = 0}.
The functions fk , k ∈ K , and gi , i ∈ I (x̄), are assumed to be locally Lipschitz on U .

For fixed vectors x̄ ∈ U and v ∈ X , let the set I (x̄; v) be defined as I (x̄; v) := {i ∈ I (x̄) :
g◦

i (x̄; v) = 0}, and the set K (x̄; v) be defined as K (x̄; v) := {k ∈ K : f ◦
k (x̄; v) = 0}.

A direction v is called critical at the point x̄ ∈ C , if f ◦
k (x̄; v) ≤ 0 for all k ∈ K and

g◦
i (x̄; v) ≤ 0 for all i ∈ I (x̄).

3 Kuhn-Tucker necessary conditions for a weak local minimum for (P1)
with degenerate equality constraints

In this sect., we complete the work from [12]. We introduce a constraint qualification and
a regularity condition, and we show that, under each of them, the Fritz-John necessary
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conditions of Theorem 6 for problem (P1) with degenerate equality constraints become
of Kuhn-Tucker type.

First, we introduce a constraint qualifications (C1) for problem (P1) with the functions
fk , k ∈ K , gi , i ∈ I (x̄) locally Lipschitz onU , and the function h = (h1, . . . , hr ) : X → R

r

three times Fréchet differentiable at x̄ .
(C1) The constraint qualification (C1) is verified at x̄ ∈ X in the direction v ∈ X , if there
exists a vector w ∈ X such that

g◦
i (x̄;w) + g◦◦

i (x̄; v) < 0, ∀ i ∈ I (x̄; v) ,

3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v) = 0, ∀ j ∈ J .

We give next an example where our constraint qualification (C1) is verified, but several
known constraint qualifications and regularity conditions for multiobjective optimization
problems with locally Lipschitz data do not hold.

Example 1 Let f = ( f1, f2) with f1(x1, x2) = |x1|, f2(x1, x2) = −x1 + x22 , subject to
g1(x) = x1 + .25x22 + x42 ≤ 0, and h(x) = x21 + 2x1x2 + x32 = 0, f1, f2, h, g1 : R

2 → R.
We examine the point x̄ = (0, 0) ∈ D ∩ Dh , which is a minimum point of F on D ∩ Dh .

Clearly, f1 and f2, g1 are locally Lipschitz near x̄ , and f1 is not differentiable at x̄ .
The set of critical directions at x̄ ∈ D is the set of all v = (v1, v2) ∈ R

2 with v1 = 0. For
a critical direction v, K (x̄; v) = {1, 2} and I (x̄; v) = {1}.

Any nonzero critical direction v satisfies h′′(x̄)(v)(v) = 0, f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v),

and g◦◦
i (x̄; v) < ∞, i ∈ I (x̄; v) as v = (0, v2) ∈ R

2, v2 �= 0, and then, v21 + 2v1v2 = 0.
We will show that (C1) is verified at x̄ in any nonzero critical direction v. For any such a
direction v, there exists w ∈ R

2 such that g◦
1(x̄;w) + g◦◦

1 (x̄; v) < 0, and 3h′′(x̄)(v)(w) +
h′′′(x̄)(v)(v)(v) = 0, that is, such that 0.5v22+w1 < 0 and 6(v1w1+v2w1+v1w2)+6v32 = 0.
Indeed, any vector w = (−v22, w2), w2 ∈ R, is a solution. So (C1) holds.

Let us find the sets Qi , i = 1, 2 considered in [15] and the sets Mi , i = 1, 2 considered
in [10].
Q2 = M1 = {x = (x1, x2) ∈ R

2 : f1(x̄) ≤ 0, g1(x) ≤ 0} = {x̄} and
Q1 = M2 = {x = (x1, x2) ∈ R

2 : f2(x̄) ≤ 0, g1(x) ≤ 0} = {x̄}. Then, T (M1 ∩ Ch, x̄) =
T (M2 ∩ Ch, x̄) = {x̄}. We have Q = M = M1 ∩ M2, L(M, x̄) = {v ∈ R

2 : f ◦
1 (x̄; v) ≤

0, f ◦
2 (x̄; v) ≤ 0, g◦

1(x̄; v) ≤ 0},
L(M, x̄) = {v = (v1, v2) ∈ R

2 : |v1| ≤ 0, −v1 ≤ 0, v1 ≤ 0}.
So L(Q, x̄) = L(M, x̄) = {(0, v2) : v2 ∈ R}. Also, K er h′(x̄) = R

2 as h′(x̄) = 0.
It follows L(M, x̄) ∩ K er h′(x̄) = {(0, v2) : v2 ∈ R} � cl conv T (M1 ∩ Ch, x̄) and

L(M, x̄)∩ K er h′(x̄) � cl conv T (M2∩Ch, x̄), so the Guignard regularity condition (GRC)
we introduced in [10] does not hold at x̄ . Since L(M, x̄)∩K er h′(x̄) � ∩i=2

i=1T (Mi ∩Ch, x̄) =
{x̄}, the generalized Abadie regularity condition (GARC) we introduced in [10] does not hold
at x̄ .

Since L(Q, x̄) ∩ K er h′(x̄) � ∩2
i=1T (Qi ∩ Ch, x̄) = {x̄}, the generalized Abadie

constraint qualification (G AC Q) of Giorgi et.al. [15] is not satisfied at x̄ . As L(Q, x̄) ∩
K er h′(x̄) � ∩2

i=1 cl conv T (Qi ∩ Ch, x̄) = {x̄}, the generalized Guignard constraint qual-
ification (GGC Q) of Giorgi et al. [15] is not verified.

In this example, the basic regularity condition introduced by Chandra et. al. ((4) in [4])
is not satisfied at x̄ as for any i ∈ {1, 2} = I , there exist nonzero τr ≥ 0, r ∈ {1, 2}, r �= i ,
μ1 ≥ 0, β ∈ R such that
0 ∈∑r∈I , r �=i τr∂C fr (x̄) + μ1g′

1(x̄) + βh′(x̄). For i = 1, the equation
τ2 f ′

2(x̄) + μ1g′
1(x̄) + βh′(x̄) = 0 has solution τ1 = μ1 = 1 > 0 and β ∈ R. Similarly, for
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i = 2, the inclusion 0 ∈ τ1∂C f1(x̄) + μ1g′
1(x̄) + βh′(x̄) is satisfied with τ1 = μ1 = 1 > 0

and β ∈ R.
Since h′(x̄) = 0, the regularity condition (RC2) used in the dual necessary conditions due

to Luu, [25] does not hold in this example. In [25], (RC2) assumes that
∑

j∈J ν j h′(x̄)(v) ≥ 0,
for all v ∈ Tx̄ B, implies ν j = 0, j ∈ J , where B is a convex constraint set.

Thus, we have shown that our constraint qualification (C1) does not imply any of the
above mentioned constraint qualifications and regularity conditions.

In the following theorem, we show that under the constraint qualification (C1), our Fritz-
John necessary conditions of Theorem 5, [12] become Kuhn-Tucker necessary conditions.

Theorem 7 Suppose that all the hypotheses of Theorem 6 (Theorem 5, [12]) hold. If (C1)

is assumed at x̄ in the nonzero critical direction v with f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v),

g◦◦
i (x̄; v) < ∞, i ∈ I (x̄; v), and h′′(x̄)(v)(v) = 0, then the multipliers λk , k ∈ K , are not

all equal to zero.

Proof Suppose by contradiction that there exists a nonzero critical direction v at which (C1)

holds, f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v), g◦◦

i (x̄; v) < ∞, i ∈ I (x̄; v), h′′(x̄)(v)(v) = 0, and
(13)–(16) in Theorem 6 are verified with all λk , k ∈ K , equal to zero.

Since h′′
j (x̄)(v), j ∈ J are linearly independent because h′′(x̄)(v)(·) is onto as h is 2-

regular at x̄ , from (17) in the proof of Theorem 6 (Theorem 5, [12]), it follows that {λk, μi :
k ∈ K (x̄; v), i ∈ I (x̄; v)} are not all equal to zero. Thus, at least one μi , i ∈ I (x̄; v) must
be positive. Also, from the proof of Theorem 6, we have that μi = 0 if i ∈ I (x̄) \ I (x̄; v).
Let w ∈ R

q be the vector guaranteed by (C1). From (14) and (16) we get
∑

k∈K

λk
[∇ fk(x̄)(w) + f ◦◦

k (x̄; v)
]+

∑

i∈I (x̄)

μi
[∇gi (x̄)(w) + g◦◦

i (x̄; v)
]

+
∑

j∈J

ν j [3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v)] ≥ 0. (17)

Hence, if we assume that λk = 0, for all k ∈ K , from (17) we have
∑

i∈I (x̄)

μi [∇gi (x̄)(w) + g◦◦
i (x̄; v)] +

∑

j∈J

ν j [3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v)] ≥ 0. (18)

On the other hand, due to the constraint qualification (C1), we obtain
∑

i∈I (x̄)

μi [∇gi (x̄)(w) + g◦◦
i (x̄; v)] +

∑

j∈J

ν j [3h′′
j (x)(v̄)(w) + h′′′

j (x̄)(v)(v̄)(v)] < 0.

This contradicts (18). Therefore, the conclusion follows. ��
Next, we introduce a regularity condition (R) for problem (P1) with the functions fk ,

k ∈ K , gi , i ∈ I (x̄) locally Lipschitz on U , and the function h = (h1, . . . , hr ) : X → R
r

three times Fréchet differentiable at x̄ .
(R): The regularity condition (R) is verified at x̄ in the direction v ∈ X , if there exists a
vector w ∈ X and an index s ∈ K (x̄; v) such that

f ◦
k (x̄;w) + f ◦◦

k (x̄; v) < 0, ∀ k ∈ K (x̄; v), k �= s,

g◦
i (x̄;w) + g◦◦

i (x̄; v) < 0, ∀ i ∈ I (x̄; v),

3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v) = 0, ∀ j ∈ J .

123



186 Journal of Global Optimization (2021) 80:177–193

Theorem 8 Suppose that all the hypotheses of Theorem 6 (Theorem 5, [12]) hold. If (R)

is assumed at x̄ in the nonzero critical direction v with f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v),

g◦◦
i (x̄; v) < ∞, i ∈ I (x̄; v), and h′′(x̄)(v)(v) = 0, then the multipliers λk , k ∈ K , are not

all equal to zero. More precisely, λs > 0.

Proof Suppose by contradiction that there exists a nonzero critical direction v at which (R)

holds, f ◦◦
k (x̄; v) < ∞, k ∈ K (x̄; v), g◦◦

i (x̄; v) < ∞, i ∈ I (x̄; v), h′′(x̄)(v)(v) = 0, and
(13)-(16) in Theorem 6 are verified with λs = 0.

Since h′′
j (x̄)(v), j ∈ J are linearly independent because h′′(x̄)(v) is onto as h is 2-

regular at x̄ , from (17) in the proof of Theorem 6 (Theorem 5, [12]), it follows that {λk, μi :
k ∈ K (x̄; v), i ∈ I (x̄; v)} are not all equal to zero. Thus, at least one of {λk, μi : k ∈
K (x̄; v), i ∈ I (x̄; v)} must be positive. Also, from the proof of Theorem 6, we have that
μi = 0 if i ∈ I (x̄) \ I (x̄; v) and λk = 0 if k ∈ K \ K (x̄; v).

Let w ∈ R
q be the vector guaranteed by (R).

As in the proof of Theorem 7, (17) holds for the directions v and w.
Then, we have
∑

k∈K (x̄;v)

λk
[∇ fk(x̄)(w) + f ◦◦

k (x̄; v)
]

+
∑

i∈I (x̄;v)

μi [∇gi (x̄)(w) + g◦◦
i (x̄; v)] +

∑

j∈J

ν j [3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v)] ≥ 0.

Thus, if λs = 0, then
∑

k∈K (x̄;v), k �=s

λk
[∇ fk(x̄)(w) + f ◦◦

k (x̄; v)
]

+
∑

i∈I (x̄;v̄)

μi [∇gi (x̄)(w) + g◦◦
i (x̄; v)]

+
∑

j∈J

ν j [3h′′
j (x̄)(v)(w) + h′′′

j (x̄)(v)(v)(v)] ≥ 0. (19)

In view of (R), since {λk, μi : k ∈ K (x̄; v), i ∈ I (x̄; v)} are not all equal to zero, we
get

∑

k∈K (x̄;v), k �=s

λk
[∇ fk(x̄)(w) + f ◦◦

k (x̄; v)
]

+
∑

i∈I (x̄;v)

μi
[∇gi (x̄)(w) + g◦◦

i (x̄; v)
]+
∑

j∈J

ν j

[
3h′′

j (x̄)(v)(w) + h′′′
j (x̄)(v)(v)(v)

]
< 0,

which contradicts (19). Therefore, λs > 0. ��
Remark 1 Theorems 7 and 8 extend to locally Lipschitz multiobjective problems with
inequality constraints and degenerate equality constraints some results from Sect. 5, Luu,
[25] for such problems with inequality constraints and regular equality constraints, and some
results from Maciel et al, [26,27] for twice continuously differentiable multiobjective prob-
lems with inequality constraints and equality constraints. In Theorems 6, 7 and 8, as in
Theorem 6, [12], we consider degenerate equality constraints that have the first derivatives
at x̄ equal to zero, so they are not linearly independent, and they do not verify the condition
(RC2) used in [25]. Also our degenerate equality constraints do not verify the positive regular-
ity condition (PLIRC) used in Theorem 4.2, [26], or the constant rank constraint qualification
(CRCQ) used in Theorem 4.3, [26], and Theorem 1.1, [27].
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Except for the dual necessary conditions of Theorems 6, 7, 8, and Theorem 6, [12], and for
the primal necessary conditions given in [12], in the literature there exist no other optimal-
ity conditions for locally Lipschitz multiobjective problems with inequality constraints and
degenerate equality constraints. The exiting papers on extremum problems with degenerate
equality constraints deal with sufficiently often continuously differentiable scalar optimiza-
tion problems (Tret’yakov, [33], Bednarczuk-Tret’yakov, [2], Brezhneva-Tret’yakov, [3],
Ledzewicz-Schattler, [21,22]), and with the exception of [21,22], do not consider any other
types of constraints.

4 Necessary conditions for strict local minimum of order two for
problems (P) and (P1)

We provide some primal second-order necessary conditions for a point x̄ to be a strict local
minimum of order two for problem (P) and also for its particular case problem (P1) (with
inequality and equality constraints).

Theorem 9 Let U be an open set in the Banach space X, and the functions fk , k ∈ K =
{1, . . . , p} and gi , i ∈ I = {1, . . . , m} be defined on U. Suppose that x̄ ∈ S is a strict local
minimum of order two for problem (P), the functions gi , i /∈ I (x̄) are continuous at x̄ , and
the functions fk , k ∈ K and gi , i ∈ I (x̄) are locally Lipschitz on U.

Then, for every nonzero critical direction v ∈ Tx̄ D, it follows that there is no w ∈ X
which solves the system

⎧
⎨

⎩

f ◦
k (x̄;w) + f ◦◦

k (x̄; v) ≤ 0, k ∈ K (x̄; v),

g◦
i (x̄;w) + g◦◦

i (x̄; v) < 0, i ∈ I (x̄; v),

w ∈ T 2
x̄ D with associated vector v.

(20)

Proof Suppose the contrary that there exists a nonzero critical direction v ∈ Tx̄ D such that
system (20) has a solution w ∈ X .

By Corollary 3.1, [12], K (x̄; v) ∪ I (x̄; v) �= ∅ because x̄ is a strict local minimum of
order two and thus, x̄ is a local weak minimum for problem (P).

Sincew ∈ T 2
x̄ D with associated vector v, there exists a mapping γ2 : (0,+∞) → X such

that x̄ + tv + t2

2
(w + γ2(t)) ∈ D for all t > 0 and γ2(t) → 0 as t → 0+.

Consider the following cases concerning the inequality constraints:
(1) For every i ∈ {1, 2, ..., m} \ I (x̄), we have gi (x̄) < 0. Hence, by continuity, there

exists εi > 0 such that gi (x̄ + tv + t2

2
(w + γ2(t)) < 0, for all t ∈ [0, εi ).

(2) For every i ∈ I (x̄) \ I (x̄; v), we have g◦
i (x̄; v) < 0. Then, there exists εi > 0 such

that for all t ∈ (0, εi ),

gi

(

x̄ + tv + t2

2
(w + γ2(t))

)

< gi (x̄) = 0.

To show the above inequality, we suppose by contradiction that, for any ε > 0, there is

0 < t(ε) < ε such that gi (x̄ + t(ε)v + t2(ε)

2
(w + γ2(t(ε)))) ≥ gi (x̄).
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Let εn > 0 be a sequence convergent to 0 as n → ∞, and tn ∈ (0, εn) such that

gi (x̄ + tnv + t2n
2

(w + γ2(tn))) − gi (x̄) ≥ 0. Then,

0 ≤ lim sup
tn→0

gi

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

− gi (x̄)

tn

≤ lim sup
tn→0

1

tn
[gi (x̄ + tnv) − gi (x̄)]

+ lim sup
tn→0+

1

tn

[

gi

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

− gi (x̄ + tnv)

]

,

0 ≤ g◦
i (x̄; v) + lim sup

tn→0+
1

2
Li tn‖w + γ2 (tn) ‖

as gi is locally Lipschitz of constant Li > 0. Therefore, g◦
i (x̄; v) ≥ 0, which contradicts

i /∈ I (x̄; v).
(3) For every i ∈ I (x̄; v), using the fact that g◦

i (x̄; v) = 0, we can show that there exists
εi > 0 such that for all t ∈ (0, εi ),

gi

(

x̄ + tv + t2

2
(w + γ2(t))

)

< gi (x̄) = 0.

Assume by contradiction that for any ε > 0, there is 0 < t(ε) < ε such that gi (x̄ + t(ε)v +
t(ε)2

2
(w + γ2(t(ε)))) ≥ gi (x̄) = 0. Let {εn}n≥0 be a positive sequence convergent to 0 and

tn ∈ (0, εn) such that gi (x̄ + tnv + t2n
2

(w + γ2(tn))) ≥ gi (x̄) = 0. Then,

0 ≤ gi

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

− gi (x̄)

= t2n
2

[
2

t2n

(

gi

(

x̄ + tnv + t2n
2

(w + γ2(tn))

)

− gi (x̄ + tnv)

)]

+ t2n
2

[
2

t2n

(
gi (x̄ + tnv) − gi (x̄) − tng◦

i (x̄; v)
)
]

After dividing the above inequality by t2n /2 and taking the upper limit as tn → 0+, we
obtain

0 ≤ g◦
i (x̄;w) + g◦◦

i (x̄; v),

which contradicts the assumption that w is a solution of system (20).

Cases (1), (2), and (3) lead us to the conclusion that x̄ + tv+ t2

2
(w+γ2(t)) ∈ S for all t ∈

(0, ε̃), where ε̃ = min
i∈{1,2,...,m} εi , because for all t ∈ (0, ε̃)we have x̄ +tv+ t2

2
(w+γ2(t)) ∈ D

and gi (x̄ + tv + t2

2
(w + γ2(t))) < 0, for all i ∈ I .

Since x̄ is a strict local minimum of order two of f on S, by Theorem 5 (Theorem 3.7, a),
[20]), there exist α > 0, Ū a neighborhood of x̄ , and at most p sets Vk , k ∈ K ′ ⊂ K such that
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{Vk : k ∈ K ′} is a covering of S ∩ Ū \ {x̄}, and fk(x) > fk(x̄) + α‖x − x̄‖2,∀ x ∈ S̄k \ {x̄},
where S̄k = (S ∩ Ū ∩ Vk) ∪ {x̄}.

For every positive sequence {tn}n≥1, tn → 0+ as n → ∞, there exist an index k ∈
K ′ ⊂ K , and an infinite subsequence, which we can denote again by {tn}n≥1, such that

x̄ + tnv + t2n
2

(w + γ2(tn)) ∈ S̄k for any positive integer n ≥ n̄ for some n̄ ≥ 1 because

{Vk : k ∈ K ′} is a covering of S ∩ Ū \ {x̄}.
Then, for all n ≥ n̄, we have

fk

(

x̄ + tk
n v + t2n

2
(w + γ2 (tn))

)

> fk(x̄) + α‖tnv + t2n
2

(w + γ2 (tn)) ‖2. (21)

Consider the two possible cases concerning a function fk , k ∈ K ′:
(i) If k ∈ K ′ and k /∈ K (x̄; v), then there exists ñ ≥ n̄ such that for all n ≥ ñ

fk

(

x̄ + tk
n v +

(
tk
n

)2

2

(
w + γ2

(
tk
n

))
)

< fk(x̄). (22)

To show this, suppose by contradiction that there exists a subsequence of {tn}n≥ñ , which, for
simplicity, we denote by {tn}n≥ñ too, such that

fk

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

≥ fk(x̄), for all n ≥ n̄.

From the above inequality, as in case 2), we get f ◦
k (x̄; v) ≥ 0, and then, f ◦

k (x̄; v) = 0
as v is a critical direction. This contradicts k /∈ K (x̄; v). Thus, inequality (22) holds, which
contradicts inequality (21).
(ii) If k ∈ K ′ and k ∈ K (x̄; v), we have f ◦

k (x̄; v) = 0. Inequality (21) implies that the
following inequality holds for all n ≥ n̄

αt2n ‖v + tn
2

(w + γ2 (tn)))‖2

≤ t2n
2

[
2

t2n

(

fk

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

− fk (x̄ + tnv)

)]

+ t2n
2

[
2

t2n

(
fk (x̄ + tnv) − fk(x̄) − tn f ◦

k (x̄; v)
)
]

.

Since v �= 0 and α > 0, we obtain after dividing the above inequality by t2n /2 and taking
the upper limit as n → ∞, that

0 < 2α‖v‖2 ≤ lim sup
n→∞

{[
2

t2n

(

fk

(

x̄ + tnv + t2n
2

(w + γ2 (tn))

)

− fk (x̄ + tnv)

)]

+
[
2

t2n

(
fk(x̄ + tnv) − fk(x̄) − tn f ◦

k (x̄; v)
)
]}

≤ lim sup
n→∞

[
2

t2n

(

fk

(

x̄ + tnv + t2n
2

(w + γ2 (tn)) − fk (x̄ + tnv)

)]

+ lim sup
n→∞

[
2

t2n

(
fk (x̄ + tnv) − fk(x̄) − tn f ◦

k (x̄; v)
)
]

≤ f ◦
k (x̄;w) + f ◦◦

k (x̄; v),
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which contradicts the assumption thatw is a solution of system (20), i.e., the assumption that
f ◦
k (x̄;w) + f ◦◦

k (x̄; v) ≤ 0.
Since we arrived at contradictions in both possible cases concerning fk , k ∈ K ′, there is

no nonzero critical direction v ∈ Tx̄ D for which system (20) has a solution w ∈ X . ��
Remark 2 For problemswith inequality constraints only (D = X ), the scalar case of Theorem
9 coincides to Theorem 4, [8]. In view of Remark 5, [8], Theorem 9 improves Theorem 3,
[16] for inequality-constrained scalar problems with continuously differentiable data and
some second-order directionally differentiable data, and Theorem 6, [17] for inequality-
constrained scalar problems with locally Lipschitz, regular and Gâteaux differentiable data
and some second-order Hadamard differentiable data.

Next, we apply Theorem 9 to problem (P1), and we take into account the characterizations
of the first and second-order tangent vectors to Dh = {z ∈ X : h(z) = 0} at x̄ ∈ Dh , given
in Theorems 1–4.

Theorem 10 Let x̄ ∈ S be a strict local minimum of order two of problem (P1), the functions
gi , i /∈ I (x̄) be continuous at x̄ , and the functions fk , k ∈ K and gi , i ∈ I (x̄) be locally
Lipschitz on U.

Suppose in addition that either i) or ii) holds.
i) h : X → Y , Y is a Banach space, h is strictly differentiable at x̄ and twice Fréchet

differentiable at x̄ , h(x̄) = 0, and h
′
(x̄) is onto.

ii) h : X → Y , Y is a finite dimensional normed space, h is Fréchet differentiable at x̄
and continuous near x̄ , h(x̄) = 0, and h

′
(x̄) is onto.

Then, for every critical direction v �= 0 with h′(x̄)(v) = 0, it follows that there is no
w ∈ X which solves the system

⎧
⎨

⎩

f ◦
k (x̄;w) + f ◦◦

k (x̄; v) ≤ 0, k ∈ K (x̄; v),

g◦
i (x̄;w) + g◦◦

i (x̄; v) < 0, i ∈ I (x̄; v),

h′(x̄)(w) + h′′(x̄)(v)(v) = 0.

Theorem 11 Let x̄ ∈ S be a strict local minimum of order two of problem (P1), the functions
gi , i /∈ I (x̄) be continuous at x̄ , and the functions fk , k ∈ K and gi , i ∈ I (x̄) be locally
Lipschitz on U.

Suppose that h : X → Y , Y is a finite dimensional normed space, h is continuous near
x̄ ∈ Dh = {z ∈ X; h(z) = 0} and three times Fréchet differentiable at x̄ , h′(x̄) = 0, and h
is 2-regular at x̄ .

Then, for every critical direction v �= 0 with h′′(x̄)(v)(v) = 0, it follows that there is no
w ∈ X, which solves the system

⎧
⎨

⎩

f ◦
k (x̄;w) + f ◦◦

k (x̄; v) ≤ 0, k ∈ K (x̄; v),

g◦
i (x̄;w) + g◦◦

i (x̄; v) < 0, i ∈ I (x̄; v),

h′′′(x̄)(v)(v)(v) + 3h′′(x̄)(v)(w) = 0.

Remark 3 Theorems 9, 10, and 11 extend to problem (P) with inequality constraints and an
arbitrary constraint set, and to problem (P1) with inequality constraints and either regular or
degenerate equality constraints, the second-order necessary conditions of Theorem 3.1, [13]
for locally Lipschitz multiobjective optimization problems with only inequality constraints.
Theorem 3.1, [13] assumes that the Zangwill second-order constraint qualification (ZSCQ)
holds, but Theorems 9, 10, 11 do not require any constraint qualification or regularity con-
dition. Theorems 9, 10, 11 can be used to solve problems where Theorem 3.1, [13] is not
applicable, as shown by the following two examples.
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Example 2 Let f = ( f1, f2) : R
2 → R

2 with f1(x1, x2) = (x1−x2)4+x62 +1, f2(x1, x2) =
|x1 + x2| − x1 − x1x2 + x52 , subject to x ∈ C = {x ∈ R

2; g1(x) = 2|x2| − x1 − x32 − x21 ≤
0, g2(x) =

√

x21 + x22−4 ≤ 0}, and x ∈ Dh = {(x1, x2) ∈ R
2; h(x) = x1+2x2−x22+x41 =

0}.
The point x̄ = (0, 0) ∈ S = C ∩ Dh is a strict local minimum of f = ( f1, f2) on S as

f1(x) > f1(x̄) for all x ∈ R
2, x �= x̄ .

We have I (x̄) = {1}. Clearly, f1 is continuously differentiable and thus, f1 is locally
Lipschitz on R

2, f2 and g1 are locally Lipschitz on R
2, but f2 and g1 are not differentiable

at x̄ , and g2 is continuous at x̄ .
The origin verifies our first-order necessary conditions for a weak local minimum of

Theorem 2, [12] because the system f ◦
k (x̄; v) < 0, k = 1, 2, and g◦

i (x̄; v) < 0, ∀ i ∈ I (x̄)

and v ∈ Tx̄ Dh , cannot have as a solution any critical direction v as f ◦
1 (x̄; v) = 0 ≮ 0, for

any v ∈ R
2.

Since h′(x̄) = (1, 2) is onto, by Theorem 3, i) (Pavel-Ursescu, Corollary 3.1, [31]), we get
T(0,0) Dh = {v = (v1, v2) ∈ R

2; v1 + 2v2 = 0}, and also by Theorem 3, ii) (Pavel-Ursescu,
Corollary 3.2, [31]), we get w ∈ T 2

x̄ Dh with associated vector v ∈ Tx̄ Dh , if and only if
w1 + 2w2 − 2v22 = 0.

A vector v = (v1, v2) is a critical direction, if and only if it solves the system |v1 + v2| −
v1 ≤ 0, 2|v2| − v1 ≤ 0, and thus, −v1

2
≤ v2 ≤ 0. It follows that a critical direction v

belongs to T(0,0) Dh , if and only if v1 = −2v2 ≥ 0. For any critical direction v, we have
I (x̄; v) = {1}, K (x̄; v) = {1} if v �= 0, and K (x̄; v) = {1, 2} if v = 0.

Our second-order necessary conditions for a weak local minimum of Theorem 3, [12]
and Luu’s second-order necessary conditions for a weak local minimum (Corollary 3.2,
[25]) are satisfied at x̄ . Indeed, for a critical direction v ∈ Tx̄ Dh , the systems of those
results have no solution w ∈ T 2

x̄ Dh with associated vector v as they contain the inequality
f ◦◦
1 (x̄; v)+ f ◦

1 (x̄;w) < 0, which is not verified for any vectorw as f ◦◦
1 (x̄; v) = f ◦

1 (x̄;w) =
0, for any v, w ∈ R

2.
For a nonzero critical direction v ∈ Tx̄ Dh , i.e., for v with v1 = −2v2 > 0, we can find a

w ∈ R
2, which is a solution of the system of Theorem 10: f ◦

1 (x̄;w) + f ◦◦
1 (x̄; v) = 0 ≤ 0,

g◦
1(x̄;w)+g◦◦

1 (x̄; v) = 2|w2|−w1−2v21 < 0, h′(x̄)(w)+h′′(x̄)(v)(v) = w1+2w2−2v22 =
0. Any w with w1 + 2w2 − 2v22 = 0 and w1 ≥ 0, w2 ≥ 0 is a solution because for such w,
we have g◦

1(x̄;w) + g◦◦
1 (x̄; v) = −2w1 − 6v22 < 0 as v �= 0 implies v2 �= 0. Thus, Theorem

10 is not satisfied, and x̄ is not a strict local minimum of order two. Theorem 3.1, [13] cannot
be used here because an equality constraint is present besides the inequality constraints.

Next we give an example with only inequality constraints, that can be analyzed with the
aid of the present results, but to which the results from [13] are not applicable.

Example 3 Let us consider the function f = ( f1, f2) : R
2 → R subject to x ∈ D = {x ∈

R
2 : g1(x) = |x1| − x2 + x51 ≤ 0}, where f1(x) = |x2 − x1| and f2(x) = x21 + x22 .
Clearly, x̄ = (0, 0) is a strict local minimum of order two of f2 on R

2, and thus, on D.
We have I (x̄) = {1}. The functions f1, f2, and g1 are locally Lipschitz near x̄ , and f1 and
g1 are not differentiable at x̄ .

The critical directions at x̄ are the vectors v = (v1, v2) ∈ R
2 with v1 = v2 ≥ 0. For a

critical direction v, we get K (x̄, v) = {1, 2}, and I (x̄, v) = {1}.
Theorem9 is applicablewith D = R

2. For anynonzero critical directionv, the system (20),
formed by the equations f ◦

1 (x̄;w) + f ◦◦
1 (x̄; v) = |w2 − w1| ≤ 0, f ◦

2 (x̄;w) + f ◦◦
2 (x̄; v) =

2v21 +2v22 ≤ 0, and g◦
1(x̄;w)+g◦◦

1 (x̄; v) = |w1|−w2 < 0, has no solutionw = (w1, w2) ∈
R
2. Thus, the second-order necessary conditions of Theorem 9 are verified at x̄ .
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The second-order necessary conditions of [13], for locally Lipschitz multiobjective prob-
lemswith only inequality constraints cannot be used because (ZSCQ) does not hold at x̄ in any
nonzero critical direction. Let v be any nonzero critical direction at x̄ , that is, v1 = v2 > 0.We
will show that B(x̄, v) � cl A(x̄, v). The set B(x̄, v) := {w ∈ R

2 : g◦
i (x̄;w) + g◦◦

i (x̄; v) ≤
0, ∀ i ∈ I (x̄; v)} becomes B(x̄, v) = {w ∈ R

2 : |w1| − w2 ≤ 0}, and the set

A(x̄, v) := {w ∈ X : ∀ i ∈ I (x̄; v) ∃ εi > 0 gi (x̄ + tv + 1

2
t2w) ≤ 0, ∀ t ∈ (0, εi )}

becomes A(x̄, v) = {w ∈ R
2 : ∃ ε > 0 g1(x̄ + tv + 1

2
t2w) ≤ 0, ∀ t ∈ (0, ε)}. Let

w̄ = (0, 0) ∈ B(x̄, v). We prove that w̄ /∈ cl A(x̄, v). Suppose by contradiction that there
exists wn = (wn1, wn2) ∈ A(x̄, v) such that lim

n→∞ wn = w̄. We have that there exists ε̄ > 0

such that |v1+ 1

2
tw1n |−(v2+ 1

2
tw2n)+ t4(v1+ 1

2
tw1n)5 ≤ 0, ∀ t ∈ (0, ε̄). Letting n → ∞,

we obtain |v1|−v2+ t4v51 ≤ 0, ∀ t ∈ (0, ε̄), and we arrived at a contradiction as v1 = v2 > 0.
So w̄ /∈ cl A(x̄, v). Therefore, B(x̄, v) � cl A(x̄, v), i.e., (ZSCQ) does not hold at x̄ in the
direction v. Thus, the second-order necessary conditions for a weak local minimum and for
a strict local minimum of order two given in [13] are not applicable here.

5 Conclusions

In this paper,we considered the sameproblems (P)with inequality constraints and an arbitrary
constraint set and (P1) with inequality and equality constraints as in [12]. We proved that
our dual necessary conditions for a weak local minimum of (P1) with degenerate equality
constraints become of Kuhn-Tucker type when either the new constraint qualification (C1)
or the new regularity condition (R) are assumed. Then, we gave necessary conditions for a
strict local minimum two for those problems under the same hypotheses as in [12]: locally
Lipschitz objective and active inequality constraint functions, and either regular or degenerate
equality constraint functions. Thus, we extended results from [8,12,13,16,17,25].
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