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Abstract
In this paper, we design a Branch andBound algorithm based on interval arithmetic to address
nonconvex robust optimization problems. This algorithm provides the exact global solution
of such difficult problems arising in many real life applications. A code was developed in
MatLab and was used to solve some robust nonconvex problems with few variables. This
first numerical study shows the interest of this approach providing the global solution of such
difficult robust nonconvex optimization problems.

Keywords Robust optimization · Interval arithmetic · Branch and bound

1 Introduction

Robust optimization studies optimization problems in which uncertainty involving the objec-
tive function or the feasible set is not negligible. See [7,8] for recent references containing
an updated review of models, algorithmic tools and fields of applications.

While most papers in the literature on robust optimization address the fully convex case,
[1,2], some efforts have been made to cope with the more realistic situations in which non-
convexities appear. For instance, [22] addresses nonconvex problems, for which a first-order
approximate robust model is proposed, and thus applicable when a good approximation of
the uncertain parameters are known. Robust local-search procedures for problems in which
the objective may be evaluated via simulations are described in [5,6].

In this paper, we develop a new algorithm based on a Branch and Bound scheme to
provide the global solution of a broad class of robust nonconvex problems. Some properties
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are first studied, and the algorithm is then provided, describing how lower and upper bounds
are obtained to make the procedure converge. Examples validate our approach by solving
difficult robust nonlinear and nonconvex optimization problems.

2 Problem statement

Given a function f : IRn −→ IR and also a box X̃ ⊆ IRn , consider the nominal problem of
optimizing f over X̃ as

min
x∈X̃

f (x) (1)

The robust counterpart of (1) is obtained when each solution x ∈ X̃ is perturbed by a vector
y ∈ Ỹ (a box in IRn) and a worst-case analysis is performed. This leads us to the following
optimization problem:

min
x∈X̃

max
y∈Ỹ

f (x + y) (2)

The set Ỹ of perturbations, called the uncertainty set, is assumed here to be a box in IRn

(compare e.g. with [5,6], in which a Euclidean ball is used as uncertainty set), and f is
assumed to be continuous on X̃ + Ỹ .

Defining z : X̃ −→ IR as
z(x) = max

y∈Ỹ
f (x + y), (3)

we rewrite our problem as:
min
x∈X̃

z(x) (4)

The interpretation of Problem (4) is natural: onewants to optimize the nominal function f , but
taking into account that, once a solution x ∈ X̃ is chosen, the solution actually implemented
will be of the form x+ y for some errors y ∈ Ỹ .This may have a non-negligible impact on the
optimal decision either when the nominal function f varies very rapidly around x or when
the uncertainty set Ỹ is large. The reader is referred to e.g. [5,6] for real-world applications.

We illustrate the approach in Example 1.

Example 1 Let x ∈ [−0.2, 3], f and z are:

f (x) = ((x − 2)6 + 0.2) × (log(1 + x2))

z(x) = max
y∈Ỹ=[−0.1,0.1]

(((x + y) − 2)6 + 0.2) × (log(1 + (x + y)2))

The global solution of f in [−0.2, 3] without uncertainty, i.e. Ỹ = [0, 0] is 0, providing a
value of 0. However, if we consider a non-degenerate uncertainty interval Ỹ , we may obtain
a different optimal solution for the perturbed problem. Indeed, taking Ỹ = [−0.1, 0.1], the
global solution is around 1.52 with an optimal value around 0.26. Both functions f and z for
this case are plotted in Fig. 1.

When f is convex, local search techniques are sufficient to address Problem (4). Indeed,
one has the following result:

Proposition 1 If f is convex on X̃ + Ỹ , then z is convex on X̃ , and thus any local minimum
of Problem (4) is a global one.
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Fig. 1 Functions f and z. Global minimum and robust global minimum

Proof For all α ∈ [0, 1] and for all (u, v) ∈ X̃ , one has:

z(αu + (1 − α)v) = max
y∈Ỹ

f (αu + (1 − α)v + y)

= max
y∈Ỹ

f (αu + (1 − α)v + αy + (1 − α)y)

= max
y∈Ỹ

f (α(u + y) + (1 − α)(v + y))

≤ max
y∈Ỹ

α f (u + y) + (1 − α) f (v + y)

≤ αmax
y∈Ỹ

f (u + y) + (1 − α)max
y∈Ỹ

f (v + y) = αz(u) + (1 − α)z(v).

Hence, z is convex on X̃ and it is quite straightforward because z is a max function which is
a convex function. ��

When f is not convex, solving the non-convex optimization Problem (4) is challenging,
since we want to optimize an objective function z whose evaluation calls for solving a global
optimization problem, as given by (3). [3] proposes a simulated annealing algorithm, [6] uses a
local-search, and [12,13] give global optimization approaches valid for polynomial functions
f . Our aim is to design a Branch and Bound algorithm that converges to an optimal solution
for arbitrary differentiable functions f . In the next section, some properties on Problem (4)
are derived. These properties will be necessary to provide routines for the computations of
the bounds and also for the design of the monotonicity tests required by our methodology.
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3 Properties

Here, we are interested in the nonconvex case, for which global optimization tools are needed.
In particular, a spatial branch and bound algorithm is proposed to find a global solution of
Problem (4). The algorithm is based on Interval Arithmetic, [9,10,15–17,19].

We assume in what follows that an inclusion function F is available for f ; i.e.
[minx∈X f (x),maxx∈X f (x)] ⊆ F(X) := [F(X), F(X)], for all box X . For any box

I ⊂ X̃ + Ỹ , let F(I ) (respectively F(I )) denote the upper bound (respectively the lower
bound) of the interval F(I ).

Lower and upper bounds of minx∈X z(x) are easily obtained from the inclusion function
F, as shown in the following two propositions.

Proposition 2 Given the box X ⊂ X̃ , one has

min
x∈X z(x) ≥ F(X + y∗) ∀y∗ ∈ Ỹ . (5)

Proof One has: minx∈X z(x) = minx∈X maxy∈Ỹ f (x + y) ≥ minx∈X f (x + y∗), for all
y∗ ∈ Ỹ , and then the result follows using the properties of interval inclusion functions
minx∈X f (x + y∗) ≥ F(X + y∗), for all y∗ ∈ Ỹ . ��

Proposition 3 Given the box X ⊂ X̃ , suppose Y 1, . . . , Y k ⊂ Ỹ are boxes known to satisfy

z(x) = max
y∈⋃k

j=1 Y
j
f (x + y) ∀x ∈ X .

Then

min
x∈X z(x) ≤ max

1≤ j≤k
F(x∗ + Y j ) ∀x∗ ∈ X

Proof For x∗ ∈ X given, one has

min
x∈X z(x) ≤ z(x∗)

= max
y∈⋃k

j=1 Y
j
f (x∗ + y)

∈
⋃

1≤ j≤k

F(x∗ + Y j ).

Hence,

min
x∈X z(x) ≤ max

1≤ j≤k
F(x∗ + Y j ).

��
Proposition 4 Given boxes X ⊂ X̃ , Y ⊂ Ỹ , if F(X + Y ) < F(X + y0) for some y0 ∈ Ỹ \Y ,
then

f (x + y) < z(x) ∀(x, y) ∈ X × Y .

In other words, the box Y is useless in order to compute z at points in the box X , and can
thus be eliminated from the list of boxes to be inspected.
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Proof First one has, f (x + y) ≤ F(X + Y ),∀(x, y) ∈ X × Y . By using the assumption of
the proposition, F(X + Y ) < F(X + y0),∀y0 ∈ Y one obtains:

f (x + y) ≤ F(X + Y ) < F(X + y0),∀(x, y, y0) ∈ X × Y 2.

By using Proposition 2, on has F(X + y0) ≤ minx∈X z(x),∀y0 ∈ Y , and the result follows.��

Proposition 5 Let f be differentiable in X̃ + Ỹ , and let F ′
j denote an inclusion function for

its partial derivative with respect to the j-th coordinate; i.e., ∂ f
∂x j

(x) ∈ F ′
j (X), for all box X

and x ∈ X. Given boxes X ⊂ X̃ , Y ⊂ Ỹ , suppose x∗ ∈ X and y∗ ∈ Y exist such that x∗ is
an optimal solution to Problem (4) and z(x∗) = f (x∗ + y∗). If F ′

j (X + Y ) < 0, then one
has

Y = Ỹ (6)

X = X̃ (7)

Proof We have by assumption that f ′
j (x

∗ + y∗) < 0, and then, the function t 
−→ f (x∗ +
y∗ + te j ) is decreasing in a neighborhood of 0, where e j denotes the vector with 1 in its j-th
coordinate and zero elsewhere. This implies that f (x∗ + y∗ − te j ) > f (x∗ + y∗) = z(x∗)
for some t close to 0. Hence, no such t > 0 makes y∗ − te j ∈ Ỹ , which implies condition
(6), and no such t > 0 makes x∗ − te j ∈ X̃ , which implies condition (7). ��

In the same way one obtains the counterpart for F ′
j (X + Y ) as follows:

Proposition 6 Let f be differentiable in X̃ + Ỹ , and let F ′
j denote an inclusion function

for its partial derivative with respect to the j-th coordinate. Given boxes X ⊂ X̃ , Y ⊂ Ỹ .
Suppose x∗ ∈ X and y∗ ∈ Y exist such that x∗ is an optimal solution to Problem (4) and
z(x∗) = f (x∗ + y∗). If F ′

j (X + Y ) > 0, then one has

Y = Ỹ (8)

X = X̃ (9)

Propositions 5 and 6 are keys for the following test: Given the pair (X , Y ), if F ′
j (X + Y ) <

0, then the pair (X , Y ) = (
∏n

k=1 Xk,
∏n

k=1 Yk) can be replaced in the list by the degenerate
pair (

∏n
k=1 X

∗
k ,

∏n
k=1 Y

∗
k ), with

X∗
k =

{
Xk, if k �= j

X̃ j , if k = j
Y ∗
k =

{
Yk, if k �= j

Ỹ j , if k = j

if X̃ j = X j and if Ỹ j = Y j , and otherwise the pair (X , Y ) can be eliminated from further
consideration, since it is then known that either Y is useless to evaluate z at points in x ∈ X ,

or points in X cannot be optimal for Problem (4). Similarly, if F ′
j (X + Y ) > 0, then the

j-th component of (X , Y ) can be replaced by the degenerate interval consisting of the lower
bounds, or eliminated.

When a box X is small enough, it can be replaced by its midpoint, since z cannot vary too
much inside X . This is formalized in Proposition 7.
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Proposition 7 Given the box X = ∏n
j=1 X j ⊂ X̃ , suppose Y 1, . . . , Y k ⊂ Ỹ are boxes

known to satisfy

z(x) = max
y∈⋃k

j=1 Y
j
f (x + y) ∀x ∈ X .

Let xm denote the midpoint of X and, for i = 1, 2, . . . , k, let yim denote the midpoint of the
box Y i . Suppose f be differentiable in X̃ + Ỹ , and let F ′

j denote an inclusion function for

its partial derivative with respect to the j-th coordinate. For i = 1, . . . , k, define εi as

εi = max

⎧
⎨

⎩

n∑

j=1

|F ′
j (X + yim)| × |(xm) j − X j |,

n∑

j=1

|F ′
j (xm + Y i )| × |(yim) j − Y i

j |
⎫
⎬

⎭
.

Then ∣
∣
∣
∣ max
1≤i≤k

f (xm + yim) − min
x∈X z(x)

∣
∣
∣
∣ ≤ max

1≤i≤k
εi . (10)

Proof Let x∗ ∈ argminx∈X z(x), and let i∗ ∈ {1, 2, . . . , k} be such that
max
1≤i≤k

f (xm + yim) = f (xm + yi
∗
m ).

One has

max
1≤i≤k

f (xm + yim) − min
x∈X z(x) = max

1≤i≤k
f (xm + yim) − z(x∗)

≤ f (xm + yi
∗
m ) − f (x∗ + yi

∗
m )

=
n∑

j=1

f ′
j (ξ + yi

∗
m )((xm) j − x∗

j )

for some ξ in the segment with endpoints xm, x∗ ∈ X . Hence,

max
1≤i≤k

f (xm + yim) − min
x∈X z(x) ≤

n∑

j=1

|F ′
j (X + yi∗m )| × |(xm) j − x∗

j | ≤ εi
∗

≤ max
1≤i≤k

εi .

Now, let i∗ ∈ {1, . . . , k} and let y∗ ∈ Y i∗ be such that z(xm) = f (xm + y∗).

min
x∈X z(x) − max

1≤i≤k
f (xm + yim) ≤ z(xm) − max

1≤i≤k
f (xm + yim)

≤ f (xm + y∗) − f (xm + yi
∗
m )

=
n∑

j=1

f ′
j (xm + ξ)(y∗

j − (yi
∗
m ) j )

for some ξ in the segment with endpoints y∗, yi∗m ∈ X . Hence,
∣
∣
∣
∣ max
1≤i≤k

f (xm + yim) − min
x∈X z(x)

∣
∣
∣
∣ ≤

n∑

j=1

|F ′
j (xm + Y i∗)| × |Y i∗

j − (yi∗m ) j | ≤ εi
∗

≤ max
1≤i≤k

εi .

��
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Corollary 1 Given the box X = ∏n
j=1 X j ⊂ X̃ , suppose Y 1, . . . , Y k ⊂ Ỹ are boxes known

to satisfy

z(x) = max
y∈⋃k

j=1 Y
j
f (x + y) ∀x ∈ X .

Let xm denote the midpoint of X and, for i = 1, 2, . . . , k, let yim denote the midpoint of the
box Y i . Suppose f be differentiable in X̃ + Ỹ , we obtain:

∣
∣
∣
∣ max
1≤i≤k

f (xm + yim) − min
x∈X z(x)

∣
∣
∣
∣ ≤ n

2
L × W , (11)

where L = maxi, j |F ′
j (X + Y i )| and W = max{w(X), w(Y 1), . . . , w(Y k)}; we use the

notation w([a, b]) = b − a and w(X) = max1≤i≤n w(Xi ).

Proof From Proposition 7, one has:
∣
∣
∣
∣ max
1≤i≤k

f (xm + yim) − min
x∈X z(x)

∣
∣
∣
∣ ≤ max

1≤i≤k
εi ,

with

εi = max

⎧
⎨

⎩

n∑

j=1

|F ′
j (X + yim)| × |(xm) j − X j |,

n∑

j=1

|F ′
j (xm + Y i )| × |(yim) j − Y i

j |
⎫
⎬

⎭
.

In what follows, index i is in {1, . . . , k} and index j is in {1, . . . , n}.
Hence, remark that we have: |(xm) j − X j | = w(X j )

2 ≤ w(X)
2 ≤ W

2 and in a similar way,

|(yim) j − Y i
j | = w(Y i

j )

2 ≤ w(X)
2 ≤ W

2 .

Moreover, one has |F ′
j (xm+Y i )| ≤ |F ′

j (X+Y i )| ≤ L and |F ′
j (X+yim)| ≤ |F ′

j (X+Y i )| ≤
L .

Therefore, one obtains:
n∑

j=1

|F ′
j (X + yim)| × |(xm) j − X j | ≤ nL × W

2
, ∀i ∈ {1, . . . , k}

and
n∑

j=1

|F ′
j (xm + Y i )| × |(yim) j − Y i

j | ≤ nL × W

2
, ∀i ∈ {1, . . . , k}

Hence, εi ≤ nL × W
2 ,∀i ∈ {1, . . . , k} and thus the result follows. ��

Thus, in order to find the robust global minimum with an accuracy ε, by using a Branch
and Bound algorithm which will split boxes into sufficiently small ones X and Y i (∀i) such
that W ≤ 2ε

nL and by using Corollary 1 (with f differentiable), we have:
∣
∣
∣
∣ max
1≤i≤k

f (xm + yim) − min
x∈X z(x)

∣
∣
∣
∣ ≤ n

2
L × W ≤ ε. (12)

Therefore, we have two possibilities:

– if max1≤i≤k f (xm + yim) > f̃ (where f̃ is the best current upper bound of the robust
global minimum known at this iteration of the Branch and Bound algorithm) then X and
Y i (∀i) is deleted,
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– if max1≤i≤k f (xm + yim) ≤ f̃ then f̃ changes and X , Y i (∀i), or just xm, yim(∀i) are
stored in a list of solutions.

Hence, if f is differentiable using Corollary 1, we show that a Branch and Bound algorithm
will converge in a finite number of iterations to a robust global minimum with an accuracy
ε. Note that, this result of convergence can be extended when f is only Lipschitz.

4 A branch-and-bound algorithm for Robust optimization

Our deterministic robust global optimization algorithm is described in Algorithm 1. Themain
idea of this branch-and-bound code is to search the solution by bisecting the initial boxes
X̃ and Ỹ , and by managing a list whose the elements are: a box X , a list of boxes Y i and a
list of points inside ∪i Y i . Hence, from the above properties, a Robust Interval Branch and
Bound algorithm is provided. However, even if this algorithm is based on a standard interval
branch-and-bound code, it differs in some points inside the main loop:

– An element of the list is constituted by: (i) a box X , which is an interval vector; (ii) a list
of boxes Y i ; (iii) a list of points inside ∪i Y i ; (iv) a lower bound of f over X × (∪i Y i

)
.

– The element Z of the list with the lowest lower bound is considered first.
– Bisection following a component of x : in Z , the box X is bisected by the middle of its

largest edge. In both cases the same two lists of Y i and of points inside ∪i Y i have to be
kept.

– Bisection following a component of y: in Z , the largest box of boxes Y i (belonging to
the list) is selected. If the length of its largest edge is large enough with respect to the
width of X , then such a box Y i is bisected by its largest edge. The midpoint of the two
sub-boxes of Y i are inserted in the list of points inside ∪i Y i .

– Monotonicity test on y: For all sub-boxes Y i in the list associated to box X , check if
in one direction on y, f (x, y) is monotone over the whole box X . If this is the case,
remove Y i from the list corresponding to box X or reduce Y i to the side of the initial
box Ỹ . Moreover, if no sub-boxe Y i remains in the list, eliminate the box X of the main
list. If the list of Y i has changed, then update the list of points associated to box X by
inserting the new points generated as the mid-points of each new Y i and by discarding
points belonging to removed boxes.

– Monotonicity test on the component of x : check the monotonicity if all the sub-boxes in
the list of Y i are points.

– Lower and upper bound calculations: the computations of lower and upper bounds follow
from Propositions 2 and 3 in Sect. 3.

Note that in Algorithm 1 the termination criterion is not directly provided by Proposition 7,
but directly by using the differences between the upper and lower bounds (see line 5 of
Algorithm 1). Note also that if the interval Taylor inclusion function at the first order (see
[19]) is chosen, this provides a more accurate stopping criterion than using Proposition 7.

Algorithm 1 Robust Interval Branch&Bound Optimization Algorithm

1: Input Arguments: f the objective function, ε for the stopping criteria, (X̃ , Ỹ ) := initial convex hull in
which the global minmax is searched,

2: f̃ := +∞, denotes the current minmax,
3: Z = {X , [Y ], [Y ,mid(Y ), Y ]} {where [] denotes a list, and mid(Y ) is the midpoint of Y and Y , Y are the

two extremal points whose components are, respectively, the lower or upper bounds of Y ; Z .X , Z .Y , Z .lY
denote the 3 elements of Z , nY and nlY the number of elements of Z .Y and Z .lY resp.}
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4: L := (−∞, Z), {initialization of the data structure of stored elements (all elements in L have two com-
ponents: a lower bound (denoted .lb) and a complex element Z (denoted .EL) which own a box, a list of
boxes and a list of points in Ỹ )}

5: while L �= ∅ and f̃ − L(1).lb > ε {where L(1) denotes the first element of L and .lb its lower-bound
component} do

6: Z := L(1).EL and discard the first element of L,
7: if w(X) ≤ εtol (:= 0.01, here){use of Proposition 4} then
8: M := maxk∈{1,...,nlY }{F(Z .X + Z .lY (k))}
9: for k = 1 to nY do
10: if F(Z .X + Z .lY (k)) < M then
11: Eliminate all points of list Z .lY belonging to Z .Y (k).
12: Eliminate Z .Y (k) from the list Z .Y .
13: end if
14: end for
15: end if
16: Bisect Z .X normal to a direction yielding X1, X2 {i.e., choose the first component ν that has the largest

width, then (X1)ν := [Z .X ,mid(Z .X)] and (X2)ν := [mid(Z .X), Z .X ],}
17: for j = 1 to 2 do
18: Z j .X := X j , Z j .Y := Z .Y , Z j .lY := Z .lY
19: if w(X j ) ≤ maxk∈{1,...,nY } w(Z j .Y (k)) {bisection on Y} then
20: Bisect the largest box of list Z j .Y , normal to the direction of its maximal width and insert these

two sub-boxes in Z j .Y
21: Insert in Z j .lY the middle points of these two sub-boxes.
22: end if
23: for k := 1 to nY , {monotonicity tests using Propositions 5 and 6} do
24: Gi := F ′

i (X j + Z j .Y (k)), ∀i ∈ {1, . . . , n} {computation of an enclosure of the gradient of f over
X + Z j .Y (k)}

25: for i := 1 to n do
26: if Gi > 0 and Yi (k) = Ỹi (k) then

27: Yi (k) := [Ỹi (k)] {degenerate one-point interval}
28: else if Gi < 0 and Yi (k) = Ỹi (k) then

29: Yi (k) := [Ỹi (k)]
30: end if
31: if (Gi > 0 and Yi (k) �= Ỹi (k)) or (Gi < 0 and Yi (k) �= Ỹi (k)) then
32: Eliminate all points of list Z j .lY belonging to Z j .Y (k).
33: Eliminate Z j .Y (k) from the list Z j .Y .
34: end if
35: end for
36: end for
37: lbv := maxk∈{1,...,nlY } F(X j + lY (k)) {a lower bound of f over X j , see Proposition2},

38: if lbv ≤ f̃ , then
39: f := minx∈{X j ,X j ,mid(X j )}{maxk∈{1,...,nY } F(x + Z .Y (k))} {an upper bound of f over X j , see

Proposition 3}
40: if f < f̃ , then
41: f̃ := f and x̃ := argminx∈{X j ,X j ,mid(X j )} providing f

42: Discard from L all elements such that L(k).lb > f̃
43: Discard from Lsol all elements such that Lsol (k).lb > f̃
44: end if
45: if f̃ − lbv ≤ ε then
46: Insert (lbv, Z j ) in Lsol {using Proposition 7, only the midpoints could be stored}
47: else
48: Insert (lbv, Z j ) in L following an increasing order of L(k).lb
49: end if
50: end if
51: end for
52: end while
53: Output Arguments: x̃ , a global minmax point and all points in Lsol .
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Concerning the convergence of Algorithm 1, note that during the iterations a box X ⊆ X̃
will be split into smaller sub-boxes: Xi ⊂ X (see line 16 of Algorithm 1) and so, if we
compute the lower bounds on the same point y, we have: F(X + y) ≥ F(Xi + y),∀i .
This result comes from Proposition 2 and it is due to the isotonicity property1 of interval
arithmetic based inclusion functions, [9,10,16]. Hence, keeping the same points y j ∈ Ỹ
during the iterations of Algorithm 1, we obtain:

max
j

F(X + y j ) ≥ max
j

F(Xi + y j ),∀i .

Remark 1 During the iterations of Algorithm 1, by taking care to keep the same points y j ∈ Ỹ
(see list of points Z .lY in 1) and to delete points when they are not used to provide better
lower bounds (see lines 11 and 32 of Algorithm 1), the lowest lower bound remaining in the
list L will increase.

Moreover, the upper bound of the robust global minimum, denoted by f̃ in Algorithm 1,
can only decrease during the iterations of Algorithm 1 (see line 41). This is also due to
the isotonocity property of interval arithmetic based inclusion functions and derived from
Proposition 3. Hence, during the iterations of Algorithm 1 the lowest lower bound will
increase and the incumbent f̃ will decrease until a given tolerance ε is reached (see line 5).
Note that if f is differentiable and if X̃ and Ỹ are split into sufficiently small sub-boxes,
using Proposition 7 and Corollary 1 the branching can be stopped.

5 Some numerical examples

In order to illustrate and to validate Algorithm 1, which we have implemented in MatLab
version R2017b using IntLab version 10 [20], we solved the following robust
optimization problems on a MacBookPro laptop with 2.8GHz and 16GB. We choose the
interval Taylor inclusion function at the first order (see [19]) to compute lower and upper
bounds in Algorithm 1; the enclosure of the gradient is computed by using interval automatic
differentiation implemented in IntLab. In Tables 1, 2, 3, the performance of Algorithm 1 is
reported by considering as stopping criterion a gap ε equals to 10−3 or 10−10. In these three
tables, the columns f , εY , ε, # Its, Time(s), f (x∗ + y∗), x∗ and f (x∗) are respectively the
name of the function, the value of the uncertainty that defines Ỹ , the accuracy for the stopping
criterion at line 45 of Algorithm 1, the number of iterations, the CPU time in seconds, the
maximal value of the function at a point around the robust global optimizer but in x∗ + Ỹ , a
robust global optimizer, the value of the function at x∗. Note that all results are rounded to 4
decimal places.

The first instance we consider, is a generalization, to the n−dimensional case, of Exam-
ple 1:

gn(x) =
n∑

i=1

(
(xi ) − 2)6 + 0.2

)
log

(
1 + x2i

)
.

The results are presented at the top of Table 1. For this function, the searched domain is
X̃ = [−10, 10]n, and the uncertainty set is Ỹ = [−εY , εY ]n where εY is defined in the
second column of Table 1. This yields the following robust optimization problem:

1 An interval function F is said isotone if for any couple (X ′, X) such that X ′ ⊆ X , we have F(X ′) ⊆ F(X).
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min
x∈X̃

max
y∈Ỹ

gn(x + y) =
n∑

i=1

(
(xi + yi ) − 2)6 + 0.2

)
log

(
1 + (xi + yi )

2) . (13)

The global minimizer of gn without uncertainty is (0, . . . , 0) providing an optimal value
of 0. However, by considering the uncertainty set Ỹ = [−0.1, 0.1]n in Problem (13), the
robust global optimum is found to be around (1.52, . . . , 1.52) yielding an optimal value of
gn around n × 0.25 which corresponds to another local optimum analogous to Fig. 1. In
Table 1, remark that for this function gn , if εY becomes 0.5 the solution changes slightly but
the number of iterations and the CPU time increases quite strongly; it is also the case when
the required accuracy (stopping criterion) changes from 10−3 to 10−10.

The remainder of Table 1 presents numerical results for functions coming from the global
optimization literature, they are provided in [21] and are recalled below:

– Three Hump Camel Function: f1(x) = 2x21 − 1.05x41 + x61
6 + x1x2 + x22 , where x ∈

[−5, 5] × [−5, 5]. It has a global minimum f (x∗) = 0 at x∗ = (0, 0).
– Easom Function: f2(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2), where x ∈

[−100, 100] × [−100, 100]. It has a global minimum f (x∗) = −1 at x∗ = (π, π).
– Banana Rosenbrook Function: f3(x) = 100(x2−x21 )

2+(x1−1)2, where x ∈ [−5, 10]×
[−5, 10]. It has a global minimum f (x∗) = 0 at x∗ = (1, 1).

– Six Hump Camel Function: f4(x) =
(

4 − 2.1x21 + x41
3

)

x21 + x1x2 + (−4 + 4x22 )x
2
2 ,

where x ∈ [−3, 3] × [−2, 2]. It has two global minima f (x∗) = −1.0316 at x∗ =
(0.898,−0.7126) and (−0.898, 0.7126).

– Dixon-Price Function: f5(x) = (x1 − 1)2 + 2(2x22 − x1)2, where x ∈ [−10, 10] ×
[−10, 10]. It has a global minimum f (x∗) = 0 at x∗ = (1,

√
2
2 ).

– Beale Function: f6(x) = (1.5−x1+x1x2)2+(2.25−x1+x1x22 )
2+(2.625−x1+x1x32 )

2,
where x ∈ [−4.5, 4.5]×[−4.5, 4.5]. It has a globalminimum f (x∗) = 0 at x∗ = (3, 0.5).

For these 6 functions, we change the uncertainty εY to show the changes between an initial
global solution and a new robust one. We remark that for the first two functions f1 and f2,
the robust global solution remains close to the global one even if εY is quite high (0.1 or
0.5). Contrarily, for the last four functions f3 to f6, the robust global solution switches to
another point which is a new robust global minimum corresponding to a local minimum;
it is emphasized in bold in Table 1. Note that obviously when εY increases the values of
f (x∗ + y∗) and f (x∗) increase also. However, we remark that there is no link between the
number of iterations and the fact that εY increases.

From these results, note that, as expected, the stopping criterion ε = 10−3 is attained
earlier than for ε = 10−10. However, a high precision (ε = 10−10) can be reached in a quite
reasonable time. This seems to be due to the use of interval Taylor inclusion function to
compute the lower and upper bounds.

A last example coming from the literature about robust optimization [3,6,13] is addressed:

fB(x) = x1(6.2 + x1(−4.7 + x1(−6.4 + x1(21.2 + x1(−12.2 + 2x1)))))

+x2(−10 + x2(56.9 + x2(−74.8 + x2(43.3 + x2(−11 + x2)))))

+x1x2(−4.1 − 0.1x2x1 + 0.4x2 + 0.4x1)

For this test function, the global optimizer of fB in X̃ is x∗ = (2.8152 . . . , 4.0090 . . .) with
fB(x∗) = −20.8289 . . ., see [3,6,13].
For this function, two search domains are taken into account [−0.1, 3]×[0, 4] and [−1, 5]2

yielding respectively Tables 2 and 3.
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Table 1 Numerical results for 8 classical functions

f εY ε # Its Time(s) f (x∗ + y∗) x∗ f (x∗)

g1 0.01 10−3 10 0.65s 0.0066 0 0.0000

g1 0.01 10−10 37 5.57s 0.0064 0.0001 0.0000

g1 0.1 10−3 19 2.56s 0.2621 (1.5234) 0.2541

g1 0.1 10−10 76 12.96s 0.2619 (1.5244) 0.2541

g1 0.5 10−3 17 3.00s 0.3602 (1.7456) 0.2800

g1 0.5 10−10 46 7.01s 0.3601 (1.7455) 0.2800

g2 0.01 10−3 72 40.39s 0.0132 (0, 0) 0.0000

g2 0.01 10−10 83 49.02s 0.0132 (0, 0) 0.0000

g2 0.1 10−3 101 79.27s 0.5243 (1.5235, 1.5235) 0.5082

g2 0.1 10−10 117 131.42s 0.5243 (1.5235, 1.5235) 0.5082

g2 0.5 10−3 117 131.42s 0.7215 (1.7457, 1.7530) 0.5608

g2 0.5 10−10 118 130.71s 0.7211 (1.7481, 1.7481) 0.5612

f1 0.1 10−3 151 95.40s 0.0400 (0, 0) 0.0000

f1 0.1 10−10 186 106.19s 0.0399 (0, 0) 0.0000

f1 0.5 10−3 391 464.77s 0.9370 (0, 0) 0.0000

f1 0.5 10−10 391 442.15s 0.9370 (0, 0) 0.0000

f2 0.1 10−3 67 38.90s −0.9696 (3.1403, 3.1403) −0.9999

f2 0.1 10−10 70 46.08s −0.9693 (3.1402, 3.1402) −0.9999

f2 0.5 10−3 72 54.05s −0.4652 (3.1402, 3.1402) −0.9999

f2 0.5 10−10 72 51.64s −0.4652 (3.1402, 3.1402) −0.9999

f3 0.001 10−3 63 10.20s 0.0010 (1.0000, 1.0000) 0.0000

f3 0.001 10−10 1550 1343.14s 0.0010 (1.0011, 1.0022) 0.0000

f3 0.01 10−3 1676 1917.90s 0.0867 (0.9418, 0.8869) 0.0034

f3 0.01 10−10 1716 1522.30s 0.0867 (0.9418, 0.8869) 0.0034

f3 0.1 10−3 430 190.46s 2.1445 (0.0464, 0.0025) 0.9094

f3 0.1 10−10 430 201.62s 2.1445 (0.0464, 0.0025) 0.9094

f3 0.5 10−3 148 83.21s 40.5508 (0.0098, 0.1270) 2.5899

f3 0.5 10−10 148 115.10s 40.5508 (0.0098, 0.1270) 2.5899

Nevertheless, Algorithm 1 cannot solve directly this problem; this is mainly due to the
fact that the expression of fB owns a lot of occurrences of the variables x1 and x2. Thus,
even if a Horner scheme is taken into account, the bounds computed using interval arithmetic
are not efficient enough. In order to improve the efficiency of Algorithm 1, we introduce
an accelerating routine based on a convexity test which is derived from Proposition 1. This
convexity test routine is described as follows:

1. A convexity test of fB over an element Z of the listL is done
at line 7 of Algorithm 1 (when the box Z .X is small enough,
herein less than 0.01):

– Compute H an enclosure of the Hessian matrix of fB over Z .X
(here a formal expression is provided but interval auto
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Table 1 continued

f εY ε # Its Time(s) f (x∗ + y∗) x∗ f (x∗)

f4 0.1 10−3 214 207.13s −0.9017 (0.0792, −0.6992) −1.0298

f4 0.1 10−10 222 220.70s −0.9017 (0.0792, −0.6992) −1.0298

f4 0.5 10−3 1340 1385.10s 0.9098 − (0.0029, −0.0352) −0.0048

f4 0.5 10−10 1367 2052.71s 0.9098 − (0.0029, −0.0351) −0.0048

f5 0.1 10−3 453 281.73s 0.3250 (0.8740, −0.6348) 0.0252

f5 0.1 10−10 467 345.52s 0.3250 (0.8740, −0.6348) 0.0252

f5 0.5 10−3 162 98.33s 1.6125 (0.4102, −0.0391) 0.6794

f5 0.5 10−10 162 112.68s 1.6116 (0.4102, −0.0390) 0.6794

f6 0.1 10−3 501 478.55s 0.2790 (2.6147, 0.3779) 0.0391

f6 0.1 10−10 503 512.04s 0.2790 (2.6148, 0.3780) 0.0391

f6 0.5 10−3 420 464.79s 4.2804 (1.9512, 0.0527) 0.6684

f6 0.5 10−10 421 465.93s 4.2804 (1.9512, 0.0528) 0.6683

matic differentiation implemented in IntLab could be
used).

– If (Z .X)T .H .(Z .X) > 0 then fB is strictly convex on Z .X .
– For all k ∈ {1, . . . , nY }, compute Hk an enclosure of the Hessi

an matrix of fB over Z .X + Z .Y (k).
– If (Z .X + Z .Y (k))T .Hk .(Z .X + Z .Y (k)) > 0 for all k ∈ {1, . . . , nY },

then fB is strictly convex on all Z .X + Z .Y (k)

2. If fB is strictly convex on Z (i.e., fB strictly convex on Z .X
and all Z .X + Z .Y (k)), then:

– Solve using a local solver x∗ := argminx∈Z .X fB(x).
– v∗ := argmaxv∈∪kVk fB(x∗+v), where Vk is the set of the 4 vertic

es of the box Z .Y (k), for all k ∈ {1, . . . , nY }.
– lb := minx∈Z .X fB(x + v∗).
– ub := fB(x∗ + v∗).

In Step 2. of this routine, the minima are directly computed using a local solver
(active-set algorithm of the MatLab fmincon subroutine). Because fB is proved
to be strictly convex on Z .X , the local minima are the global ones. For the maximization of
fB(x∗ + v), because fB is stricly convex on Z .X + Z .Y (k), the global maximum is a vertex
of the box Z .X + Z .Y (k). Note that from Propositions 2 and 3 and because fB is proved to
be convex on Z , we have:

lb ≤ f (x + y) ≤ ub,∀x ∈ Z .X and ∀y ∈ ∪k Z .Y (k), for all k ∈ {1, . . . , nY }.
If lb = ub, this implies that x∗ is the robust global solution of fB over Z and then the research
is terminated for Z , else efficient lower and upper bounds of fB over Z are provided and
used in lines 37 and 39 of Algorithm1.

In order tomakenumerically reliable the boundsprovidedby this convexity test, Theorem1
in [14] is used. Hence, Step 2 of the convexity test has to be modified as follows:

– Solve using a local solver x∗ := argminx∈Z .X fB(x).
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Table 2 Numerical results for Bertsimas function fB for x ∈ X̃ = [−0.5, 3] × [0, 4]
εY ε # Its # Cvx Time(s) f (x∗ + y∗) x∗ f (x∗)

0.001 10−3 402 14 131 −20.8171 (2.8151, 4.0000) −20.8195

0.001 10−10 415 27 150 −20.8171 (2.8151, 4.0000) −20.8195

0.01 10−3 391 16 225 −20.7756 (2.8150, 4.0000) −20.8194

0.01 10−10 398 23 246 −20.7757 (2.8149, 4.0000) −20.8194

0.1 10−3 330 16 388 −18.4849 (2.8067, 4.0000) −20.8115

0.1 10−10 350 36 545 −18.4854 (2.8066, 4.0000) −20.8115

0.5 10−3 1414 132 3323 5.3070 − (0.0420, 0.3490) 0.6380

0.5 10−10 1467 173 3304 5.3063 − (0.0420, 0.3490) 0.6383

– For all i ∈ {1, . . . n}, if x∗
i < Z .Xi then x∗

i := Z .Xi and if x∗
i > Z .Xi then

x∗
i := Z .Xi ; note that it can occur because in MatLab the fmincon routine solves
optimization problems with a tolerance about 10−6 on the constraints.

– v∗ := argmaxv∈∪kVk fB(x∗ + v), (no change)
– xb := argminx∈Z .X fB(x + v∗)

– For all i ∈ {1, . . . n}, if xbi < Z .Xi then xbi := Z .Xi and if xbi > Z .Xi then

xbi := Z .Xi

– G := F ′
B(xb + v∗), where F ′

B is the inclusion function of the first derivative of fB .
Note that to be reliable all the computations have to be done using rounded interval
arithmetic, [16].

– For all i ∈ {1, . . . n}, if Gi > 0 then zi := Z .X∗
i and if Gi < 0 then zi := Z .X∗

i .
Moreover, if 0 ∈ G then zi := Z .Xi .

– lb := FB(xb + v∗) + (z − xb)T .G, see Theorem 1 in [14].

– ub := FB(x∗ + v∗).

This reliable routine has been inserted after line 7 of Algorithm 1, and this makes it
possible to solve the robust nonconvex Problem (2) with fB over X̃ . The results are provided
in Table 2 for X̃ = [−0.5, 3] × [0, 4] and Table 3 for X̃ ∈ [−1, 5]2. Note that another value
in the column # Cvx is added corresponding to the number of times the convexity routine is
used. Let us remark that there is no real differences between the efficiencies of Algorithm 1
if the required accuracy is 10−3 or 10−10 when the solution is searched in [−0.5, 3] × [0, 4]
but it has a big impact for the CPU time if the searched domain is enlarged to X̃ = [−1, 5]2
see Table 3; note that for two instances the asked accuracy has been changed from 10−10 to
10−6 in order to obtain a solution within a reasonable amount of time. It seems to be due to
the fact that, for X̃ = [−0.5, 3] × [0, 4], x∗

2 = 4 is the upper bound of the searched domain.
In both cases, for εY = 0.5 the robust solution switches to another local minimum of fB as
it was noticed in the literature [3,6,13].

Remark 2 The results presented in Table 1 are reliable numerically and by using Theorem 1
in [14], the results presented in Tables 2 and 3 are also reliable. Indeed, Algorithm 1 is reliable
because it is mainly based on interval computations. Thus, Algorithm 1 is a rigorous robust
global optimization code as it is defined in [10] by Kearfott.
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Table 3 Numerical results for Bertsimas function fB for x ∈ X̃ = [−1, 5] × [−1, 5]
εY ε # Its # Cvx Time(s) f (x∗ + y∗) x∗ f (x∗)

0.001 10−3 978 34 256 −20.8286 (2.8153, 4.0089) −20.8289

0.001 10−6 1033 89 606 −20.8286 (2.8153, 4.0089) −20.8289

0.01 10−3 1013 32 490 −20.8053 (2.8153, 4.0089) −20.8289

0.01 10−6 1733 751 6731 −20.8054 (2.8151, 4.0087) −20.8288

0.1 10−3 862 70 1478 −18.5199 (2.8067, 4.0016) −20.8146

0.1 10−10 992 200 2455 −18.5202 (2.8067, 4.0016) −20.8146

0.5 10−3 1998 191 3858 5.3063 − (0.0420, 0.3490) 0.6385

0.5 10−10 2063 252 4078 5.3063 − (0.0420, 0.3490) 0.6384

In this paper, we address only problemswith 1 or 2 variables; this yields problemswith 2 or
4 variables by introducing new variables yi . For our new Algorithm 1 which is implemented
in MatLab using IntLab library [20], it is difficult to solve problems with more than 2 vari-
ables in a reasonable amount of time (less than 1h). Indeed, in [18], Pál and Csendes compare
a classical interval global optimization Branch-and-Bound algorithm implemented by using
MatLab-IntLab versus a C-code which uses C-XSC library (for interval arithmetic), see
[11]. Pál and Csendes shows that due to the MatLab interpreter their IntLab-based code is
on average 700 times slower than their C-code (more precisely between 165 and 2106 times
slower depending on the instances), see [18]. Thus, we think that we could obtain closely the
same ratio comparing our implementation in MatLab-IntLab of Algorithm 1 to another
one based on a compiled language (e.g., C or Fortran). Hence, all the results, provided in
this paper, could be solved in less than 10s (compared to close 1h for the slowest). Therefore,
with a compiled code, we hope that problems with 3 or 4 variables could be addressed in a
reasonable amount of time.

6 Conclusion

In this paper, we propose a deterministic global optimization algorithm to solve robust non-
convex optimization problems. This algorithm is derived from some properties previously
established. A code was developed in MatLab and is validated on some numerical examples
proving thereby the intrinsic interest and efficiency of our Robust Interval Branch-and-Bound
Optimization Algorithm. A convexity routine is implemented and added to this Algorithm
to tackle the Bertsimas et al. robust nonconvex problem. Preliminary numerical experiments
demonstrate that our approach is promising.
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