
Journal of Global Optimization (2022) 83:29–47
https://doi.org/10.1007/s10898-021-01003-4

Maximum feasible subsystems of distance geometry
constraints

Maurizio Bruglieri1 · Roberto Cordone2 · Leo Liberti3

Received: 16 July 2020 / Accepted: 20 February 2021 / Published online: 6 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
We study the problem of satisfying the maximum number of distance geometry constraints
with minimum experimental error. This models the determination of the shape of proteins
from atomic distance data which are obtained from nuclear magnetic resonance experiments
and exhibit experimental and systematic errors. Experimental errors are represented by inter-
val constraints on Euclidean distances. Systematic errors occur from a misassignment of
distances to wrong atomic pairs: we represent such errors by maximizing the number of
satisfiable distance constraints. We present many mathematical programming formulations,
as well as a “matheuristic” algorithm based on reformulations, relaxations, restrictions and
refinement. We show that this algorithm works on protein graphs with hundreds of atoms
and thousands of distances.

Keywords Protein conformation · MINLP · Diagonally dominant programming

1 Introduction

We discuss an interesting hybrid of two problems: the Maximum Feasible Subsystem
(MaxFS) [17] and the Distance Geometry Problem (DGP) [25], and its application to
the problem of determining the spatial conformation of proteins from distance data derived
from Nuclear Magnetic Resonance (NMR) experiments.

One of the authors (LL) was partly funded by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie Grant agreement no. 764759.

B Leo Liberti
liberti@lix.polytechnique.fr

Maurizio Bruglieri
maurizio.bruglieri@polimi.it

Roberto Cordone
roberto.cordone@unimi.it

1 Dipartimento di Design, Politecnico di Milano, Milan, Italy

2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

3 LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01003-4&domain=pdf
http://orcid.org/0000-0002-4517-873X
http://orcid.org/0000-0002-5439-1743
http://orcid.org/0000-0003-3139-6821

30 Journal of Global Optimization (2022) 83:29–47

The MaxFS is as follows: given a set of constraints, generally of the form

∀i ∈ I gLi ≤ gi (x) ≤ gUi , (1)

determine a subset ⊆ I of maximum cardinality such that the set of constraints of Eq. (1)
indexed by S is feasible. This problem isNP-hard to solve, and does not admit a polynomial-
time approximation scheme unless P = NP [5].

The (Euclidean) DGP is as follows: given an integer K > 0 and a simple connected
edge-weighted graph G = (V , E, d), where d : E → R+, determine whether there exists a
realization x : V → R

K such that:

∀{i, j} ∈ E ‖xi − x j‖2 = di j . (2)

There are many applications of the DGP [25] and even more variants. The one we are
specially interested in is the interval DGP (iDGP), which replaces d : E → R+ with the
interval weight function d : E → IR+ such that d({i, j}) = [Li j ,Ui j] [15,21]. Specifically,
Eq. (2) becomes

∀{i, j} ∈ E Li j ≤ ‖xi − x j‖2 ≤ Ui j . (3)

The iDGP isNP-hard by inclusion of the DGP: the inclusion follows from the case Li j = Ui j

for all {i, j} ∈ E . We note that if Li j = 0 and Ui j is infinite (for all {i, j} ∈ E) the problem
is clearly tractable since any realization is feasible. The existence of a “phase transition”
threshold between tractability and hardness of this problem is an open question [1]. From
now on, we shall assume all norms are Euclidean (a.k.a. �2) unless stated otherwise. We also
denote n = |V | and m = |E |.

We are now in the position of stating the main problem discussed in this paper.

Max Feasible Subsystem of Distance Geometry constraints (MaxFSDGP).
Given an integer K > 0 and a simple connected edge-weighted graph G = (V , E, d)

with d : E → IR+, determine a maximum cardinality subset S ⊆ E inducing a
subgraph of G, such that there exists a realization x : V [E] → R

K satisfying

∀{i, j} ∈ S Li j ≤ ‖xi − x j‖ ≤ Ui j . (4)

We recall that d({i, j}) = [Li j ,Ui j] for each {i, j} ∈ E , as explained above. The con-
nectedness assumption, as in many problems on graphs, is without loss of generality: for
a disconnected graph it suffices to find the connected components in polynomial time, and
solve the problem on each connected component independently.

The MaxFSDGP is motivated by a specific application of the DGP, namely the determina-
tion of the shape of proteins given some of their inter-atomic distances. In principle, NMR
can determine all inter-atomic distances in a given protein up to a certain length threshold
(somewhere between 5Å and 6Å). In practice, reality is fuzzier than this. First, we note that
proteins rarely crystallize (so X-ray crystallography does not help), but usually live in a solu-
tion. Secondly, proteins vibrate, but we assume that they do not (this is called the “molecular
rigidity assumption”) [28].

NMR experiments yield a probability distribution over triplets (atom label, atom label,
distance value); this distribution is used to imperfectly reconstruct the weighted graph G
that is the actual input to the DGP. It is not easy to understand the methods used by NMR
machinery to perform this reconstruction, other than they are mostly based on simulated
annealing [31]; attempts to construct the conformations starting directly fromNMRoutput are
underway [29].According to [8], this process induces two types of errors: experimental errors
(due to the rigidity assumption), and systematic errors (due to the imperfect reconstruction).

123

Journal of Global Optimization (2022) 83:29–47 31

Specifically, the experimental errors are accommodated by the interval bounds on the iDGP.
The systematic errors are described in [8] as consisting of a certain proportion of completely
wrong distances. This induces sets of constraints in (3) that are likely to be infeasible. We
propose the MaxFSDGP in order to address the issue and find solutions subject to such
limitations.

The focus of this paper is to solve MaxFSDGP instances using formulations and solution
methods fromMathematical Programming (MP). In particular, we present exact formulations
and several reformulations thereof. We construct a practically viable solution method based
on solving an approximate matrix formulation of MaxFSDGP followed by rank reduction and
a refinement phase. Since Polynomial Programs (PP) offer more reformulation opportunities
than with general Nonlinear Programs (NLP), �2 norm terms are always squared.

The rest of this paper is organized as follows. In Sect. 2 we introduce an exact formulation
of the MaxFSDGP problem. In Sect. 3 we construct a relaxation in the same primal variables
as the exact formulation. In Sect. 4 we construct some matrix relaxations, and propose
methodologies for reducing solution rank and improving the quality of the low-rank solutions.
In Sect. 5 we describe two computational approaches to solveMaxFSDGP instances, based on
the formulations of Sects. 3 and 4, and discuss computational results obtained from protein
instances of small and medium sizes.

2 Exact formulation

In this section we present a Mathematical Programming (MP) formulation of the MaxFSDGP
problem.

2.1 Experimental errors

Experimental errors are addressed by minimizing the infeasibilities w.r.t. Eq. (2) or Eq. (3).
A well-known box-constrained formulation targeting the DGP is:

min
x∈[x L ,xU]

∑

{i, j}∈E
(‖xi − x j‖2 − d2i j)

2, (5)

where x L , xU are given lower and upper bounds for the decision variable n × K matrix
x = (x1, . . . , xn)T . Equation (5) was tested computationally in e.g. [20]. A corresponding
reformulation for the iDGP can be obtained replacing each term ‖xi − x j‖2 − d2i j of Eq. (5)
with

max(0, L2
i j − ‖xi − x j‖2) + max(0, ‖xi − x j‖2 −U 2

i j),

so that setting the objective to zero corresponds to the (nonconvex) pure feasibility problem:

∀{i, j} ∈ E ‖xi − x j‖2 ≥ L2
i j

∀{i, j} ∈ E ‖xi − x j‖2 ≤ U 2
i j

x L ≤ x ≤ xU .

⎫
⎪⎬

⎪⎭
(6)

We remark that x L , xU may or may not be provided by the specific DGP application being
tackled; but, even when they are not explicitly provided, Proposition 2.2 below can be used
to derive them.We also note that Eq. (5) and Eq. (6) can be solved without bound constraints.

123

32 Journal of Global Optimization (2022) 83:29–47

In the latter case, it may be advisable to impose a zero centroid constraint instead, which
removes translation invariance:

1

n

∑

i∈V
xi = 0. (7)

Henceforth, we shall refrain (for brevity) frommentioning bound or zero centroid constraints
on realization variables in the MP formulations below, unless the context requires it.

2.2 Systematic errors

The MaxFSDGP can be formulated in a natural way, using so-called “big-M” techniques and
binary decision variables to linearly represent disjunctions as follows [4]:

max
∑

{i, j}∈E
yi j

∀{i, j} ∈ E d2i j − M(1 − yi j) ≤ ‖xi − x j‖2 ≤ d2i j + M(1 − yi j)
y ∈ {0, 1}m .

⎫
⎪⎬

⎪⎭
(8)

In the above, it is clear that yi j = 1 enforces the constraint on edge {i, j} in the DGP, i.e.
Eq. (2), whereas yi j = 0 relaxes it.

Note that, since distances are always non-negative, the LHS of the distance constraints in
Eq. (8) can be tightened to d2i j yi j . This yields:

max
∑

{i, j}∈E
yi j

∀{i, j} ∈ E d2i j yi j ≤ ‖xi − x j‖2 ≤ d2i j + M(1 − yi j)
y ∈ {0, 1}m .

⎫
⎪⎬

⎪⎭
(9)

Lemma 2.1 The y component of every optimal solution for the MaxFSDGP defines a con-
nected graph.

Proof Suppose, by contradiction, that an optimal solution ismade up by at least two connected
componentsC1 andC2. Sincewe consider theMaxFSDGP defined on a connected graph, there
exists a path given by the sequence of vertices v1, v2,…,vk (with k ≥ 2) connecting C1 with
C2 where v1 belongs to C1, vk belongs to C2 and v2,…,vk−1 belong neither to C1 nor to C2.
Finding a realization for the vertices of the path is trivial and it is always possible to move as a
whole both C1 and C2 in such a way to continue to respect their internal distance constraints
and the realization of v1 and vk . Therefore, adding the path to the starting solution we obtain
a feasible solution for theMaxFSDGP satisfying the distances of k−1 (≥ 1) additional edges.
This contradicts the optimality of the starting solution. 	

Proposition 2.2 If M = (

∑
{i, j}∈E di j)2, then the optimal solution of Eq. (8) solves the

MaxFSDGP.

Proof First, we claim that any feasible DGP instance can be realized in a sphere of radius
R = 1

2

∑
{i, j}∈E

di j . A cycle graph C on V = {1, 2, . . . , n} with E = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {1, n}} with d1n = ∑

{i, j}∈E\{1,n} di j can be realized on a straight segment of length
r = d1n embedded in any Euclidean space [33]; if this segment is centered about the origin
it belongs by construction to the sphere RS

K−1. Any other biconnected graph on n vertices
will have more cycles than C , and hence will induce realizations in R

K having segments

123

Journal of Global Optimization (2022) 83:29–47 33

shorter than 2R when projected on any coordinate axis. Connected but non-biconnected
graphs are the same as trees: the tree yielding a realization with longest segment projection
on any coordinate axis is the path on n vertices realized as a segment of length 2R; again, by
centering the segment it is easy to see that the path can be realized in a sphere of radius R.
Lastly, we note that the above claim also shows that the maximum possible distance between
two vertices i, j in a realization of an optimal solution for the MaxFSDGP is 2R, since it
must induce a connected subgraph according to Lemma 2.1. This shows that if a MaxFSDGP
instance has a solution with a certain support vector y∗ for the maximum cardinality set of
feasible constraints, then setting y = y∗ in Eq. (8) will induce a valid realization x∗ of the
subgraph consisting of the edges {i, j} for which y∗

i j = 1, and vice versa. 	

In practice, segment realizations are extremely rare, and therefore M can be tightened
w.r.t. Proposition 2.2. We remark that bounds on M can also be inferred from x L , xU , if
they are given; and, conversely, that [x L , xU] can be set to [−√

M,
√
M] if the application

field does not explicitly provide them.

2.3 Systematic and experimental errors together

We consider Eq. (6) and employ the y binary variables as in Eq. (9) to activate/deactivate the
distance constraints. This yields a valid MP formulation for the MaxFSDGP, as follows:

max
∑

{i, j}∈E
yi j

∀{i, j} ∈ E ‖xi − x j‖2 ≥ L2
i j yi j (eL)

∀{i, j} ∈ E ‖xi − x j‖2 ≤ U 2
i j + M(1 − yi j) (eU)

y ∈ {0, 1}m
xL ≤ x ≤ xU .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(10)

The correctness of Eq. (10) is easy to establish: constraints (eL) and (eU) ensure that ‖xi −x j‖
is in the desired interval [Li j ,Ui j] as long as yi j = 1, i.e. the {i, j}-th constraint is imposed.

Otherwise ‖xi − x j‖ ∈ [0,
√
U 2
i j + M], meaning that the constraint is relaxed. The objective

function ensures that as many constraints as possible are imposed.
Moreover, according to [8], the fraction p of wrong distances can be estimated statistically

a priori. We can encode this knowledge by means of the additional cardinality constraint:
∑

{i, j}∈E
yi j ≥ (1 − p)m, (11)

which makes Eq. (10) infeasible whenever Eq. (11) is not satisfied.
Equation (10) is a nonconvex Mixed-Integer Nonlinear Program (MINLP), which repre-

sents one of the hardest classes in MP. MINLP is an uncomputable class, in general [26]. For
bounded decision variables (such as in Eq. (10)) it is computable, but NP-hard [22].

The state of the art in MINLP solution is not as advanced as for Mixed-Integer Linear
Programming (MILP), for which, despite the hardness, relatively large scale instances can
be solved either to optimality or at least to feasibility. Preliminary tests on Eqs. (10)–(11)
showed that no feasible solutions canbe found in a givenmaximumCPU time limit.Removing
Eq. (11) simply yielded the trivial solution with yi j = 0 for all {i, j} ∈ E , again, with a
given maximum CPU time limit.

In the rest of the paper we shall investigate reformulations of many types in order to obtain
“solver-friendlier” MP formulations for the MaxFSDGP. This investigation involves MINLP

123

34 Journal of Global Optimization (2022) 83:29–47

relaxations in the original nK -dimensional space of realizations (Sect. 3), as well as MILP
approximations in a larger n(n+1)

2 -dimensional space of symmetric matrices (Sect. 4).
The order of presentation of these formulations is dictated by a “mathematical program-

mer’s common sense” regulated by computational experience: we believe that a certain
reformulation might solve the issues of the preceding formulation; then, during preliminary
testing, we discover new issues. Thus, while the whole reformulation sequence explains how
we came to the one that actually works in practice, we do not systematically test every for-
mulation we present. Specifically, in the computational results Sect. 5 we only solve Eq. (16)
and test a solution method based on the pair (Eqs. 23, 26).

3 Primal relaxations and approximations

The fact that solving Eq. (10) with a CPU time limit yields a solution where all y variables
are set to zero is a witness to the empirical observation that feasibility is harder to achieve
than optimality. Setting yi j = 0 and xi = x j for all {i, j} ∈ E yields a feasible solution
with the worst possible objective function value. Obviously, the major contributors to the
feasibility issue are the constraints (eL) and (eU) in Eq. (10). We note that, when the inte-
grality of the y variables is relaxed, (eL) is nonconvex and (eU) is convex. We shall discuss
relaxations and approximations of (eL) in Sect. 4.1. In this section, we introduce a method
for approximating (eU).

First, we replace U 2
i j by U 2

i j yi j , and M(1 − yi j) by an additional variable ri j ≥ 0, for
{i, j} ∈ E . We then make sure that ri j = 0 whenever yi j = 1. This yields:

∀{i, j} ∈ E ‖xi − x j‖2 ≤ U 2
i j yi j + ri j (12)

∀{i, j} ∈ E 0 ≤ri j ≤ M(1 − yi j). (13)

This is an exact reformulation whose only difference with Eq. (10) is that the systematic error
w.r.t. Ui j is represented by ri j for each edge {i, j} ∈ E .

3.1 Bi-objective relaxation

Some preliminary experiments on the exact formulation based on Eqs. (12)–(13) above
presented us with the following unusual issue: our Branch-and-Bound (BB) solver of choice
failed to find any feasible solution using the value ofM given by Proposition 2.2, whichmeant
that the BB algorithm could never prune by bound, which then resulted in a rapid exponential
growth of the BB tree. Setting M to unreasonably large values allowed the solver to find a
feasible solution rapidly. While, as is well known, a large M yields a slacker bound, it is
obviously better to prune by bound ineffectively than not at all. The issue, however, is now
that of finding good values ofM , which— in our preliminary experiments at least—appeared
to vary considerably by instance.

Thismotivated us to construct a formulationwhereEq. (13) is turned froma hard constraint
into a soft one, making sure that ri j remains small. We achieve this by introducing a second
objective function min

∑
i j ri j . This yields a bi-objective MINLP relaxation

max
∑

{i, j}∈E
yi j (14)

min
∑

{i, j}∈E
ri j (15)

123

Journal of Global Optimization (2022) 83:29–47 35

subject to Eq. (12), (eL), and the other constraints in Eq. (10) aside from (eU). Note that
Eq. (13) is relaxed. Moreover, Eq. (14) addresses the systematic error and Eq. (15) addresses
the experimental error. We denote this formulation by (B).

While bi-objective programs can hardly be considered exact reformulations of single-
objective ones, in the following we give some limited sufficient and necessary conditions
linking optimality in Eq. (10) and Pareto optimality in (B).

Note that any solution (x∗, y∗) feasible in Eq. (10) can be extended to a solution of (B)

by setting r∗
i j = 0 iff y∗

i j = 1 and r∗
i j = ‖x∗

i − x∗
j ‖2 otherwise. Whenever (x∗, y∗) is feasible

in Eq. (10) and the existence of r∗ is implicitly referred to in the text, we assume it was
computed from x∗, y∗ as above. For a binary vector y ∈ {0, 1}m we denote by supp(y) the
set of indices e = (i, j)∈ E for which yi j = 1.

3.1.1 Sufficient optimality conditions

We first prove that Pareto optimal values of (B) are good candidate optima for Eq. (10) as
long as one knows the optimal value.

Lemma 3.1 Suppose (x ′, y′, r ′) is such that: (i) it is feasible in (B); (ii) it has r ′
i j = 0 for all

{i, j} ∈ E with y′
i j = 1. Then (x ′, y′) is feasible in Eq. (10).

Proof This follows by inspection of Eq. (13), which is the only constraint equivalent to (eU)
in Eq. (10) which is relaxed in (B). 	

Proposition 3.2 Suppose (x ′, y′, r ′) is such that: (i) it is Pareto optimal in (B); (ii) the value
of Eq. (14) is optimal for Eq. (10). Then (x ′, y′) is optimal in Eq. (10).

Proof Consider any edge {h, �} ∈ E with y′
h� = 1, and suppose r ′

h� > 0.Define r̂ s.t. r̂i j = r ′
i j

for all {i, j} �= {h, �}, and r̂h� = 0. By Eq. (12) the solution (x ′, y′, r̂) is feasible in (B) and
dominates (x ′, y′, r ′) since

∑

{i, j}∈E
r̂i j =

∑

{i, j}∈E
{i, j}�={h,�}

r ′
i j <

∑

{i, j}∈E
r ′
i j ,

against the assumption. Therefore r ′
h� = 0, which, by Lemma 3.1, implies that (x ′, y′) is

feasible in Eq. (10). Optimality follows by (ii). 	

3.1.2 Necessary optimality conditions

Next, we give a support-dependent characterization of Pareto dominance in (B) w.r.t. opti-
mality in Eq. (10).

Theorem 3.3 No optimal solution (x∗, y∗) of Eq. (10) can be dominated in (B) by a Pareto
solution (x ′, y′, r ′) of (B) where supp(y∗) ⊆ supp(y′).

Proof Suppose first that (x∗, y∗) is dominated by (x ′, y′, r ′) w.r.t. the objective function
Eq. (15), i.e.

∑
i j r

′
i j <

∑
i j r

∗
i j . For all {i, j} with y∗

i j = 1 we have r∗
i j = 0 by Eq. (13)

(and also y′
i j = 1 since supp(y∗) ⊆ supp(y′)). So, no decrease in Eq. (15) can be achieved

over the edges {i, j} for which y∗
i j = y′

i j = 1. For all {i, j} with y∗
i j = y′

i j = 0 we

have r∗
i j = ‖x∗

i − x∗
j ‖2 by definition. Note that the relaxation of Eq. (13) does not change the

feasible region restricted to yi j = 0, so we can assume without loss of generality that x∗ = x ′

123

36 Journal of Global Optimization (2022) 83:29–47

over edges {i, j} ∈ E for which y∗
i j = y′

i j = 0, whence r ′
i j ≥ ‖x ′

i −x ′
j‖2 = ‖x∗

i −x∗
j ‖2 = r∗

i j
by Eq. (12). Because of the optimization direction of Eq. (15), we have r ′

i j = r∗
i j for all {i, j}

s.t. y∗
i j = y′

i j = 0. So, again, no decrease in Eq. (15) can be achieved over these edges. The
only possible decrease in the value of Eq. (15) must therefore occur over edges {i, j} ∈ E
where 0 = y∗

i j < y′
i j = 1. But then this means that (x∗, y∗) is dominated w.r.t. the objective

Eq. (14).
We therefore assume that (x∗, y∗) is dominated by (x ′, y′, r ′) w.r.t. Eq. (14). Then∑
i j y

′
i j >

∑
i j y

∗
i j . By optimality of (x∗, y∗) in Eq. (10), (x ′, y′) cannot be feasible in

Eq. (10), which means that (x ′, y′, r ′) does not satisfy Eq. (13), i.e. r ′
h� > 0 for some edge

{h, �} ∈ E where y′
h� = 1. Since supp(y∗) ⊆ supp(y′), and r∗

i j = 0 whenever y∗
i j = 1, we

have

∑

{i, j}∈E
{i, j}�={h,�}

r∗
i j ≤

∑

{i, j}∈E
{i, j}�={h,�}

r ′
i j

⇒
∑

{i, j}∈E
r∗
i j <

∑

{i, j}∈E
r ′
i j .

Thus, (x ′, y′, r ′) does not dominate (x∗, y∗), as claimed. We therefore must have
∑

i j y
∗
i j =∑

i j y
′
i j . Moreover, since supp(y∗) ⊆ supp(y′), we also have y′ = y∗, yielding

∑
i j r

∗
i j =∑

i j r
′
i j . 	

3.2 Scalarized approximation

Finally, we derive a weighted scalarization of Eqs. (14)–(15), with the aim of weighing Eq.
(14) more than Eq. (15). In summary, we obtain the formulation:

max
∑

{i, j}∈E
yi j − α

∑
{i, j}∈E

ri j

∀{i, j} ∈ E ‖xi − x j‖2 ≥ L2
i j yi j

∀{i, j} ∈ E ‖xi − x j‖2 ≤ U 2
i j yi j + ri j

y ∈ {0, 1}m
r ∈ R

m≥0

x L ≤ x ≤ xU ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

where α ≥ 0. Equation (16) is still a nonconvex MINLP, and thus remains very challenging
to solve. However, it has no “big-M” constraint.

4 Matrix relaxations and rank reduction

In this section we look at a Mixed-Integer Semidefinite Programming (MISDP) relax-
ation, followed by aMixed-Integer Diagonally Dominant Programming (MIDDP) restriction
thereof, which provides a Mixed-Integer Linear Programming (MILP) approximation of
Eq. (16). We then show how to reduce the rank of the n × n matrix solution of these formu-
lations to an n × K matrix representation of the realization we look for.

123

Journal of Global Optimization (2022) 83:29–47 37

4.1 MISDP relaxation

The standard derivation of a Semidefinite Programming (SDP) relaxation fromMPs involving
Euclidean distance terms consists in writing them as

‖xi − x j‖2 = ‖xi‖2 + ‖x j‖2 − 2xi · x j ,
and then linearizing the nonlinear terms ‖xi‖2 and xi · x j by added variables Xii , Xi j respec-
tively, resulting in ‖xi − x j‖2 being replaced by

Xii + X j j − 2Xi j ,

which is linear in X . The effect of this replacement yields an exact reformulation as long as
the constraints

X = xx� (17)

are satisfied. Note that Eq. (17) are nonconvex constraints. We relax them by

X � xx�,

which define a convex set. We remark that, if the x variables appear nowhere else in the
formulation, it suffices to enforce X � 0 (see e.g. [13]). In order to eliminate x from the
formulation, we can relax the bounds x L , xU in Eq. (16), which are inessential by translation
invariance.

The application of the above reformulation to Eq. (16) yields

max
∑

{i, j}∈E
yi j − α

∑
{i, j}∈E

ri j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≥ L2
i j yi j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≤ U 2
i j yi j + ri j

y ∈ {0, 1}m
r ∈ R

m≥0
X � 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

which is a MISDP formulation.

4.2 MIDDP approximations

Diagonally Dominant Programming (DDP) was proposed in [2,3] as an MP-based approx-
imation technique for the positive semidefinite (PSD) cone, yielding both inner and outer
approximating formulations in the Linear Programming (LP) or Second-Order Cone Pro-
gramming (SOCP) classes. Since MILP solvers are more technologically advanced than
their conic counterparts, in this section we only discuss the LP approximation.

A matrix A = (Ai j) is diagonally dominant (DD) whenever

∀i Aii ≥
∑

j �=i

|Ai j |. (19)

DDP rests on the observation that all DD matrices are PSD, a fact which follows easily
by Gershgorin’s circle theorem [14]. Since Eq. (19) can be represented by a set of linear
inequalities, solving LPs over the DD cone D instead of the PSD cone S+ yields a PSD
matrix solution at the cost of solving a LP problem.

123

38 Journal of Global Optimization (2022) 83:29–47

On the other hand, not all PSD matrices are DD, which implies thatD � S+: the feasible
region of an SDP problemmight be non-emptywhile the corresponding (inner) DDP problem
is infeasible. In such cases, one may resort to the outer DDP problem, which is derived using
the dual DD coneD∗. On the other hand, S+ � D∗, so the matrix solution for the outer DDP
problem may not be PSD. More details about applying DDP to the DGP are given in [13,23].

4.2.1 Inner restriction

We focus on the inner approximation first, since, if it is feasible, it provides a PSD matrix
as a solution, which is crucial to further processing. For the MISDP problem in Eq. (18), we
simply replace X � 0 with “X is DD”, i.e.

∀i ∈ V Xii ≥
∑

j �=i

|Xi j |. (20)

This is easily reformulated to a linear form by introducing a linearizing n × n symmetric
matrix T for the nonlinear term |X |. We then obtain:

∀i ∈ V Xii ≥
∑

j �=i

Ti j (21)

−T ≤ X ≤ T . (22)

The exact reformulation proof between Eq. (20) and (21)–(22) is hinted at in [2] to proceed
by projection of the T variables. A more direct argument (by contradiction of optimality)
can be obtained by considering the objective function min

∑
i j Ti j (a corresponding term

−∑
i j Ti j may optionally be added to the objective of Eq. (23)). In summary, we have the

following MILP:

max
∑

{i, j}∈E
yi j − α

∑
{i, j}∈E

ri j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≥ L2
i j yi j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≤ U 2
i j yi j + ri j

∀i < j ≤ n Xi j = X ji

∀i ∈ V
∑
j �=i

Ti j ≤ Xii

−T ≤ X ≤ T
T , X ∈ R

n×n

y ∈ {0, 1}m
r ∈ R

m≥0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

4.2.2 Outer relaxation

Anouter relaxation of theMISDP formulationEq. (18) can be obtained usingDDP techniques
and the dual DD cone D∗.

The formulation replaces the implicit constraint X ∈ D by X ∈ D∗. We remark that the
PSDconeS+ is contained inD∗, and that the latter is a polyhedral relaxation of the former.We
also recall thatS+ can be characterized bymeans of the uncountably infinite set of constraints
v�Xv ≥ 0 for all v ∈ R

n . Moreover, by [6],D is finitely generated by the set V of its extreme
rays, which consists of the matrices ei e�

i , (ei + e j)(ei + e j)�, (ei − e j)(ei − e j)� for all
i < j ≤ n.

123

Journal of Global Optimization (2022) 83:29–47 39

It is well known that if a cone is finitely generated, its dual cone is also finitely generated.
By [23, Thm. 3], the polyhedral representation of D∗ is

∀v ∈ V trace(v�Xv) ≥ 0, (24)

which also shows that S+ ⊆ D∗. Thus, an explicit formulation of X ∈ D∗ is as follows:

∀i ≤ n Xii ≥ 0
∀i < j ≤ n Xii + X j j − 2Xi j ≥ 0
∀i < j ≤ n Xii + X j j + 2Xi j ≥ 0.

We can therefore derive a dual DDP formulation for the outer relaxation of Eq. (18):

max
∑

{i, j}∈E
yi j − α

∑
{i, j}∈E

ri j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≥ L2
i j yi j

∀{i, j} ∈ E Xii + X j j − 2Xi j ≤ U 2
i j yi j + ri j

∀i < j ≤ n Xi j = X ji

∀{i, j} /∈ E Xii + X j j − 2Xi j ≥ 0
∀i < j ≤ n Xii + X j j + 2Xi j ≥ 0

∀i ≤ n Xii ≥ 0
X ∈ R

n×n

y ∈ {0, 1}m
r ∈ R

m≥0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

SinceS+ � D∗, the optimalmatrix solution X∗ of Eq. (25)may (and in practice usually does)
have negative eigenvalues, which makes it a poor candidate for the further rank reduction
processing discussed below. On the other hand, it provides a guaranteed bound to the optimal
objective function value of Eq. (18) in the optimization direction.

4.3 Rank reduction

If Eq. (23) is feasible, solving it yields a symmetric n × n PSD matrix X which has the
property that Xii + X j j − 2Xi j is the Euclidean distance between two points x̄i , x̄ j , in some
Euclidean space, such that x̄i · x̄i = Xii , x̄ j · x̄ j = X j j and x̄i · x̄ j = Xi j . In other words, X
is the Gram matrix of a realization x̄ of the given graph G.

Since X is square symmetric, we can use spectral decomposition to write X as X =
P�P�, where P is a matrix of eigenvectors, and � a diagonal matrix of eigenvalues
λ1, . . . , λn whichwe shall assumeordered largest to smallest. Since X is PSD,wehaveλn ≥ 0

which implies that
√

� is a real matrix. Hence we can decompose X as (P
√

�)(P
√

�)
�
,

which means that we can take x̄ = P
√

� as the realization of G.
We now recall that the DGP asks for a realization in R

K for a given integer K . The
realization x is an n × n matrix, so it can be taken as a realization in R

n . The intrinsic
dimension of x is actually given by rank(x). In practice, rank(x) is usually n or very close to
n, whereas K is usually much smaller than n. Thus, given x̄ ∈ R

n×n , we would like to find
a reduced rank realization x ′ ∈ R

n×K .
We consider two rank reductionmethods: the first is Principal Component Analysis (PCA)

[18]. The second is Barvinok’s naive algorithm [7], extended to consider arbitrary ranks [27].

123

40 Journal of Global Optimization (2022) 83:29–47

4.3.1 Principal Component Analysis

With the notation of the previous section, we define

�(K) = diag(λ1, . . . , λK , 0, . . . , 0),

and then we let x ′ = P
√

�(K). Although x ′ is still technically speaking an n × n matrix, all
of the columns from the K + 1-st to the n-th are zero vectors. This means that they can be
ignored, and x ′ can be considered an n × K realization matrix, such that its i-th row xi is the
position of vertex i .

Since λ1 ≥ · · · ≥ λK are the K largest eigenvalues of X , the approximate realization
x ′ is the “closest” to x̄ (with respect to the Schatten norm [10] considering a subset of K
eigenvalues in �) which minimizes

∑

i �= j

| ‖x̄i − x̄ j‖2 − ‖x ′
i − x ′

j‖2 |,

for otherwise a contradiction would ensue with λ1, . . . , λK being the K largest eigenvalues.

4.3.2 Barvinok’s naive algorithm

The “naive algorithm” published by Barvinok in [7] is a lesser known, but effective,
dimensionality reduction technique applicable to solutions of SDPs. Consider the quadratic
feasibility problem of determining whether the set {x ∈ R

n | ∀i ≤ m x�Qi x = ai } is non-
empty. Let X̄ be a solution of the corresponding SDP set {X ∈ R

n×n | ∀i ≤ m trace(Qi X) =
ai }. Barvinok’s naive algorithm performs the following steps:

1. let T be a factor of X̄ , so X̄ = T T�
2. sample each component of a vector w ∈ R

n from the normal distribution N (0, 1)
3. let x ′ = Tw.

A concentration of measure argument shows that

Prob
(

∀i ≤ m dist(x ′, {x | x�Qi x = ai }) ≤ C
√

‖X̄‖ ln(n)

)
≥ 0.9,

where C is a positive universal constant, and dist(p, S) is the Euclidean distance between a
point p and a set S. In other words, Barvinok’s naive algorithm ensures that x ′ is “not too
far” from the feasible set of the quadratic equations.

An extension of Barvinok’s naive algorithm to the iDGP was proposed in [27]. Starting
from a solution X̄ of the SDP relaxation of the iDGP, it is as follows:

1. let T be a factor of X̄ , so X̄ = T T�
2. sample each component of an n× K matrix w from the normal distributionN (0, 1/

√
K)

3. let x ′ = Tw.

Then

Prob
(

∀{i, j} ∈ E dist(x ′, {x | Li j ≤ ‖xi − x j‖ ≤ Ui j }) ≤ C
√

‖X̄‖ ln(|E |)
)

≥ 0.9.

Again, x ′ is close to being an iDGP realization of the graph G with high probability.

123

Journal of Global Optimization (2022) 83:29–47 41

4.4 Refinement

Both of the rank reduction methods sketched above produce an approximate realization
x ′ which is close to being feasible for the given iDGP instance. We therefore propose a
“refinement step” where x ′ is given as a starting point for a local descent consisting in locally
solving the following variant of Eq. (6):

min
∑

{i, j}∈E
si j

∀{i, j} ∈ E ′ ‖xi − x j‖2 ≥ L2
i j − si j

∀{i, j} ∈ E ′ ‖xi − x j‖2 ≤ U 2
i j

∀{i, j} ∈ E ′ si j ≥ 0
x L ≤ x ≤ xU ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(26)

where E ′ = {{i, j} ∈ E | ȳi j = 1}, with ȳ ∈ {0, 1}m given by any of the mixed-integer
formulations in this section.

We remark that the problematic reverse-convex constraint was relaxed in Eq. (26) by
means of a slack variable to be minimized. Solving Eq. (26) yields a solution x∗ ∈ R

n×K

improved w.r.t. x ′.

5 Computational results

In this section we present some computational results concerning the formulations presented
in the previous sections. More precisely, we test the following solution methods:

1. Algorithm sBB is a global spatial Branch-and-Bound (sBB) based solver deployed on the
formulation in Eq. (16) for a given CPU time;

2. Algorithm DDP consists in: (i) solving an inner MIDDP restriction Eq. (23) (Sect. 4.2.1)
to yield a solution (X̄ , ȳ), (ii) reduce the rank of X̄ to K (Sect. 4.3) to yield a realization
x̄ ∈ R

n×K , (iii) use x̄ as a starting point for a local NLP solver deployed on Eq. (26), to
obtain a realization x∗ ∈ R

n×K .

The reason why we do not consider solving the exact MINLP formulation in Eq. (10) is
that preliminary tests showed that sBB solvers cannot even find a locally optimal solution of
our smallest instance. We do not consider the MISDP relaxation in Eq. (18) due to the fact
that we could not find an off-the-shelf MISDP solver we could deploy on our computational
platform.

5.1 Solution quality measures

Let x∗ be a realization of G, and y∗ ∈ {0, 1}m describe the activation of the m constraints of
the iDGP. We consider the following quality measures:

– the support cardinality |supp(y)| = ∑
{i, j}∈E y∗

i j of y, which is equal to the number of
satisfied distance constraints, and evaluates the systematic errors;

– the mean and largest distance error (MDE, LDE) measures computed on the support (i.e.,
for {i, j} ∈ E with yi j = 1):

MDE(x, y,G) = 1

m

∑

{i, j}∈E
max(Li j − ‖xi − x j‖2, ‖xi − x j‖2 −Ui j)yi j (27)

123

42 Journal of Global Optimization (2022) 83:29–47

LDE(x, y,G) = max{i, j}∈E max(Li j − ‖xi − x j‖2, ‖xi − x j‖2 −Ui j)yi j , (28)

which evaluate the realization error w.r.t. the given (interval) distances;
– the CPU time taken to solve the instance.

We also employ a comparative measure between two realizations x, y ∈ R
n×K called

Root Mean Square Deviation (RMSD), defined as
√∑

i≤n ‖xi − yi‖2/n. According to [12],
the RMSD is not overly meaningful on protein realizations unless one also normalizes
w.r.t. partial reflections, which, however, appears hard. Along with RMSD scores between
the realizations found by our method and reference realizations with zero systematic and
experimental errors, we also show the plots with realization aligned according to Procrustes
analysis [16] (but not w.r.t. partial reflections, see [12]).

5.2 Test set

We perform our tests on a set of small to medium-sized protein instances. We note that K is
fixed to the constant 3. For a given protein x with known realization x̂ ∈ R

n×3, the instance
corresponding to x was generated as follows:

1. the n × n Euclidean distance matrix D = (di j) of x̂ was computed;
2. all distances between atoms i and j ∈ {i + 1, i + 2} on the backbone were kept as exact

distances, namely [Li j ,Ui j] = [di j , di j], for each i ≤ n − 2 (these distances are known
as discretization distances);

3. all distances between atoms i and i + 3 on the backbone were kept as interval distances,
namely [Li j ,Ui j] = [di j − ηdi j , di j + ηdi j], for each i ≤ n − 3 (these distances are also
known as discretization distances [30]);

4. all other distances shorter than 5Å in D were kept as interval distances, namely
[Li j ,Ui j] = [di j − ηdi j , di j + ηdi j] (these distances are known as pruning distances
[30]);

5. a given fraction σ of the pruning distances, chosen randomly, were reassigned randomly
to a different pair of atoms;

6. any other distance was discarded from D.

In our experiments, we set η = σ = 0.1.
Most of the instances in Table 1 were extracted in the Protein Data Bank (PDB) [9]; a few

are modifications of instances from the PDB.

5.3 Computational set-up

The sBB algorithm was implemented by the Baron solver [32,34]. As for the DDP algorithm,
solutions of Eq. (23) were obtained using CPLEX 12.10 [19]. Solutions of the refinement
step subproblems (Sect. 4.4) were obtained using IPOPT 3.11 [11].

In practice, the α coefficient, appearing in the scalarized formulation Eq. (16) and in the
derived MIDDP formulation Eq. (23), depends on the instance. In general, we found that
values of α over 0.2 often yielded trivial solutions where yi j = 0 for every {i, j} ∈ E . After
some preliminary experimentation, we set α = 0.15 for both sBB and DDP.

Our implementation uses a mixture of Python3 and AMPL (using the AmplPy Python
interface). The experiments were carried out on a server with four Intel Xeon E5-2620 v4
CPUs with eight cores per CPU at 2.1GHz with 64GB RAM running CentOS Linux.

123

Journal of Global Optimization (2022) 83:29–47 43

Table 1 The protein instances in
the test set, with the
corresponding number of edges
and vertices in their graphs

Name m n

tiny 335 37

1guu 955 213

1guu-1 959 150

1guu-4000 968 150

pept 999 107

res_2kxa 2627 177

2kxa 2711 177

C0030pkl 3247 198

100d 5741 488

helix_amber 6265 392

Fig. 1 Realization of tiny obtained using sBB compared with a correct reference realization (left). The
systematic error (center). Error derived from a wrong partial reflection (right). The scaling on the axes is
arbitrary

5.4 Experiments

In this section we discuss the results obtained from the experiments.

5.4.1 The sBB algorithm

The sBB algorithm was able to solve none of the instances in Table 1 to guaranteed global
optimality within one hour of CPU time. Moreover, it failed to find feasible solutions for any
instance other than tiny.

On the tiny instance, sBB found, within one hour of CPU time, a realization x∗ with
|supp(y)| = 335, MDE = 0.056, LDE = 3.352. Since m = 335 = |supp(y)|, this solution
neglects all systematic errors, considering them as experimental instead. This is noticeable
in Fig. 1, which shows x∗ optimally aligned to a reference realization without any error at
all. The RMSD value for this pair is 0.084.

Each picture in Fig. 1 shows two realizations of tiny aligned optimally using Procrustes
analysis. One of them, labelled x∗ in the left picture, was found by sBB; the other, labelled
“Reference”, is a realization of tinywithout errors (experimental or systematic).We remark
that the two clusters on the left appear to be well aligned. In the center picture we emphasize
an edge {i, j} in x∗ which should clearly add to the systematic error rather than to the
experimental one: it shows that yi j should have been zero rather than one (we recall that,
instead, sBB found a solution with yi j = 1). On the right picture, we emphasize a flipped
partial reflection, which contributes to the overall RMSD error, but is not an actual error, as
explained in [12].

123

44 Journal of Global Optimization (2022) 83:29–47

Table 2 Results from the DDP algorithm

Name RkRed m |supp(y)| MDE LDE RMSD UB NegEv CPU

tiny pca 335 317 0.124 2.862 0.143 335 0.343 3619.34

tiny bvk 335 317 0.109 3.034 0.136 335 0.343 3622.70

1guu pca 955 949 0.002 0.224 0.047 955 0.391 3629.33

1guu bvk 955 949 0.001 0.292 0.047 955 0.391 3683.10

1guu-1 pca 959 952 0.014 1.294 0.081 959 0.382 3618.80

1guu-1 bvk 959 952 0.022 0.854 0.078 959 0.382 3616.69

1guu-4000 pca 968 967 0.025 1.443 0.080 968 0.379 3623.35

1guu-4000 bvk 968 967 0.036 1.537 0.079 968 0.379 3636.38

pept pca 999 999 0.149 2.578 0.092 999 0.387 3624.22

pept bvk 999 999 0.170 3.794 0.094 999 0.387 3632.36

res_2kxa pca 2627 2626 0.133 2.975 0.053 2627 0.399 3658.31

res_2kxa bvk 2627 2626 0.106 3.818 0.054 2627 0.399 3898.28

2kxa pca 2711 2708 0.139 3.607 0.052 2711 0.399 3684.55

2kxa bvk 2711 2708 0.165 3.336 0.053 2711 0.399 3662.43

C0030pkl pca 3247 3243 0.275 4.118 0.068 3247 0.405 3770.95

C0030pkl bvk 3247 3243 0.249 5.330 0.070 3247 0.405 3705.82

100d pca 5741 5741 0.202 3.686 0.045 5741 0.397 4488.31

100d bvk 5741 5741 0.209 3.628 0.045 5741 0.397 4521.80

helix_amber pca 6265 6265 0.273 3.704 0.050 6265 0.404 4229.80

helix_amber bvk 6265 6263 0.264 4.176 0.050 6265 0.404 3963.57

5.4.2 TheDDP algorithm

The DDP algorithm was configured with a maximumCPU time of 3600s for the MILP solver
deployed on the inner MIDDP formulation of Eq. (23), while the local NLP solver in the
refinement phase was allowed to terminate naturally. The DDP algorithm was able to find
reasonable realizations for all of the instances. The results are reported in Table 2.

The columns report: the instance name, the rank reduction algorithm (PCA, denoted “pca”,
or Barvinok’s naive algorithm, denoted “bvk”), the number m of edges in the instance, the
number |supp(y)| of edges with experimental error only, the MDE and LDE measures, the
RMSD value between the realization found and a reference realization without any error,
the upper bound UB found by the outer MIDDP relaxation in Eq. (25), the ratio NegEv of
negative to total eigenvalue weight of the corresponding outer MIDDP solution, and the CPU
time.

Table 2 allows us to make a few observations.

1. Overall, the methodology we propose is able to derive approximate solutions to small and
medium-scaled instances of the MaxFSDGP problem in acceptable times.

2. The MDE quality measures are acceptable with respect to results obtained in the DGP
literature on proteins with solution methods taken from MP (see e.g. [12,13,20,24,27]).
The LDEmeasures, on the other hand, appear excessive, andmay be a sign that the balance
α between systematic and experimental error needs further tuning.

123

Journal of Global Optimization (2022) 83:29–47 45

Table 3 RMSD values between
partial solutions obtained by
MIDDP after dimensionality
reduction, and final solutions
after the refinement phase

Name pca bvk

tiny 0.137 0.158

1guu 0.041 0.045

1guu-1 0.080 0.080

1guu-4000 0.080 0.081

pept 0.094 0.095

res_2kxa 0.048 0.053

2kxa 0.048 0.053

C0030pkl 0.068 0.071

100 0.045 0.045

helix_amber 0.050 0.050

3. The time spent on the refinement phase can vary greatly. While this is not necessarily
troublesome when finding the shape of proteins (which is rarely a real-time affair), it may
help to set a time limit on the refinement phase too.

4. It is unclear whether PCAor Barvinok’s naive algorithm is the best rank reductionmethod.
They clearly yield different approximate realizations, which is important in view of the
choice of starting point for the refinement phase. A possible idea would be to deploy them
in parallel until termination of the fastest refinement phase.

5. The upper bound UB obtained by the outer MIDDP relaxation is always equal to the
number of edges of the instance. Further analysis shows that every outer MIDDP was
always solved by the presolver, which further strengthens the possibility that this upper
bound may be always trivial. We do not know whether setting yi j = 1 for each {i, j} ∈ E
always yields a feasible solution in Eq. (25) with

∑
i j ri j = 0; neither dowe knowwhether

such a property might be established for specific values of α.

A furthermethodological inquiry can bemade by computing the RMSDbetween solutions
of the MIDDP formulation Eq. (23) after projection (by PCA or by Barvinok’s algorithm),
and the solution after the refinement phase using the local NLP solver. This statistic gives
us an idea of whether the refinement phase is effective. As can be seen from Table 3, this is
indeed the case.

6 Conclusion

This paper is about the problem of finding a maximum feasible subsystem of distance geom-
etry constraints, which models well the dual nature of the errors arising from finding protein
conformations from NMR distance data. We discussed mathematical programming formula-
tions of many different types for this problem: exact, approximate, relaxations, restrictions.
We proposed a solutionmethodology based on amixed integer diagonally dominant program-
ming restriction of the original mixed-integer nonlinear programming problem.We tested our
methodology on a set of protein instances of small and medium sizes obtaining reasonable
solutions in acceptable CPU times.

Data availibility The datasets generated and analysed in this paper are available upon request from the corre-
sponding author

123

46 Journal of Global Optimization (2022) 83:29–47

References

1. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems.
Nature 435(9), 759–764 (2005)

2. Ahmadi, A., Hall, G.: Sum of squares basis pursuit with linear and second order cone programming. In:
Harrington, H., Omar, M., Wright, M. (eds.) Algebraic and Geometric Methods in Discrete Mathematics.
Contemporary Mathematics, vol. 685, pp. 27–54. AMS, Providence, RI (2017)

3. Ahmadi, A.,Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares
and semidefinite optimization. SIAM J. Appl. Algebra Geometry 3(2), 193–230 (2019)

4. Amaldi, E., Bruglieri, M., Casale, G.: A two-phase relaxation-based heuristic for the maximum feasible
subsystem problem. Comput. Oper. Res. 35, 1465–1482 (2008)

5. Amaldi, E., Pfetsch, M., Trotter, L.: On the maximum feasible subsystem problem, IISS and IIS-
hypergraphs. Math. Program. 95, 533–554 (2003)

6. Barker, G., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57(1), 15–32 (1975)
7. Barvinok, A.: Measure concentration in optimization. Math. Program. 79, 33–53 (1997)
8. Berger, B., Kleinberg, J., Leighton, T.: Reconstructing a three-dimensional model with arbitrary errors.

J. ACM 46(2), 212–235 (1999)
9. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.N., Bourne, P.:

The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)
10. Bhatia, R.: Matrix Analysis. New York (1997)
11. COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2006)
12. D’Ambrosio, C., Vu,K., Lavor, C., Liberti, L.,Maculan, N.: New errormeasures andmethods for realizing

protein graphs from distance data. Discrete Comput. Geom. 57(2), 371–418 (2017)
13. Dias, G., Liberti, L.: Diagonally dominant programming in distance geometry. In: Cerulli, R., Fujishige,

S., Mahjoub, R. (eds.) International Symposium in Combinatorial Optimization. LNCS, vol. 9849, pp.
225–236. Springer, New York (2016)

14. Gerschgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izvestia Akademii Nauk USSR 6,
749–754 (1931)

15. Gonçalves, D., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry
problem. J. Glob. Optim. 69, 525–545 (2017)

16. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53(2), 285–339
(1991)

17. Greer, R.: Trees and hills: methodology for maximizing functions of systems of linear relations. Annals
of Discrete Mathematics, vol. 22. Elsevier, Amsterdam (1984)

18. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol.
24(6), 417–441 (1933)

19. IBM. ILOG CPLEX 12.9 User’s Manual. IBM (2019)
20. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular distance geometry

problem. In: Pintér, J. (ed.) Global Optimization: Scientific and Engineering Case Studies, pp. 213–225.
Springer, Berlin (2006)

21. Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable
molecular distance geometry problem with inexact distances. J. Glob. Optim. 56, 855–871 (2013)

22. Liberti, L.: Undecidability and hardness in mixed-integer nonlinear programming. RAIROOper. Res. 53,
81–109 (2019)

23. Liberti, L.: Distance geometry and data science. TOP 28, 271–339 (2020)
24. Liberti, L., Iommazzo, G., Lavor, C., Maculan, N.: A cycle-based formulation of the Distance Geometry

Problem. In C. Gentile et al., (ed.), Proceedings of 18th Cologne-Twente Workshop, volume 4 of AIRO,
Springer, New York (2020)

25. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM
Rev. 56(1), 3–69 (2014)

26. Liberti, L., Marinelli, F.: Mathematical programming: Turing completeness and applications to software
analysis. J. Combin. Optim. 28(1), 82–104 (2014)

27. Liberti, L., Vu, K.: Barvinok’s Naive algorithm in distance geometry. Oper. Res. Lett. 46, 476–481 (2018)
28. Luisi, P.: Molecular conformational rigidity: an approach to quantification. Naturwissenschaften 64, 569–

574 (1977)
29. Malliavin, T., Mucherino, A., Lavor, C., Liberti, L.: Systematic exploration of protein conformational

space using a distance geometry approach. J. Chem. Inf. Model. 59, 4486–4503 (2019)
30. Mucherino, A., Gonçalves, D.S., Liberti, L., Lin, J.-H., Lavor, C., Maculan, N., MD-JEEP: a new release

for discretizable distance geometry problems with interval data. Annals of Computer Science and Infor-
mation Systems, Sofia, Bulgaria 1–7, 2020 (2020)

123

Journal of Global Optimization (2022) 83:29–47 47

31. Nilges, M., Macias, M., O’Donoghue, S., Oschkinat, H.: Automated NOESY interpretation with ambigu-
ous distance restraints: the refined NMR solution structure of the Pleckstrin homology domain from
β-spectrin. J. Mol. Biol. 269, 408–422 (1997)

32. Sahinidis, N.V., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual (2005)

33. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th
Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

34. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed integer nonlinear programs: a theoretical
and computational study. Math. Program. 99, 563–591 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Maximum feasible subsystems of distance geometry constraints
	Abstract
	1 Introduction
	2 Exact formulation
	2.1 Experimental errors
	2.2 Systematic errors
	2.3 Systematic and experimental errors together

	3 Primal relaxations and approximations
	3.1 Bi-objective relaxation
	3.1.1 Sufficient optimality conditions
	3.1.2 Necessary optimality conditions

	3.2 Scalarized approximation

	4 Matrix relaxations and rank reduction
	4.1 MISDP relaxation
	4.2 MIDDP approximations
	4.2.1 Inner restriction
	4.2.2 Outer relaxation

	4.3 Rank reduction
	4.3.1 Principal Component Analysis
	4.3.2 Barvinok's naive algorithm

	4.4 Refinement

	5 Computational results
	5.1 Solution quality measures
	5.2 Test set
	5.3 Computational set-up
	5.4 Experiments
	5.4.1 The sBB algorithm
	5.4.2 The DDP algorithm

	6 Conclusion
	References

