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Abstract
The emphasis of the paper is to examine the essential stability of efficient solutions for semi-
continuous vector optimization problems, subject to the perturbation of objective function
and feasible set. We obtain sufficient conditions for existence and characterization of essen-
tial efficient solutions, essential sets and essential components, where the efficient solutions
are governed by an arbitrary preference relation in a real normed linear space. Further, we
establish the density of the set of stable vector optimization problems in the sense of Baire
category. We also exhibit that essential stability is weaker than examining continuity aspects
of solution sets.

Keywords Vector optimization · Essential sets · Essential components · Continuity ·
Semicontinuity
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1 Introduction

In literature various stability aspects, such as continuity, convergence, density and so on have
been extensively studied in [1,11,19,23] and references therein. In 1950, Fort [7] proposed
another aspect of stability, namely essential stability. In this paper he introduced a notion of
essential fixed points for continuous mappings over compact sets. In 1952, Kinoshita [15]
considered a notion of essential components of fixed points. Since then, various authors
have considered the notions of essential solutions, essential sets and essential components
of solution sets for optimization problems; see [17,18,20,24,26–28]. This study has been
extended to the study of KKM points, Ky Fan’s points, Nash equilibrium points and vector
equilibrium problems, for more details see [9,29–31].
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Essential stability ensures some sort of continuity of the solution set mappings. Each per-
turbed problem which is sufficiently near the original problem, has solutions lying arbitrarily
near the solutions of the original problem. There are mainly two aspects widely studied
pertaining to essential stability of solution sets, existence results and density of essentially
stable problems. In [20], Luo examined necessary and sufficient conditions for the existence
of essential solutions and essential components of solution sets for lower semicontinuous
scalar optimization problems. Xiang and Zhou [26,27] analyzed these existence results for
continuous vector optimization problems. Further, they also examined the relation between
essential solutions, essential sets, lower semicontinuity and upper semicontinuity of solution
set mappings. Yu [28] established a density of stable problems among a set of all vector opti-
mization problems in the sense of Baire category. Recently, Long et al. [18] proved density
results for semi-infinite optimization problems under the perturbation of both constraint and
objective mappings.

There are many economic models in infinite-dimensional spaces where preference rela-
tions are specified via sets having empty interior; see [14,33] and references therein. This
prompts the need for unifying the well-studied convex cone ordering structure to general
preference structures. The first attempt in this direction was by Yu [32], followed by other
researchers [4–6,13,22,25]. In this direction, we consider a vector optimization problem in
real normed linear spaces, where the solution concepts are based on arbitrary preference rela-
tions. The available literature on essential stability is mostly confined to continuous vector
optimization problems. However, in this paper we examine essential stability for semicon-
tinuous vector optimization problems.

In the above unified setting and under the perturbation of both objective function and
feasible set, we study the stability results of [26]. We begin by examining essential sets for
(lower) upper semicontinuous efficient solution mappings. Further, we establish the density
of stable vector optimization problems in the sense of Baire category. We next establish
the existence of essential solution sets, minimal essential sets and essential components
under suitable assumptions and exhibit that the essential stability is weaker than the lower
semicontinuity and the upper semicontinuity of solution set-valued mappings. Moreover,
we also obtain a complete characterization of essential efficient solutions, essential sets and
essential components of efficient solution set.

The content of the paper is outlined in 7 sections. Section 2 presents some basic definitions
and notations required in the sequel. In Sect. 3, we introduce the notions of essential efficient
solutions, essential sets and essential components. In Sect. 4, we examine the relation between
continuity of efficient solution mappings and corresponding essential solutions and essential
sets, followed by the density aspects of stable problems. Section 5 deals with the existence
of minimal essential sets and essential components of efficient solutions, followed by their
complete characterizations in Sect. 6. Finally, concluding remarks are highlighted in Sect. 7.

2 Preliminaries

Let (Y , ‖·‖) be a real normed linear space. For a nonempty set B in Y , the interior and closure
of B are denoted by int B and cl B, respectively. We denote the open ball of radius δ > 0
centered at 0Y by Bδ(0Y ), and the set of nonnegative and positive real numbers byR+ andR++,
respectively. We consider a preference relation �D induced by a nonempty proper subset D
of Y . For y, y′ ∈ Y ,

y �D y′ ⇐⇒ y′ ∈ y + D.
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Clearly, the preference relation�D is reflexive if 0Y ∈ D, antisymmetric if D∩(−D) = {0Y }
and transitive if D+ D ⊆ D. Further, if D+ D ⊆ D and int D 
= ∅, then D+ int D ⊆ int D
and 0Y /∈ int D.

Let (X , d) be a metric space, A be a nonempty subset of X and f : X → Y be a
vector-valued mapping. Consider the following vector optimization problem

(P) D- min f (x) subject to x ∈ A.

A vector x̄ ∈ A is said to be an efficient solution of (P), if for each x ∈ A either
f (x) �D f (x̄) or f (x) = f (x̄), that is,

( f (A) − f (x̄)) ∩ (−D) ⊆ {0Y },
(see Page 1124 [25]). If 0Y /∈ D, then the above relation reduces to ( f (A)−f (x̄))∩(−D) = ∅.

Since D is an arbitrary preference relation, the efficiency notion above unifies various existing
solution concepts for (P) studied in the literature. Indeed, if D = K (D = int K ), where
K ⊆ Y is a closed, convex and pointed cone with a nonempty interior, then the above notion
reduce to the notions of efficient (weak efficient) solution considered in [12,14,19].

If E denotes the set of efficient solutions of (P) and M = { f (x) | x ∈ E}, then for each
y ∈ M , we have f −1(y) ⊆ E and

E =
⋃

y∈M
f −1(y),

where f −1(y) := {x ∈ A | f (x) = y}.
We next recall the notions of semicontinuity of vector-valuedmappings with respect to the

preference relation D from [18, Definition 2.3]. Let f : X → Y be a vector-valued mapping
and x̄ ∈ X . Then, f is said to be D-lower semicontinuous (resp. D-upper semicontinuous)
at x̄ ∈ X , if for any open neighbourhood V of f (x̄) in Y , there exists an open neighbourhood
U of x̄ in X such that f (x) ∈ V + D (resp. f (x) ∈ V − D) for all x ∈ U . Moreover,
f is said to be continuous at x̄ , if f (x) ∈ V for all x ∈ U . Further, we say f is D-lower
semicontinuous (resp. D-upper semicontinuous, continuous) on a nonempty subset A ⊆ X ,
if f is D-lower semicontinuous (resp. D-upper semicontinuous, continuous) at each x ∈ A.

It can be observed that every continuous mapping is both D-lower semicontinuous and
D-upper semicontinuous, if 0Y ∈ D and the converse holds, if D is normal, that is, for any
open neighbourhood V of 0Y in Y , the set (V + D) ∩ (V − D) is bounded (see Theorem
2.2.10 in [10]). Further, from [10, Corollary 2.2.11], it is evident that if Y = R

n , D is closed
and D∩ (−D) = {0Y }, then D is normal, however the same cannot be claimed if Y is infinite
dimensional (see Example 2 below).

Further, we recall the notions of continuity of set-valued mappings from [14, Definition
3.1.1], which we prefer to call as semicontinuity notions. Let F : A ⇒ Y be a set-valued
mapping. Then, F is said to be lower semicontinuous (resp. upper semicontinuous) at x̄ ∈ A,
if for any open set V in Y with F(x̄) ∩ V 
= ∅ (resp. F(x̄) ⊆ V ), there exists an open
neighbourhoodU of x̄ such that F(x)∩V 
= ∅ (resp. F(x) ⊆ V ) for all x ∈ U ∩ A. Also, F
is said to be continuous at x̄ , if F is both lower semicontinuous and upper semicontinuous at
x̄ . These continuity notions can be extended to the set A, if these notions hold at each x ∈ A.

Proposition 3.1.10.(iv) in [14] states that, if F is upper semicontinuous at x̄ ∈ A and F(x̄)
is compact, then for any sequence (xn)n∈N ⊆ A with xn → x̄ and yn ∈ F(xn), n ∈ N with
yn → ȳ, we have ȳ ∈ F(x̄).
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Remark 1 For a vector-valued mapping f : X → Y , if we consider a set-valued mapping
F : X ⇒ Y defined as F(x) := f (x) + D, where D is preorder relation on Y (that is,
reflexive and transitive), then for x̄ ∈ X , it is easy to observe that

(a) f is D-upper semicontinuous at x̄ if and only if F is lower semicontinuous at x̄ .
(b) f is D-lower semicontinuous at x̄ if F is upper semicontinuous at x̄ .

The notions of continuity of set-valued mappings with respect to the arbitrary preference
relation D on Y can be considered as in [10]. So, for further relations between continuity
notions of vector-valued and set-valued mappings we refer to the book by Göpfert et al. [10].

We next propose to provide an existence theorem for (P) with D-lower semicontinuous
objective mapping. From [19], we recall that if D is a closed convex cone and f : X → Y
is D-lower semicontinuous on X , then f is level-closed, that is, for each y ∈ Y , the level set
Ly defined as

Ly := {x ∈ X | f (x) �D y},
is closed. Thus, the following lemma is immediate from Corollary 5.10 in [19].

Lemma 1 Suppose that A is closed, f is D-lower semicontinuous on A, D is closed and
D + D ⊆ D, then Ly ∩ A is closed for all y ∈ Y .

Flores-Bazán et al. [6] established an existence result for efficient solutions of a vector
optimization problem with level-closed objective mapping by considering a general preorder
relation. Assuming the conditions D + D ⊆ D and D ∩ (−D) = {0Y }, it can be seen that
the notion of efficiency considered in [6] coincides with the notion considered in this paper.
Hence, the following existence theorem follows from Theorem 5.1 in [6] and Lemma 1.

Theorem 1 Suppose that A is compact, f is D-lower semicontinuous on A, D is closed,
D + D ⊆ D and D ∩ (−D) = {0Y }, then there exists an efficient solution of (P).

Remark 2 Note that there may not exist a solution for (P), if D is a preorder relation with
D ∩ (−D) 
= {0Y }. Consider a problem (P), where f : R → R

2 is defined as

f (x) =
{

(0, 0), if x = 0,

(1, 0), if x 
= 0,

D ⊆ R
2 be defined as D = {(x1, x2) ∈ R

2 | x2 ∈ N ∪ {0}} and A = [0, 1]. Clearly, f is
D-lower semicontinuous on compact set A, however D ∩ (−D) = {(x, 0) | x ∈ R} and we
have E = ∅.

3 Essential sets and essential components

An essential solution of a problem is an efficient solution, which has in its neighbourhood,
an efficient solution of perturbed problems, lying arbitrarily close to the given problem. Sim-
ilarly, in the neighbourhood of essential sets there exists efficient solutions of the perturbed
problemswhich are arbitrarily close to the given problem. For problemswith compact feasible
sets and semicontinuous objective mappings, we now introduce these notions by perturbing
both the objective function and the feasible set.

Let K0(X) be the space of all nonempty compact subsets of X . For A1, A2 ∈ K0(X), we
consider the Hausdorff distance between A1 and A2 defined by

h(A1, A2) := max{e(A1, A2), e(A2, A1)},
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where e(A1, A2) = supa1∈A1
infa2∈A2 d(a1, a2) (see Definition 2.3 in [17]). It can be seen

that (K0(X), h) is a metric space with metric h. Further, if (X , d) is a complete metric space,
then so is (K0(X), h) (see Theorem 4.3.9 in [16]). For a sequence (An)n∈N in K0(X) and
A ∈ K0(X), we say that An → A, if h(An, A) → 0. The next lemma follows from [16,
Corollary 4.2.3] and [28, Lemma 1].

Lemma 2 Let (An)n∈N ⊆ K0(X) and A ∈ K0(X) be such that An → A. Then, the following
conditions hold:

(i) If xn ∈ An for every n ∈ N and xn → x, then x ∈ A.
(ii) If x ∈ A and U is any neighbourhood of x in X, then An ∩ U 
= ∅ for sufficiently large

n.
(iii)

⋃∞
n=1 An ∪ A ∈ K0(X).

In the above lemma, it is evident from the condition (i i), that if An → A, then for any
x ∈ A, there exists a sequence (xn)n∈N such that xn → x , where xn ∈ An for each n ∈ N.
Thus from (i) and (i i), it follows that An → A in the sense of Kuratowski–Painlevé set
convergence (see Definition 5.2.3 in [2]).

Further, let LU(X , Y ) be the space of all vector-valued mappings from X to Y that are
both D-lower semicontinuous and D-upper semicontinuous on X . For f1, f2 ∈ LU(X , Y ),
we consider a metric ρ on LU(X , Y ) defined as

ρ( f1, f2) = min

{
sup
x∈X

‖ f1(x) − f2(x)‖, 1

2

}
.

It is stated fact that (LU(X , Y ), ρ) is a metric space (see Page 56 in [21]).
Next, we consider the space S defined as

S := K0(X) × LU(X , Y ).

It can be seen that (S, �) is a metric space, where for si = (Ai , fi ) ∈ S, i = 1, 2, the metric
� is defined as

�(s1, s2) = h(A1, A2) + ρ( f1, f2).

For each s = (A, f ) ∈ S, we consider the following vector optimization problem

(P)s D- min f (x)

subject to x ∈ A.

We denote the set of efficient solutions of (P)s by E(s). The corresponding mapping
E : S ⇒ X is referred to as efficient solution mapping. Further, the mapping M : S ⇒ Y ,
where M(s) := { f (x) | x ∈ E(s)} is referred to as minimal solution mapping.

Throughout this section, we assume that the set E(s) 
= ∅ for any s = (A, f ) ∈ S.
We next define notions of essential solutions and essential solution sets similar to

Definitions 2 and 3 considered by Xiang and Zhou in [26].

Definition 1 Let s = (A, f ) ∈ S. An element x̄ ∈ E(s) is said to be an essential effi-
cient solution of (P)s , if for every open neighbourhood U of x̄ in X , there exists an open
neighbourhood O of s in S such that E(s′) ∩U 
= ∅ for all s′ ∈ O .

The problem (P)s is said to be stable, if every x̄ ∈ E(s) is an essential efficient solution
of (P)s .
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Definition 2 Let s = (A, f ) ∈ S. A nonempty set e(s) ⊆ E(s) is said to be an essential set
of E(s), if

(a) e(s) is closed in X ;
(b) for any open set U ⊇ e(s), there exists an open neighbourhood O of s in S such that

E(s′) ∩U 
= ∅ for all s′ ∈ O .

Moreover, e(s) is said to be aminimal essential set, if it is minimal among all the essential
sets of E(s) in terms of set inclusion.

Remark 3 If e(s) is an essential set of E(s) and B is a closed set in X such that e(s)⊆ B⊆E(s),
then B is an essential set of E(s).

Remark 4 Any closed subset of E(s) containing an essential efficient solution of (P)s is an
essential set of E(s). However, there may exist an essential set having no essential efficient
solution (see Remark 6 below).

Next, we define the notion of an essential component of the efficient solution set similar
to the notion considered by Yu et al. [30] (see Page e2416).

Definition 3 Let s = (A, f ) ∈ S. A maximal connected subset of E(s) is said to be a
component of E(s), where maximality is in terms of set inclusion among all connected
subsets of E(s). A component c(s) of E(s) containing an essential set of E(s) is said to be
an essential component of E(s).

4 Essential stability and continuity

In the sequel, we characterize essential sets of lower semicontinuous and upper semicontin-
uous efficient solution mappings. Moreover, the density of stable problems is obtained in the
sense of Baire category.

The following characterization of essential efficient solution and essential set is obvious
for a lower semicontinuous efficient solution mapping.

Theorem 2 Let s = (A, f ) ∈ S. Then, every x ∈ E(s) is an essential efficient solution of
(P)s if and only if E is lower semicontinuous at s. Moreover, the set e(s) = {x} is an essential
set for every x ∈ E(s) if and only if E is lower semicontinuous at s.

To characterize essential sets of the upper semicontinuous efficient solution mappings,
we require int D 
= ∅. In the next theorem, we establish that strict domination property is
a necessary and sufficient condition for the upper semicontinuity of the efficient solution
mapping. We next recall that, strict domination property holds for s = (A, f ) ∈ S, if for
each x̄ ∈ A either x̄ ∈ E(s) or there exists x ′ ∈ A such that f (x ′) �int D f (x̄) (see Definition
2.1 in [13]). Further, for q ∈ Y\{0Y }, we denote by R++q := {λq | λ > 0}.
Theorem 3 Suppose that s ∈ S, D is closed, int D 
= ∅, D + D ⊆ D and there exists
q ∈ Y\{0Y } such that R++q ⊆ int D. Then, E is upper semicontinuous at s if and only if the
strict domination property holds for s.

Proof Let E be upper semicontinuous at s = (A, f ) and x̄ ∈ A be such that x̄ /∈ E(s).
Define α : X → R++ as

α(x) = 1

1 + d(x, x̄)
.
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Clearly, α is continuous on X , α(x̄) = 1 and α(x) < 1 for all x 
= x̄ . For n ∈ N, define
An = A and fn : X → Y as

fn(x) = f (x) − α(x)

n
q.

It can be seen that fn ∈ LU(X , Y ), hence sn = (An, fn) ∈ S for all n ∈ N and sn → s.
Since x̄ /∈ E(s), there exists an open set U ⊇ E(s) such that x̄ /∈ U . Since E is upper
semicontinuous at s, there exists n̄ ∈ N such that E(sn) ⊆ U for all n ≥ n̄, which implies that
x̄ /∈ E(sn̄). Hence, there exists x ′ ∈ An̄ = A such that fn̄(x ′) �D fn̄(x̄) and fn̄(x ′) 
= fn̄(x̄).
Thus, we have

f (x ′) − α(x ′)
n̄

q �D f (x̄) − α(x̄)

n̄
q.

Since α(x̄) = 1 and α(x ′) < 1, we have

f (x ′) �int D f (x ′) +
(
1 − α(x ′)

n̄

)
q �D f (x̄).

As D + int D ⊆ int D, it follows that f (x ′) �int D f (x̄).
Conversely, let the strict domination property hold for s = (A, f ) and E be not upper

semicontinuous at s. Then, there exist an open set U ⊇ E(s), a sequence (sn)n∈N ⊆ S,
where sn = (An, fn) with sn → s and xn ∈ E(sn) such that xn /∈ U for all n ∈ N. Since
xn ∈ An ⊆ ⋃∞

n=1 An ∪ A ∈ K0(X), by Lemma 2(i i i), without loss of generality, we assume
that xn → x̄ . By Lemma 2(i), it follows that x̄ ∈ A. Clearly, x̄ /∈ U and hence x̄ /∈ E(s). By
the strict domination property for s, there exists x ′ ∈ A such that f (x ′) �int D f (x̄), which
implies that there exists λ ∈ R++ such that f (x̄) − f (x ′) − 2λq ∈ int D. Let d = λq , then
d ∈ int D and

f (x ′) + d �int D f (x̄) − d. (1)

Let δ > 0 be such that d+B2δ(0Y ) ⊆ int D. Since the sequence ( fn)n∈N uniformly converges
to f , there exists n1 ∈ N such that fn(x) ∈ f (x)+ Bδ(0Y ) for all x ∈ X and n ≥ n1. Further,
since f is D-lower semicontinuous at x̄ , there exists an open neighbourhood U1 of x̄ in X
such that f (u) ∈ f (x̄) + Bδ(0Y ) + D for all u ∈ U1. Thus, for all u ∈ U1 and n ≥ n1, it
follows that fn(u) ∈ f (x̄) + B2δ(0Y ) + D, which further implies that

f (x̄) − d �int D fn(u) ∀ u ∈ U1, n ≥ n1. (2)

Similarly, as f is D-upper semicontinuous at x ′, there exists an open neighbourhood U2 of
x ′ in X and n2 ∈ N such that

fn(u) �int D f (x ′) + d ∀ u ∈ U2, n ≥ n2. (3)

Since xn → x̄ and x ′ ∈ A, by Lemma 2 (i i), there exists n3 ∈ N such that xn ∈ U1 and
An ∩ U2 
= ∅ for all n ≥ n3. Let n̄ = max{n1, n2, n3}. For each n ≥ n̄, let x ′

n ∈ An ∩ U2.
Thus, from (1)-(3) and the fact that D + int D ⊆ int D, it follows that fn(x ′

n) �int D fn(xn)
for all n ≥ n̄, which contradicts that xn ∈ E(sn) for all n ∈ N. ��

In the next theorem, we identify an essential set when the efficient solution set mapping
is upper semicontinuous.

Theorem 4 Suppose that s = (A, f ) ∈ S, D is closed, int D 
= ∅, D + D ⊆ D and there
exists q ∈ Y\{0Y } such that R++q ⊆ int D. If E is upper semicontinuous at s, then E(s) is
an essential set of itself.
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Proof Since E is upper semicontinuous at s, it is enough to prove that E(s) is a closed
set. On the contrary, let there exists a sequence (xn)n∈N ⊆ E(s) with xn → x̄ ∈ A
such that x̄ /∈ E(s). By Theorem 3, the strict domination property holds for s, hence
there exists x ′ ∈ A such that f (x ′) �int D f (x̄). Let d = f (x̄) − f (x ′) ∈ int D and
δ > 0 be such that d + Bδ(0Y ) ⊆ int D. Since f is D-lower semicontinuous at x̄ and
xn → x̄ , it follows that f (xn) ∈ f (x̄) + Bδ(0Y ) + D for sufficiently large n, which fur-
ther implies that f (x̄) − d �int D f (xn) for sufficiently large n. Hence, f (x ′) �int D f (xn)
for sufficiently large n, which is a contradiction. ��

In view of preceding results, we next aim to show that for any s ∈ S, (P)s can be approx-
imated arbitrarily by stable problems emanating from S, provided the efficient solution set
mapping is upper semicontinuous for each s ∈ S. For this purpose, in the remaining section
we assume (X , d) is a complete metric space and (Y , ‖ · ‖) is a Banach space and we recall
the following result. Also by Baire category theorem [3], it is known that a complete metric
space is a Baire Space.

Lemma 3 [8, Theorem2]Suppose thatΛ is aBaire space, Z is ametric space and F : Λ ⇒ Z
is a upper semicontinuous mapping with compact values. Then, there exists a dense residual
subset G of Λ (that is, G contains a countable intersection of open dense subsets of Λ) such
that F is lower semicontinuous at each λ ∈ G.

Next, we prove the following lemma.

Lemma 4 (S, �) is a complete metric space.

Proof Let (sn)n∈N be a Cauchy sequence in S, where sn = (An, fn) for all n ∈ N. Thus for

any 0 < δ <
1

2
, there exists n0 ∈ N such that �(sn, sm) < δ

4 for all n, m ≥ n0, that is,

h(An, Am) <
δ

4
and ‖ fn(x) − fm(x)‖ <

δ

4
, ∀x ∈ X , n,m ≥ n0. (4)

Hence, (An)n∈N is a Cauchy sequence in (K0(X), h) and for any fixed x ∈ X , ( fn(x))n∈N is
a Cauchy sequence in (Y , ‖ · ‖). Since K0(X) is a complete metric space and Y is a Banach
space, there exist A ∈ K0(X) and f (x) ∈ Y such that An → A and fn(x) → f (x). From
(4), letting m → +∞, we have

h(An, A) ≤ δ

4
and ‖ fn(x) − f (x)‖ ≤ δ

4
, ∀x ∈ X , n ≥ n0, (5)

which further implies that �(sn, s) ≤ δ
2 < δ, where s = (A, f ). We next prove that

f ∈ LU(X , Y ). Let x ∈ X be fixed. Since fn0 is D-lower semicontinuous at x , there
exists an open neighbourhood U of x in X such that

fn0(x
′) ∈ fn0(x) + Bδ/4(0Y ) + D, ∀x ′ ∈ U . (6)

From (5) and (6), for all x ′ ∈ U it can be seen that f (x ′) ∈ f (x) + Bδ(0Y ) + D. Similarly,
we can show that f is D-upper semicontinuous on X . Hence, for (sn)n∈N ⊆ S, we have
s ∈ S such that �(sn, s) → 0, which concludes that (S, �) is a complete metric space. ��

In view of preceding lemmas and Theorem 4, we now establish existence of a dense subset
in S which comprise of stable problems.

Corollary 1 Suppose that D is closed, int D 
= ∅, D + D ⊆ D and there exists q ∈ Y\{0Y }
such that R++q ⊆ int D. If E is upper semicontinuous for each s ∈ S, then there exists a
dense residual subset G of S such that (P)s is stable for all s ∈ G.

123



Journal of Global Optimization (2021) 80:161–175 169

Proof From Lemma 4, clearly S is a Baire Space. By Theorem 4 and compactness of set A,
it follows that E : S ⇒ X is upper semicontinuous on S with compact values. Further, from
Lemma 3, we have there exists a dense residual subset G of S such that E is lower semicon-
tinuous at each s ∈ G. Hence, the result follows from Theorem 2. ��

5 Existence of essential set and essential component

In the sequel, we provide sufficient conditions for the existence of essential sets, minimal
essential sets and essential components of the efficient solution set. Moreover, we assert that
existence of essential set is strictly weaker than lower semicontinuity or upper semicontinuity
of efficient solution set mapping.

To begin with, we prove that f −1(ȳ) for any ȳ ∈ M(s) is an essential set of E(s).

Theorem 5 Suppose that s = (A, f ) ∈ S, D is closed, D + D ⊆ D and D ∩ (−D) = {0Y }.
If ȳ ∈ M(s), then f −1(ȳ) is an essential set of E(s).

Proof Let x̄ ∈ E(s) be such that f (x̄) = ȳ and e(s) = f −1(ȳ). We first show that e(s) is a
closed set. Let (xn)n∈N be a sequence in e(s) such that xn → x . Let δ > 0. As f is D-lower
semicontinuous at x , there exists n0 ∈ N such that f (x) + Bδ(0Y ) �D f (xn) for all n ≥ n0.
Since f (xn) = f (x̄) for each n, it follows that f (x) + Bδ(0Y ) �D f (x̄) for each δ > 0. As
D is closed, it follows that f (x) �D f (x̄), which implies that f (x) = ȳ and hence, x ∈ e(s).

Let U be an open set such that e(s) ⊆ U . We next need to show that there exists a
neighbourhood of s such that E(s′) ∩ U 
= ∅ for every s′ in that neighbourhood. On the
contrary, assume that there exists a sequence (sn)n∈N ⊆ Swith sn → s such that E(sn)∩U=∅
for all n. Clearly, e(s) is a compact set being a closed subset of the compact set A. Hence,
there exists an open set W in X such that e(s) ⊆ W ⊆ W ⊆ U .

Since x̄ ∈ A and An → A, there exists xn ∈ An for all n ∈ N such that xn → x̄ . As
x̄ ∈ e(s) ⊆ W , so xn ∈ W for sufficiently large n. Without loss of generality we assume that
xn ∈ An ∩W for all n ∈ N. Let δ > 0. Since f is D-upper semicontinuous at x̄ and fn → f
uniformly, there exists n1 ∈ N such that

fn(xn) �D f (x̄) − Bδ(0Y ) ∀ n ≥ n1. (7)

We next claim that for sufficiently large n, there exists x ′
n ∈ An\W such that

fn(x ′
n) �D fn(xn). On the contrary, assume that there exists a subsequence (xnk )k∈N of

(xn)n∈N such that fnk (x) �D fnk (xnk ) for all x ∈ Ank\W . For each k ∈ N, define

Tnk := {w ∈ Ank ∩ W | fnk (w) �D fnk (xnk )}.
As 0Y ∈ D, it is clear that xnk ∈ Tnk and hence Tnk 
= ∅ for each k ∈ N. Proceeding as in
the proof of Lemma 1, it can be seen that Tnk is closed subset of Ank and hence a compact
set. Thus, from Theorem 1, we have E(Tnk , fnk ) 
= ∅. Let wnk ∈ E(Tnk , fnk ). Also, for
each k ∈ N we have fnk (x) �D fnk (xnk ) for all x ∈ Ank\Tnk . As fnk (wnk ) �D fnk (xnk ), it
follows that fnk (x) �D fnk (wnk ) for all x ∈ Ank\Tnk . Hence, it follows that wnk ∈ E(snk ).
Sincewnk ∈ W ⊆ U , it follows that E(snk )∩U 
= ∅ for each k ∈ N,which is a contradiction.
Thus, there exists x ′

n ∈ An\W and n2 ∈ N such that

fn(x
′
n) �D fn(xn), ∀ n ≥ n2. (8)

The sequence (x ′
n)n∈N has a convergent subsequence, as

⋃∞
n=1 An ∪ A is a compact set.

Without loss of generality, let x ′
n → x ′. As f is D-lower semicontinuous at x ′, fn → f and

δ > 0, there exists n3 ∈ N such that
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f (x ′) + Bδ(0Y ) �D fn(x
′
n) ∀ n ≥ n3. (9)

By choosing n̄ = max{n1, n2, n3}, it is clear from (7)-(9) that

f (x ′) + Bδ(0Y ) �D f (x̄) − Bδ(0Y ),

for each δ > 0, which implies that f (x ′) �D f (x̄), as D is a closed set. Since x̄ ∈ E(s), it
follows that x ′ ∈ e(s) ⊆ W , which contradicts the fact that x ′

n ∈ An\W , for n sufficiently
large. ��

The following example illustrates that if D-upper semicontinuity of f is relaxed while
defining the set of vector-valued functions LU(X , Y ) and the parameter space S, then above
theorem may fail to hold.

Example 1 Let X = R, Y = R
2 and the mapping f : X → Y be defined as

f (x) =
{

(0, 0), if x ≤ 0,

(0, 1), if x > 0.

Let D ⊆ R
2 be defined as D = (0, x2) ∈ R2|x2 ≥ 0 and A = [0, 1]. Clearly, D is a set

satisfying all the assumptions of Theorem 5, A is compact, f is D-lower semicontinuous on
X but fails to be D-upper semicontinuous at x = 0. For s = (A, f ), we have (0, 0) ∈ M(s),
however we show that E(s) = f −1(0, 0) = {0} is not an essential set of itself. Consider a
neighbourhoodU ⊇ {0} such that 1 /∈ U and a sequence (sn)n∈N with sn = (An, fn), where
An = [ 1

n , 1
]
and

fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0), if x ≤ 0,

(0, 1), if x ∈ (0, 1),(
0, 1 − 1

n

)
, if x ≥ 1,

for all n ∈ N. Clearly, sn → s and E(sn) = {1} for each n ∈ N, but E(sn) ∩U = ∅.
Remark 5 We observe that, if we perturb only the objective function, then we can relax
D-upper semicontinuity of f in Theorem 5. In other words, the theorem can be proved on
similar lines, if S := A × L(X , Y ), where A is assumed to be a nonempty compact subset
of X and L(X , Y ) := { f | f : X → Y is D-lower semicontinuous on X}. Thus, Theorem 5
improves and generalize Lemma 1 of Xian and Zhou in [26], in the following aspects:

(i) the continuity of objective function is relaxed to D-lower semicontinuity.
(i i) the framework of Euclidean space endowed with ordering cone R

n
+ is unified to normed

space endowed with any partial order relation.
(i i i) not only objective function is perturbed but the perturbations with respect to the feasible

set is also taken into the consideration.

In view of Theorem 1, 5 and Corollary 3.2 in [24], we next obtain sufficient conditions
for the existence of minimal essential sets.

Theorem 6 Suppose that D is closed, D + D ⊆ D and D ∩ (−D) = {0Y }. Then, for each
s ∈ S, there is at least one minimal essential set of E(s).

Proof Let s ∈ S, then Theorem 1 implies E(s) 
= ∅. Let x̄ ∈ E(s), then by Theorem 5,
it follows that e(s) = f −1( f (x̄)) = {x ∈ A | f (x) = f (x̄)} is an essential set of E(s).
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For every essential set e′(s) ⊆ E(s), if e′(s) � e(s), then e(s) is a minimal essential set of
E(s). Otherwise, let Q be the family of all essential subsets of e(s) indexed by set inclusion.
Since e(s) is compact, by Cantor’s intersection theorem, every decreasing chain in Q has a
nonempty intersection in Q, which is precisely a lower bound of this chain. Hence, by Zorn’s
lemma, there is an essential set ē(s) ⊆ e(s), which is a minimum element of Q. We next
claim ē(s) is an minimal essential set of E(s). Let e′(s) be an essential set of E(s) such that
e′(s) 
= ē(s). If e′(s) � e(s), then clearly e′(s) � ē(s), and if e′(s) ⊆ e(s), the minimality
of ē(s) implies that e′(s) � ē(s). Hence, either e(s) is a minimal essential set or it contains
a minimal essential set of E(s). ��

The following example shows that for x̄ ∈ E(s), the set f −1 f (x̄) is not necessarily a
minimal essential set of E(s).

Example 2 Let X = [−1 0] ∪ { 1n
∣∣ n ∈ N} ∪ [1, 2] be a metric space with a usual topology

on R, Y = l∞ and the mapping f : X → Y be defined as

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x, 3x, 0, . . . , 0, . . . ), if x ∈ [−1, 0],
−en, if x ∈

{
1

n

∣∣ n ∈ N\{1}
}
,

(0, 1 − x, 0, . . . , 0, . . . ), if x ∈ [1, 2],
where en = (0, . . . , 0, 1, 0, . . . ), 1 is at the nth position. Let D ⊆ Y be defined as

D=
{
(x1, x2, . . . , xi , . . . ) ∈ l∞ | x1≥ xi

i
, x1≥0

}
∪

{
(x1, x2, . . . , xi , . . . ) ∈ l∞ | x1≥1

}
.

Observe that for any δ > 0 and i ≥ 1, we have
(
0, . . . , 0,

iδ

2
, 0, . . .

)
∈ (Bδ(0Y ) + D) ∩ (Bδ(0Y ) − D),

and hence (Bδ(0Y ) + D) ∩ (Bδ(0Y ) − D) is unbounded for each δ > 0. Clearly D
is a set satisfying all the assumptions of Theorem 6. Also, it can be seen that f is
not continuous at 0 ∈ X . However, it is evident for any δ > 0 and 1

n < δ, that
f
( 1
n

) = −en ∈ (Bδ(0Y ) + D) ∩ (Bδ(0Y ) − D). Hence, f is D-lower semicontinuous
and D-upper semicontinuous on X . Let A = [− 1

2 , 0] ∪ {1}, then for s = (A, f ) ∈ S, clearly
E(s) = A. By Theorem 5 for 0Y ∈ M(s), the set f −1(0Y ) = {0, 1} is an essential set of
E(s), however it is evident that {0} is a minimal essential set of E(s) (refer Theorem 7, where
q = (2, 0, . . . , 0, . . . ) ∈ Y ).

Remark 6 In Example 2, if we restrict X={0}∪[1, 2] and consider A=X , then E(s) = {0, 1}
is an essential set of itself. However, E is neither lower semicontinuous nor upper semicon-
tinuous at s. It is evident for a sequence (sn)n∈N with sn = (An, fn), where An = A and

fn(x) =
⎧
⎨

⎩
−en

n
, if x = 0

(
− x

n
, 1 − x, 0, . . . , 0, . . .

)
, if x ∈ [1, 2],

for all n ∈ N, we have sn → s and E(sn) = [1, 2] for all n ≥ 3. Hence, the existence of
essential sets is strictly weaker than both the continuity properties of efficient solution set
mapping.
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The preceding argument also depicts that 0 ∈ E(s) is not an essential solution, since for
a neighbourhood U of 0 with [1, 2] � U , the sequence sn → s with E(sn) ∩U = ∅, n ∈ N.
Further, for the sequence (sn)n∈N, if we redefine

fn(x) =
⎧
⎨

⎩
f (x), if x ∈ X\{0},
−e1

n
, if x = 0,

for all n ∈ N, we have E(sn) = {0} and it follows that 1 ∈ E(s) is not an essential solution
of E(s). Hence, we conclude E(s) has no essential solution and is the minimal essential set
which is not connected.

We next establish the existence of essential components under an additional assumption
that f −1 f (x̄) = {x̄} for some x̄ ∈ E(s). Further, the assumption cannot be relaxed is evident
from Remark 6.

Corollary 2 Suppose that s ∈ S, D is closed, D + D ⊆ D and D ∩ (−D) = {0Y }. If
f −1 f (x̄) = {x̄} for some x̄ ∈ E(s), then there is at least one essential component of E(s).

6 Characterizations of essential set and essential component

In this section, we obtain characterizations of essential efficient solutions, essential sets and
essential components.

The following theorem presents necessary and sufficient conditions for a nonempty closed
subset of efficient solution set for (P)s to be an essential set provided there exists q ∈ Y\{0Y }
such that R+q ⊆ D.

Theorem 7 Suppose that D is closed, D + D ⊆ D, D ∩ (−D) = {0Y } and there exists
q ∈ Y\{0Y } such that R+q ⊆ D. Let s ∈ S and e(s) ⊆ E(s) be a nonempty closed subset of
X. Then, e(s) is an essential set of E(s) if and only if for any open set U in X with U ⊇ e(s),
there exists y ∈ M(s) such that f −1(y) ⊆ U.

Proof Let e(s) be an essential set of E(s). On the contrary, let there exists an open set U in
X with e(s) ⊆ U and f −1(y) � U for every y ∈ M(s). Since e(s) is a closed subset of A,
it is a compact set. Hence, there exists an open set W in X such that e(s) ⊆ W ⊆ W ⊆ U .
Define α : X → R++ as

α(x) = 1

1 + d(x, A\W )
.

Clearly, α is continuous on X , α(x) = 1 for all x ∈ A\W and α(x) < 1 for all x ∈ A ∩ W .
For n ∈ N, define An = A and fn : X → Y as

fn(x) = f (x) − α(x)

n
q.

It can be seen that fn ∈ LU(X , Y ), hence sn = (An, fn) ∈ S for all n ∈ N and sn → s.
We next claim that E(sn) ∩ W = ∅ for each n ∈ N. Let x ∈ A ∩ W . Clearly, x /∈ E(s).

Otherwise, y = f (x) ∈ M(s) and by the assumption we have f −1(y) � U and hence
x /∈ W . Define a set

T := {w ∈ A ∩ W | f (w) �D f (x)}.
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Clearly, T is a nonempty set as x ∈ T . By Lemma 1, it follows that T is closed subset of A
and hence a compact set. Thus, from Theorem 1, we have E(T , f ) 
= ∅. Let w̄ ∈ E(T , f ).
As observed earlier, it is clear that w̄ /∈ E(s). Hence, there exists x ′ ∈ A with f (x ′) 
= f (w̄)

such that f (x ′) �D f (w̄). As w̄ ∈ E(T , f ), we have x ′ /∈ W . Further, from D + D ⊆ D
and D ∩ (−D) = {0Y }, it follows that f (x ′) �D f (x) and f (x ′) 
= f (x). Since α(x ′) = 1
and α(x) < 1, we have−α(x ′)

n q �D −α(x)
n q . Also, as D+ D ⊆ D and D∩ (−D) = {0Y }, it

follows that fn(x ′) �D fn(x) and fn(x ′) 
= fn(x) for each n ∈ N. Thus x /∈ E(sn), that is,
E(sn) ∩ W = ∅ for all n ∈ N, which contradicts the fact e(s) is an essential set of E(s).

Conversely, letU be an open set in X such that e(s) ⊆ U . By the assumption, there exists
y ∈ M(s) such that f −1(y) ⊆ U . By Theorem 5, e1(s) = f −1(y) is an essential set of E(s)
and hence there exists an open neighbourhood O of s in S such that E(s′) ∩ U 
= ∅ for all
s′ ∈ O , which implies that e(s) is an essential set of E(s). ��

In view of above theorem, we obtain the following characterization of essential efficient
solutions and essential components. A similar characterization was obtained by Xian and
Zhou [26] assuming f to be continuous, A = X , Y = R

n and D = R
n
+ .

Theorem 8 Suppose that s ∈ S, D is closed, D + D ⊆ D, D ∩ (−D) = {0Y } and there
exists q ∈ Y\{0Y } such that R+q ⊆ D. Then, x̄ ∈ E(s) is an essential efficient solution if
and only if for any open set U of x̄ in X, there exists y ∈ M(s) such that f −1(y) ⊆ U.

Corollary 3 Suppose that s ∈ S, D is closed, D + D ⊆ D, D ∩ (−D) = {0Y }. If
f −1( f (x̄)) = {x̄} for all x̄ ∈ E(s), then x̄ is essential efficient solution for any x̄ ∈ E(s)
and thus E is lower semicontinuous at s ∈ S.

Theorem 9 Suppose that s ∈ S, D is closed, D + D ⊆ D, D ∩ (−D) = {0Y } and there
exists q ∈ Y\{0Y } such that R+q ⊆ D. Then, a component c(s) of E(s) is essential if and
only if for any open set in X with U ⊇ c(s), there exists y ∈ M(s) such that f −1(y) ⊆ U.

Corollary 4 Suppose that s ∈ S, D is closed, D + D ⊆ D, D ∩ (−D) = {0Y }. If there exists
y ∈ M(s) such that f −1(y) is contained in some component of E(s), then there is at least
one essential component of E(s).

7 Conclusion

Since each s ∈ S, comprises of a pair (A, f ) ∈ K0(X) ×LU(X , Y ), in the present paper we
have examined the essential stability of problem (P)s under the perturbation of both objec-
tive function and feasible set. Existence, characterization and density results we established
improves and generalize essential stability results established by various authors [20,26,28].
In fact, we relaxed continuity of the objective mapping by D-lower semicontinuity and D-
upper semicontinuity assumptions. By Remark 5, the results are further generalized for the
problem with only D-lower semicontinuous objective mappings. Moreover, we have consid-
ered the unified setting of normed space endowed with a general preference relation having
possibly empty interior.
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