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Abstract
The computation of lower bounds via the solution of convex lower bounding problems depicts
current state-of-the-art in deterministic global optimization. Typically, the nonlinear convex
relaxations are further underestimated through linearizations of the convex underestimators
at one or several points resulting in a lower bounding linear optimization problem. The
selection of linearization points substantially affects the tightness of the lower bounding
linear problem. Established methods for the computation of such linearization points, e.g.,
the sandwich algorithm, are already available for the auxiliary variable method used in state-
of-the-art deterministic global optimization solvers. In contrast, no such methods have been
proposed for the (multivariate) McCormick relaxations. The difficulty of determining a good
set of linearization points for the McCormick technique lies in the fact that no auxiliary
variables are introduced and thus, the linearization points have to be determined in the space
of original optimization variables.We propose algorithms for the computation of linearization
points for convex relaxations constructed via the (multivariate) McCormick theorems. We
discuss alternative approaches based on an adaptation of Kelley’s algorithm; computation of
all vertices of an n-simplex; a combination of the two; and random selection. All algorithms
provide substantial speed ups when compared to the single point strategy used in our previous
works.Moreover,we provide first results on the hybridization of the auxiliary variablemethod
with theMcCormick technique benefiting from the presented linearization strategies resulting
in additional computational advantages.
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1 Introduction

State-of-the-art algorithms for deterministic global optimization of nonconvex problems are
mainly based on adaptations of the spatial branch-and-bound algorithm [17,25,35], where
lower and upper bounds are computed in each node of the branch-and-bound tree. In most
cases, established nonlinear local solvers supported by several heuristics are used to compute
valid upper bounds. The computation of lower bounds is performed through the application
of a general method for the construction of valid convex and concave relaxations of the
original functions participating in the optimization problem. Due to numerical reliability and
computational costs, established deterministic global solvers such as, e.g., ANTIGONE [27],
BARON [22] or SCIP [38], construct a linear outer approximation of the nonlinear convex
relaxation and usewell-developed linear programmingmethods for the determination of valid
lower bounds instead of applying local convex techniques directly. The selection of points for
linearization affects the tightness of the linear relaxation and consequently the lower bound
obtained through the solution of the resulting linear program.

The auxiliary variable method (AVM) [33,35,36] is a general method for the construction
of convex and concave relaxations of factorable functions, i.e., functions representable as a
finite recursion of addition, multiplication and composition of intrinsic functions. The AVM
introduces an auxiliary variable together with a corresponding auxiliary equality constraint
for every intermediate nonlinear factor of a given function. Then, the convex and concave
envelopes of each factor are constructed providing a convex relaxation and a concave relax-
ation of the original function. To linearize the convex and concave envelopes of each factor
provided by the AVM, the so-called sandwich algorithm has been developed (Section 4.2 in
[35]). The algorithm starts with a small set of linearization points and computes additional
points based on a particular rule, e.g., the maximum error rule or the chord rule, for every
auxiliary factor until a pre-defined maximum of linearization points has been computed. This
method works very well for the AVM, since each introduced auxiliary factor is defined by
a low dimensional function for which the convex and concave envelopes are known ana-
lytically allowing for an efficient computation of maximum distances and/or angles used in
the sandwich procedure. Moreover, all computations are conducted in the low dimensional
domain space of the intermediate factor further lowering the computational effort. However,
the resulting linear program suffers from an increased dimensionality and a large number of
constraints because of the auxiliary variables and equality constraints added.

The method of McCormick [26], extended to multivariate compositions in [37], is a
different method for the construction of valid convex and concave relaxations of factorable
functions. In contrast to the AVM, theMcCormick technique does not introduce any auxiliary
variables when constructing convex and concave relaxations of a given function, thus always
preserving the original dimension of the underlying function. Since the resultingMcCormick
relaxations may be nonsmooth, we use subgradient propagation [28] in order to construct
valid affine under- and overestimators for the convex and concave McCormick relaxations.
It is also possible to use the recently developed differentiable McCormick relaxations [23]
in order to replace the computation of subgradients by the computation of derivatives, but
they are not as tight as the nonsmooth McCormick relaxations and are computationally more
costly to calculate. Furthermore, Cao et al. [6] have shown that affine subtangents used for
the linearization of the convex relaxation of the lower bounding problem benefit from the
favorable convergence order of McCormick relaxations. Thus, we stick to the nonsmooth
McCormick relaxations and its subgradients throughout this article. As currently no algo-
rithms exist for the selection of suitable linearization points for the McCormick relaxations,
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the goal of this work lies in the development of algorithms for the computation of a set of
linearization points. We briefly discuss the idea of direct propagation and combination of all
subgradients in each intermediate factor. However, this approach results in the computation
of a combinatorial number of affine functions and thus, we focus on methods for computing
linearization points in the original variable space either iteratively or a priori. All methods
developed for the linearization of multivariate McCormick relaxations are implemented on
the basis of the open-source MC++ library [7] and are available in the open-source determin-
istic global optimization solver MAiNGO [4].

Tawarmalani and Sahinidis [36] showed that for a specific set of linearization points, the
linear outer approximation obtained via the AVM can be tighter than the linear outer approx-
imation computed with McCormick relaxations. Later Tsoukalas and Mitsos demonstrated
that the McCormick method extended to multivariate outer functions provides the same con-
vex and concave relaxations if no reoccurring intermediate factors of a given function are
recognized by the AVM. However, if the AVM recognizes reoccurring intermediate factors,
it provides tighter convex relaxations than the multivariate McCormick approach. This prob-
lem, can, at least in princible, be solved by the addition of only a sufficient number of auxiliary
optimization variables when applying the McCormick method, thus providing equally tight
relaxations as the AVM. The authors thus suggest a combination of the AVM and the mul-
tivariate McCormick technique (Section 4 in [37]), but do not provide any computational
insights or results. Modern computational representations of factorable functions through
directed acyclic graphs (DAGs) allow for the recognition of factors occurring multiple times
in a given optimization problem [7,32]. This allows for the development of a method that
introduces common factors as auxiliary optimization variables together with the correspond-
ing auxiliary constraints. Herein, we first briefly summarize the theory discussed in [37],
showing that the AVM and the McCormick relaxations provide equally tight relaxations if
common factors occurring at least twice are recognized. Then, we present a heuristic for the
addition of intermediate factors occurring most often in a given DAG as auxiliary optimiza-
tion variables in the lower bounding procedure and show that this hybridization of the AVM
and the McCormick propagation technique results in large computational speed ups. We add
only a limited number of auxiliary optimization variables in order get the advantage of tighter
relaxations when common factors are recognized and keep the benefit of lower dimensional
optimization problems when using the McCormick method. Last, we apply the linearization
algorithms developed herein to the hybridization of the AVM and multivariate McCormick
relaxations to come up for the increased dimensionality and resulting complexity of the lower
bounding problems. Again, the implemented heuristic is available in the open-source solver
MAiNGO [4].

The remainder of this article is structured as follows. Section 2 introduces themathematical
notation used throughout the manuscript. In Sect. 3 we present alternative algorithms for
the computation of linearization points for McCormick relaxations a priori, iteratively and
a combination of both supported by numerical results. Section 4 provides results on the
application of the presented linearization algorithms to the hybridization of the McCormick
technique and the auxiliary variable method. We summarize and discuss future work in Sect.
5.
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2 Preliminaries

If not stated otherwise, we consider continuous functions f : Z → R with Z ∈ IR
n , where

IR denotes the set of closed bounded intervals in R. Z ∈ IR
n , also called box, is defined as

Z ≡ [zL , zU ] = [zL
1 , zU

1 ] × · · · × [zL
n , zU

n ] with zL , zU ∈ R
n where the superscripts L and

U always denote a lower and upper bound, respectively. We denote the range of f over Z by
f (Z) ∈ IR.
We call a convex function f cv : Z → R a convex relaxation (or convex underestimator) of

f on Z if f cv(z) ≤ f (z) for every z ∈ Z . Similarly, we call a concave function f cc : Z → R

a concave relaxation (or concave overestimator) of f on Z if f cc(z) ≥ f (z) for every
z ∈ Z . We call the tightest convex and concave relaxations of f the convex and concave
envelopes f cv

e , f cc
e of f on Z , respectively, i.e., it holds f cv(z) ≤ f cv

e (z) ≤ f (z) and
f (z) ≤ f cc

e (z) ≤ f cc(z) for all z ∈ Z and all convex relaxations f cv and concave relaxations
f cc of f on Z , respectively.

Definition 1 (Subgradients and linearization points). For a convex and concave function
f cv, f cc : Z → R, we call scv(z̄), scc(z̄) ∈ R

n a convex and a concave subgradient of
f cv, f cc at z̄ ∈ Z , respectively, if

f cv(z) ≥ f cv(z̄) + (scv(z̄))T (z − z̄), ∀z ∈ Z , (A1)

f cc(z) ≤ f cc(z̄) + (scc(z̄))T (z − z̄), ∀z ∈ Z . (A2)

We denote the affine functions on the right-hand side of inequalities (A1), (A2) constructed
with the convex and concave subgradient scv(z̄), scc(z̄) by f cv,sub(z̄, z) and f cc,sub(z̄, z),
respectively.

Note that f cv,sub and f cc,sub are valid under- and overestimators of f on Z , respectively.
We call the point z̄ in Definition 1 a linearization point of f .

2.1 McCormick relaxations and subgradient propagation

All relaxations considered herein are constructed with the use of theMcCormick propagation
rules originally developed by McCormick (Section 3 in [26]) and extended to multivariate
compositions of functions by Tsoukalas and Mitsos (Theorem 2 in [37]). The corresponding
subgradients are constructed as described by Mitsos et al. (Sections 2.4-3.1 in [28]) and
Tsoukalas and Mitsos (Theorem 4 in [37]). We use the open-source library MC++ [7] for the
automatic computation of convex and concave McCormick relaxations and its subgradients
at a single linearization point. Moreover, we extend the library to handle a set of linearization
points directly by adapting the original implementation of McCormick propagation to vector
valued calculations. This extension is available in the MC++ library used in the open-source
deterministic global solver MAiNGO [4].

3 Computation of linearization points for McCormick relaxations

Before describing the methods and algorithms used in this work, we briefly discuss the
computation of linearization points for theAVM, its relationshipwithMcCormick relaxations
and the associated difficulties. We then begin the presentation of methods with an adaptation
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of the iterative Kelley’s cutting plane algorithm for convex optimization [21]. Subsequently,
we develop a method for a priori computation of linearization points (before calculating
relaxations). As a last point of this section, we present numerical results comparing the
described methods and the combination of the two methods to a computationally cheap
single-point approach and random selection.

3.1 Auxiliary variable method andMcCormick relaxations

For the sake of demonstration, let us consider a simple abstract box-constrainedminimization
of f : IRn � X → R

min
x

f (x)

s.t. x ∈ X ∈ IR
n .

When applying theAVMto a given optimization problem, each intermediate factor is replaced
by an auxiliary variable together with an appropriate equality constraint. For now, let us
assume that the AVM introduces exactly one auxiliary variable z1 for the intermediate factor
g with range g(X) = [gL , gU ] providing the equivalent optimization problem

min
x,z1

f̃ (z1)

s.t. z1 = g(x)

x ∈ X ∈ IR
n

z1 ∈ [gL , gU ],

(AVM)

with f̃ : [gL , gU ] → R, g : X → [gL , gU ] and f̃ (g(x)) = f (x) for all x ∈ X . Then,
convex and concave relaxations f̃ cv, gcv, gcc of f̃ and g over [gL , gU ] and X , respectively,
are constructed. Note that in general the range set of g overestimates the true image of g under
X , but to keep this example simple, we assume that the exact image of g under X is known.
Finally, a set of linearization points LAV M with |LAV M | = NL is computed, e.g., with the
sandwich algorithm and one of its different rules (Section 4.2 in [35]), and all convex and
concave relaxations are replaced by their affine under- and overestimators computed at points
in LAV M . For the above optimization problem (AVM), when assuming that every function
is linearized the same number of times, we end up with NL affine inequalities consisting of
NL
3 for the convex relaxation of the objective, NL

3 for the convex relaxation, and NL
3 for

the concave relaxation of the auxiliary function g. The linearized lower bounding problem
is given as

min
x,z1,η

η

s.t. η ≥ f̃ cv(z̄1) + (scv
f̃
(z̄1))

T (z1 − z̄1), ∀ (
x̄cv, x̄cc, z̄1

) ∈ LAV M

z1 ≥ gcv(x̄cv) + (scv
g (x̄cv))T (x − x̄cv), ∀ (

x̄cv, x̄cc, z̄1
) ∈ LAV M

z1 ≤ gcc(x̄cc) + (scc
g (x̄cc))T (x − x̄cc), ∀ (

x̄cv, x̄cc, z̄1
) ∈ LAV M

x ∈ X ∈ IR
n

z1 ∈ [gL , gU ].

(AVMLP)

It is desirable to achieve the same tightness of the lower bounding linear optimization prob-
lem when using McCormick relaxations. Since no auxiliary variables are introduced when
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McCormick’s theorems are applied, this amounts to computing the projection of (AVMLP)
to the original variable space X . This is done by combining each of the affine under- or
overestimators of function g with each of the affine relaxations of f . The choice whether
the affine under- or overestimators of g have to be used, depends on the monotonicity of
the affine relaxations of f (Corollary 3 in [37]). This combination results in a linear opti-
mization problem with (NL )2 linear inequalities in the original variables x and only one
(free) auxiliary variable η. Generalizing, if F > 1 auxiliary variables are introduced in the
AVM, we end up with O

(
(NL )(F+1)

)
affine inequalities for the McCormick method. The

estimation of number of inequalities is not exact since some of the resulting affine inequali-
ties may be redundant. Thus, propagating all affine inequalities with the McCormick method
is not a promising idea as solely the computation of all affine functions would require an
exponentional computational time.

For the AVM, we can say that the method pays for the lower number of affine inequalities
with the increase of the dimension of the final linear problem (AVMLP). This increase of
number of variables however seems acceptable. The resulting LP is typically solved with
(variants of the) simplex method [10]. In practice, such methods perform very well for large
problems, and does not require anywhere near the worst-case exponential complexity. When
propagating all combinations with the McCormick method, we have to compute all facets
explicitly and thus, also all vertices of the underlying polytope. In contrast to the computation
of vertices in the linear programming simplex algorithm, this propagation thus inevitably
results in exponential computational runtime.

In order to achieve a similar tightnesswithout the necessity of propagating all combinations
of the affine functions and avoiding the combinatorial complexity, the following possibility
can be considered. We choose only a limited number of what we think are promising lin-
earizations in each factor and propagate only a small part of all possible combinations. The
difficulty emergingwith this approach is the decisionmaking in a given factor f j over domain
X f j of the original function f , i.e., telling what is a promising linearization point, since only
local information about the factor f j on its domain X f j and not on the final function f over
X f is available. This local information is unsatisfactory because it is not possible to know
which affine under- and overestimator of f j is the best to be used for further propagation,
since f may have many nonlinear factors following f j . Still, several heuristics to overcome
this issue can be applied to the concave and convex relaxations. First, we can choose the affine
underestimator whose minimum value is the closest to the minimum value of the convex fac-
tor f j can be considered. As an alternative, we can compute the value at the minimum point
of the factor f j over X f j among all propagated affine underestimators and save the tightest
underestimator for further propagation. Finally, we can choose the affine underestimators
within each intermediate factor randomly. Unfortunately, in preliminary experiments none
of the above methods provides results which could compete with the algorithms and ideas
described throughout the rest of this manuscript. Thus, we focus the scope of this paper on the
iterative and direct computation of the set of linearization points LMC providing the linear
lower bounding problem in the space of original variables

min
x,η

η

s.t. η ≥ f cv(x̄) + (scv
f (x̄))T (x − x̄), ∀ x̄ ∈ LMC

x ∈ X ∈ IR
n .

(MCLP)
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3.2 Adaptation of Kelley’s algorithm

Cutting plane or localization methods are commonly used in continuous convex optimization
[16] and are often also called bundle methods. The probably best known methods are the
algorithm byKelley [21] and themethod by Cheney andGoldstein [8]. These algorithmsmay
be inefficient in the sense that they may require the solution of multiple small linear programs
until they stabilize but are computationally very cheap. To improve the efficiency, extensions
of the methods by Kelley and Cheney and Goldstein have been developed during the last
decade. The center of gravitymethod proposed byNewman [30] and Levin [24] computes the
center of gravity of the given polyhedron approximating the convex set of interest. Although
it is proven to decrease the volume of the polyhedron by a large part in each iteration, it is
computationally not practicable. The maximum volume inscribed ellipsoid method [34] and
the analytic center method [13] both require the solution of subsequent convex optimization
problems in order to obtain a set of linearization points. As we have to compute possibly
multiple linearization points in each node of the B&B algorithm, it is intuitive to avoid
this additional computational overhead. The Chebyshev center cutting-plane method [11]
requires the solution of a linear program to compute a linearization point (Chapter 8 in
[5]) but it is prone to scaling and coordinate transformations. Since we have to compute
multiple linearization points in each B&B node, the two algorithms by Kelley and Cheney
and Goldstein seem acceptable in terms of computational time and resulting tightness of
the lower bounding problem. Next, we present the method we use in this work and stick to
the notion of Kelley’s algorithm. We adapt the original algorithm to be able to directly use
McCormick relaxations and the corresponding subgradients instead of computing tangents
of (smooth) convex functions.

The idea of bundle methods is to approximate a given convex function by a set or a so-
called bundle of affine underestimators. The bundle is constructed by iteratively generating
and adding new affine functions. The pseudo-code of the procedure can be found inAlgorithm
1. In particular, we start with an initial set of linearization pointsL , e.g., the mid-point of the
underlying interval domain (Line 4). We construct the lower bounding linear optimization
problem L (MCLP) with the use of McCormick relaxations by using subgradient propagation
[28] with reference points defined in L (Line 5). We solve L to obtain the optimal solution
point x∗ and a corresponding solution value f ∗ (Line 9). We add the solution point x∗ to the
set of linearization pointsL .We now extend the linear problem L with the inequalities which
we get by the computation of subgradients of the McCormick relaxations at the new point
x∗ of every function participating in the original problem (Lines 16-17). We then re-solve
L to get a new solution point x∗

new and its corresponding solution value f ∗
new and repeat the

procedure until either a maximum number NK of linearizations has been reached (Line 8)
or the difference of the solution values f ∗ and f ∗

new reach a given threshold (Line 13). The
implementation of the described method is available in the open-source solver MAiNGO [4].

3.3 Computation of linearization points as vertices of an n-simplex

We have shown how to construct lower bounding linear problems iteratively with a simple
adaptation of well-known bundle methods in the previous section. In this section we discuss
how to compute a promising set of linearization points a priori, i.e., before the first lower
bounding linear optimization problem is solved.

First, we need to clarify what we denote as a promising set of linearization points. A
promising set of linearization points consists of points, that are well-distributed among the
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Algorithm 1: Adaptation of Kelley’s algorithm for the iterative computation of lin-
earizations for McCormick relaxations.
1 NK - maximum number of additional linearizations;
2 μa - minimum absolute difference between solution values;
3 μr - minimum relative difference between solution values;
4 Given an initial set of linearization pointsL ;
5 Compute subgradients of McCormick relaxations at points in L
and construct corresponding linear problem L (MCLP);

6 k←1;
7 fold = fnew = −∞;
8 while k ≤ NK do
9 Solve L;

10 x∗ ← optimal solution point of L;
11 fold ← fnew;
12 fnew ← optimal solution value of L;
13 if (fnew - fold) < min(μr · |fnew|, μa) then
14 return;
15 end
16 Compute subgradient s(x∗) of McCormick relaxations;

17 Extend L by f cv,sub(x∗x) and f cc,sub(x∗, x);
18 k← k+1;
19 end

n-dimensional interval domain of the optimization variables and at the same time is not too
large. Intuitively, since the nonlinear n-dimensional function f cv : X ∈ IR

n → R, which we
want to approximate through affine estimators, is convex, it should be enough to approximate
the shape of f with the use of n + 1 affine underestimators. This intuition comes from the
fact that a setL of n +1 points is enough to encapsulate any interior point x∗ ∈ X within the
convex hull of the points L in the domain space X . Moreover, since the function we aim to
underestimate is convex, a set of points which is well-distributed among the domain appears
to be more favorable when computing the lower bound rather than a possibly clustered set
of linearization points. In practice, we cannot expect the linearization points based on this
set to be exact at the minimum of f , but we hope that the affine linearizations defined by the
set of linearization points, which is well-distributed among the domain of the optimization
variables, can approximate f well enough. Additionally, the computation of only a limited
number of affine underestimators does not increase the computational cost toomuch allowing
for a possible trade-off between accuracy of the affine approximation and computational time.

In order to obtain a well-distributed set of linearization points, it is also possible to use
well-known space covering algorithms such as Monte-Carlo methods [15] or quasi-random
sequences such as the Sobol or the Halton sequence [9,19]. These methods cover the given
space well for a large number of samples. However, we desire only a very limited number
of linearization points when constructing lower bounding problems, making these meth-
ods unsuitable for our procedure. Additionally, Monte-Carlo methods and quasi-random
sequences obviously posses the randomness factor, whereas the methods presented herein
do not. Thus, we propose a different approach based on the computation of all vertices of an
n-simplex. An n-simplex is defined as an n-dimensional polytope which also is the convex
hull of its n + 1 vertices. The idea is to compute all n + 1 vertices of an n-simplex, with all
vertices lying on an n-dimensional Ball centered at 0 in [−1, 1]n with radius r ∈ (0, 1]. These
points can then be rescaled to the original interval domains of the optimization variables and
then used for the computation of subgradients and McCormick relaxations. The n + 1 points
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Algorithm 2: Algorithm for the computation of all n + 1 vertices of an n-simplex lying
on the n-dimensional ball with radius r ∈ (0, 1).
1 n - dimension of the simplex, has to be ≥ 2;
2 r - radius ∈ (0, 1);
3 V - set of all vertices v of the n-simplex;
4 Fill V with n + 1 0 vectors;
5 v1,1 ← r ;
6 v1,i ← − r

n , i = 2, . . . , n + 1;
7 for i=1,. . . ,n do
8 t ← 0;
9 for j=1,. . . ,i do

10 t ← t + v2j,i+1;

11 end

12 vi,i+1 ←
√

r2 − t ;
13 for j=i+1,. . . ,n do
14 vi, j ← − vi,i+1

n−i ;
15 end
16 end

are well-distributed in a sense that each vertex has the same distance to every other vertex in

the [−1, 1]n box, namely 2 · r
√
3
2 . Since subgradients of McCormick relaxations are steeper

at the boundary of the domain if the convex relaxation has its minimum in the interior of the
domain and thus, tend to contribute less to the tightness of the resulting linear program it is
favorable to choose r < 1. It is also reasonable to choose the radius larger than 0 to avoid a
possible clustering of the linearization set resulting in possibly many similar subgradients of
the affine underestimators and finally redundant constraints. Thus, we recommend to choose
r ∈ (0.7, 0.9). The pseudo-code of the described procedure can be found in Algorithm 2. In
the pseudo-code, the index (i, j) of a vertex v denotes the i th row of the j th vertex in the set
V . Throughout the algorithm we make use of the fact that all edges of the n-simplex have the
same length, meaning that the sum

∑n
i=1 vi, j has to equal 0 for a fixed j . After the compu-

tation of the n + 1 vertices of the n-simplex, it is advisable to rotate the polytope by a given
angle γ with the help of a standard rotation matrix to avoid the computation of points with
having multiple equal coordinates. It is not recommended to rotate the matrix with respect to
each axis due to high computational effort in high dimensions, e.g., n > 100, but rather rotate
with respect to every kth axis to avoid a large number of calculations. The case n = 1 is a
special case, where we always use 3 points equally spread among the 1-dimensional interval
X = [x L , xU ], being

x1 = 1

3
· (xU − x L) + x L , x2 = 1

2
· (xU − x L) + x L , and x3 = 2

3
· (xU − x L) + x L .

We also experienced that using all n + 1 points is not optimal if each function in the
optimization problem only depends on a subset of the optimization variables. If themaximum
number of variables participating non-linearly in any function of the optimization problem is
p < n, we filter the points further and choose only p out of n + 1 vertices. Note that when a
p-simplex is computed, we obtain p+1 p-dimensional points. Just because there are at most
p variables participating nonlinearly in some function fi , it is not excluded that subsets of
these variables and some additional variables participate nonlinearly in some other function
f j with i = j . It is possible to rescale these p vertices to the n variables, but then the same
simplex vertices for multiple variables are used which could intuitively lead to possibly very
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Fig. 1 Example of the n-simplex
algorithm described in Sect. 3.3.
2-simplex vertices on the 2
dimensional ball with radius r .
The original points computed by
Algorithm 2 are depicted as blue
circles. The rotated original
points by an angle of 30◦ are
depicted as red crosses

(1,−1)

(−1,1)

(0,0)

r

x1
x2

f

f cv

f cv,subm

f cv,subv1

(a)
x1

x2

f

f cv

f cv,subm

f cv,subit1

(b)

Fig. 2 Figures showing the affine underestimators of the three-hump camel function over [−0.75, 1] ×
[−1, 0.25] at linearization points obtained with the adaptation of Kelley’s algorithm (Figure (a)) described in
Sect. 3.2 and the n-simplex algorithm (Figure (b)) described in Sect. 3.3. a The linearizations are conctructed
starting at the middle point m and conducting one iteration i t1 of the adapted Kelley’s algorithm. b The
linearizations are constructed at the middle pointm and the point v1 obtained with the n-simplex algorithm

similar and often redundant affine underestimators. Moreover, since the computation of the
n-simplex is performed only once in the global optimization procedure, the computation of a
larger simplex is negligible. We choose only p points instead of p +1 and one of these points
is always the mid point of the domain, since this choice has shown the best results in the
numerical case studies performed in this work. Since the mid point is always used, we choose
the p − 1 points with the highest absolute improvement in interval tightness when applying
the subgradient interval heuristic presented in our previous work [29] for computation of
McCormick relaxations of the given optimization problem.

3.4 Illustrative example

The following example illustrates application of Algorithm 2 in practice. Consider the
three-hump camel function

f : [−0.75, 1] × [−1, 0.25] → R, (x1, x2) �→ 2 · x21 − 1.05 · x41 + x61
6

+ x1 · x2 + x22 .
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First, we compute the vertices of the n-simplex lying on the 2 dimensional ballB with radius
r = 0.725. The points of the 2-simplex on B are

v1 = (0.725, 0),

v2 =
(
−0.3625,

√
r2 − (−0.3625)2

)
,

v3 =
(
−0.3625,−

√
r2 − (−0.3625)2

)
.

Then, we rotate the points by 30◦ counterclockwise and finally obtain

v1 =
(√

r2 − (−0.3625)2,−0.3625
)

,

v2 = (0, 0.725),

v3 =
(
−

√
r2 − (−0.3625)2,−0.3625

)
.

Note that the similarity of the rotated points with respect to the original points is a special
case of the 2 dimensional case. Figure 1 shows the (not) rotated points of the 2-simplex
computed on the ball with radius r = 0.725.

Next, we scale the points to the domain [−0.75, 1] × [−1, 0.25] of f and get

v1 ≈ (0.674,−0.601),

v2 = (0.125, 0.078125),

v3 ≈ (−0.424,−0.601).

As final linearization points, we choose the mid pointm = (0.125,−0.375) and the point vi

providing the most improvement when using the subgradient interval heuristic presented in
our previous work [29], given by v1 in this example. Finally, we compute the linearization
of convex McCormick relaxations of f at L = {m, v1} (cf. Fig. 2a). Figure 2b shows
the resulting affine underestimators of f when using the adaptation of Kelley’s algorithm
described in the previous subsection. The difference between the linearizations with respect
to the resulting lower bound of the respective linear program is only marginal in this example
although different linearization points are used.

3.5 Numerical results

We compare the presented linearization strategies by the solution of various problems with
the deterministic global optimization solver MAiNGO [4] using CPLEX v12.8 [18] for the
solution of linear lower bounding problems, IPOPT v3.12.0 [39] for local optimization in
the pre-processing step, and the SLSQP solver found in the NLOPT package v2.5.0 [20] for
local optimizationwithin theB&Balgorithm. For range reduction,we use optimization-based
bound tightening with the trivial filtering algorithm with filtering value 0.001 [12], duality-
based bound tightening using dual values obtained from CPLEX [31], and basic constraint
propagation. All calculations are conducted on an Intel® Core™i5-3570 CPU with 3.4 GHz
running Fedora Linux 30.

We solve 9 problems of varying sizes with up to 57 variables chosen from theMINLPLIB2
library; 4 case studies of a combined-cycle power plant presented in Sections 5.2 and 5.2
of [1] where we either maximize the power output of the net or minimize the levelized cost
of electricity; 2 case studies of the William-Otto process with 4 and 5 degrees of freedom,
respectively [2]; and 3 case studies of chemical processes presented in [3], where we consider

123



742 Journal of Global Optimization (2021) 80:731–756

the example of a flash modeled with the NRTLmixture model as well as the optimization of a
methanol production process from H2 and CO2, once with original degrees of freedom (case
c) and once additionally using the CO2 inlet flowrate as degree of freedom making the case
study somewhat more complex. All problem statistics can be found in Table 6 in Appendix
A.

In the 9 problems found in the MINLPLIB2 library, we set the absolute and relative tol-
erances to ε = 10−4 and for the process engineering case studies, we set both optimality
tolerances to ε = 10−2. We allow for a maximum of 8 hours. We consider the computational
performance of the B&B algorithm for five cases:
– Mid, where every convex and/or concave relaxation is linearized at the middle point of the
optimization variable domain. This is the setting used in all of our previous work.
– Kelley, where every convex and/or concave relaxation is linearized iteratively using the
adaptation of Kelley’s algorithm described in Sect. 3.2. We allow for at most p lineariza-
tions, where p is the maximum number of variables participating nonlinearly in any function
of the optimization problem.
– Simplex, where every convex and/or concave relaxation is linearized at points determined
through the application of the n-simplex algorithm described in Sect. 3.3. We choose p lin-
earizations, where p is the maximum number of variables participating nonlinearly in any
function of the optimization problem. We choose the p points with the highest absolute
improvement in interval tightness when applying the subgradient interval heuristic presented
in our previous work [29] for computation of McCormick relaxations of the given optimiza-
tion problem.
– S+K, where every convex and/or concave relaxation is linearized iteratively using the adap-
tation of Kelley’s algorithm with the initial set of linearization points L being determined
with the use of the n-simplex algorithm. We add at most 5 additional linearizations with
Kelley’s algorithm.
– Random, where every convex and/or concave relaxation is linearized at p points deter-
mined randomly, where p is the maximum number of optimization variables participating
nonlinearly in any function found in the optimization problem. Here we report the results for
the best random seed among 5 different random seeds we used in C++.

In all numerical experiments, we set the maximum number of iterations in the Kelley’s
Algorithm 1 to p denoting the maximum number of optimization variables participating
non-linearly in any function found in the optimization problem and the minimum difference
thresholds to μa = εa · 10 and μr = 10−2. For the determination of n-simplex vertices,
we set the ball radius to r = 0.725 and rotate the n-simplex by γ = 30◦ counterclockwise.
Furthermore, in any algorithm, in addition to the at most p or n + 1 linearization points,
we always use the mid point of the interval domain as linearization point. The detailed CPU
times and number of iterations can be found in Table 7 in Appendix A. Since performance
plots can be easily misinterpreted [14], we present the computational results with the use of
the shifted geometric mean defined as

exp

(
n∑

i=1

log(max(1, ti + s))

n

)

− s, (1)

where n is the number of instances, ti the reported computational time and s a constant
shift set to s = 10 in this work. We also report the shifted geometric mean with ti denoting
the number of iterations needed. If a method reaches the maximum computational time of
8 hours, we use ti = 28800 s or ti = 2 · 106 iterations (this is the maximum iterations
needed among all runs that converged within the time limit of 8 hours). Table 1 shows the
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Table 1 Tables reporting the
correlation of the shifted
geometric mean (1) between the
considered methods with respect
to CPU seconds and number of
iterations

CPU sec. Mid Kelley Simplex S+K Random

Geom mean 1.63 1.07 1 1.07 1.03

Iterations Mid Kelley Simplex S+K Random

Geom mean 5.37 1.62 1.21 1 1.5

speed up differences among the considered methods. We see that the simple method using
a single linearization point performs worst with respect to the number of iterations. It also
performs worst with respect to the computational time in all but the smallest case studies. All
methods are at least 50% faster than the single middle point linearization and need up to 5
times less iterations. The n-simplex method seems to perform best on the considered test set
with respect to computational time, but all other presented method are only slightly weaker.
Indeed the n-simplex method solves more instances than the other considered methods in
the given time frame. The hybrid method has the lowest number of iterations but performs
slightly worse in terms of computational time. Kelley’s algorithm performs best regarding
computational time for the methanol production processes but performs worse than the n-
simplex algorithm on the other process engineering case studies. It also almost always needed
strictly less than p iterations to converge to the preset tolerances. This may be an indicator
that Kelley’s algorithm is already good enough for our purposes but obviously this cannot be
guaranteed. Note that for the minimization of the levelized cost of electricity (LCOE) in case
3, the methods which did not converge in time have a very small remaining gap. This may be
misleading as for this particular problem, the last few percent needed to close the optimality
gap are the most time consuming, meaning that the remaining ≈ 1% would most likely need
more than 1 additional hour to converge. It is also interesting that the random generation of
points performed slightly better than the adaptation of Kelley’s algorithm and the hybrid of
n-simplex and Kelley’s. This can be easily explained with the fact that the random seed we
chose in C++ seems to work well for the instances considered. Unfortunately, this behavior
cannot be guaranteed if a different machine or a different random seed is chosen, making the
randomgeneration of linearization points undesirable in general.We can conclude that except
for the easiest instances or the instances with already very tight relaxations, the computation
of additional linearization points seems favorable.

4 Hybridization of the auxiliary variable method andMcCormick
relaxations

Tsoukalas and Mitsos already discussed the relationship between the auxiliary variable
method and multivariate McCormick relaxations (Section 4 in [37]). Their conclusion was
that McCormick relaxations can be modified to provide equally tight relaxations as the AVM.
The modification consists of the introduction of auxiliary optimization variables and corre-
sponding equality constraints for common intermediate factors. We first briefly present the
main result again herein. Since the introduction of additional optimization variables together
with the corresponding equality constraints increases the complexity of the lower bounding
problems, in a B&B framework it is favorable to use the linearization algorithms presented
in the previous section. Then, we conduct additional numerical experiments to check the
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impact of the introduction of common factors as auxiliary optimization variables when using
multivariate McCormick relaxations.

4.1 Tightness of McCormick relaxations and the auxiliary variable method

Consider the functions

f1 : IR2 � X1 → R, f2 : IR � X2 → R,

f3 : IR � X3 → R, f4 : IR � X4 → R,

and the composition

g : IR � X → R, x �→ f1 ( f3(x), f4(x)) + f2 ( f3(x)) ,

with X ⊂ X3, X ⊂ X4, f3(X3) × f4(X4) ⊂ X1 and f3(X3) ⊂ X2. When minimizing
g, the AVM could formulate the problem in two different ways, depending on whether the
intermediate factor f3 is recognized as a common term (Formulation 2) or not (Formulation
1).

Formulation 1
min

x∈X ,z1∈X1
z2∈X2,z3∈X3
z′
3∈X3,z4∈X4

z1 + z2

s.t. z1 = f1(z3, z4)
z2 = f2(z′

3)

z4 = f4(x)

z3 = f3(x)

z′
3 = f3(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Formulation 2
min

x∈X ,z1∈X1
z2∈X2,z3∈X3

z4∈X4

z1 + z2

s.t. z1 = f1(z3, z4)
z2 = f2(z3)
z4 = f4(x)

z3 = f3(x)

with the corresponding convex relaxations used for the lower bounding problem

Formulation 1
min

x∈X ,z1∈X1
z2∈X2,z3∈X3
z′
3∈X3,z4∈X4

z1 + z2

s.t. f cv
1 (z3, z4) ≤ z1 ≤ f cc

1 (z3, z4)
f cv
2 (z′

3) ≤ z2 ≤ f cc
2 (z′

3)

f cv
4 (x) ≤ z4 ≤ f cc

4 (x)

f cv
3 (x) ≤ z3 ≤ f cc

3 (x)

f cv
3 (x) ≤ z′

3 ≤ f cc
3 (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Formulation 2
min

x∈X ,z1∈X1
z2∈X2,z3∈X3

z4∈X4

z1 + z2

s.t. f cv
1 (z3, z4) ≤ z1 ≤ f cc

1 (z3, z4)
f cv
2 (z3) ≤ z2 ≤ f cc

2 (z3)
f cv
4 (x) ≤ z4 ≤ f cc

4 (x)

f cv
3 (x) ≤ z3 ≤ f cc

3 (x)

Formulation 1 is in general a relaxation of Formulation 2 and results in a worse lower bound
if the nonlinear convex problem is solved. Although, theoretically the better lower bound
cannot be guaranteed when the formulations are linearized, in practice it is still expected that
the linearization of Formulation 2 will result in a tighter bound.
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When using multivariate McCormick relaxations we obtain the same bound for Formula-
tion 1

min
x∈X

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ẑ1,ẑ2

ẑ1 + ẑ2

s.t.

⎛

⎜
⎝

min
ẑ3,ẑ4

f cv
1 (ẑ3, ẑ4)

s.t. f cv
3 (x) ≤ ẑ3 ≤ f cc

3 (x)

f cv
4 (x) ≤ ẑ4 ≤ f cc

4 (x)

⎞

⎟
⎠ ≤ ẑ1 ≤

⎛

⎜
⎝

max
ẑ3,ẑ4

f cc
1 (ẑ3, ẑ4)

s.t. f cv
3 (x) ≤ ẑ3 ≤ f cc

3 (x)

f cv
4 (x) ≤ ẑ4 ≤ f cc

4 (x)

⎞

⎟
⎠

(
min

ẑ′
3

f cv
2 (ẑ′

3)

s.t. f cv
3 (x) ≤ ẑ′

3 ≤ f cc
3 (x)

)

≤ ẑ2 ≤
(
min

ẑ′
3

f cc
2 (ẑ′

3)

s.t. f cv
3 (x) ≤ ẑ′

3 ≤ f cc
3 (x)

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that in the above multivariate McCormick formulation, we have only one optimization
variable x . Now, if the intermediate factor f3(x) is recognized and treated as a common
variable, it is necessary to introduce one additional optimization variable z3. The alternative
formulation we get then is

min
x∈X ,z3∈Z3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
ẑ1,ẑ2

ẑ1 + ẑ2

s.t.

(
min
ẑ4

f cv
1 (z3, ẑ4)

s.t. f cv
4 (x) ≤ ẑ4 ≤ f cc

4 (x)

)

≤ ẑ1 ≤
(
max

ẑ4
f cc
1 (z3, ẑ4)

s.t. f cv
4 (x) ≤ ẑ4 ≤ f cc

4 (x)

)

f cv
2 (x) ≤ ẑ2 ≤ f cc

2 (x)

f cv
3 (x) ≤ z3 ≤ f cc

3 (x)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

providing the same bound as Formulation 2 in the AVM by only introducing a single addi-
tional auxiliary optimization variable. This also means that the tightness of the linear lower
bounding problem obtained through linearization of the convex multivariate McCormick
relaxation is equal to the bound obtained by the linearized AVM Formulation 2 if the same
linearization points are used (which in general we do not recommend due to the combinatorial
complexity (Sect. 3.1)). Although not explicitly mentioned in the original publication [37],
the above formulation already suggests that a hybridization of the AVM and the multivariate
McCormick relaxations may result in computational advantages. In this work, instead of
trying to achieve the tightness of the AVM, we experiment with the addition of only a few
auxiliary optimization variables in order to achieve best computational results.

4.2 Numerical results

Modern implementations of directed acyclic graphs such as the one in MC++ [7] allow for the
recognition of common factors. The recognition is done automatically and has a quadratic
complexity, since in the worst-case all previous factors have to be checked whenever a new
factor is introduced. When comparing the AVMwith McCormick relaxations, it is of interest
to investigate the impact of the intermediate common factors on computational time in a
B&B algorithm. Note that the addition of all intermediate factors, also those occurring only
once, results in the AVM.

In our experiments, we always choose the intermediate nonlinear factors participating
most often in the optimization problems and replace them by an auxiliary optimization vari-
able and a corresponding equality constraint in the lower bounding problem. We use the
same optimization problems as in Sect. 3.5 with the exact same computational setup. In our
experiments we add up to 3 auxiliary variables and solve the problems with the same 5 pre-
sented linearization strategies as in Sect. 3.5. However, we do not branch on these auxiliary
variables but rather only apply bound tightening heuristics to them. Initial valid bounds for
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Table 2 Tables reporting the
correlation of the shifted
geometric mean (1) between the
considered methods with respect
to CPU seconds and number of
iterations when exactly 1, 2 or 3
auxiliary optimization variables
are added

Geometric mean w.r.t. CPU seconds

1 aux added Mid Kelley Simplex S+K Random

Geom mean 1.47 1.05 1 1.14 1.03

2 aux added Mid Kelley Simplex S+K Random

Geom mean 1.48 1.006 1 1.25 1.01

3 aux added Mid Kelley Simplex S+K Random

Geom mean 1.41 1 1.06 1.18 1.02

Geometric mean w.r.t. number of iterations

1 aux added Mid Kelley Simplex S+K Random

Geom mean 4.22 1.61 1.12 1 1.16

2 aux added Mid Kelley Simplex S+K Random

Geom mean 4 1.43 1.02 1 1.05

3 aux added Mid Kelley Simplex S+K Random

Geom mean 3.92 1.44 1.1 1 1.06

aux denotes auxiliary variable(s)

Table 3 Tables reporting the correlation of the shifted geometric mean (1) between the presented methods
considering all numbers of additional auxiliary variables (1–3) with respect to CPU seconds and number of
iterations

Geometric mean considering all numbers of additional aux. vars. (1–3)

CPU sec. Mid Kelley Simplex S+K Random

Geom mean 1.42 1 1.001 1.16 1.003

Iterations Mid Kelley Simplex S+K Random

Geom mean 1.72 1.17 1.03 1 1.03

the introduced variables are obtained through interval arithmetic and constraint propagation.
We report only the problems where at least one common intermediate factor has been found.
Again, we use the shifted geometric mean (cf. Sect. 3.5) to compare the different lineariza-
tion strategies for a fixed number of additional auxiliary optimization variables and also to
compare the same linearization strategies for the different numbers of introduced auxiliary
optimization variables (cf. Tables 2, 4). Table 3 reports the shifted geometricmean comparing
the different linearization strategies over all numbers of additional auxiliary variables (1–3).
Table 5 reports the shifted geometric mean comparing the different linearization strategies
and all different number of auxiliary variables (0–3).

In the cases where 1 or 2 auxiliary optimization variables are added, the n-simplexmethod
outperforms all other considered procedures and that it is the only one to solve all considered
numerical examples in the time frame of 8 hours (cf. Tables 8, 9, 10 found in “Appendix
A”) with up to 2 auxiliary variables. The adaptation of Kelley’s algorithm performs best
when 3 auxiliary variables are added, but in general all procedures perform worse than when
less auxiliaries are used. Overall, Kelley’s and the n-simplex algorithm perform very similar
when auxiliary variables are added (cf. Tables 3, 5). The introduction of auxiliary variables
allows an improvement of up to ≈ 20% with respect to solution times for all procedures (cf.
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Table 4 Tables reporting the
correlation of the shifted
geometric mean (1) when only
the mid point of the domain box
is used as linearization point;
when the adapted Kelley’s
algorithm (Sect. 3.2) is used to
linearize the lower bounding
problem; the n-simplex algorithm
(Sect. 3.3) is used compute the
linearization points; and when the
adapted Kelley’s algorithm (Sect.
3.2) with the initial set of
linearization points computed
with the n-simplex algorithm
(Sect. 3.3) is used to linearize the
lower bounding problem; and
when random linearization points
are used. We consider the case
when 0–3 auxiliary variables are
introduced and compare the each
method individually in terms of
CPU seconds and number of
iterations

Geometric mean w.r.t. CPU seconds

Mid 0 aux 1 aux 2 aux 3 aux

Geom mean 1.14 1.02 1.03 1

Kelley 0 aux 1 aux 2 aux 3 aux

Geom mean 1.19 1.03 1 1.006

Simplex 0 aux 1 aux 2 aux 3 aux

Geom mean 1.22 1 1.009 1.09

S+K 0 aux 1 aux 2 aux 3 aux

Geom mean 1.21 1 1.1 1.06

Random 0 aux 1 aux 2 aux 3 aux

Geom mean 1.19 1.01 1 1.02

Geometric mean w.r.t. number of iterations

Mid 0 aux 1 aux 2 aux 3 aux

Geom mean 1.82 1.19 1.12 1

Kelley 0 aux 1 aux 2 aux 3 aux

Geom mean 1.97 1.12 1.09 1

Simplex 0 aux 1 aux 2 aux 3 aux

Geom mean 1.93 1.12 1.02 1

S+K 0 aux 1 aux 2 aux 3 aux

Geom mean 1.99 1.11 1.1 1

Random 0 aux 1 aux 2 aux 3 aux

Geom mean 2.06 1.21 1.08 1

aux denotes auxiliary variable(s)

Table 4). It is also comprehensible that linearization strategies using multiple linearizations
achieve computational advantages when introducing auxiliary optimization variables when
compared to the simple single point linearization due to the increased dimensionality and
thus also an increased complexity of the optimization problem. Unfortunately, we cannot say
that introducing more auxiliary variables always results in best performance as, e.g., when
introducing auxiliary variables for the minimization of the levelized cost of electricity in case
3 [1], we achieve the best computational performance when adding only 1 auxiliary variable.
However, the number of iterations needed decreases as more auxiliary optimization variables
are added, confirming the improved tightness of the resulting lower bounding relaxations. This
may be an indicator that replacing the common factors occurring the most in the optimization
problem is not always the best heuristic but rather different properties are crucial for the
computational advantage. It is also possible that it is required to branch on the auxiliary
variables to possibly further improve the computational performance. The improvement of
the choice of intermediate factors and the development of specialized heuristics for the
hybridization of McCormick relaxations with the AVM requires further investigation and
remains an active research topic of the authors.

The present results for the NRTL flash case (NRTL_RS_IdealGasFlash) also provide an
explanation for the differences in performance of the model formulations considered by
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Table 5 Tables reporting the
correlation of the shifted
geometric mean (1) when only
the mid point of the domain box
is used as linearization point;
when the adapted Kelley’s
algorithm (Sect. 3.2) is used to
linearize the lower bounding
problem; the n-simplex algorithm
(Sect. 3.3) is used compute the
linearization points; and when the
adapted Kelley’s algorithm (Sect.
3.2) with the initial set of
linearization points computed
with the n-simplex algorithm
(Sect. 3.3) is used to linearize the
lower bounding problem; and
when random linearization points
are used. We consider the case
when 0–3 auxiliary variables are
introduced and compare all
combinations of method and
number of auxiliary variables in
terms of the CPU seconds and
number of iterations. aux denotes
auxiliary variable(s)

Geometric mean w.r.t. CPU seconds

0 aux 1 aux 2 aux 3 aux

Mid 1.69 1.47 1.49 1.44

Kelley 1.21 1.05 1.01 1.02

Simplex 1.22 1 1.009 1.09

S+K 1.39 1.14 1.26 1.21

Random 1.21 1.03 1.02 1.04

Geometric mean w.r.t. number of iterations

0 aux 1 aux 2 aux 3 aux

Mid 7.15 4.7 4.41 3.92

Kelley 2.85 1.79 1.58 1.44

Simplex 2.14 1.25 1.13 1.1

S+K 1.99 1.11 1.1 1

Random 2.2 1.29 1.15 1.06

Bongartz and Mitsos [3]. In the version of the case study used herein, only the liquid mole
fractions of the flash are optimization variables while the vapor mole fractions are calculated
from the isofugacity equations. Bongartz andMitsos [3] observed that adding the vapor mole
fractions as optimization variables, thus turning the isofugacity equations into constraints,
improved computational performance.When allowing the addition of auxiliary variables, the
variables added herein correspond exactly to these vapor mole fractions, showing that their
addition to the problem results in tighter relaxations because they are re-occurring factors.

5 Conclusion

Algorithms for the computation of linearization points for the auxiliary variable method are
available and are widely used in state-of-the-art deterministic global optimization solvers
[35]. No such methods have been proposed for the (multivariate) McCormick relaxations.
We discuss difficulties and limits of methods for the computation of affine underestimators
of McCormick relaxations when the idea of subgradient propagation is considered [28]. An
iterative method based on well-known cutting plane algorithms from the field of convex
optimization [8,21] and an own algorithm based on the computation of all vertices of an n-
simplex for the computation of linearization points a priori are developed. We combine both
methods and compare all procedures in numerical experiments. The n-simplex algorithms
performs best on the considered test set, but all method perform up to ≈ 60% better than
the single point linearization strategy used in our previous works. Furthermore we tie on the
discussion on the relaxation tightness and introduction of auxiliary variables in the AVM and
McCormick relaxations presented in [37]. The theoretical results are applied in the numerical
experiments by recognizing common intermediate factors in the directed acyclic graph and
introducing additional optimization variables while still using the McCormick propagation
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rules. The introduction of a limited number of auxiliary variables provides large improve-
ments in the computational times. We deduce that it is not always best (w.r.t. computational
time) to introduce all commonly occurring factors as auxiliary optimization variables. The
development of methods for the determination of when to replace a common factor by an
auxiliary optimization variable remains an active field of research of the authors.
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A Appendix

See Tables 6, 7, 8, 9 and 10.
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Table 6 Table summarizing the
problems for the numerical
studies

Name #var #ineq #eq

bearing 13 3 9

case2_lcoe [1] 5 12 1

case2_wnet [1] 5 7 1

case3_lcoe [1] 8 22 1

case3_wnet [1] 8 14 1

chenery 43 6 32

ex5_4_4 27 0 19

ex6_1_3 12 0 9

ex6_2_10 6 0 3

ex6_2_7 10 0 3

ex7_2_3 8 6 0

ex7_3_4 12 10 7

ex8_2_1b 57 31 2

NRTL_RS_IdealGasFlash [3] 6 1 4

Process_Detailed [3] 51 6 46

Process_Detailed_with_CO2 [3] 52 6 46

William_Otto_4 [2] 13 1 9

William_Otto_5 [2] 14 1 9

#var represents the number of variables, #ineq stands for the number of
inequalities and #eq for the number of equalities
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