
Journal of Global Optimization (2021) 80:357–385
https://doi.org/10.1007/s10898-020-00976-y

On tackling reverse convex constraints for non-overlapping
of unequal circles

Akang Wang1,2 · Chrysanthos E. Gounaris1,2

Received: 17 December 2019 / Accepted: 6 December 2020 / Published online: 4 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
We study the unequal circle-circle non-overlapping constraints, a form of reverse convex
constraints that often arise in optimization models for cutting and packing applications.
The feasible region induced by the intersection of circle-circle non-overlapping constraints
is highly non-convex, and standard approaches to construct convex relaxations for spatial
branch-and-bound global optimization of such models typically yield unsatisfactory loose
relaxations. Consequently, solving such non-convexmodels to guaranteed optimality remains
extremely challenging even for the state-of-the-art codes. In this paper, we apply a purpose-
built branching scheme on non-overlapping constraints and utilize strengthened intersection
cuts and various feasibility-based tightening techniques to further tighten the model relax-
ation.We embed these techniques into a branch-and-bound code and test themon two variants
of circle packing problems. Our computational studies on a suite of 75 benchmark instances
yielded, for the first time in the open literature, a total of 54 provably optimal solutions, and
it was demonstrated to be competitive over the use of the state-of-the-art general-purpose
global optimization solvers.

Keywords Non-overlapping constraints · Circle packing · Circular open dimension
problem · Branching scheme · Strengthened intersection cuts · Feasibility-based tightening

1 Introduction

The circle-circle non-overlapping constraint is imposed to guarantee that two circles (gen-
erally of different radius) do not overlap, which can be achieved by requiring that their
centers are sufficiently far in terms of Euclidean distance. In particular, the constraint has the
mathematical form (

ai − a j
)2 + (

bi − b j
)2 ≥ (

ri + r j
)2

, (1)

where (ai , bi) and
(
a j , b j

)
represent the coordinates of the centers of two circles i and j ,

while ri and r j denote their corresponding radii, respectively.

B Chrysanthos E. Gounaris
gounaris@cmu.edu

1 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2 Center for Advanced Process Decision-making, Carnegie Mellon University, Pittsburgh, PA 15213, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00976-y&domain=pdf
http://orcid.org/0000-0001-5779-2510

358 Journal of Global Optimization (2021) 80:357–385

Studying this type of constraint has both theoretical and practical interest. From a the-
oretical perspective, mathematical models with non-overlapping constraints usually have
a highly non-convex solution space whose convexification towards a tight relaxation still
poses a tremendous challenge for the global optimization community; solving these models
to guaranteed optimality remains extremely hard, even for the state-of-the-art solvers. From a
practical point of view, circle-circle non-overlapping constraints often appear in many mod-
els for cutting and packing applications, and efforts to solve them more efficiently can add
significant value to industry.

The first and foremost, archetypal family of problems of interest are the circle packing
problems. These come in many variants, such as packing identical circles into a rectan-
gular container with the objective of minimizing the container’s area [14], or identifying
the minimal radius of a circle within which other circles can simultaneously be placed [27],
among others. Related applications include container loading, cyclinder packing andwireless
communication network layout, to name but a few [11]. Another related cutting and packing
application is the irregular shape nesting problem, in which one seeks a feasible configuration
for a given set of irregular shapes within a rectangular sheet of a fixedwidth such that no over-
lap among these shapes exists and the sheet length is minimized. This problem often appears
when carving out of metal rolls parts for automobiles, airplanes and other machinery, as well
as when cutting leather and fabrics for apparel and upholstery applications. The work of [17]
proposed to enforce no overlap between any two irregular shapes by imposing that circles
inscribed within one shape do not overlap with circles inscribed within another one, resulting
in an optimization model with non-convex quadratic constraints. Using this approach, the
authors obtained for the first time optimal nesting solutions to a four polygon problem, using
off-the-shelf global optimization solvers to tackle the non-convex quadratically constrained
models. Focusing on the circle-inscribing approach for nesting problems, [34] proposed a
novel branching scheme on circle-circle non-overlapping constraints and demonstrated the
ability to find global optimal nestings to benchmark instances with five polygons, as well as
solutions to instances with up to seven polygons under fixed rotation. Both the circle packing
problem and the irregular shape nesting problem have been studied extensively, with most
of the focus being on the development of heuristics to obtain large-scale packings [4,20].
While heuristic methods are practically valuable for the generation of feasible solutions, they
cannot rigorously quantify the optimality gap, and therefore provide no guarantees regarding
how much value is left on the table by the packings produced. Arguably, the exact solution
of optimization models with non-overlapping constraints is of great practical importance.

Mathematical models with circle-circle non-overlapping constraints fall into the quadrat-
ically constrained quadratic programming (QCQP) class, which is currently a very active
research area in global optimization. Generally speaking, there are two approaches for
convexifying QCQPs, namely semi-definite programming (SDP) relaxation and multi-
term polyhedral relaxation with reformulation-linearization techniques [7]. The polyhedral
approach calls for approximating the convex hull of the non-convex feasible solution space
via linear inequalities, while the SDP method is to characterize the convex hull via semi-
definite cones. Interested readers are referred to [5] for details. Although the SDP relaxation
is usually tighter than the polyhedral one, optimizing an SDP problem is generally computa-
tionally less efficient than a linear one. Therefore, general-purpose global solvers [24,32,33]
commonly rely on polyhedral relaxations to address QCQPs. Despite many recent advances
in global optimization solvers, however, optimizingmodels with non-overlapping constraints
is still incredibly challenging. Our computational studies on circle packing instances (Sec-
tion 5) also show that general-purpose global solvers could only solve instances of up to 10
circles to guaranteed optimality.

123

Journal of Global Optimization (2021) 80:357–385 359

At the same time, there exist only a handful of attempts in the open literature to address
such models in a customized approach. The work of [18] considered the problem of packing
a fixed number of identical circles into a given square with the objective of maximizing the
circle radius. The authors conducted a theoretical comparison of several convexification tech-
niques on non-overlapping constraints, including polyhedral and semi-definite relaxations,
and assessed their strength theoretically. They pessimistically concluded that the current
state-of-the-art bounding techniques within general-purpose global optimization algorithms
are only effective for small-size instances (e.g., with up to 10 or so circles). In contrast, sev-
eral tailored exact algorithms, utilizing interval arithmetic-based branch-and-boundmethods,
have been shown to be effective at solving to optimality instances of packing an excess of 30
identical circles in the unit square [14]. More specifically, the authors of [19] incorporated
into a rectangular branch-and-bound approach optimality conditions satisfied by at least one
optimal solution, solving instances of up to 39 circles to optimality. In addtion, [22] and
[30] proposed methods for eliminating large sets of suboptimal points of the equivalent point
packing problem. In [23], the authors employed interval arithmetic to expedite the branch-
and-bound algorithm, while the work of [21] presented geometric results concerning the
structural properties of such problems of packing circles in the unit square. Finally, for more
general settings, the work of [26] proposed to approximate the quadratic function in the
left-hand side of a non-overlapping constraint via piecewise linear functions. This approach
necessitates the introduction of binary variables to represent the latter, resulting in a mixed-
integer linear programming model, and thus might become impractical as the approximation
accuracy increases.

This paper presents an extension of the branching strategy on non-overlapping constraints
previously developed in [34]. The main idea is rooted in the geometric interpretation of a
circle-circle non-overlapping constraint. More specifically, the constraint (1) dictates that
any feasible point in the transformed variable space

(
ai − a j

)
–
(
bi − b j

)
should lie outside

(or exactly on) the circumference of the circle that has a center with coordinates (0, 0) and
has a radius of ri + r j . Unlike a traditional, general-purpose spatial branch-and-bound based
solver, which must generically handle each non-convex constraint by relaxing it individually
into its convex relaxation and tighten that relaxation via branching on the domains of the
problem’s variables, our perspective is to split the feasible, non-convex domain imposed by
non-overlapping constraints and enforce feasibility in a more direct fashion. This approach
is also clearly distinct from the aforementioned works on identical circles packing [19,21–
23,30], since those utilize branching on variable intervals.

More specifically, we will follow an approach that branches on the domain of constraint,
rather than the domain of variables. Additionally, we observe that the non-overlapping con-
straint imposes a reverse convex region [15]. It is well-known that reverse convex constraints
can induce intersection cuts [6,15], which are also called concavity cuts [16] in the global
optimization community. These cuts are computationally cheap to generate, and they can be
utilized to strengthen the model relaxation. In order to further tighten the model relaxation,
we also propose three feasibility-based tightening techniques. The distinct contributions of
our work can be summarized as follows.

– We develop a customized branch-and-bound (BB) approach for solving problems with
unequal circle-circle non-overlapping constraints.

123

360 Journal of Global Optimization (2021) 80:357–385

– We apply a generalized version of the intersection cut formula from the seminal paper
of [6], as well as propose three types of feasibility-based tightening techniques, to
strengthen the BB node relaxations.

– We conduct a comprehensive computational study based on two popular variants of the
circle packing problem to demonstrate that our approach achieves superior performance
over the use of various state-of-the-art general-purpose global optimization solvers.

The remainder of the paper is organized as follows. In Sect. 2, we provide a concise
description of an optimizationmodelwith non-convexities that stem from the presence of non-
overlapping constraints. In Sect. 3, we discuss how to construct a suitable linear relaxation
of such a model that we can use as the basis of our BB algorithm, followed by a presenta-
tion of the complete algorithmic procedure. In Sect. 4, we discuss strengthening techniques,
including strengthened intersection cuts and feasibility-based tightening. Section 5 presents
results on the algorithm’s computational performance as well as a comprehensive compari-
son against the use of five different state-of-the-art global optimization solvers. Finally, we
conclude our paper with some remarks in Sect. 6.

2 Problem definition

In this work, we focus on the following problem (2).

minimize
x∈Rn

c�x

subject to fk(x) ≤ 0 ∀ k ∈ K
x2i + x2j ≥ ρ2

i j ∀ (i, j) ∈ M

x L ≤ x ≤ xU ,

(2)

where fk(x) : Rn �→ R denotes a convex function, for each applicable index k ∈ K, while
x2i + x2j ≥ ρ2

i j represents a circle-circle non-overlapping constraint, for each applicable

ordered pair (i, j) ∈ M.1 Without loss of generality, we assume x Li ≤ xUi , for all i ∈
{1, 2, ..., n}, where these variable bounds are not necessarily finite; that is, we allow for
x Li → −∞ and/or xUi → +∞.

Since non-overlapping constraints induce a non-convex solution space, problem (2) is a
global optimization problem. In this work, we aim to develop exact, custom-built methods
for solving this problem to provable global optimality. We remark that this paper focuses on
the case where ρi j are generally different from each other, i.e., we are interested in packing
unequal, a.k.a. non-identical, circles. Of course, the methodologies developed herein can still
be applied with instances featuring identical circles, though in that case the use of specialized
algorithms for packing identical circles is advisable for better overall tractability. We also
remark that this paper is dedicated to the case where ρi j are constant. The setting where
ρi j become variables (presumably to be penalized in the objective) constitutes an interesting
generalization, andwhereas some of the ideas contemplated in this paper, such as the purpose-
designed branching scheme and the use of intersection cuts, would be straightforward to
adapt, other aspects, such as the feasibility-based tightening techniques, would require further
exploration as future work.

1 For ease of exposition, we simplify the notation of Eq. (1), as follows: xi ← ai ′ − a j ′ , x j ← bi ′ − b j ′ and
ρi j ← ri ′ + r j ′ , where (a�, b�) and r� represent the center coordinates and radii, respectively, of two circles

� ∈ {
i ′, j ′

}
.

123

Journal of Global Optimization (2021) 80:357–385 361

3 Solution approach

Our approach is based on the construction of a branch-and-bound tree where linear program-
ming (LP) relaxations are solved at each node. Specifically, the convex domain defined by
fk(x) ≤ 0 in (2) is outer-approximated by linear inequalities. Themain challenge arises from
the non-convexities introduced by the non-overlapping constraints, x2i + x2j ≥ ρ2

i j , which we
address in the remainder of this section.

3.1 Customizedmodel relaxation

Here, we shall discuss how a suitable linear relaxation is constructed as the basis of the BB
search algorithm. First, we adopt the branching scheme from our previous work [34], applied
on a non-overlapping constraint from the set (i, j) ∈ M. Let x̄ represent the current optimal
solution of the LP relaxation at some BB node, and let Di j denote a disk that is centered
at the origin (0, 0) and has a radius of ρi j .. Furthermore, let θi j be the angle between the

positive xi -axis and the point given by the coordinates
(
x̄i , x̄ j

)
, and let

[
θ L
i j , θ

U
i j

]
represent

its feasible interval, which is originally equal to (0, 2π).
In the xi–x j space, the non-overlapping constraint requires that all feasible points project

either outside or exactly on the circumference of disk Di j (Fig. 1a). Initially, dropping this
constraint from consideration results in a convex relaxation that is defined by the full space
(Fig. 1b). Feasibility of the non-convex constraint can be then be gradually enforced by
branching on the implicit domain of variable θi j variable, and by tightening the relaxation in
the xi–x j space, as follows.

Let X denote a solution of the relaxed problem with coordinates
(
x̄i , x̄ j

)
such that it

violates the original constraint. Using this solution as a guide, we can split the circumference
of Di j into three parts (each representing an arc of angle 2π/3 radians), and we can define a
set of three linear constraints (corresponding to one secant and two boundary lines) to form
the convex relaxation of the original non-overlapping constraint in each of the three resulting
subdomains. As long as they are properly oriented with respect to X (Fig. 1c), it can be
guaranteed that all of the three subdomains exclude the parent solution.

In subsequent violations of the same constraint (i, j) ∈ M, one could further dissect
the applicable θi j interval into two parts. Again, as long as the solution X is used as the
guide to define the branching point, one can guarantee that this parent solution is excluded
from both resulting subdomains, defining a proper branching strategy to be employed in the
course of the BB search process. In particular, one can analytically identify a point N on the
circumference of disk Di j such that the Euclidean distances between X and two resulting
secant lines are equal, in the hope of producing a more balanced BB tree. Let θ∗

i j denote the
angle in radians between the positive xi -axis and the point N , then the resulting proposed

split is
[
θ L
i j , θ

∗
i j

]
and

[
θ∗
i j , θ

U
i j

]
(Fig. 1d).

We highlight that the aforementioned branching scheme proceeds from the perspective
of splitting the space induced by the non-convex non-overlapping constraints, which distin-
guishes our work from the classic idea of branching on each variable’s interval. By using
the novel scheme, we enforce non-convex constraint feasibility in a direct manner, which is
essential in global optimization, yet difficult to achieve in general-purpose global optimiza-
tion codes for all but the simplest constraint functional forms.

123

362 Journal of Global Optimization (2021) 80:357–385

xi

xj

(a) Full feasible space

X
xi

xj

(b) Convex relaxation of full feasible
space

X
xi

xj

(c) Initial tightening via three branches

X

N

xi

xj

(d) Subsequent tightening via two
branches

Fig. 1 The non-overlapping constraint and its dynamically tightened relaxation (adapted from [34])

Given the above relaxation strategy, Eqs.(3)–(7) constitute a relaxed LP formulation to be
solved at each node of our BB search process.

minimize
x∈Rn

c�x (3)

subject to fk(x̃) + ∇ fk(x̃)
�(x − x̃) ≤ 0 ∀ x̃ ∈ Hk,∀ k ∈ K (4)

αi j�xi + βi j�x j ≥ γi j� ∀ � ∈ {1, 2, 3},∀ (i, j) ∈ M̃ (5)

φ�
t x ≥ ξt ∀ t ∈ T (6)

x L ≤ x ≤ xU (7)

In the above formulation, constraints (4) constitute outer-approximation inequalities for
fk(x) ≤ 0, k ∈ K, where x̃ are the points of linearization, noting that such outer-
approximation is superfluous for any affine fk(x). The parameters αi j�, βi j� and γi j� in

123

Journal of Global Optimization (2021) 80:357–385 363

constraints (5) are suitably chosen in each case to define the linear inequalities that relax the
original non-overlapping constraints discussed above, while the set M̃ ⊆ M denotes the
set of circle pairs for which the corresponding θi j interval has been branched at least once.
Constraints (6) generically denote strengthening cuts that we shall discuss in Sect. 4, while
variable bounds are provided in constraints (7).

Note how, after a branch is applied, the parent node relaxation is tightened by adding
elements to the set M̃, when a new circle pair is branched upon for the first time, or by
updating the coefficientsα/β/γ , when the circle pair is branched upon further. The relaxation
is also tightened by appending and/or updating the set of strengthening cuts T , while the
outer-approximation sets Hk are also expanded as appropriate (see details later).

3.2 The branch-and-bound algorithm

We shall now focus on the implementation of the customized BB algorithm. At the root node,
the set Hk is initialized with points wx L + (1 − w) xU , where w ∈ {0.25, 0.5, 0.75}, while
the sets M̃ and T begin as empty sets. All of themwill be dynamically expanded and updated
as the algorithm proceeds.

After solving the LP relaxation (3)–(7) at each node, we check whether each of the convex
constraints (set K) as well as each of the non-overlapping constraints (set M) are satisfied
within some predefined tolerance ε (we use ε = 10−5) at the current LP solution x̄ .2 We
first focus on the convex constraints, and if fk(x̄) > ε for some k ∈ K , we add an outer-
approximation cut by settingHk ← Hk ∪ {x̄}. Note that, at each iteration, we only add such
cuts for the (up to) 5 most violated convex constraints k. If any outer-approximation cuts are
added,we resolve theLP relaxation; otherwise,weproceedwith checking the feasibility of the
non-overlapping constraints, as follows. For each non-overlapping constraint x2i + x2i ≥ ρ2

i j ,

(i, j) ∈ M, we define Vi j := ρi j −
√
x̄2i + x̄2j , and we consider this constraint to be violated,

if Vi j > ε. If no violated non-overlapping constraints exist, then a feasible solution x̄ has
been obtained; this solution is considered as a possible new incumbent, and the node is
fathomed. However, if at least one non-overlapping constraint is violated, the node must be
either tightened or branched, eliminating the current LP solution in either case.

Deferring the discussion of tightening techniques toSect. 4,wenow focus onour branching
strategy, namely howwe choosewhich implicit θi j variable (element of setM : {

Vi j > ε
}
) to

branch upon. Recalling that further branching of a previously branched θi j variable produces
fewer child nodes in the BB tree than the initial branching (two versus three subdomains), the
violation of currently unbranched non-overlapping constraints is first discounted by a factor
of τ unbr (we use τ unbr = 0.7); that is,Vi j ← (

1 − τ unbr
)
Vi j , for all (i, j) ∈ M\M̃.We then

choose to branchon the implicit θi j variable that corresponds to the highest violation after such
modifications. Note that, according to the earlier discussion, the branching is implemented
either as updating existing left-hand side coefficients or by adding new constraints, depending
on whether (i, j) ∈ M̃ or not.

2 For simplicity, we use here a common tolerance ε for all constraints in problem (2), but we remark that, in
principle, one may use a set of constraint-specific feasibility tolerances that are appropriately scaled for each
constraint.

123

364 Journal of Global Optimization (2021) 80:357–385

4 Strengthening techniques

We consider two types of relaxation strengthening techniques, namely intersection cuts and
feasibility-based tightening. Even though intersection cuts [6] are well-known for their use
in integer programming, their applicability goes much beyond that area, being generic tools
to deal with non-convexities that may stem from either integrality or continuous nonlinear
constraints. However, to the best of our knowledge, only a few works in the literature to date
have attempted to apply these techniques in the context of continuous nonlinear optimization.
In thiswork,we propose to utilize strengthened intersection cuts to tighten our LP relaxations.
Additionally, various feasibility-based tightening techniques are also introduced.

4.1 Intersection cuts

The idea of intersection cuts was originally proposed in [6] to construct valid cuts for integer
programming. It has gradually received more and more attention in other areas such as
reverse convex programming [15], bilevel optimization [13], polynomial programming [10],
and factorableMINLP [28], among others. To the best of our knowledge, the literature always
considers the case where variables are bounded from below by zero, while the more general
case where variables are bounded from below and/or above by arbitrary values has been
ignored. The challenge comes from the fact that, at the LP optimal solution, some non-basic
variable might be at its upper bound, or some non-basic variable might be at its lower bound
yet that bound not being 0. In such cases, the intersection cut formula from the seminal
paper [6] is not immediately valid. Whereas this can be easily dealt with by explicitly adding
to the model variable-bounding constraints (thus forcing all non-basic variables at an optimal
LP solution to be slack variables), it is generally much more common and useful for general-
purpose global optimization solvers to separate variable bounds from other constraints and
to handle them separately. To this end, we present in Sect. 4.1.1 a complete derivation of
intersection cuts for more general cases where variable bounds might be arbitrary numbers.
Afterwards, in Sect. 4.1.3, we consider a strengthening method to further tighten these cuts.

4.1.1 Generating intersection cuts

Consider the following problem:

minimize
x∈Rn

c�x

subject to x ∈ P ∩ Q,
(8)

where P := {
x ∈ R

n : Ax ≤ b; x L ≤ x ≤ xU
}
,3 with A ∈ R

m×n and b ∈ R
m , while Q

represents a “complicating” set. In this work, we consider

Q :=
{
x ∈ R

n : x2i + x2j ≥ ρ2
i j , ∀ (i, j) ∈ M

}
.

Initially, we relax the feasible region by only considering x ∈ P , and we introduce slack
variables s ∈ R

m≥0 to obtain a linear program in standard form.
Let t := (x, s) denote all variables, for convenience. Assume that the linear program

is feasible and that its objective function is bounded; then, it can be solved via the simplex

3 Structural variables x are not necessarily bounded, i.e., xLi → −∞ and/or xUi → +∞, for any and all
i ∈ {1, 2, . . . , n}.

123

Journal of Global Optimization (2021) 80:357–385 365

algorithm. Let t̄ = (x̄, s̄) represent the current LP optimal solution.Without loss of generality,
we assume that x̄ /∈ Q, since otherwise problem (8) has been solved. We assume that we
are given a closed convex set S whose interior contains x̄ but no feasible point; that is,
x̄ ∈ int(S) and int(S) ∩ (P ∩ Q) = ∅. In the following, we shall discuss how to generate a
valid intersection cut to eliminate x̄ using S for the case where structural variables x might
be bounded from below and/or above.

Let I represent the index set of structural variables x . Let B and N denote the index sets
associated with the basic and non-basic variables, respectively. Furthermore, let N L denote
the set of non-basic variables that are currently at their lower bounds and NU := N \ N L

represent the set of non-basic variables at their upper bounds. Note that both structural and
slack variables might be non-basic. We focus on the structural variables and, for each non-
basic such variable xi , i ∈ I ∩N , we add a trivial relation, setting xi to itself. The modified
simplex tableau is demonstrated in (9), where non-basic variable t j might correspond to
either a structural (i.e., xk , for some k) or a slack (i.e., sk , for some k) variable.

xi = x̄i −
∑

j∈N L

āi j (t j − t Lj) +
∑

j∈NU

āi j (t
U
j − t j) ∀ i ∈ I ∩ B

xi = x̄i −(−1)(xi − x Li) ∀ i ∈ I ∩ N L

xi = x̄i +(−1)(xUi − xi) ∀ i ∈ I ∩ NU

(9)

For convenience, tableau (9) can also be represented in vector form, where ā j are suitably
defined vectors:

x = x̄ −
∑

j∈N L

ā j (t j − t Lj) +
∑

j∈NU

ā j (t
U
j − t j). (10)

Associated with the simplex tableau (10) is a conic relaxation of P , called the LP-cone,
whose apex is x̄ and whose facets are defined by n hyperplanes that form the basis of x̄ .
Thus, the LP-cone has n extreme rays, each formed by an extreme direction r j emanating
from the apex x̄ , where r j = −ā j if j ∈ N L , or r j = ā j if j ∈ NU . Following the extreme
ray x̄ + λ j r j (where λ j ≥ 0), we seek its intersecting point with the boundary of the set S.

More specifically, for each extreme ray x̄ + λ j r j , j ∈ N , we seek to solve

λ∗
j := maximize

λ j≥0

{
λ j : x̄ + λ j r

j ∈ S
}

. (11)

Since x̄ ∈ int(S), problem (11) is always feasible (e.g., λ j = 0 is a feasible solution). If r j is
a recessive direction of S (i.e., r j ∈ rec(S), where rec(S) denotes the recession cone of S),
there is no intersection point between the extreme ray x̄ + λ j r j and the boundary of the set
S. Thus, in this case, the objective in (11) is unbounded from above and we set λ∗

j = +∞.

Otherwise, we obtain a unique solution λ∗
j and the intersection point is x̄ + λ∗

j r
j .

LetN 1 := {
j ∈ N : r j ∈ rec(S)

}
andN 2 := N \N 1 for convenience. The intersection

cut that cuts off x̄ is defined to be the halfspace whose boundary contains each intersection
point x̄ + λ∗

j r
j , j ∈ N 2 and which is parallel to each extreme direction r j , j ∈ N 1 (Fig. 2).

The validity of intersection cuts is intuitive from a geometric perspective. Thus, we skip its
proof and instead focus on the derivation of the intersection cut formula.

123

366 Journal of Global Optimization (2021) 80:357–385

Fig. 2 Generation of intersection
cuts

x̄

P

S

Proposition 1 The intersection cut can be represented in non-basic space (e.g., using non-
basic variables t j) as follows:

∑

j∈N L

t j − t Lj
λ∗
j

+
∑

j∈NU

tUj − t j

λ∗
j

≥ 1. (12)

Proof Weonly need to prove that this halfspace passes through all intersection points x̄+λ∗
j r

j ,

j ∈ N 2 and that it is parallel to extreme directions r j , j ∈ N 1. We consider the following
two cases.

• If j ∈ N 2, the intersection point x̄ + λ∗
j r

j is obtained via moving from x̄ along the

direction r j by a distance of λ∗
j . If j ∈ N 2 ∩ N L , in the non-basic space we have

t j = t Lj + λ∗
j · 1, and the other non-basic variables t j ′ (j ′ ∈ N \ { j}) will remain at their

lower or upper bounds at this intersection point. Therefore,

∑

j ′∈N L

t j ′ − t Lj ′

λ∗
j ′

+
∑

j ′∈NU

tUj ′ − t j ′

λ∗
j ′

= t Lj + λ∗
j − t Lj

λ∗
j

= 1.

In other words, the intersection cut passes through the intersection point x̄ + λ∗
j r

j . This

also applies in the case j ∈ N 2 ∩ NU .
• If j ∈ N 1, we only need to prove that the intersection cut is parallel to r j . Moving along

the direction r j from the point x̄ , if j ∈ N 1∩N L , we have t j = t Lj +λ ·1 (where λ ≥ 0),
and the other non-basic variables t j ′ (j ′ ∈ N \ { j}) will remain unchanged. Therefore,

∑

j ′∈N L

t j ′ − t Lj ′

λ∗
j ′

+
∑

j ′∈NU

tUj ′ − t j ′

λ∗
j ′

= t Lj + λ − t Lj
λ∗
j

= λ

+∞ = 0.

The parallel relationship is proved. This also applies in the case j ∈ N 1 ∩ NU . ��
As mentioned in [6], λ∗

j should be approximated from below for numerical validity. Readers
are referred to that work for further details, with the observation however that the intersection
cut formula (12) is more generic than the one presented in [6], reducing to the latter when
structural variables x are only bounded from below by zero.

Note that, given a mathematical model, one has to identify a suitable set S to derive valid
intersection cuts. We highlight that such a convex set S generally exists, if some constraint

123

Journal of Global Optimization (2021) 80:357–385 367

Sij

xi

xj

(a) θU
ij − θL

ij = 2π

Sij

xi

xj

(b) θU
ij − θL

ij < 2π

Fig. 3 Valid convex sets Si j for generating intersection cuts

in the model imposes a reverse convex region. In fact, from problem (11), one can infer that
deeper cuts will be produced from larger sets S whose boundary intersects with extreme rays
at intersections points further away from the apex, x̄ .

4.1.2 Generating intersection cuts for non-overlapping constraints

In our context, we can easily identify a valid sets S for generating intersection cuts. Consid-
ering the fact that the non-overlapping constraint x2i + x2j ≥ ρ2

i j represents a reverse convex

region [15], we can define Si j := {x ∈ R
n : x2i + x2j ≤ ρ2

i j } (Fig. 3a) such that x̄ ∈ int(Si j).
Furthermore, recalling that enlarging the set whenever possible leads to stronger cuts, we
can enlarge Si j using the following formula (Fig. 3b) when θUi j − θ L

i j < 2π :

Si j ← Si j ∪

⎧
⎪⎨

⎪⎩
x ∈ R

n

∣∣∣∣∣∣∣

cos(θ)xi + sin(θ)x j ≤ ρi j , ∀ θ ∈ {θ L
i j , θ

U
i j }

cos(
θ L
i j + θUi j

2
)xi + sin(

θ L
i j + θUi j

2
)x j ≤ ρi j cos(

θUi j − θ L
i j

2
)

⎫
⎪⎬

⎪⎭
.

(13)
The enlarged set Si j remains convex and does not contain any feasible solution in its interior;
therefore, intersection cuts generated from Si j will be valid. We highlight that enlarging the
convex set and generating stronger intersection cuts becomes possible due to the chosen
scheme to branch upon non-overlapping constraints.

In our implementation, we define Si j for every (i, j) ∈ M. When θUi j − θ L
i j < 2π , we

use the enlarged version (13). We use these sets to generate intersection cuts for which the
corresponding non-overlapping constraint is violated, but only the best 5 cuts with Euclidean
distances from x̄ larger than tolerance δ = 10−2 are added to the model. Furthermore,
whenever θ L

i j or θUi j is updated due to branching or tightening, we always enlarge the set Si j
and attempt to compute newλ∗

j values from (12) towards strengthening the related intersection
cuts that have already been generated.

123

368 Journal of Global Optimization (2021) 80:357–385

Fig. 4 Strengthened intersection
cuts

rj
r̂

x̄

P

S

4.1.3 Strengthening intersection cuts

Figure 4 demonstrates a simple case where the intersection cut (blue solid line) generated
from Sect. 4.1.1 can be further tightened. The generated intersection cut passes through
an intersection point and is parallel to the extreme direction r j (since r j ∈ rec(S)). In
this case, we can identify another cut Î C (red solid line), which also passes through the
same intersection point, but which is parallel to some other recessive direction r̂ ∈ rec(S).
Apparently, Î C is a valid cut that dominates IC .

The validity of Î C deduces from the fact that, by convexity of S, any point satisfying IC
but not Î C lies within the interior of S and is thus outside P ∩ Q. The stronger cut Î C can
be regarded as a halfspace that passes through the existing intersection point and a new one
residing at the negative part of the extreme ray x̄ + λr j (where λ ≥ 0). In order to maintain
the validity of the new intersection cut, as the work of [10] suggested, one has to guarantee
that r̂ := (x̄+λ∗

j ′r
j ′)−(x̄+λ j r j), the direction from the new intersection point, (x̄+λ j r j),

to every intersection point, (x̄ + λ∗
j ′r

j ′), is a recessive direction of S (i.e., r̂ ∈ rec(S)) for

every j ′ ∈ N 2. It is clear from (12) that increasing λ j while λ j ≤ 0 leads to a stronger cut.
Thus, for each extreme direction r j , j ∈ N 1, we define the following problem:

λ∗
j := maximize

λ j≤0

{
λ j : λ∗

j ′r
j ′ − λ j r

j ∈ rec(S),∀ j ′ ∈ N 2
}

. (14)

If problem (14) is infeasible, we set λ∗
j = −∞; otherwise, a unique solution λ∗

j is obtained,

resulting in a new intersection point (x̄ + λ∗
j r

j). With this, we arrive at Proposition 2.

Proposition 2 The intersection cut defined by (12) and using λ∗
j from (11), for j ∈ N 2, and

λ∗
j from (14), for j ∈ N 1, is valid.

Given a convex set S, the problem (14) is in general hard to solve because no closed-form
formula for rec(S) is available. However, in our context, the recession cone rec(Si j) can be
easily identified. More specifically, we distinguish three cases:

(i) when θUi j − θ L
i j > π , the projection of Si j onto the xi–x j space is a bounded area, and

hence its recession cone is

rec(Si j) = {
x ∈ R

n : xi = 0, x j = 0
}
,

projecting to a singleton on the xi–x j space;

123

Journal of Global Optimization (2021) 80:357–385 369

(ii) when θUi j − θ L
i j = π , the recession cone becomes

rec(Si j) =
{
x ∈ R

n : xi = −λ sin(θ L
i j), x j = λ cos(θ L

i j), ∀ λ ≥ 0
}

,

projecting to a ray on the xi–x j space;
(iii) when θUi j − θ L

i j < π , it is easy to show that

rec(Si j) = rec
({

x ∈ R
n : cos(θ)xi + sin(θ)x j ≤ ρi j ,∀ θ ∈ {θ L

i j , θ
U
i j }

})

=
{
x ∈ R

n : cos(θ)xi + sin(θ)x j ≤ 0,∀ θ ∈
{
θ L
i j , θ

U
i j

}}
. (15)

We remark that, when case (i) applies, the problem (14) is almost always infeasible, due to
insufficient degrees of freedom. Furthermore, case (ii) is unlikely to be relevant in the context
of double-precision arithmetic, due to inability to detect that θUi j − θ L

i j equals π exactly, and
hence, we did not consider this case in our implementation. It is only under case (iii) that
the closed-form formula (15) can be plugged into (14) and a value for λ∗

j be analytically

identified for every j ∈ N 1. Therefore, in our implementation, we generate intersection cuts
using Proposition 1 in cases (i) and (ii), and we attempt to generate a strengthened version
of such cuts using Proposition 2 only in case (iii).

4.2 Feasibility-based tightening

Feasibility-based tightening is a common technique in global optimization to reduce variable
bounds, and it is usually implemented via interval arithmetic [25]. In our context, since
explicit structural variable domains are not branched upon, the interval arithmetic technique
would not tighten variable bounds effectively. Considering that our strategy is to branch on
the feasible intervals of implicit variables θi j , our feasibility-based tightening approach will
instead focus on reducing the domains for these variables.

From a geometric perspective, the non-overlapping constraint, x2i + x2j ≥ ρ2
i j , requires the

solution’s projection on the xi–x j space to lie either outside or exactly on the circumference of
disk Di j (Fig. 1). Let FRi j denote the feasible regionof the xi–x j space.At the root nodeof the

BB tree, we have FRi j = conv
({

(xi , x j) : x Li ≤ xi ≤ xUi , x Lj ≤ x j ≤ xUj

}
\ int(Di j)

)
,

and this region gradually reduces due to branching or tightening. We emphasize that the
feasible spaces FRi j , (i, j) ∈ M are not explicitly enforced in the relaxation model, (3)–(7),
because they are generally implied by other constraints. We also note that FRi j is always a
bounded polyhedron (assuming that valid lower and upper bounds for xi , i ∈ {1, 2, . . . n},
can be extracted or deduced), and that this region might correspond to a reduced interval[
θ L
i j , θ

U
i j

]
for the implied variable θi j . To that end, in our implementation, we attach our

description of FRi j to the BB node as important information to be used for tightening the
θi j intervals, as follows.

Assume that the projection of the current LP solution x̄ lies in the interior of Di j ,
i.e., X ∈ FRi j ∩ int(Di j). Whenever FRi j is reduced due to some tightening tech-
nique, we can revisit the geometric meaning of the non-overlapping constraint and obtain

FRi j ← conv
(
FRi j \ int(Di j)

)
(Fig. 5). From that, we can infer possibly tighter

[
θ L
i j , θ

U
i j

]

bounds, and whenever the latter are indeed tightened, we first update the relaxations for
its corresponding non-overlapping constraint and then check whether X is cut off by the
halfspace formed by the new secant line. Next, we discuss three opportunities to reducing
FRi j .

123

370 Journal of Global Optimization (2021) 80:357–385

Dij

FRij

X

xi

xj

(a) Initial feasible region

Dij

FRij

X

xi

xj

(b) Tightened feasible region

Fig. 5 Feasibility-based tightening

4.2.1 Generating concave envelopes

Let us begin by defining h(xi , x j) := x2i + x2j , where (xi , x j) ∈ FRi j . We seek the concave
envelope, i.e., the tightest possible over-estimator, of h(xi , x j) over its domain FRi j , which
we shall denote as concFRi j h(xi , x j). It is clear that the function h(xi , x j) has a vertex
polyhedral concave envelope over the bounded polyhedral domain FRi j [31]; therefore, its
concave envelope coincides with the concave envelope of its restriction to the vertices of
FRi j and consists of finitely many hyperplanes.4

As a result, we obtain the following constraints that are valid for our relaxation:

concFRi j h(xi , x j) ≥ ρ2
i j . (16)

We remark that constraints (16) are not directly added to the relaxation model,

(3)–(7), rather used to reduce FRi j . More specifically, FRi j ← FRi j ∩
{
(xi , x j) :

concFRi j h(xi , x j) ≥ ρ2
i j

}
. If FRi j is indeed reduced in this manner, we then attempt to

apply feasibility-based tightening as described in the preamble of this section to further
tighten FRi j . Note that this process can be applied recursively, since a smaller polytope
FRi j will induce a tighter over-estimator for h(xi , x j), which might in turn further reduce
FRi j .

4.2.2 Calculating Minkowski sums

Another typical feasibility-based tightening technique in global optimization is bound propa-
gation [25]. Adapting this idea into our context, we propose to apply domain propagation. For
example, in the context of packing three circles i , j and k, one usually seeks to enforce non-
overlapping constraints in a pairwise sense. In this case, any feasible point (ai −a j , bi − b j)

4 From our computational experience, the number of vertices of FRi j is usually small (around 10), and thus
identifying its concave envelope via enumeration is computationally efficient. Regardless, if the number of
vertices of FRi j is large, one can always properly relax the domain FRi j and obtain a newbounded polyhedron
that contains FRi j and has a small number of vertices.

123

Journal of Global Optimization (2021) 80:357–385 371

satisfying the non-overlapping constraint (ai − a j)
2 + (bi − b j)

2 ≥ (ri + r j)2 must corre-
spond to a point (ai −ak, bi −bk) in the domain FRik as well as to a point (ak −a j , bk −b j)

in the domain FRkj . This results from the simple observation that

(ai − a j , bi − b j) = (ai − ak, bi − bk) + (ak − a j , bk − b j). (17)

Consequently, one can calculate the Minkowski sum of FRik and FRkj to tighten FRi j ;
that is, FRi j ← FRi j ∩ (

FRik ⊕ FRkj
)
. If FRi j is indeed reduced, the feasibility-based

tightening FRi j ← conv
(
FRi j \ int(Di j)

)
will be considered. Note that the Minkowski

sum of two polytopes with n1 and n2 vertices, respectively, can be computed in O(n1 + n2)
time [9]; thus, the proposed procedure is computationally efficient.

4.2.3 Solving LPs

We can also refine feasible region FRi j by using the projection of the feasible region of
the relaxation model, (3)–(7), onto the xi–x j space. Considering that computing the exact
projection is not practical, we choose to outer-approximate it via linear inequalities defined
in the xi–x j space. More specifically, one can solve an LP with the objective of minimizing
some linear function, e.g., μxi + νx j , and with constraints (4)–(7), where μ and ν are
properly chosen coefficients. Let σ be its optimal value, thus μxi + νx j ≥ σ is a valid
inequality to characterize the projection area and can be used to refine FRi j ; that is, FRi j ←
FRi j ∩ {

(xi , x j) : μxi + νx j ≥ σ
}
. If FRi j is successfully reduced in this manner, we then

apply feasibility-based tightening as before.
In our context, we apply the above process for two separate objective functions, namely

those that are parallel to the two linear boundaries of FRi j that neighbor the secant line.
These were specifically chosen due to their potential to immediately tighten the secant line,
which might thus help to eliminate the current LP solution, x̄ .

4.3 Implementation details

We note the following details about our implementation.

– With regards to the protocol via which we employ the various tightening techniques, we
note the following. We first apply intersection cuts, followed by calculating Mikowski
sums, and finally by solving LPs. Tightening from concave envelopes is swiftly applied
as soon as FRi j is tightened during the latter two steps, and whenever x̄ is cut off, we
skip the subsequent routines and turn our attention to resolving the LP relaxation (3)–(7).

– Since the intersection cuts are formulated in non-basic space, and since we do not have
access to non-basic slack variables when enforcing a constraint in the LP solver, we first
convert it to the structural space. After this step, we apply some presolve reductions to
mitigate numerical difficulties [3]. In particular, we first scale the coefficients in a cut
such that their largest absolute value is 1.0, and we then perform proper reductions on
small coefficients (e.g., less than 10−4) while maintaining the cut’s validity.

– In order to alleviate tapering off from using intersection cuts, we stop the separation if
the gap is decreased by less than 0.01% a total of 3 times.

– Outer-approximation and intersection cuts are removed from theLPmodel (3)–(7), if they
are not active for the past 50 LP-solving rounds. We note that removed intersection cuts
are still stored in the cut pool and will be strengthened when the corresponding convex

123

372 Journal of Global Optimization (2021) 80:357–385

R

(a) Packing circles into a circle

L

W

(b) Packing circles into a rectangle

Fig. 6 Two variants of circle packing problems

sets are enlarged, in the hope that they might be added back to the set T if violated at
some future point.

– Whenever FRi j is reduced at some BB node, we recursively call this routine to further
reduce the feasible region, and this continues until the reduction in area of FRi j is less
than 1%. Moreover, whenever the area of FRi j is reduced by at least 5%, we attempt to
apply domain propagation to tighten relevant domains. However, since solving LPs can
add up to the overall computational time, we only consider the 10 pairs (i, j) ∈ M with
the largest violation values, Vi j .

5 Computational studies

In this section, we test our customized branch-and-bound approach and compare its per-
formance against the state-of-the-art general purpose global optimization solvers, namely
ANTIGONE 1.1 [24], BARON 19.7.13 [32], COUENNE 0.5 [8], LINDOGLOBAL 12.0
and SCIP 6.0 [2,33]. Our algorithm was implemented in C++ and the LP relaxation models
were solved via CPLEX Optimization Studio 12.8.0 through the C application programming
interface. Global solvers were called within the GAMS 28.2.0 environment. The absolute
optimality tolerance was set to be 10−4. All computational experiments were conducted on
a single thread of an Intel Xeon CPU E5-2689 v4 @ 3.10GHz with 32GB of RAM.

5.1 Circle packing

5.1.1 Problem definitions

Let C = {1, 2, 3 . . .} denote a set of circles. For each circle i ∈ C, let ri denote its radius.
Without loss of generality, we assume a circle ordering such that ri ≥ r j , when i < j , for all
i, j ∈ C. We aim to identify a feasible configuration of these circles within (i) a larger circle,
and (ii) a sheet of fixed widthW , such that no circles overlap and the size of the circle (radius
R) or the sheet (length L) is minimized. We refer to these settings as packing circles into a
circle and packing circles into a rectangle, respectively. The latter is often also referred to in
the literature as the circular open dimension problem (CODP).

123

Journal of Global Optimization (2021) 80:357–385 373

5.1.2 Mathematical modeling

Let (ai , bi) denote the final coordinates for the center of circle i ∈ C . Assuming that the
center of the containing circle is fixed to the point (0, 0), the problem of packing circles into
a circle can be formulated as the non-convex model (18)–(21).

minimize
ai ,bi ,R

R (18)

subject to a2i + b2i ≤ (R − ri)
2 ∀ i ∈ C (19)

(
ai − a j

)2 + (
bi − b j

)2 ≥ (
ri + r j

)2 ∀ (i, j) ∈ C × C : i < j (20)

R ≥ max
i∈C {ri } (21)

Constraints (19) enforce that all circles lie within the circular container, constraints (20)
guarantee that there is no overlap among the circles, while constraint (21) specifies the
applicable lower bound on the containing circle’s radius. Additionally, as also pointed out
in [27], two types of symmetry-breaking constraints can be added to the above model:

i. Identical circles: When two circles i and j , i < j , are identical (i.e., ri = r j), then
ai ≤ a j breaks this symmetry. In our implementation, we equivalently enforce this by

tightening
[
θ L
i j , θ

U
i j

]
= [π/2, 3π/2] at the root node.

ii. Rotational symmetry and reflection: Rotational symmetry arises due to the fact that an
equivalent packing solution can always be obtained via rotating the entire configuration
by any angle; hence, one can enforce that a1 ≤ 0 and b1 = 0. Furthermore, the reflection
of a feasible configuration through the horizontal axis results in an equivalent solution;
hence, one can further impose b2 ≥ 0.

The mathematical formulation for packing circles into a rectangle is similar. Assuming that
the bottom left corner of the rectangle is fixed to the point (0, 0), the non-convex model (22)–
(25) applies.

minimize
ai ,bi ,L

L (22)

subject to ri ≤ ai ≤ L − ri ∀ i ∈ C (23)

ri ≤ bi ≤ W − ri ∀ i ∈ C (24)
(
ai − a j

)2 + (
bi − b j

)2 ≥ (
ri + r j

)2 ∀ (i, j) ∈ C × C : i < j (25)

In this case, applicable constraints to break symmetry from reflection are: (i) a1 ≤ L/2, and
(ii) b1 ≤ W/2.

5.1.3 Benchmark instances

In order to evaluate the performance of our approach, we consider instances of packing
circles into a circle from [1]. Each instance is defined by two numbers, p and N , and the
size of circles to be packed in every instance is defined by ri = i p , where i = 1, 2, . . . N .
We consider N ∈ {5, 6, . . . , 11} and p ∈ {−2/3,−1/2,−1/5,+1/2,+1}; thus, in total we
have 35 instances of difference sizes.

For packing circles into a rectangle, we generate a suite of instances using data from the
thirty-circle example in [29]. We consider N ∈ {6, 7, . . . , 10}, and using the first N circles
in each case, we generate all possible packing instances with N − 1 circles. Therefore, we

123

374 Journal of Global Optimization (2021) 80:357–385

generate a total of 40 instances, namely 6 five-circle, 7 six-circle, 8 seven-circle, 9 eight-circle
and 10 nine-circle instances. The rectangle width W is chosen to be 9.5, as per the literature
reference [29].

5.2 Computational results

The goals of our computational study are to (i) assess the effect of strengthened intersection
cuts and feasibility-based tightening on the BB tree, and (ii) conduct a comprehensive com-
parison between our proposed algorithm and state-of-the-art global solvers. These two goals
are covered in Sects. 5.2.1 and 5.2.2, respectively. To ensure a fair comparison, all algorithms
(including the global solvers) were initialized with heuristic solutions, which were obtained
after running BARON heuristics with a time limit of 1 hour.

5.2.1 Effect of node relaxation tightening

We first analyze the effect of using strengthened intersection cuts on the branch-and-bound
algorithm. We then enable our feasibility-based tightening techniques and assess the addi-
tional tractability gains from doing so. Overall, we consider three versions of our algorithm:
(i) the rudimentary branch-and-bound algorithm (denoted by “BB”); (ii) “BB” enhanced
with strengthened intersection cuts (denoted by “BB+SIC”); (iii) “BB+SIC” enhanced with
feasibility-based tightening (denoted by “BB+SIC+FBT”). For each version, we adopt the
best-bound first search node selection strategy during the branch-and-bound process.

Tables 1 and 2 present the computational results for packing circles into a circle and a
rectangle, respectively. The first two columns in these tables list the input size (number of
circles) and the number of instances of a given input size, for a respective total of 35 and
40 instances, as described above. The tables also present the number of instances that were
solved to provable optimality within a given time limit of 1 hour, as well as the geometric
means of solution time and number of branch-and-bound nodes explored; for the remaining
instances for which optimality could not be proven, we present the average residual gap,
defined as (UB − LB)/UB, at the time limit.

Table 1 shows that BB could solve 20 out of 35 instances optimally, while both BB+SIC
and BB+SIC+FBT solved 23 and 26 of them to optimality, respectively, including one of the
largest instances featuring the packing of eleven circles. Putting aside the fact that it allowed
us to solve three more instances within the allotted time limit, the addition of strengthened
intersection cuts resulted in a noticeable improvement in average solution times, number of
nodes explored and residual gaps (when applicable). The BB+SIC+FBT version performed
even better in terms of these metrics, especially for instances of larger input size, such as
instances with ten or eleven circles.

Turning our attention to Table 2, we observe that all three variants can easily address
instances featuring up to seven circles. The BB+SIC improved upon the baseline approach
in terms of being able to prove optimality within the allotted time limit for a number of the
eight-circle instances, with the BB+SIC+FBT approach solving the majority of them while
also demonstrating a noticeable reduction in the average solution time to do so. Instances with
nine circles remained elusive to all methods, with a significant average residual gap above
15%; for this problem size category, enabling feasibility-based tightening did not seem to
improve the results already obtained via the use of only intersection cuts.

Considering all instances across both datasets, we conclude that the utilization of both
strengthened intersection cuts and feasibility-based tightening has an overall positive impact

123

Journal of Global Optimization (2021) 80:357–385 375

Ta
bl
e
1

E
ff
ec
to

f
st
re
ng
th
en
ed

in
te
rs
ec
tio

n
cu
ts
an
d
fe
as
ib
ili
ty
-b
as
ed

tig
ht
en
in
g
on

so
lv
in
g
in
st
an
ce
s
of

pa
ck
in
g
ci
rc
le
s
in
to

a
ci
rc
le

#
ci
rc
le
s

#
in
st
.

B
B

B
B
+
SI
C

B
B
+
SI
C
+
FB

T

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

5
5

5
0.
3

90
3

–
5

0.
3

40
8

–
5

0.
2

17
–

6
5

5
3.
6

93
88

–
5

2.
3

26
57

–
5

0.
6

56
–

7
5

5
23

45
,1
75

–
5

13
11

,0
77

–
5

2.
0

21
3

–

8
5

3
14

9
18

3,
63

8
5.
4

4
68

52
,7
31

5.
2

4
17

26
22

3.
1

9
5

1
12

2
20

2,
29

3
6.
7

2
24

9
16

0,
17

4
5.
3

4
22

3
22

,5
36

12
.1

10
5

1
22

2
32

3,
40

8
10

.0
1

19
4

11
8,
79

1
7.
7

2
12

0
11

,9
01

9.
2

11
5

0
–

–
12

.0
1

2,
48

9
76

2,
56

6
10

.6
1

96
7

15
8,
40

3
9.
9

123

376 Journal of Global Optimization (2021) 80:357–385

Ta
bl
e
2

E
ff
ec
to

f
st
re
ng
th
en
ed

in
te
rs
ec
tio

n
cu
ts
an
d
fe
as
ib
ili
ty
-b
as
ed

tig
ht
en
in
g
on

so
lv
in
g
in
st
an
ce
s
of

pa
ck
in
g
ci
rc
le
s
in
to

a
re
ct
an
gl
e

#
ci
rc
le
s

#
in
st
.

B
B

B
B
+
SI
C

B
B
+
SI
C
+
FB

T

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

#
so
lv
ed

T
im

e
(s
ec
)

#
no
de
s

G
ap

(%
)

5
6

6
0.
1

14
3

–
6

0.
1

95
–

6
0.
1

28
–

6
7

7
0.
2

87
4

–
7

0.
2

25
2

–
7

0.
2

69
–

7
8

8
2.
6

21
,0
49

–
8

3.
5

36
36

–
8

2.
7

69
3

–

8
9

0
–

–
10

.8
3

30
52

77
0,
17

0
5.
1

7
12

64
12

6,
82

2
9.
6

9
10

0
–

–
23
.6

0
–

–
15
.9

0
–

–
16
.5

123

Journal of Global Optimization (2021) 80:357–385 377

on performance of the algorithm. Therefore, we adopt approach BB+SIC+FBT during the
comparative study that follows.

5.2.2 Comparison with global optimization solvers

In order to evaluate the competitiveness of our proposed approach against general-purpose
global optimization solvers, we solve every benchmark instance independently with each of
five state-of-the-art solvers, namely ANTIGONE, BARON, COUENNE, LINDOGLOBAL
and SCIP, imposing the same time limit of 1 hour. The consolidated results are presented
in Tables 3 and 4, using similar format as before, while the detailed results are presented in
Tables 5 and 6.

Considering all five global solvers, BARON performs the best in terms of number of
solved instances and solution time. The smallest average residual gaps for unsolved instances
were obtained by SCIP, though possibly this results from aggressive branching, rather than
from tight relaxations constructed at its branch-and-bound nodes. This is corroborated by
the observation that the number of branch-and-bound nodes in SCIP runs was significantly
larger than in other solvers. Processing a large branch-and-bound tree takes more time, which
might explain why SCIP could only solve fewer instances to guaranteed optimality within
the time limit, performing generally worse than the other four global solvers.

More specifically, for the problem of packing circles in a circle, BARON was able to
prove optimality in 21 out of 35 instances, with the largest solvable input size being a single
nine-circle instance. In contrast, our proposed algorithm (Table 1) could in addition solve a
handful of nine-circle, ten-circle and eleven-circle instances, pushing the state-of-the-art in
terms of what is considered solvable for this class of packing problems. Furthermore, the
solution time of our approach is generally much less than that of the global optimization
solvers. Turning our attention to the application of packing circles into a rectangle, BARON
again performs the best among the five general-purpose global solvers, being able to solve
to confirmed optimality 29 out of 40 instances. While our algorithm (Table 2) solved 28
instances with comparable solution time, it achieved a much smaller average residual gaps
for the remaining instances. Notably, across both problem datasets, our proposed approach
was able to close the gap in a total of 6 instances for which none of the global optimization
solvers was able to prove optimality. The competitiveness of our approach against these
solvers can also be inferred from rigorous performance profiles [12], which we present in
Fig. 7.

6 Conclusions

In this work, we focused on a class of reverse convex constraints called circle-circle non-
overlapping constraints, which are popular inmany cutting and packing optimizationmodels.
Adapting a custom-built branch-and-bound algorithm that we had previously developed to
address irregular shape nesting problems [34], we proposed strengthened intersection cuts
and various feasibility-based tightening techniques to expedite the search based on direct
branching upon the set of non-overlapping constraints. To this end, we first generalized the
intersection cut formula from the seminal paper of [6] to more generic cases where variables
can be bounded by arbitrary values, and used the fact that a non-overlapping constraint rep-
resents a reverse convex domain to incorporate such intersection cuts into our relaxations.
In addition, we proposed feasibility-based tightening techniques that differ from the ones

123

378 Journal of Global Optimization (2021) 80:357–385

Ta
bl
e
3

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
gl
ob

al
so
lv
er
s
on

so
lv
in
g
in
st
an
ce
s
of

pa
ck
in
g
ci
rc
le
s
in
to

a
ci
rc
le

#
ci
rc
le
s
#
in
st
.
A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)

5
5

5
0.
1

–
5

0.
2

–
5

0.
4

–
5

1.
4

–
5

6.
5

–

6
5

5
5.
1

–
5

1.
3

–
5

5.
3

–
5

5.
5

–
4

34
4.
2

7
5

2
0.
2

3.
1

5
13

–
5

14
5

–
5

36
–

1
7.
0

3.
4

8
5

1
54

11
.4

4
20

2
24

.0
2

58
7

11
.1

3
83

6
38

.1
1

27
0

7.
9

9
5

0
–

13
.1

2
13

87
26

.6
0

–
12

.8
1

23
94

31
.5

0
–

9.
5

10
5

0
–

15
.4

0
–

18
.9

0
–

15
.8

0
–

30
.1

0
–

12
.3

11
5

0
–

19
.6

0
–

21
.3

0
–

18
.5

0
–

34
.4

0
–

13
.5

123

Journal of Global Optimization (2021) 80:357–385 379

Ta
bl
e
4

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
gl
ob

al
so
lv
er
s
on

so
lv
in
g
in
st
an
ce
s
of

pa
ck
in
g
ci
rc
le
s
in
to

a
re
ct
an
gl
e

#
ci
rc
le
s
#
in
st
.
A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)
#
so
lv
ed

T
im

e
(s
ec
)
G
ap

(%
)

5
6

6
2.
6

–
6

0.
2

–
6

11
–

6
9.
0

–
6

14
–

6
7

7
13

–
7

0.
5

–
6

83
11

.7
7

11
4

–
7

25
6

–

7
8

8
11

4
–

8
6.
7

–
7

86
6

26
.7

5
14

15
5.
8

5
63

3
2.
1

8
9

0
–

7.
2

8
10

33
35

.5
0

–
22

.0
0

–
33

.6
0

–
9.
0

9
10

0
–

22
.3

0
–

44
.2

0
–

32
.4

0
–

46
.4

0
–

18
.8

123

380 Journal of Global Optimization (2021) 80:357–385

Ta
bl
e
5

D
et
ai
le
d
re
su
lts

fo
r
pa
ck
in
g
ci
rc
le
s
in
to

a
ci
rc
le

N
p

A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

T
hi
s
w
or
k

5
−2

/
3

0.
1

0.
1

0.
1

0.
8

0.
7

0.
1

5
−1

/
2

0.
1

0.
3

0.
8

1.
5

4.
0

0.
2

5
−1

/
5

7.
0

0.
9

3.
0

3.
7

54
0.
9

5
+1

/
2

1.
0

0.
2

0.
7

1.
3

32
0.
1

5
+1

0.
1

0.
1

0.
1

0.
9

2.
3

0.
1

6
−2

/
3

0.
1

0.
1

0.
2

0.
9

1.
0

0.
1

6
−1

/
2

24
4.
1

19
8.
9

10
3

2.
8

6
−1

/
5

51
8

31
10

6
47

[4
.2
%
]

13

6
+1

/
2

28
3.
8

24
13

2,
90

5
1.
4

6
+1

1.
0

0.
1

0.
4

1.
0

4.
4

0.
1

7
−2

/
3

0.
1

0.
1

1.
2

1.
0

7.
0

0.
1

7
−1

/
2

[0
.7
%
]

63
31

1
86

[5
.4
%
]

18

7
−1

/
5

[6
.5
%
]

31
2

14
82

36
7

[2
.4
%
]

10
1

7
+1

/
2

[2
.0
%
]

30
61

4
12

0
[4
.3
%
]

2.
6

7
+1

4.
0

6.
8

18
7

15
[1
.4
%
]

0.
1

8
−2

/
3

54
32

96
14

8
27

0
18

8
−1

/
2

[8
.0
%
]

69
4

[5
.8
%
]

15
97

[4
.5
%
]

13
8

8
−1

/
5

[2
1.
4%

]
[2
4.
0%

]
[1
6.
4%

]
[2
3.
6%

]
[9
.5
%
]

[3
.1
%
]

8
+1

/
2

[1
0.
6%

]
69

5
[1
1.
1%

]
2,
46

9
[1
3.
6%

]
31

8
+1

[5
.6
%
]

10
6

3,
59

8
[5
2.
6%

]
[4
.2
%
]

1.
2

123

Journal of Global Optimization (2021) 80:357–385 381

Ta
bl
e
5

co
nt
in
ue
d

N
p

A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

T
hi
s
w
or
k

9
−2

/
3

[0
.5
%
]

62
1

[0
.4
%
]

2,
39

4
[0
.4
%
]

14
3

9
−1

/
2

[9
.2
%
]

[1
0.
0%

]
[1
0.
1%

]
[1
0.
1%

]
[6
.6
%
]

20
99

9
−1

/
5

[2
4.
1%

]
[4
5.
3%

]
[2
3.
9%

]
[3
6.
9%

]
[1
6.
7%

]
[1
2.
1%

]

9
+1

/
2

[2
0.
0%

]
[2
4.
4%

]
[1
7.
6%

]
[2
4.
6%

]
[1
3.
1%

]
72

4

9
+1

[1
1.
5%

]
30

99
[1
1.
9%

]
[5
4.
5%

]
[1
0.
5%

]
11

10
−2

/
3

[1
.0
%
]

[1
.3
%
]

[1
.0
%
]

[1
.3
%
]

[1
.1
%
]

1,
30

7

10
−1

/
2

[1
1.
3%

]
[1
3.
6%

]
[1
2.
2%

]
[1
3.
6%

]
[1
0.
6%

]
[5
.3
%
]

10
−1

/
5

[2
8.
5%

]
[3
2.
4%

]
[2
8.
2%

]
[4
6.
0%

]
[2
2.
5%

]
[1
9.
8%

]

10
+1

/
2

[2
2.
1%

]
[3
2.
7%

]
[2
2.
1%

]
[3
2.
3%

]
[1
6.
2%

]
[2
.6
%
]

10
+1

[1
4.
1%

]
[1
4.
4%

]
[1
5.
3%

]
[5
7.
2%

]
[1
1.
0%

]
11

11
−2

/
3

[1
.5
%
]

[1
.8
%
]

[1
.5
%
]

[1
.8
%
]

[2
.6
%
]

[1
.1
%
]

11
−1

/
2

[1
2.
2%

]
[1
2.
9%

]
[1
3.
2%

]
[1
4.
6%

]
[1
1.
3%

]
[8
.2
%
]

11
−1

/
5

[3
2.
3%

]
[3
7.
4%

]
[3
1.
6%

]
[5
3.
0%

]
[2
6.
3%

]
[2
2.
9%

]

11
+1

/
2

[3
4.
4%

]
[3
4.
5%

]
[2
6.
1%

]
[4
5.
0%

]
[2
1.
1%

]
[7
.5
%
]

11
+1

[1
7.
8%

]
[1
9.
9%

]
[2
0.
1%

]
[5
7.
7%

]
[6
.3
%
]

96
7

#
so
lv
ed

(/
35

)
13

21
17

19
11

26

T
im

e
(s
ec
)

0.
8

7.
4

12
19

17
4.
9

[G
ap
]

[1
3.
4%

]
[2
1.
8%

]
[1
4.
9%

]
[3
2.
8%

]
[9
.4
%
]

[9
.2
%
]

123

382 Journal of Global Optimization (2021) 80:357–385

Ta
bl
e
6

D
et
ai
le
d
re
su
lts

fo
r
pa
ck
in
g
ci
rc
le
s
in
to

a
re
ct
an
gl
e

N
O
m
itt
ed

ci
rc
le
#

A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

T
hi
s
w
or
k

5
1

2.
0

0.
1

6.
2

7.
6

5.
6

0.
1

5
2

3.
0

0.
2

10
9

9.
1

19
0.
2

5
3

1.
0

0.
1

5.
8

7.
7

35
0.
1

5
4

3.
0

0.
1

7.
0

7.
8

5.
7

0.
1

5
5

2.
0

0.
2

5.
0

7.
6

21
0.
1

5
6

9.
0

0.
2

13
17

14
0.
2

6
1

10
0.
3

74
92

43
0.
1

6
2

25
0.
8

[1
1.
7%

]
10

1
89

0.
5

6
3

10
0.
7

73
94

60
2

0.
1

6
4

13
0.
4

10
9

14
1

89
0

0.
2

6
5

10
0.
3

66
94

29
1

0.
1

6
6

21
0.
7

85
13

2
42

7
0.
1

6
7

11
0.
5

10
2

16
5

28
3

0.
1

7
1

51
3.
4

66
9

12
75

[1
.3
%
]

0.
8

7
2

16
77

17
8

[2
6.
7%

]
[1
2.
8%

]
[4
.0
%
]

41
1

7
3

57
1.
6

62
8

13
35

15
67

0.
7

7
4

70
3.
7

97
5

[0
.1
%
]

18
77

2.
0

7
5

57
2.
8

62
0

13
65

28
5

0.
8

7
6

75
3.
2

10
39

15
87

28
1

0.
7

7
7

25
1

22
16

44
[4
.7
%
]

[1
.1
%
]

17

7
8

76
5.
9

83
8

1,
53

7
43

1
0.
6

123

Journal of Global Optimization (2021) 80:357–385 383

Ta
bl
e
6

co
nt
in
ue
d

N
O
m
itt
ed

ci
rc
le
#

A
N
T
IG

O
N
E

B
A
R
O
N

C
O
U
E
N
N
E

L
IN

D
O
G
L
O
B
A
L

SC
IP

T
hi
s
w
or
k

8
1

[3
.8
%
]

47
3

[1
6.
7%

]
[3
0.
8%

]
[9
.6
%
]

68
3

8
2

[2
0.
6%

]
[3
5.
5%

]
[4
3.
1%

]
[3
9.
2%

]
[1
6.
3%

]
[1
5.
4%

]

8
3

[0
.4
%
]

55
5

[1
7.
0%

]
[3
0.
9%

]
[6
.7
%
]

71
0

8
4

[5
.5
%
]

86
3

[1
9.
4%

]
[3
2.
1%

]
[7
.3
%
]

14
92

8
5

[0
.9
%
]

55
3

[1
6.
8%

]
[3
0.
9%

]
[7
.5
%
]

59
2

8
6

[7
.1
%
]

14
51

[2
0.
2%

]
[3
2.
0%

]
[6
.2
%
]

18
32

8
7

[1
6.
5%

]
35

50
[2
3.
4%

]
[3
6.
9%

]
[1
3.
0%

]
[3
.9
%
]

8
8

[4
.3
%
]

13
01

[2
1.
5%

]
[3
1.
8%

]
[6
.7
%
]

24
72

8
9

[6
.1
%
]

15
45

[1
9.
8%

]
[3
7.
7%

]
[8
.0
%
]

26
55

9
1

[1
7.
9%

]
[4
2.
9%

]
[3
0.
2%

]
[4
5.
6%

]
[1
5.
5%

]
[1
3.
7%

]

9
2

[2
8.
6%

]
[4
5.
0%

]
[4
4.
9%

]
[4
8.
2%

]
[2
2.
3%

]
[2
4.
3%

]

9
3

[2
3.
3%

]
[4
2.
1%

]
[3
0.
4%

]
[4
5.
6%

]
[1
6.
4%

]
[1
4.
5%

]

9
4

[1
9.
0%

]
[4
2.
7%

]
[3
1.
7%

]
[4
5.
5%

]
[1
7.
6%

]
[1
5.
3%

]

9
5

[2
0.
8%

]
[4
2.
1%

]
[3
0.
1%

]
[4
5.
7%

]
[1
8.
4%

]
[1
3.
5%

]

9
6

[2
3.
3%

]
[4
4.
8%

]
[3
1.
1%

]
[4
4.
2%

]
[2
1.
3%

]
[1
6.
5%

]

9
7

[2
4.
3%

]
[4
6.
0%

]
[3
2.
4%

]
[4
7.
8%

]
[2
0.
7%

]
[1
8.
2%

]

9
8

[2
4.
2%

]
[4
6.
0%

]
[3
1.
1%

]
[4
4.
4%

]
[1
8.
9%

]
[1
7.
5%

]

9
9

[2
1.
3%

]
[4
6.
7%

]
[3
0.
4%

]
[5
0.
1%

]
[1
7.
2%

]
[1
6.
4%

]

9
10

[2
0.
6%

]
[4
3.
3%

]
[3
1.
6%

]
[4
7.
2%

]
[1
9.
1%

]
[1
5.
1%

]

#
so
lv
ed

(/
40

)
21

29
19

18
18

28

T
im

e
(s
ec
)

19
6.
6

10
4

99
12

4
2.
8

[G
ap
]

[1
5.
2%

]
[4
3.
4%

]
[2
6.
7%

]
[3
5.
6%

]
[1
2.
5%

]
[1
5.
4%

]

123

384 Journal of Global Optimization (2021) 80:357–385

(a) Packing circles into a circle (b) Packing circles into a rectangle

Fig. 7 Performance profiles across all benchmark instances of each problem variant. In both graphs, “This
work” refers to the performance of our proposed algorithm using strengthened intersection cuts and feasibility-
based tightening (BB+SIC+FBT). For each curve, the value at t = 0 provides the fraction of benchmark
instances for which the corresponding solver/algorithm is fastest, while the limiting value at t → ∞ provides
the fraction of instances that could be solved within the time limit of 1 hour

commonly used in global optimization, in the sense that we sought to reduce the feasible
domain enforced by non-overlapping constraints directly, rather than rely on domain reduc-
tion from variable bounds. Our extensive computational studies on 75 instances for unequal
circle packing elucidated the effectiveness of tightening the relaxations in terms of speeding
up the branch-and-bound process, and showcased that the purposed-build search approach
performs favorably as compared to using state-of-the-art, yet general-purpose global opti-
mization solvers.

Despite these advances, however, there remains a considerable gap between our ability
to globally optimize instances that solely feature identical circles and those involving non-
identical circles as well. Indeed, how to adapt many of the techniques utilized in specialized
solvers for the former setting, such as employing optimality-based cuts to tighten the relax-
ations, in the case of unequal circle packing and general shape nesting constitute interesting
avenues for future research.

Acknowledgements AkangWang gratefully acknowledges financial support from the James C. Meade Grad-
uate Fellowship and the H. William and Ruth Hamilton Prengle Graduate Fellowship at Carnegie Mellon
University.

References

1. Specht, E.: http://www.packomania.com/. Accessed 23 Aug 2020
2. Achterberg, T.: Scip: solving constraint integer programs. Math Program Comput 1(1), 1–41 (2009)
3. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer

programming. INFORMS J Comput 32(2), 473–506 (2019)
4. Alvarez-Valdés, R., Parreño, F., Tamarit, J.M.: Reactive grasp for the strip-packing problem. Computer

Op Res 35(4), 1065–1083 (2008)
5. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math

Program 136(2), 233–251 (2012)
6. Balas, E.: Intersection cuts – a new type of cutting planes for integer programming. Op Res 19(1), 19–39

(1971)
7. Bao, X., Sahinidis, N.V., Tawarmalani,M.:Multiterm polyhedral relaxations for nonconvex, quadratically

constrained quadratic programs. Optim Method Softw 24(4–5), 485–504 (2009)

123

http://www.packomania.com/

Journal of Global Optimization (2021) 80:357–385 385

8. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tighteningtechniques for
non-convex minlp. Optim Method Softw 24(4–5), 597–634 (2009)

9. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational geometry: algorithms and appli-
cations. Springer-Verlag TELOS, Berlin (2008)

10. Bienstock,D., Chen, C.,Munoz,G.:Outer-product-free sets for polynomial optimization and oracle-based
cuts. arXiv preprint arXiv:1610.04604 (2016)

11. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical
results and industrial applications. Eur J Op Res 191(3), 786–802 (2008)

12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math Program
91(2), 201–213 (2002)

13. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization.
Math Program 172(1–2), 77–103 (2018)

14. Hifi, M., M’hallah, R.: A literature review on circle and sphere packing problems: models and method-
ologies. Adv. Oper. Res. 2009 (2009)

15. Hillestad, R.J., Jacobsen, S.E.: Reverse convex programming. Appl Math Optim 6(1), 63–78 (1980)
16. Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer Science and BusinessMedia,

NY (2013)
17. Jones, D.R.: A fully general, exact algorithm for nesting irregular shapes. J Global Optim 59(2–3), 367–

404 (2014)
18. Khajavirad, A.: Packing circles in a square: a theoretical comparison of various convexification tech-

niques (2017). Preprint available via Optimization Online at http://www.optimization-online.org/DB_
FILE/2017/03/5911.pdf

19. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach.
Discret Appl Math 122(1–3), 139–166 (2002)

20. López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur J
Op Res 214(3), 512–525 (2011)

21. Markót, M.C.: Interval methods for verifying structural optimality of circle packing configurations in the
unit square. J Comput Appl Math 199(2), 353–357 (2007)

22. Markót,M.C., Csendes, T.: A newverified optimization technique for the “packing circles in a unit square”
problems. SIAM J Optim 16(1), 193–219 (2005)

23. Markót, M.C., Csendes, T.: A reliable area reduction technique for solving circle packing problems.
Computing 77(2), 147–162 (2006)

24. Misener, R., Floudas, C.A.: Antigone: algorithms for continuous/integer global optimization of nonlinear
equations. J Global Optim 59(2–3), 503–526 (2014)

25. Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global nlp and minlp optimization. Con-
straints 22(3), 338–376 (2017)

26. Rebennack, S.: Computing tight bounds via piecewise linear functions through the example of circle
cutting problems. Math Method Op Res 84(1), 3–57 (2016)

27. Scheithauer, G.: Introduction to Cutting and Packing Optimization: Problems, Modeling Approaches,
Solution Methods, vol. 263. Springer, NY (2017)

28. Serrano, F.: Intersection cuts for factorable minlp. In: International Conference on Integer Programming
and Combinatorial Optimization, pp. 385–398. Springer (2019)

29. Stoyan, Y.G., Yas’kov, G.: A mathematical model and a solution method for the problem of placing
various-sized circles into a strip. Eur J Op Res 156(3), 590–600 (2004)

30. Szabó, P.G., Markót, M.C., Csendes, T.: Global optimization in geometry–circle packing into the square.
In: Essays and Surveys in Global Optimization, pp. 233–265. Springer, NY (2005)

31. Tardella, F.: On the existence of polyhedral convex envelopes. In: Frontiers in global optimization, pp.
563–573. Springer, NY (2004)

32. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math
Program 103(2), 225–249 (2005)

33. Vigerske, S., Gleixner, A.: Scip: global optimization of mixed-integer nonlinear programs in a branch-
and-cut framework. Optim Method Softw 33(3), 563–593 (2018)

34. Wang, A., Hanselman, C.L., Gounaris, C.E.: A customized branch-and-bound approach for irregular
shape nesting. J Global Optim 71(4), 1–21 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1610.04604
http://www.optimization-online.org/DB_FILE/2017/03/5911.pdf
http://www.optimization-online.org/DB_FILE/2017/03/5911.pdf

	On tackling reverse convex constraints for non-overlapping of unequal circles
	Abstract
	1 Introduction
	2 Problem definition
	3 Solution approach
	3.1 Customized model relaxation
	3.2 The branch-and-bound algorithm

	4 Strengthening techniques
	4.1 Intersection cuts
	4.1.1 Generating intersection cuts
	4.1.2 Generating intersection cuts for non-overlapping constraints
	4.1.3 Strengthening intersection cuts

	4.2 Feasibility-based tightening
	4.2.1 Generating concave envelopes
	4.2.2 Calculating Minkowski sums
	4.2.3 Solving LPs

	4.3 Implementation details

	5 Computational studies
	5.1 Circle packing
	5.1.1 Problem definitions
	5.1.2 Mathematical modeling
	5.1.3 Benchmark instances

	5.2 Computational results
	5.2.1 Effect of node relaxation tightening
	5.2.2 Comparison with global optimization solvers

	6 Conclusions
	Acknowledgements
	References

