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Abstract
The robust adjustment of nonlinear models to data is considered in this paper. When data
comes from real experiments, it is possible that measurement errors cause the appearance
of discrepant values, which should be ignored when adjusting models to them. This work
presents a low order-value optimization (LOVO) version of the Levenberg–Marquardt algo-
rithm, which is well suited to deal with outliers in fitting problems. A general algorithm is
presented and convergence to stationary points is demonstrated. Numerical results show that
the algorithm is successfully able to detect and ignore outliers without too many specific
parameters. Parallel and distributed executions of the algorithm are also possible, allow-
ing the use of larger datasets. Comparison against publicly available robust algorithms
shows that the present approach is able to find better adjustments in well known statistical
models.

Keywords Low order-value optimization · Levenberg–Marquardt · Outlier detection ·
Robust least squares

Mathematics Subject Classification 47N10 · 65Y05 · 90C26 · 93E24

1 Introduction

In this work we are interested in studying the following problem: given a dataset R =
{(ti , yi ), i = 1, . . . , r} of points in R

m × R, resulting from some experiment, we want to
find a model ϕ : Rm → R for fitting this dataset free from influence of possible outliers.
In a more precise way, given a model ϕ(t) depending on n parameters (x ∈ R

n), that is,
ϕ(t) = φ(x, t), we want to find a set P ⊂ R with p elements and parameters x ∈ R

n , such
that φ(x, ti ) ≈ yi , ∀(ti , yi ) ∈ P (in the least squares sense). The r − p remaining elements
in R − P are the possible outliers.
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There are several definitions of what an outlier is. The definition that best suits the present
work concerns to errors in yi , that is, grotesque errors in evaluation of some measure for a
given and reasonably precise ti . This is somewhat different from the geometric interpretation
of outliers, in the sense that the point (ti , yi ) is (geometrically) very far from the graph
of a function that one wants to find. Typically in our tests, outliers are present when there
are errors resulting from the measurement of some experiment. As a consequence, their
presence may contaminate the obtained model and, therefore, deteriorate or limit its use.
There are several strategies to handle the presence of outliers in datasets [9,12,22,23]. In a
more recent approach, as highlighted by [13] and references therein, techniques based on
machine learning are exploited in the context of deal with a large amount of data, lack of
models and categorical variables.

In order to get a fitting model free from influence of outliers, we use an approach based on
low order-value optimization (LOVO) [5] which is defined as follows. Consider Ri : Rn →
R, i = 1, . . . , r . Given x ∈ R

n , we can sort {Ri (x), i = 1, . . . , r} in ascending order:

Ri1(x)(x) ≤ Ri2(x)(x) ≤ · · · ≤ Rik (x)(x) ≤ · · · ≤ Rir (x)(x), (1)

where ik(x) is the ik-th smallest element in that set, for the given value of x . Given 0 < p ≤ r ,
the LOVO function is defined by

Sp(x) =
p∑

k=1

Rik (x)(x) (2)

and the LOVO problem is

min Sp(x). (3)

Essentially, this problem can be seen as a generalization of nonlinear least squares, as
elucidated in [5]. To reiterate this affirmation, we can consider ϕ(t) = φ(x, t) as the model

selected for fitting, anddefine Ri (x) = 1

2
(Fi (x))2,where Fi (x) = yi−φ(x, ti ), i = 1, . . . , r .

Thus, we have the particular LOVO problem

min Sp(x) = min
p∑

k=1

Rik (x)(x) = min
p∑

k=1

1

2

(
Fik (x)(x)

)2
. (4)

Each Ri is a residual function. Consequently, if we assume p = r the LOVO problem is
the classical least squares problem.When p < r the parameter x̄ ∈ R

n that solves (4) defines
a model φ(x̄, t) free from the influence of the worst r − p deviations. Throughout this work,
p is also know as the number of trusted points.

Several applications can be modeled in the LOVO context, as illustrated in [4,5,7,16,18].
LOVO problems originated in the studies of Order Value Optimization (OVO) problems
[2,3]. For more details on the relationship between these problems, see Ref. [5]. An excellent
survey about LOVO problems and variations is given in [17]. Although it is well known that
LOVO deals with detection of outliers, there is a limitation: the mandatory definition of the
value p, which is associated to the number of possible outliers. This is the main gap that
this paper intends to fill. We present a new method that combines a voting schema and an
adaptation of the Levenberg–Marquardt algorithm in context of LOVO problems.

Levenberg–Marquardt algorithms can be viewed as a particular case of trust-region algo-
rithms, using specific models to solve nonlinear equations. In [4], a LOVO trust-region
algorithm is presented with global and local convergence properties and an application to
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protein alignment problems. Second-order derivatives were needed in the algorithm for the
local convergence analysis. In least-squares problems, as the objective function has a well
known structure, Levenberg–Marquardt algorithms use a linear model for the adjustment
function, instead of a quadratic model for the general nonlinear function. This approach
eliminates the necessity of using second-order information for the model while still having
second-order information about the function to be minimized. More details of Levenberg–
Marquardt methods can be found in [21].

Another approach that also uses first-order information of models to obtain second-order
approximation in least-squares functions is the Gauss–Newton method. Gauss–Newton in
the context of LOVO functions for image recognition was discussed in [1]. The authors
presented a LOVO approach to the detection of lines and circles with fixed radii. Line-search
was used for obtaining global convergence. The main drawbacks of this approach were that
near-singularity of the Gauss–Newton system had to be fixed in a heuristic way and the
number p of trusted points had to be previously estimated and fixed for each problem. The
algorithm was shown to be very efficient against state-of-art algorithms, when the number
of parameters to be estimated started to increase.

In [24], outlier detection techniques are classified in 7 groups for problems of data
streaming: Statistic-based, depth-based, deviation-based, distance-based, clustering-based,
sliding-window-based and autoregression-based. In [26], classification is divided only
between geometric and algebraic algorithms for robust curve and surface fitting. The approach
used in this work is clearly algebraic, strongly based in the fact that the user knows what kind
of model is to be used. Although models are used, we make no assumption on the distribution
of the points, so we do not fit clearly in any of the types described in [24]. We also make
the assumption that the values ti are given exactly, what is called as fixed-regressor model in
[21].

This work deals with the robust adjustment of models to data. A new version of the
Levenberg–Marquardt algorithm for LOVO problems is developed, so the necessity of
second-order information of function Ri is avoided. In addition, the number of possible
outliers is estimated by a voting schema. The main difference of the proposed voting schema
is that it is based in the values of p which has, by definition, a discrete domain. In other
techniques, such as the Hough Transform [10,14,15,25], continuous intervals of the model’s
parameters are discretized. Also, the increase in the number of parameters to adjust does not
impact the proposed voting system. The main improvements of this work can be stated as
follows

• a Levenberg–Marquardt algorithmwith global convergence for LOVOproblems is devel-
oped, which avoids the use of second-order information such as in [4] or heuristic
strategies to improve conditioning as in [1];

• a voting schema based on the values of p is developed, whose size does not increase with
the size or discretization of the parameters of the model, such that the number of trusted
points does not have to be previously estimated as in [1];

• extensive numerical results are presented, which show the behavior of the proposed
method and are also freely available for download.

This work is organized as follows. In Sect. 2 we describe the Levenberg–Marquardt
algorithm in the LOVO context and demonstrate its convergence properties. In Sect. 3 the
voting schema is discussed, which will make the LOVO algorithm independent of the choice
of p and will be the basis of the robust fitting. Section 4 is devoted to the discussion of the
implementation details and comparison against other algorithms for robust fitting. Finally, in
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Sect. 5 we draw some conclusions on the presented strategy. Throughout this paper we use
the notation R+ := {x ∈ R | x ≥ 0}.

2 The Levenberg–Marquardt method for LOVO problems

Following [5], let us start this section by pointing out an alternative definition of LOVO
problems for theoretical purposes. Denoting C = {C1, . . . , Cq} the set of all combinations
of the elements {1, 2, . . . , r} taken p at a time, we can define for each i ∈ {1, . . . , q} the
following functions

fi (x) =
∑

k∈Ci
Rk(x) (5)

and

fmin(x) = min{ fi (x), i = 1, . . . , q}. (6)

It is simple to note that Sp(x) = fmin(x)which is a useful notation in our context. Moreover,
it is possible to note that Sp is a continuous function if fi is a continuous function for all
i = 1, . . . , q , but, even assuming differentiability over fi , we cannot guarantee the same for

Sp . In addition, since Rk(x) = 1

2
(Fk(x))2, k ∈ Ci , i = 1, . . . , q we can write

fi (x) = 1

2

∑

k∈Ci
Fk(x)

2 = 1

2
‖FCi (x)‖22. (7)

Throughout this work, following (7), given a set Ci ∈ C, FCi (x) : Rn → R
p will always

refer to the map that takes x to the p-sized vector composed by the functions Fk(x) defined
by (4), for k ∈ Ci in any fixed order. Similarly, JCi (x) is defined as the Jacobian of this map.
Additionally, we assume the continuous differentiability for Fi , i = 1, . . . , r .

The goal of this section is to define a version of Levenberg–Marquardt method (LM) to
solve the specific problem (4), for a given p, aswell as a result on global convergence. The new
versionwill be called by simplicityLM-LOVO. It iswell known that theLevenberg–Marquardt
method proposed in [19] is closely related to trust-region methods and our approach is based
on it. Consequently, some definitions and remarks are necessary.

Definition 1 Given x ∈ R
n we define the minimal function set of fmin in x by

Imin(x) = {i ∈ {1, . . . , q} | fmin(x) = fi (x)}.
In order to define a search direction for LM-LOVO at the current point xk , we choose an

index i ∈ Imin(xk) and compute the direction defined by the classical Levenberg–Marquardt
method using fi (x), that is, the search direction dk ∈ R

n is defined as the solution of

min
d∈Rn

mk,i (d) = 1

2
‖FCi (xk) + JCi (xk)d‖22 + γk

2
‖d‖22, (8)

where γk ∈ R+ is the damping parameter. Equivalently, the direction d can be obtained by
(
JCi (xk)

T JCi (xk) + γk I
)
d = −∇ fi (xk), (9)

where ∇ fi (xk) = JCi (xk)T FCi (xk) and I ∈ R
n×n is the identity matrix.
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To ensure sufficient decrease in the defined search direction, we can consider a similar
strategy of trust-region methods, which involves monitoring the actual decrease (given by
fmin) and the predicted decrease (given by mk,i ) at direction dk :

ρk,i = fmin(xk) − fmin(xk + dk)

mk,i (0) − mk,i (dk)
. (10)

We formalize the conceptual algorithm LM-LOVO in the Algorithm 1.
A noteworthy property of Levenberg–Marquardt (and also Gauss–Newton) coupled with

the LOVO approach is that, assuming that the exact model was chosen, the number of trusted
points p was correctly identified, i ∈ Imin(xk) and there is no relevant noise in observations
y j , j ∈ Ci , then the Hessian of themodel,∇2mk,i (d) = JCi (xk)T JCi (xk)+γk I approximates
the Hessian of fi , ∇2 fi (xk) = JCi (xk)T JCi (xk) + ∑

j∈Ci ∇2Fj (xk)Fj (xk), as the algorithm
converges. This occurs because Fj (xk) → 0, j ∈ Ci , and γk → 0 (see the definition of γk and
Theorem 1). This property would not occur if a traditional Levenberg–Marquardt algorithm
is applied to data with outliers.

Algorithm 1: LM-LOVO—Levenberg–Marquardt for the LOVO problem.

Input: x0 ∈ R
n , 0 < λmin ≤ λ0, ε ≥ 0, λ > 1, μ ∈ (0, 1) and p ∈ N

Output: xk
Set k ← 0;

1 Select ik ∈ Imin(xk );
λ ← λk ;

2 if ‖∇ fik (xk )‖2 ≤ ε then
Stop the algorithm, xk is an approximate solution for the LOVO problem;

3 γk ← λ‖∇ fik (xk )‖22;
Compute dk the solution of the linear system (9);
Calculate ρk,ik as described in (10);

4 if ρk,ik < μ then
λ ← λλ;
Go back to the Step 3;

else
Go to the Step 5;

5 λk+1 ∈ [max{λmin , λ/λ}, λ];
xk+1 ← xk + dk ;
k ← k + 1 and go back to the Step 1 ;

In what follows, we show that Algorithm 1 is well defined and converges to stationary
points of the LOVO problem. We begin with some basic assumptions on the boundedness of
the points generated by the algorithm and on the smoothness of the involved functions.

Assumption 1 The level set

C(x0) = {x ∈ R
n | fmin(x) ≤ fmin(x0)}

is a bounded set ofRn and the functions fi , i = 1, . . . , q , have Lipschitz continuous gradients
with Lipschitz constants Li > 0 in an open set containing C(x0).

The next proposition is classical in the literature of trust-region methods and ensures
decrease of mk,ik (.) on the Cauchy direction. It was adapted to the LOVO context.
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Proposition 1 Given xk ∈ R
n, γk ∈ R+ and ik ∈ {1, . . . , q}, the Cauchy step obtained from

t̂ = arg mint∈R {mk,ik (−t∇ fik (xk))}
and expressed by dC (xk) = −̂t∇ fik (xk) ∈ R

n, satisfies

mk,ik (0) − mk,ik

(
dC (xk)

)
≥ θ‖∇ fik (xk)‖22

2
(
‖JCik (xk)‖22 + γk

) , (11)

for some θ > 0, independent of k.

Proof The Cauchy step is explicitly given by

dC (xk) = − ‖∇ fik (xk)‖22
‖JCik (xk)∇ fik (xk)‖22 + γk‖∇ fik (xk)‖22

∇ fik (xk).

By simple substitution in mk,ik (defined by (8)), and observing that ∇ fik (xk) =
JCik (xk)

T FCik (xk) and ‖JCik (xk)∇ fik (xk)‖2 ≤ ‖JCik (xk)‖2‖∇ fik (xk)‖2, it is not hard to
show that

mk,ik (0) − mk,ik

(
dC (xk)

)
≥ 1

2

‖∇ fik (xk)‖22(
‖JCik (xk)‖22 + γk

) ,

and (11) holds if we define θ ∈ (0, 1). �

Since the Cauchy step is obtained by the constant that minimizes the model mk,ik (.) on

the direction of the gradient vector, by Proposition 1 we can conclude that there exists θ > 0
such that

mk,ik (0) − mk,ik (dk) ≥ θ‖∇ fik (xk)‖22
2

(
‖JCik (xk)‖22 + γk

) , (12)

since dk ∈ R
n from (9) is the global minimizer of mk,ik .

Inspired by [6], we present Lemma 1 that shows that Step 5 is always executed by Algo-
rithm 1 if λ is chosen big enough.

Lemma 1 Let xk ∈ R
n and ik ∈ Imin(xk) be a vector and an index, respectively, both fixed

in the Step 1 of the Algorithm 1. Then, the Step 3 of the Algorithm 1 will be executed a finite
number of times.

Proof To achieve this goal, we will show that

lim
λ→∞ ρk,ik ≥ 2.

For each λ fixed in the Step 1 of the Algorithm 1, we have that

1 − ρk,ik

2
= 1 − fmin(xk) − fmin(xk + dk)

2(mk,ik (0) − mk,ik (dk))

= 2mk,ik (0) − 2mk,ik (dk) − fmin(xk) + fmin(xk + dk)

2(mk,ik (0) − mk,ik (dk))

= fmin(xk + dk) + fmin(xk) − 2mk,ik (dk)

2(mk,ik (0) − mk,ik (dk))
.

(13)
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From Taylor series expansion and the Lipschitz continuity of ∇ fik (xk)

fik (xk + dk) ≤ fik (xk) + ∇ fik (xk)
T dk + Lik

2
‖dk‖22. (14)

By Eq. (14) and the definition of fmin , we obtain

fmin(xk + dk) ≤ fik (xk + dk)
(14)≤ fik (xk) + ∇ fik (xk)

T dk + Lik

2
‖dk‖22. (15)

Through the expressions (7) and (9), we have

‖FCik (xk) + JCik (xk)dk‖22 + γk‖dk‖22
= ‖FCik (xk)‖22 + 2FCik (xk)

T JCik (xk)dk + ‖JCik (xk)dk‖22 + γk‖dk‖22
= ‖FCik (xk)‖22 + 2FCik (xk)

T JCik (xk)dk

+ dTk

(
JCik (xk)

T JCik (xk) + γk I
)
dk

(7),(9)= 2 fik (xk) + 2∇ fik (xk)
T dk − dTk ∇ fik (xk)

= 2 fik (xk) + ∇ fik (xk)
T dk .

(16)

Using (15), (16) and the definition of mk,ik in (13), we get

1 − ρk,ik

2
= fmin(xk + dk) + fik (xk) − ‖FCik (xk) + JCik (xk)dk‖22 − γk‖dk‖22

2(mk,ik (0) − mk,ik (dk))

(16)= fmin(xk + dk) − fik (xk) − ∇ fik (xk)
T dk

2(mk,ik (0) − mk,ik (dk))

(15)≤ Lik‖dk‖22
4(mk,ik (0) − mk,ik (dk))

.

(17)

From (9) and the definition of γk , we note that

‖dk‖2 ≤ ‖∇ fik (xk)‖2
σk + γk

≤ ‖∇ fik (xk)‖2
γk

= 1

‖∇ fik (xk)‖2λ
, (18)

where σk = σmin(JCik (xk)
T JCik (xk)) and σmin(B) represents the smallest eigenvalue of B.

Replacing (18) in (17), we obtain

1 − ρk,ik

2
≤

Lik

‖∇ fik (xk)‖22λ2
4(mk,ik (0) − mk,ik (dk))

(12)≤
Lik

‖∇ fik (xk)‖22λ2
4θ‖∇ fik (xk)‖22

2(‖JCik (xk)‖22 + γk)

= (‖JCik (xk)‖22 + γk)Lik

2θ‖∇ fik (xk)‖42λ2
≤

( ‖JCik (xk)‖22
‖∇ fik (xk)‖42

+ 1

‖∇ fik (xk)‖22

)
Lik

2θλ
,

(19)

where the last inequality comes from the definition of γk in Algorithm 1 and assuming that
λ ≥ 1, which can always be enforced.

Using (19), we conclude that

lim
λ→∞ 1 − ρk,ik

2
≤ 0,
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or equivalently

lim
λ→∞ ρk,ik ≥ 2,

which proves the result. �

Our studiesmove toward showing convergence results forAlgorithm1 to stationary points.

At this point we should be aware of the fact that LOVOproblems admit two types of stationary
condition: weak and strong [4].

Definition 2 A point x∗ is a weakly critical point of (3) when x∗ is a stationary point of fi
for some i ∈ Imin(x∗). A point x∗ is a strongly critical point of (3) if x∗ is a stationary point
of fi for all i ∈ Imin(x∗).

The global convergence to weakly critical points is given by Theorem 1. This type of
convergence is less expensive to verify in practice and therefore more common to deal with.
Convergence to strongly critical points is theoretically interesting and can be accomplished
by using the concept of δ-active indexes, defined in [5]. The algorithm, for such type of
convergence has to be slightly modified. We provide the new algorithm and all the technical
details in “Appendix 1”.

Theorem 1 Let {xk}k∈N be a sequence generated by Algorithm 1 by choosing ε = 0 and x∗
a limit point of that sequence. Consider K′ = {k | ik = i} ⊂ N an infinite subset of indexes
for i ∈ {1, . . . , q} such that limk∈K′ xk = x∗ and assume that Assumption 1 holds. Then, we
have

lim
k∈K′ ‖∇ fi (xk)‖2 = 0

and i ∈ Imin(x∗).

Proof Clearly, there is an index i chosen an infinite number of times by Algorithm 1, since
{1, . . . , q} is a finite set.

Let us suppose by contradiction that, for this index i , there exist β > 0 and an infinite
subset K1 ⊂ K′ such that ‖∇ fi (xk)‖2 ≥ β, for all k ∈ K1.

Using the continuity of the Jacobian JCi (x), we ensure that

‖JCi (xk)‖2 ≤ sup
k∈K1

{‖JCi (xk)‖22} = Ji , (20)

for all k ∈ K1.
By (19), for λ ≥ 1 we obtain

1 − ρk,i

2
≤

(
‖JCi (xk)‖22
‖∇ fi (xk)‖42

+ 1

‖∇ fi (xk)‖22

)
Li

2θλ

⇒1 − ρk,i

2

(20)≤
(
J 2i
β4 + 1

β2

)
Li

2θλ

⇒ρk,i ≥ 2 −
(
J 2i
β4 + 1

β2

)
Li

θλ
,

(21)

for all k ∈ K1.
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Through expression (21), we have that Step 5 of Algorithm 1 will certainly be executed

when λ ≥ b = max

{
1,

(
J 2i
β4 + 1

β2

)
Li

θ

}
since

ρk,i ≥ 2 −
(
J 2i
β4 + 1

β2

)
Li

θλ
≥ 2 −

(
J 2i
β4 + 1

β2

)
Li

θb
≥ 1 > μ, (22)

for all k ∈ K1. Therefore, based on Step 4 of Algorithm 1, the value of λk will be upper
bounded by λk ≤ M = λb, for all k ∈ K1.

Then, for all k ∈ K1, we get

fmin(xk) − fmin(xk+1)

mk,i (0) − mk,i (dk)
≥ μ

⇔ fmin(xk) − fmin(xk+1) ≥ μ(mk,i (0) − mk,i (dk))

⇒ fmin(xk) − fmin(xk+1)
(12)≥ μ

(
θ

‖∇ fi (xk)‖22
2(‖JCi (xk)‖22 + γk)

)

⇒ fmin(xk) − fmin(xk+1) ≥ μθ‖∇ fi (xk)‖22
2(‖JCi (xk)‖22 + λk‖∇ fi (xk)‖22)

⇒ fmin(xk) − fmin(xk+1) ≥ μθ

2

(
‖JCi (xk)‖22
‖∇ fi (xk)‖22

+ λk

)

⇒ fmin(xk) − fmin(xk+1) ≥ μθ

2

(
‖JCi (xk)‖22

β2 + λk

)

⇒ fmin(xk) − fmin(xk+1) ≥ μθβ2

2(‖JCi (xk)‖22 + β2λk)

⇒ fmin(xk) − fmin(xk+1) ≥ μθβ2

2(J 2i + β2M)

⇔ fmin(xk+1) − fmin(xk) ≤ −μθβ2

2c
,

(23)

where c = J 2i + β2M .
Expression (23) and the fact that fmin(xk+1) ≤ fmin(xk), for all k ∈ K′, contradict the

hypothesis that fmin is bounded from below. We conclude that there is no such K1 and,
therefore,

lim
k∈K′ ‖∇ fi (xk)‖2 = 0.

To prove the second statement of the theorem, we use the fact that, in Algorithm 1,
ik ∈ Imin(xk), for all k, obtaining that

fik (xk) = fi (xk) ≤ f j (xk), ∀ k ∈ K′ and ∀ j ∈ {1, . . . , q}. (24)

By (24) and the continuity of the function fi , for all i ∈ {1, . . . , q}, we have
fi (x

∗) ≤ f j (x
∗), ∀ j ∈ {1, . . . , q},
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which means that i ∈ Imin(x∗), concluding the proof. �


It is not hard to show that, if i ∈ Imin(xk), then all the previous theoretical results remain
valid if we replace ρk,i by

ρ̂k,i = fi (xk) − fi (xk + dk)

mk,i (0) − mk,i (dk)
,

where fi was used instead of fmin . The main reason for using ρ̂k,i is practical: when com-
puting fi (xk + dk) we can use the same set Ci of index of functions Fj that was used when
fi (xk) = fmin(xk) was computed. Recall that the computation of fmin(x) requires the com-
putation of all Fj , j = 1, . . . , r , sorting their values and taking the smallest p functions. On
the other hand, since fi (xk + dk) ≥ fmin(xk + dk) and fi (xk) = fmin(xk), we have that

ρ̂k,i = fi (xk) − fi (xk + dk)

mk,i (0) − mk,i (dk)
≤ fmin(xk) − fmin(xk + dk)

mk,i (0) − mk,i (dk)
= ρk,i ,

which means that it might be necessary more executions of Step 3 before condition ρ̂k,ik ≥ μ

is satisfied. Each execution of Step 3 involves the solution of a linear system. If the number
r of functions is very large so that sorting is the bottleneck of the algorithm, the use of ρ̂k,i
can be an interesting alternative.

3 The voting system

The main drawback of Algorithm 1 is the need to know the number p of trusted points,
which is used by Sp (2) (or, equivalently, by fmin). It is not usual to know the exact number
of trusted points in any experiment.

To overcome this difficulty, an algorithm for testing different values of p was created,
detailed by Algorithm 2. The main idea of the method is to call Algorithm 1 for several
different values of p and store the obtained solution. The solutions are then preprocessed,
where stationary points that are not global minimizers of their respective problem are elim-
inated. This elimination is based on the fact that, if x̄ p and x̄q , p < q , are solutions for
their respective problems, then Sp(x̄ p) cannot be greater than Sq(x̄q) if they are both global
minimizers. Therefore, if Sp(x̄ p) > Sq(x̄q), then x̄ p is not a global minimizer and can be
safely eliminated. The last steps (Steps 4 and 5) compute the similarity between each pair
of solutions and obtain the most similar ones. Element Cp of vector C stores the number
of times that some other solution was considered similar to x̄ p , in the sense of a tolerance
ε. The most similar solution with greatest p is considered the robust adjustment model for
the problem. Algorithm 2 is a proposal of a voting system, where the solution that was not
eliminated by the preprocessing and occurred with highest frequency (in the similarity sense)
is selected.

The execution of Algorithm 2 can be easily parallelizable. Each call of Algorithm 1 with
a different value of p can be performed independently at Step 2. All the convergence results
from Sect. 2 remain valid, so Algorithm 2 is well defined. All the specific implementation
details of the algorithm are discussed in Sect. 4.

123



Journal of Global Optimization (2021) 80:387–414 397

Algorithm 2: Voting algorithm for fitting problems
Input: x0 ∈ R

n , ε ∈ R+ and 0 ≤ pmin < pmax
1 Define C ∈ R

s = 0, where s = pmax − pmin + 1
2 Compute x̄ p ∈ R

n by calling Algorithm 1 for the given p, for all p ∈ {pmin , pmin + 1, . . . , pmax }
3 Preprocess solutions
4 Let Mpq be the similarity between solutions x̄ p and x̄q
5 for p = pmin , . . . , pmax do

k ← 0
for q = pmin , . . . , pmax do

if Mpq < ε then
k ← k + 1

Cp ← k

6 x
 ← x̄ p , where p = argmax
q=pmin ,...,pmax

{Cq }

4 Numerical implementation and experiments

In this section we discuss the implementation details of Algorithms 1 and 2 . From now on,
Algorithm 1 will be called LM-LOVO and Algorithm 2 will be called RAFF. Both algorithms
were implemented in the Julia language, version 1.0.4 and are available in the official Julia
repository. See [8] for information about the RAFF.jl package installation and usage.

Algorithm LM-LOVO is a sequential nonlinear programming algorithm, which means
that only the traditional parallelization techniques can be applied. Since fitting problems
have small dimension and a large dataset, the main gains would be the parallelization of the
objective function, not the full algorithm. Matrix and vector operations are also eligible for
parallelization.

Following traditional LOVO implementations [1], the choice of index ik ∈ Imin(xk) is
performed by simply evaluating functions Fi (xk), i = 1, . . . , r , sorting them in ascending
order and them dropping the r − p largest values. Any sorting algorithm can be used, but
we used our implementation of the selection sort algorithm. This choice is interesting, since
the computational cost is linear when the vector is already in ascending order, what is not
unusual if LM-LOVO is converging and ik+1 = ik , for example.

The convergence theory needs the sufficient decrease parameter ρk,ik to be calculated
in order to define step acceptance and the update of the damping parameter. In practice,
LM-LOVO uses the simple decrease test at Step 4

fmin(xk + dk) < fmin,

which was shown to work well in practice.
The computation of direction dk is performed by solving the linear system (9) by the

Cholesky factorization of matrix JCik (xk)
T JCik (xk) + γk I . In the case where Steps 3 and

4 are repeated at the same iteration k, the QR factorization is more indicated, since it can
be reused when the iterate xk remains the same and only the dumping factor is changed.
See [19] for more details about the use of QR factorizations in the Levenberg–Marquardt
algorithm. If there is no interest in using the QR factorization, then the Cholesky factorization
is recommended.

LM-LOVOwas carefully implemented, since it is used as a subroutine of RAFF for solving
adjustment problems. A solution x̄ = xk is declared as successful if

‖∇ fik (x̄)‖2 ≤ ε (25)
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Fig. 1 Test problem simulating an experiment following the logistic model. The continuous line represents
the adjusted model, while the dashed line is the “exact” solution. LM-LOVO correctly identifies and ignores
the outlier. (Color figure online)

for some ik ∈ Imin(x̄), where fik is given by (5). The algorithm stops if the gradient cannot
be computed due to numerical errors or if the limit of 400 iterations has been reached. We
also set λ = 2 as default.

In order to show the behavior of LM-LOVOwe solved the problem of adjusting some data
to the one-dimensional logistic model, widely used in statistics

φ(x, t) = x1 + x2
1 + exp(−x3t + x4)

,

where x ∈ R
4 represents the parameters of the model and t ∈ R represents the variable of

the model. In order to generate random data for the test, the procedures detailed in Sect. 4.1
were used. The produced data is displayed in Fig. 1, where r = 10, p = 9 and the exact
solution was x∗ = (6000,−5000,−0.2,−3.7). This example has only r − p = 1 outlier.

LM-LOVO was run with its default parameters, using x = (0, 0, 0, 0) as a starting point
and p = 9, indicating that there are 9 points which are trustable for adjusting the model. The
solution found is also shown in Fig. 1, given by x̄ = (795.356, 5749.86, 0.161791, 3.02475),
as a continuous line, while the “exact” solution is depicted as a dashed line. We observe that
it is not expected the exact solution x∗ to be found, since the points were perturbed. The
outlier is correctly identified as the dark/red triangle.

The example in Fig. 1 has an outlier that is visually easy to identify, so the correct number
of p = 9 trusted points was used. However, that might not be the case, specially if there is an
automated process that needs to perform the adjustments, or if themodel ismulti-dimensional.
Algorithm RAFF was implemented to solve this drawback.

RAFFwas also implemented in the Julia language and is themainmethod of theRAFF.jl
package [8]. As already mentioned in Sect. 2, RAFF is easily parallelizable, so serial and
parallel/distributed versions are available, through the Distributed.jl package. The
algorithm (or the user) defines an interval of values of p to test and calls LM-LOVO to solve
each subproblem for a given value of p. It is known that LOVO problems have many local
minimizers, butwe are strongly interested in global ones. Therefore, the traditionalmulti-start
technique is applied to generate random starting points. The larger the number of different
starting points, the greater is the chance to find global minimizers. Also, the computational
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cost is increased. The parallel/distributed version of RAFF solves this drawback, distributing
problems with different values of p among different cores, processors or even computers.

For the computation of the similarity between solutions x̄ p and x̄q in Step 4, the Euclidean
norm of the vector of differences was used

Mpq = ‖x̄ p − x̄q‖2.
For each p in the interval, the best solution x̄ p obtained among all the runs of LM-LOVO for
that p is stored. In order to avoid considering points in the cases where LM-LOVO has not
converged for some value p, we set Mip = Mpi = ∞ for all i = pmin, . . . , pmax in case of
failure.

In the preprocessing phase (Step 3 of RAFF) solutions x̄q that clearly are not minimizers
are also eliminated by setting Miq = Mqi = ∞ for all i = pmin, . . . , pmax . To detect
such points, we check if Sq(x̄q) > Sp(x̄ p) for some q < p ≤ pmax . The idea is that the
less points are considered in the adjustment, the smaller the residual should be at the global
minimizer. The preprocessing phase also tries to eliminate solution x̄ pmax . To do that, the
valid solution x̄ p with smallest value of Sp(x̄ p), which was not eliminated by the previous
strategy, is chosen, where p < pmax . Solution x̄ pmax is eliminated if Sp(x̄ p) < Spmax (x̄ pmax )

and the number of observed points (ti , yi ) such that |yi − φ(x̄ p, ti )| < |yi − φ(x̄ pmax , ti )|,
for i = 1, . . . , r , is greater or equal than r/2.

The last implementation detail of RAFF that needs to be addressed is the choice of ε.
Although this value can be provided by the user, we found very hard to select a number that
resulted in a correct adjustment. Very small or very large values of ε, result in the selection of
x̄ pmax as the solution, since each solution will be similar to itself or similar to every solution,
and we always select the largest p in such cases. To solve this issue, the following calculation
has been observed to work well in practice

ε = min(M) + avg(M)/(1 + p1/2max ), (26)

where M is the similarity matrix and function avg computes the average similarity by consid-
ering only the lower triangular part of M and ignoring∞ values (which represent eliminated
solutions). If there is no convergence for any value of p ∈ [pmin, pmax ], then x̄ pmax is
returned, regardless if it has successfully converged or not.

4.1 Experiments for outlier detection and robust fitting

In the first set of tests, we verified the ability and efficiency of RAFF to detect outliers for
well known statistical and mathematical models:

– Linear model: φ(x, t) = x1t + x2
– Cubic model: φ(x, t) = x1t3 + x2t2 + x3t + x4
– Exponential model: φ(x, t) = x1 + x2 exp(−x3t)
– Logistic model: φ(x, t) = x1 + x2

1+exp(−x3t+x4)

The large number of parameters to be adjusted increases the difficulty of the problem, since
the number of local minima also increases. For these tests, we followed some ideas described
in [20]. For each model, we created 1000 random generated problems having: 10 points and
1 outlier, 10 points and 2 outliers, 100 points and 1 outlier, and 100 points and 10 outliers.
For each combination, we also tested the effect of the multistart strategy using: 1, 10, 100
and 1000 random starting points.

The procedure for generating each random instance is described as follows. It is also part
of the RAFF.jl package [8]. Let x∗ be the exact solution for this fitting problem. First, r
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Table 1 Exact solutions used for
each model in order to generate
random instances

Model x∗

Linear (−200, 1000)

Cubic (0.5, −20, 300, 1000)

Exponential (5000, 4000, 0.2)

Logistic (6000, −5000,−0.2,−3.7)

uniformly spaced values for ti are selected in the interval [1, 30]. Then, a set O ⊂ {1, . . . , r}
with r − p elements values is randomly selected to be the set of outliers. For all i = 1, . . . , r
a perturbed value is computed, simulating the results from an experiment. Therefore, we set
yi = φ(x∗, ti )+ ξi , where ξi ∼ N (0, 200), if i /∈ O and, otherwise, yi = φ(x∗, ti )+7sξ ′

i ξi ,
where ξi ∼ N (0, 200), ξ ′

i a uniform random number between 1 and 2 and s ∈ {−1, 1} is
randomly selected at the beginning of this process (so all outliers are in the “same side” of the
curve). The exact solutions used to generate the instances are given in Table 1. The example
illustrated in Fig. 1 was also generated by this procedure.

The parallel version of RAFFwas run with its default parameters on a Intel Xeon E3-1220
v3 3.10GHz with 4 cores and 16GB of RAM and Linux LUbuntu 18.04 operating system.
The obtained results are displayed in Tables 2 and 3 . In those tables, r is the number of points
representing the experiments, p is the number of trusted points, FR is the ratio of problems
in which all the outliers have been found (but other points may be declared as outliers), ER
is the ratio of problems where exactly the r − p outliers have been found, TP is the average
number of correctly identified outliers, FP is the average number of incorrectly identified
outliers, Avg. is the average number of points that have been declared as outliers by the
algorithm and Time is the total CPU time in seconds to run all the 1000 tests, measured with
the @elapsed Julia macro. By default, pmin = 0.5r and pmax = r are set in the algorithm.
The success criteria (25) of LM-LOVO was set to ε = 10−4, while λ was set to 2. For each
combination (Model, r , p) there are 4 rows in Tables 2 and 3 , representing different numbers
of multistart trials: 1, 10, 100 and 1000.

Some conclusions can be drawn from Tables 2 and 3 . We can see that RAFF attains its
best performance for outlier detection when the number of correct points is not small, even
though the percentage of outliers is high. For the exponential and logistic models, we also
can see clearly the effect of the multistart strategy in increasing the ratio of identified outliers.
In problems with 100 experiments, we observe that in almost all the cases the number of
outliers have been overestimated in average: although the ratio of outlier identification is
high (FR), the ratio of runs where only the exact outliers have been detected (TR) is very
low, being below 20% of the runs. For small test sets, this ratio increases up to 50%, but
difficult models, such as the exponential and logistic, have very low ratios. However, as we
can observe in Fig. 2, the shape and the parameters of the model are clearly free from the
influence of outliers. This observation suggests that maybe the perturbation added to all the
values is causing the algorithm to detect correct points as outliers. The effect of the number
of multi-start runs linearly increases the runtime of the algorithm, but is able to improve the
adjustment, specially for the logisticmodel. The exponentialmodel has an awkward behavior,
where theER ratio decreaseswhen the number ofmulti-start runs increases, although the ratio
of problems where all the outliers have been detected increases (FR). This might indicate that
the tolerance (26) could be improved.We can also observe that the runtime of the exponential
model is ten times higher than the other models.
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Table 2 Results of RAFF for the detection of outliers for linear and cubic models

Type r p FR ER TP FP Avg. Time (s)

Linear 10 9 0.858 0.552 0.858 0.349 1.21 2.167

0.859 0.554 0.859 0.347 1.21 3.511

0.859 0.554 0.859 0.347 1.21 12.893

0.859 0.554 0.859 0.347 1.21 89.285

8 0.467 0.418 1.112 0.144 1.26 2.344

0.467 0.417 1.112 0.145 1.26 3.596

0.467 0.417 1.112 0.145 1.26 13.164

0.467 0.417 1.112 0.145 1.26 88.684

100 99 0.983 0.078 0.983 10.656 11.64 10.297

0.982 0.074 0.982 10.655 11.64 42.091

0.982 0.074 0.982 10.677 11.66 316.604

0.982 0.075 0.982 10.682 11.66 3082.385

90 0.916 0.069 9.858 6.768 16.63 9.799

0.916 0.070 9.858 6.798 16.66 40.581

0.915 0.070 9.854 6.782 16.64 317.722

0.917 0.070 9.860 6.799 16.66 3099.536

Cubic 10 9 0.767 0.572 0.767 0.290 1.06 3.062

0.810 0.563 0.810 0.371 1.18 4.111

0.886 0.549 0.886 0.461 1.35 16.370

0.886 0.545 0.886 0.465 1.35 126.554

8 0.150 0.122 0.581 0.243 0.82 2.353

0.333 0.282 0.894 0.202 1.10 4.221

0.525 0.462 1.220 0.143 1.36 16.482

0.533 0.469 1.232 0.142 1.37 126.088

100 99 0.990 0.046 0.990 10.997 11.99 11.485

0.991 0.041 0.991 11.351 12.34 51.548

0.992 0.037 0.992 11.788 12.78 420.033

0.993 0.036 0.993 11.706 12.70 4123.040

90 0.945 0.064 9.838 6.941 16.78 11.325

0.930 0.063 9.816 7.299 17.11 50.685

0.941 0.063 9.835 7.584 17.42 414.084

0.940 0.060 9.833 7.714 17.55 4042.454

For each kind of problem, a multistart strategy was tested with 1, 10, 100 and 1000 random starting points

When the size of the problem is multiplied by 10 (from 10 points to 100), we observe
that the CPU time is multiplied by 5. This occurs because the time used by communication
in the parallel runs is less important for larger datasets. Again, the exponential model is an
exception.

In a second round of experiments, the same procedure was used to generate random test
problems simulating results from 100 experiments (r = 100), where a cluster of 10% of
the points are outliers (p = 90). The default interval used for the values of t is [1, 30], and
the clustered outliers always belong to [5, 10]. Selected instances for each type of model are
shown in Fig. 3 as well as the solution found by RAFF. Again, 1000 random problems were
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Table 3 Results for RAFF for the detection of outliers for exponential and logistic models

Type r p FR ER TP FP Avg. Time (s)

Exponential 10 9 0.549 0.141 0.549 0.751 1.30 5.627

0.698 0.463 0.698 0.354 1.05 17.289

0.777 0.535 0.777 0.338 1.11 136.491

0.822 0.581 0.822 0.306 1.13 1215.738

8 0.213 0.080 0.771 0.459 1.23 4.417

0.292 0.264 0.921 0.152 1.07 18.053

0.406 0.367 1.138 0.148 1.29 138.862

0.516 0.480 1.246 0.092 1.34 1245.882

100 99 0.982 0.089 0.982 5.444 6.43 47.235

0.992 0.046 0.992 10.673 11.66 392.884

0.992 0.047 0.992 10.794 11.79 3521.630

0.993 0.044 0.993 11.298 12.29 35418.130

90 0.532 0.133 8.234 1.921 10.15 47.915

0.972 0.060 9.946 7.181 17.13 384.544

0.980 0.054 9.959 7.611 17.57 3389.777

0.980 0.063 9.939 7.772 17.71 34121.028

Logistic 10 9 0.009 0.001 0.009 0.116 0.13 2.705

0.245 0.156 0.245 0.419 0.66 3.714

0.420 0.309 0.420 0.292 0.71 18.144

0.524 0.364 0.524 0.279 0.80 150.310

8 0.003 0.001 0.091 0.400 0.49 1.914

0.032 0.028 0.396 0.369 0.77 3.932

0.065 0.059 0.389 0.285 0.67 21.091

0.167 0.143 0.559 0.203 0.76 175.915

100 99 0.535 0.006 0.535 7.105 7.64 9.426

0.536 0.012 0.536 11.754 12.29 34.022

0.894 0.063 0.894 2.529 3.42 309.246

0.929 0.095 0.929 5.276 6.21 2678.522

90 0.002 0.000 4.345 3.295 7.64 9.459

0.008 0.001 4.599 5.502 10.10 38.605

0.432 0.001 6.551 4.629 11.18 319.713

0.430 0.099 8.084 2.001 10.09 2774.727

For each kind of problem, a multistart strategy was tested with 1, 10, 100 and 1000 random starting points

generated for each type ofmodel and themulti-start procedurewas fixed to 100 starting points
for each problem. The obtained results are shown in Table 4. A clustered set of outliers can
strongly affect the model but is also easier to detect, when the number of outliers is not very
large. As we can observe in Table 4, the ratio of instances where all the outliers have been
successfully detected has increased in all models. The logistic model is the most difficult to
fit since, on average, RAFF detects 17 points as outliers and 9 of them are correctly classified
(TP). All the other models are able to correctly identify 10 outliers, on average, and have a
higher FR ratio.
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Linear Cubic

Exponential Logistic

Fig. 2 Selected instances of test problems with r = 100 and p = 90 and the solutions obtained by RAFF.
All the outliers have been correctly identified in those cases (dark/red triangles). Non-outliers are described
by circles, where the dark/red ones represent points incorrectly classified as outliers by the algorithm. (Color
figure online)

Table 4 Numerical results for
problems with p = 100 data
points and 10% of clustered
outliers

Type FR ER TP FP Avg. Time (s)

Linear 0.949 0.104 9.936 6.363 16.30 323.623

Cubic 0.991 0.047 9.991 8.368 18.36 423.634

Exponential 0.987 0.097 9.983 6.775 16.76 3445.482

Logistic 0.745 0.007 8.778 8.382 17.16 326.675

This set of experiments also shows another benefit of the present approach. If the user
roughly knows the number of points that belong to a given model, such information can be
used in the elimination of random (not necessary Gaussian) noise. The clustered example
will be also shown to be an advantage over traditional robust least-squares algorithms in
Sects. 4.2 and 4.3 .

4.2 Comparison against robust algorithms

We compared the fitting obtained by RAFF against classical and robust fitting algorithms
provided by the SciPy library version 1.3.1 in Python1. The robust fitting algorithm in SciPy
consists of using different loss functions in the least squares formulation. The following

1 https://docs.scipy.org/doc/scipy/reference/optimize.html.

123

https://docs.scipy.org/doc/scipy/reference/optimize.html


404 Journal of Global Optimization (2021) 80:387–414

Linear Cubic

Exponential Logistic

Fig. 3 Selected instances of test problems containing a clustered set of outliers and the solutions obtained
by RAFF. All the outliers have been correctly identified in those cases (dark/red triangles). Non-outliers are
described by circles, where the dark/red ones represent points incorrectly classified as outliers by the algorithm.
(Color figure online)

loss functions were used: linear (usual least squares formulation), soft_l1 (smooth
approximation of the �1 loss function), huber and cauchy. The PyCall.jl Julia library
was used to load and call SciPy.

Two more algorithms based on the RANSAC (Random Sample Consensus) [11], imple-
mented in C++ from the Theia Vision Library2 version 0.8, were considered. The first one,
called here RANSAC, is the traditional version of RANSAC and the second one is LMED,
based on the work [22], which does not need the error threshold, the opposite of case of
RANSAC (where the threshold is problem dependent).

All the algorithms from SciPy were run with their default parameters. The best model
among 100 runs was selected as the solution for each algorithm and the starting point used
was randomly generated following the normal distributionwithμ = 0 andσ = 1.Algorithms
RANSAC and LMED were run only 10 times, due to the higher CPU time used and the good
quality of the solution achieved. RANSAC and LMED were run with a maximum of 1000
iterations, sampling 10% of the data and with the MLE score parameter activated. In order to
adjust models to the sampled data, the Ceres least squares solver3 version 1.13.0 was used,
since Theia has a natural interface to it. All the scripts used in the tests are available at https://
github.com/fsobral/RAFF.jl. Once again, the parallel version of RAFF was used. The test

2 http://www.theia-sfm.org/ransac.html.
3 http://ceres-solver.org/.
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problems were generated by the same procedures discussed in Sect. 4.1. However, only one
problem (instead of 1000) for each configuration (Model, r , p) was used.

Unlike RAFF, traditional fitting algorithms do not return the possible outliers of a dataset.
Robust algorithms such as least squares using �1 or Huber loss functions are able to ignore
the effect of outliers, but not to easily detect them. Therefore, for the tests we selected one
instance of each test of type (model, r , p), where the models and values for r and p are the
same used in Tables 2, 3, 4. The results are displayed in Table 5. For each problem p and
each algorithm a, we measured the adjustment error Aa,p between the model obtained by
the algorithm φp(x


a,p, t) and the points that are non-outliers, which is given by

Aa,p =
√√√√

∑

i∈P
i non-outlier

(φp(x

a,p, ti ) − yi )2,

where φp was the model used to adjust problem p. Each row of Table 5 represents one
problem and contains the relative adjustment error for each algorithm, which is defined by

Āa,p = Aa,p

mini {Ai,p} (27)

and the time taken to find themodel (in parenthesis). The last row contains the number of times
that each algorithmhas found a solutionwith adjustment error smaller than 1%of best, smaller
than 10% of the best and smaller than 20% of the best adjustment measure found for that
algorithm, respectively, in all the test set. We can observe that RAFF, LMED and soft_l1
were the best algorithms. RAFF was the solver that found the best models in most of the
problems (11/24), followed by LMED (9/24). Its parallel version was consistently the fastest
solver among all. It is important to observe that RAFF was the only who was easily adapted
to run in parallel. However, the parallelism is related only to the solution of subproblems for
different p, not to the multistart runs, which are run sequentially. Therefore, RAFF solves
considerably more problems per core than the other algorithms in a very competitive CPU
time. When parallelism is turned of, the CPU time is very similar to the traditional least
squares algorithm (linear). Also, RAFF was the only one that easily outputs the list of
possible outliers without the need of any threshold parameter. Clustered instance (cubic, 100,
90) and instance (logistic, 10, 9) and the models obtained by each algorithm are shown in
Fig. 4.

4.3 Experiments for circle detection

The problem of detecting patterns in images is very discussed in the vision area in Computer
Science. LOVO algorithms have also been applied to solving such problems, as a nonlinear
programming alternative to traditional techniques [1]. The drawback, again, is the necessity
of providing a reasonable number of trusted points. RAFF allows the user to provide an
interval of possible trusted points, so the algorithm can efficiently save computational effort
when trying to find patterns in images. Since LOVO problems need a model to be provided,
circle detection is a perfect application to the algorithm.

We followed tests similar to [26], using a circular model

φ(x, t) = (t1 − x1)
2 + (t2 − x2)

2 − x23

instead of the ellipse model considered in the work. Two test sets were generated. In the first
set r = 100 points were uniformly distributed in the border of the circlewith center (−10, 30)
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Fig. 4 Two problems and the models found for each algorithm. On the left, a cubic model with 100 points and
a set of 10 clustered outliers. On the right, a logistic model with 10 points and only one outlier. (Color figure
online)

and radius 2. If the point is not an outlier, a random perturbation ξ ∼ N (0, 0.1) is added to
each one of its t1 and t2 coordinates. For outliers, the random noise is given by ξ ∼ N (0, 2),
as suggested in [26]. In the second set, r = 300 was considered. The same circumference
was used and p points (non-outliers) were uniformly distributed in the circumference and
slightly perturbed with a noise ξ ∼ N (0, 0.1) as before. The remaining 300 − p points (the
outliers) were randomly distributed in a square whose side was 4 times the radius of the
circle, using the uniform distribution. Nine problems were generated in each test set, with
outlier ratio ranging from 10% up to 90% (i. e. ratio of non-outliers decreasing 90% to 10%).

The same algorithms were compared, the only difference from Sect. 4.2 is that the error
threshold of RANSAC was reduced to 10 and 100 random starting points near (1, 1, 1) were
used for all algorithms, except RANSAC and LMED. For those two algorithms, we kept the
number of trials to 10. Also, we tested two versions of RAFF. In pure RAFF, we decreased
the lower bound pmin from its default value 0.5r to the value of p, when p falls below the
default. In RAFFint, we used the option of providing upper and lower bounds for the number
of trusted points. If p is the current number of non-outliers in the instance, the interval given
to RAFFint is [p − 0.3r , p + 0.3r ] ∩ [0, r ]. The measure (27) was used and the results are
shown in Fig. 5.

We can observe that RAFF, LMED and cauchy achieved the best results. RAFF found
worse models than most of the robust algorithms in the problems of the first test set, although
the results are still very close. Its relative performance increases as the outlier ratio increases.
This can be explained as the strong attraction that RAFF has to finding a solution similar to
traditional least squares algorithms. In Fig. 6 we can see that RAFF has difficulty in finding
outliers that belong to the interior of the circle. To solve this drawback, RAFF also accepts
a lower bound in the number of outliers, rather than only an upper bound. This ability is
useful for large datasets with a lot of noise, as is the case of the second test set, and allows
the detection of inner outliers. This is represented by RAFFint. We can see in Fig. 5 that the
performance of both versions of RAFF is better than traditional robust algorithms in the case
of a large number of outliers.
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Fig. 5 Relative adjustment error in the circle detection problem for increasing outlier ratio and two different
types of perturbation: by normal and uniform distributions. (Color figure online)

4.4 Comparison against another LOVO approach for model adjustment

Wealso comparedRAFF against theLOVOGauss–Newton line-search algorithmdescribed in
[1]. The authors were unable to obtain the codes used in the paper, thus a Julia implementation
was coded following the description of the algorithm. The algorithm is also available in the
RAFF.jl package as function gnlslovo.

As previously mentioned, the algorithm in [1] needs a reasonable choice of parameter
p, the number of trusted points. A direct comparison between the LOVO Gauss–Newton
algorithm and Algorithm 1 is not very useful, since both algorithms are well known to solve
nonlinear least-squares problems. Gauss–Newton algorithms are usually faster and more
accurate than the Levenberg–Marquardt approach, but they might suffer when the matrix
used to compute the descent direction is ill conditioned. Therefore, in this subsection, our
aim is to show that bad choices of p in the LOVOGauss–Newton algorithm [1] lead to poorer
adjustments and are usually avoided when the voting system used by RAFF is applied with
an inexact interval estimate around p.

The same set of clustered problems from Sect. 4.2 was used, but only for r = 100 and
p = 90. Also, we generated a circle detection problem with random noise (r = 300 and
p = 100), in the same fashion as Sect. 4.3. To compare the two approaches, the adjustment
error (27) was used. For each model, different values of p were given to the LOVO Gauss–
Newton algorithm and an interval around each pwas given toRAFF. The interval was defined
as [max{0, p/r − 0.3}r ,min{1, p/r + 0.3}r ]. The Gauss–Newton algorithm was allowed to
use 100 random initial points while RAFF was allowed to use 30 random initial points for
each p in the interval. The values of p used and the adjustment error obtained are displayed
in Table 6.
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Outliers generated by normal distribution

At most 40% of outliers Outlier ratio between 10% and 60%

Outliers generated by uniform distribution

At most 40% of outliers Outlier ratio between 20% and 60%

Fig. 6 Difference of outlier detection when upper bounds on the outlier ratio are provided. The inner outliers
are harder to detect, since the error they cause in the model is smaller. (Color figure online)

We can clearly see the benefits of using the voting system. Even if poor values of p are
provided, RAFF is usually able to find better adjustments than the Gauss–Newton algorithm
with fixed p. The voting system provides a way to compare the solution for different values
of p, which is not a trivial task. We also observe that LOVO Gauss–Newton is able to find
reasonable solutions using values of p not too close to the true ones. For the logistic model,
the results of Gauss–Newton are worse, since the matrix that appears in the problems is very
ill conditioned. The LOVO Gauss–Newton algorithm could also be used inside the voting
system of RAFF, replacing the LOVOLevenberg–Marquardt algorithm, but the results would
be very similar.
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Table 6 Adjustment error for the LOVO Gauss–Newton algorithm [1] (GN) with fixed p and RAFF using the
voting system with an interval around p

20 60 70 95 99

Linear RAFF 9.3e+02 9.5e+02 9.5e+02 9.2e+02 9.5e+02

GN 3.2e+04 9.7e+02 9.7e+02 1.1e+03 1.6e+03

Cubic RAFF 1.0e+03 9.2e+02 9.7e+02 9.2e+02 9.2e+02

GN 1.1e+03 9.6e+02 9.7e+02 1.2e+03 1.8e+03

Expon RAFF 3.9e+03 9.7e+02 9.7e+02 9.9e+02 9.4e+02

GN 9.1e+03 8.9e+03 4.4e+114 7.9e+03 8.0e+03

Logistic RAFF 1.1e+03 9.7e+02 9.4e+02 1.4e+04 9.5e+02

GN 3.4e+04 3.4e+04 1.6e+04 3.4e+04 1.4e+04

15 30 120 150 180

Circle RAFF 3.7e+00 4.1e+00 7.6e+00 9.1e+00 1.3e+02

GN 1.7e+02 4.5e+01 4.1e+00 1.6e+01 4.1e+01

5 Conclusions

In this paper, we have described a LOVO version of the Levenberg–Marquardt algorithm for
solving nonlinear equations, which is specialized to the adjustment of models where the data
contains outliers. The theoretical properties of the algorithm were studied and convergence
to strongly and weakly stationary points has been proved. To overcome the necessity of
providing the number of outliers in the algorithm, a voting system has been proposed. A
complete framework to robust adjustment of data was implemented in the Julia language
and compared to public available and well tested robust fitting algorithms. The proposed
algorithm was shown to be competitive, being able to find better adjusted models in the
presence of outliers in most of the problems. In the circle detection problem, the proposed
algorithm was also shown to be competitive and had a good performance even when the
outlier ration exceeds 50%. By comparing against a LOVO Gauss–Newton algorithm for
model adjustment, the voting system was shown to be a good strategy when the number of
outliers cannot be estimated beforehand. The implemented algorithm and all the scripts used
for testing and generation of the tests are freely available and constantly updated at https://
github.com/fsobral/RAFF.jl.

Data Availability Statement The data that support the findings of this study can be generated by the scripts
provided in https://github.com/fsobral/RAFF.jl, but can also be requested from the corresponding author upon
request.

A Convergence to strongly critical points

In order to achieve convergence to strongly critical points, it is necessary to modify Algo-
rithm 1. Given δ > 0, we start by defining the δ-relaxation of the set Imin at a point x , given
by Iδ−min(x). This set is known in [5] as the set of δ-active indexes.

Definition 3 Given x ∈ R
n we define the δ-minimal function set of fmin in x by

Iδ−min(x) = {i ∈ {1, . . . , q} | fi (x) ≤ fmin(x) + δ}.
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Using Definition 3, we define a new model function to be minimized:

mk(d) = min
i∈Gk

mk,i (d), (28)

where mk,i was defined by (8) and Gk is defined as

Gk = {i ∈ Iδ−min(xk) | ‖∇ fi (xk)‖2 �= 0}.
Note that, by the definition of mk,i , it is not hard to minimize mk(d). The minimum will
occur in a global minimizer of some mk,i . Therefore, to calculate direction dk we first define
dik , for i ∈ Gk , which is the solution of (JCi (xk)T JCi (xk)) + γk I )d = −∇ fi (xk). Then, dk
is given by d ı̂k , where

ı̂ = arg mini∈Gk
{mk,i (d

i
k)}.

It is interesting to observe that, using this new definition of mk , we have that mk(0) =
min
i∈Gk

1

2
‖FCi (xk)‖22 = fmin(xk). Also, for all i ∈ Gk , mk,i (0) ≥ mk(0) and mk,ı̂(d

ı̂
k) ≤

mk,i (dik). All the steps are given by Algorithm 3.

Algorithm 3: LM-LOVO-SC—Levenberg–Marquardt for the LOVO problem (Strong
Critical version).

Input: x0 ∈ R
n , 0 < λmin ≤ λ0, ε ≥ 0, δ > 0, λ > 1, μ ∈ (0, 1) and p ∈ N

Output: xk
Set k ← 0;

1 τk = max
Imin (xk )

‖∇ fi (xk )‖22;
Gk = {i ∈ Iδ−min(xk ) | ‖∇ fi (xk )‖2 �= 0};
λ ← λk ;

2 if τk ≤ ε then
Stop the algorithm, xk is a strongly critical solution for the LOVO problem;

3 γk ← λτk ;

Compute dk = d ı̂k , where ı̂ = arg mini∈Gk
{mk,i (d

i
k )};

Calculate ρk as

ρk = fmin(xk ) − fmin(xk + dk )

mk (0) − mk (dk )

4 if ρk < μ then
λ ← λλ;
Go back to the Step 3;

else
Go to the Step 5;

5 λk+1 ∈ [max{λmin , λ/λ}, λ];
xk+1 ← xk + dk ;
k ← k + 1 and go back to the Step 1 ;

It is not hard to observe that the Algorithm 3 is also well defined in the sense of Lemma 1.
The key argument is that, if the if part in Step 4 is repeated an infinite number of times, then
there is an index ı̂k ∈ Gk such that the global minimizer dk = d ı̂kk will be chosen an infinite
number of times, since Iδ−min(xk) is fixed and finite. We, then, apply Lemma 1 with ik = ı̂k ,
observing that ρk,ı̂k = ρk .
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Now, we want to show that Algorithm 3 is able to generate sequences whose limit points
are strongly critical, according to Definition 2. This is given by Theorem 2.

Theorem 2 Let {xk}k∈N be a sequence generated by Algorithm 3 by choosing ε = 0. Consider
K′ ⊂ N such that lim

k∈K′ xk = x∗ and suppose that Assumption 1 holds. Then, x∗ is a strongly

critical point of (3).

Proof Suppose by contradiction that x∗ is not a strongly critical point of (3). Therefore,
there exist an index j ∈ Imin(x∗), β ∈ R+ and an infinite subset Kβ ⊂ K′ such that
‖∇ f j (xk)‖2 ≥ β, for all k ∈ Kβ . Using the continuity of fi , i ∈ {1, . . . , q}, we have that
limk∈Kβ fi (xk) = fi (x∗), that is, there is Ki > 0 such that

| fi (xk) − fi (x
∗)| ≤ δ

2
, (29)

for all k ≥ Ki , k ∈ Kβ , where δ is a constant used by Algorithm 3. For each k ≥ Kδ =
max

i=1,...,q
Ki , k ∈ Kβ , consider i ∈ Imin(x∗) and some �k ∈ Imin(xk). Equation (29), used

twice, implies that

fi (xk) − fmin(xk) = fi (xk) − f�k (xk) = fi (xk) − fi (x
∗) + fi (x

∗) − f�k (xk)

≤ δ

2
+ fi (x

∗) − f�k (xk) = δ

2
+ fmin(x

∗) − f�k (xk)

≤ δ

2
+ f�k (x

∗) − f�k (xk) ≤ δ.

We can conclude that, for all k ≥ Kδ , we have Imin(x∗) ⊂ Iδ−min(xk). In particular, j ∈ Gk

for all k ≥ Kδ, k ∈ Kβ .
With similar arguments of Theorem 1, there exist M ∈ R+ and KM ∈ Kβ such that

λk ≤ M , for all k ≥ KM , k ∈ Kβ . Since the functions fi , i ∈ {1, . . . , q}, have continuous
gradients there exist L ∈ R+ and KL ∈ Kβ such that τk = max

i∈Gk
{‖∇ fi (xk)‖22} ≤ L , for all

k ≥ KL , k ∈ Kβ .
Defining c = supk∈K′ {‖JC j (xk)‖22} + LM , by the continuity of fmin and f j there exists

Km ∈ Kβ such that

| fmin(x
∗) − fmin(xk)| ≤ θβ2

8c
and | f j (xk) − fmin(x

∗)| = | f j (xk) − f j (x
∗)| ≤ θβ2

8c

for all k ≥ Km, k ∈ Kβ . Hence, we have that

mk, j (0) − mk(0) = f j (xk) − fmin(xk) = f j (xk) − fmin(x
∗) + fmin(x

∗) − fmin(xk)

≤ θβ2

4c

(30)

for all k ≥ Km, k ∈ Kβ .
Through expressions (28) and (30), we obtain, for each k ≥ Km, k ∈ Kβ , that

mk(dk) ≤ mk, j (d
j
k )

(30)⇒ mk(0) − mk(dk) ≥ mk, j (0) − mk, j (d
j
k ) − θβ2

4c
. (31)
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Using (31) and similar arguments of (23), we obtain, for all k ≥ max{Kδ, KL , KM , Km},
k ∈ Kβ , that

fmin(xk) − fmin(xk+1)

mk(0) − mk(dk)
≥ μ

⇔ fmin(xk) − fmin(xk+1) ≥ μ(mk(0) − mk(dk))

⇒ fmin(xk) − fmin(xk+1)
(31)≥ μ

(
mk, j (0) − mk, j (d

j
k ) − θβ2

4c

)

⇒ fmin(xk) − fmin(xk+1)
(12)≥ μ

(
θ‖∇ f j (xk)‖22

2(‖JC j (xk)‖22 + γk)
− θβ2

4c

)

⇒ fmin(xk) − fmin(xk+1) ≥
(

μθβ2

2(‖JC j (xk)‖22 + λk L)
− μθβ2

4c

)

⇒ fmin(xk) − fmin(xk+1) ≥
(

μθβ2

2(supk∈K′ {‖JC j (xk)‖22} + ML)
− μθβ2

4c

)

⇔ fmin(xk) − fmin(xk+1) ≥
(

μθβ2

2c
− μθβ2

4c

)

⇔ fmin(xk+1) − fmin(xk) ≤ −
(

μθβ2

4c

)
,

(32)

where the second implication follows from observing that λk L ≥ λkτk = γk and
‖∇ f j (xk)‖2 ≥ β. Expression (32) and the property fmin(xk+1) ≤ fmin(xk), for all k ∈ K′,
contradict the hypothesis that fmin is bounded from below. Therefore, we conclude that there
is no such Kβ and

lim
k∈K′ ‖∇ fi (xk)‖2 = 0, ∀i ∈ Imin(x

∗).

The continuity of the gradients ∇ fi , i ∈ {1, . . . , q}, ensures that ∇ fi (x∗) = 0 for all
i ∈ Imin(x∗) and, hence, x∗ is a strongly critical point. �
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