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Abstract
In the recent past, finding robust solutions for optimization problems contaminated with
uncertainties has been topical and has been investigated in the literature for scalar and multi-
objective/vector-valued optimization problems. In this paper, we introduce various types of
robustness concept for set-valued optimization, such as min–max set robustness, optimistic
set robustness, highly set robustness, flimsily set robustness, multi-scenario set robustness.
We study some existence results for corresponding concepts of solution and establish some
relationship among them.

Keywords Set-valued optimization · Robustness · Uncertainty

1 Introduction

Set-valued optimization has become a vibrant area of researchwithmany applications such as
in riskmanagement [9,10],multi-criteria decisionmaking, social choice theory [25], statistics
[12] and others. There exist many different concepts of solution for a set-valued optimization
problem based on different approaches, such as the vector approach, the set approach, the
lattice approach, the embedding approach, etc. One can refer to [11,16–20,23,24] for studies
related to set-valued optimization.

On the other hand, robust optimization has been a topic ofmuch interest in the optimization
community after the seminal work of Ben-Tal et al. [2,3]. Actually, most of the real-life
optimization problems suffer from uncertainties, especially when they are very sensitive to
small data perturbation and therefore need solutions that take uncertainties into account. Both
stochastic optimization and robust optimization deal with uncertainties. While a stochastic
optimization problem takes into account the distribution of the uncertainty and gives only a
probabilistic guarantee of optimal solution, robust optimization hedges against uncertainty
with no knowledge of its probability distribution. Another related concept for problems
with uncertainties is sensitivity analysis. But for sensitivity analysis, a solution is computed
beforehand with nominal data, and then it is checked whether that solution is continuous with
respect to small perturbation in the data. Whereas in robust optimization, it is beforehand
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assumed that the data are uncertain, and then the best possible solution is explored under the
uncertainty.

The concepts of robust solutions are mainly application-driven, and therefore many differ-
ent robustness definitions have been proposed by various researchers, for example, min–max
robustness, optimistic robustness, regret robustness, light robustness, highly robustness, flim-
sily robustness, adjustable robustness, etc. to name a few. See [3,8,22] for an overview.

Robustness for multi-objective optimization has been studied by Schöbel et al. [5,7,15].
In the papers [6,14], the robustness problem for vector-valued optimization has been equiv-
alently posed as a problem of set-valued optimization, and some new concepts of robustness
have been introduced based on different set order relations. However, no significant study has
been made for robustness in set-valued optimization. In this paper, we introduce robustness
for set-valued optimization to generalize some existing concepts of robustness for scalar and
vector-valued optimization. We follow the set approach for solutions to set-valued optimiza-
tion problems and study robustness within this framework.

In Sect. 2, we shall collect some basic notions in set-valued optimization and in robust
scalar and vector-valued optimization. In Sect. 3, we introduce a robust set-valued optimiza-
tion problem and various concepts of robust solutions for the same. We also study some
existence results for the set robust solution concepts introduced.

2 Preliminaries

2.1 Set-valued optimization

Atfirst, let us go through somebasic notions of set-valued optimization. Let X be a topological
space and let Z be a topological vector space partially ordered by a nonempty, closed, convex,
pointed coneC ⊆ Z . Here the order relation≤C on Z induced byC is understood as follows:
for z1, z2 ∈ Z , z1 ≤C z2 if and only if z2 − z1 ∈ C . Let S ⊆ X be a nonempty subset. A
set-valued optimization problem (we only consider minimization problems in this paper) in
the most general form looks like:

min F(x)

subject to x ∈ S, (1)

where F : X → 2Z is a set-valued map. Here 2Z denotes the power set of Z . As mentioned
in the introduction, there are many approaches to define a solution for (1). But since we
will be using only the set approach for the purpose of defining robust solutions for set-valued
optimization problems, we discuss that here. Onemay refer to [16,23] for the vector approach
and [11,24] for the lattice approach and the references therein.

2.1.1 Set approach

For two nonempty subsets A and B of Z , consider the following set order relations:

– A ≤l
C B if and only if A + C ⊇ B.

– A ≤u
C B if and only if B − C ⊇ A.

These set order relationswere popularized in the optimization community byKuroiwa and his
collaborators [17–20]. Each of these set order relations is reflexive and transitive. Based on
these set order relations, in [20], the notions of solution for (1) have been defined as follows:
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a point x0 ∈ S is called an l-minimal (respectively a u-minimal) solution to (1), if for any
x ∈ S such that F(x) ≤l

C F(x0) (respectively F(x) ≤u
C F(x0)), we have F(x0) ≤l

C F(x)

(respectively F(x0) ≤u
C F(x)).

As per the ‘set approach’ of solution to problem (1) is concerned, the notion of l-minimal
solution is prevalently used in the set-valued optimization literature; because, in some sense,
it absorbs the solutions of (1) corresponding to the ‘vector approach’ of solution. However,
as pointed out in [14], the notion of u-minimal solutions to a set-valued optimization problem
becomes very useful for defining a min–max or worst case robust solution for an uncertain
vector-valued optimization problem, because u-minimal solutions necessitate comparison
among the “worst values”. The notion of l-minimal solutions has also been used for defining
optimistic robust solution to an uncertain vector-valued optimization problem. We will also
use u-minimal and l-minimal solutions to define min–max set robust and optimistic set robust
solutions, respectively, for an uncertain set-valued optimization problem.

We shall now define two types of demi-lower semicontinuity for the set-valued map F
in the problem (1) and derive two existence results, one each for u-minimal solution and l-
minimal solution, respectively. For this, let us recall that a ‘net’ is a function from a directed
set to a topological space.

Definition 1 A set-valued map F : X → 2Z is called l-type K-demi-lower semicontinuous
at x0 ∈ S if for each net {xλ} in S with xλ → x0 and λ̄ < λ implies F(xλ) ≤l

C F(xλ̄),
F(x0) ≤l

C

⋃

λ

(F(xλ) + C). It is called l-type K-demi-lower semicontinuous on S if it is so at

each point of S.

Definition 2 A set-valued map F : X → 2Z is called u-type K-demi-lower semicontinuous
at x0 ∈ S if for any net {xλ} in S with xλ → x0 and λ̄ < λ implies F(xλ) ≤u

C F(xλ̄),
F(x0) ≤u

C

⋂

λ

(F(xλ) − C). It is called u-type K-demi-lower semicontinuous on S if it is so

at each point of S.

Theorem 1 Consider the problem (1). If S is compact and F is l-type K-demi-lower semi-
continuous on S, then there exists an l-minimal solution of (1).

Proof The proof follows in a similarmanner as given for Theorem4.2. in [20]. LetF(S) ⊆ 2Z

be defined by

F(S) = {F(x) | x ∈ S}.
On F(S), we define the equivalence relation � as follows: for s1, s2 in S,

F(s1) � F(s2) if and only if F(s1) ≤l
C F(s2) and F(s2) ≤l

C F(s1).

For each s ∈ S, let us denote by [F(s)] the equivalence class of F(s) in the quotient set
F(S)/ �. On F(S)/ �, let us define the order relation � as: for s1, s2 in S,

[F(s1)] � [F(s2)] if and only if F(s1) ≤l
C F(s2).

This order relation � makes F(S)/ � a partially ordered set. Now let {[F(x)] | x ∈ T } be
a totally ordered subset of F(S)/ �. Here T is a subset of S. For x1, x2 ∈ T , let us define
an order relation < by: x1 < x2 if and only if [F(x2)] � [F(x1)]. This order < makes T
a directed set and hence T is a net in S. Since S is compact, there exists a subnet T̂ of T
converging to some x0 in S. Then by the definition of l-type K-demi-lower semicontinuous,
we get,

F(x0) ≤l
C

⋃

x∈T̂

(F(x) + C). (2)
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We claim that [F(x0)] � [F(x)] for every x ∈ T .
Suppose that our claim is false. Then there exists x̂ ∈ T such that [F(x0)] � [F(x̂)],

which implies, F(x0) �l
C F(x̂). That means, there exists ŷ ∈ F(x̂) such that ŷ /∈ F(x0)+C .

Now since T̂ is a subnet of T , there must exists x̃ ∈ T̂ such that x̂ < x̃ . This implies,
[F(x̃)] � [F(x̂)], which means, F(x̃) ≤l

C F(x̂). Now ŷ ∈ F(x̂) implies ŷ ∈ F(x̃) + C ⊆⋃

x∈T̂

(F(x) + C). But then from the Eq. (2), ŷ ∈ F(x0) + C , and we arrive at a contradiction.

Hence, our claim is true, that is, [F(x0)] � [F(x)] for every x ∈ T . This means that the
totally ordered subset {[F(x)] | x ∈ T } has a lower bound. Hence using Zorn’s lemma, we
can conclude (F(S)/ �,�) has a minimal element, say [F(x∗)]. This means that [F(x∗)] �
[F(x)] for every x ∈ S, which then implies F(x∗) ≤l

C F(x) for every x ∈ S. So x∗ is an
l-minimal solution of (1). 
�
Theorem 2 Consider the problem (1). If S is compact and F is u-type K-demi-lower semi-
continuous on S, then there exists a u-minimal solution of (1).

Proof Though the proof follows in a similar fashion as that of Theorem 1, we give it for the
readers’ convenience. Let us denote by F(S) the same set as in the proof of Theorem 1. On
F(S), we define the equivalence relation � as follows: for s1, s2 in S,

F(s1) � F(s2) if and only if F(s1) ≤u
C F(s2) and F(s2) ≤u

C F(s1).

For each s ∈ S, let us denote by [F(s)] the equivalence class of F(s) in the quotient set
F(S)/ �. On F(S)/ �, let us define the order relation � as: for s1, s2 in S,

[F(s1)] � [F(s2)] if and only if F(s1) ≤u
C F(s2).

This order relation � makes F(S)/ � a partially ordered set. Now let {[F(x)] | x ∈ T } be
a totally ordered subset of F(S)/ �. Here T is a subset of S. For x1, x2 ∈ T , let us define
an order relation < by: x1 < x2 if and only if [F(x2)] � [F(x1)]. This order < makes T
a directed set and hence T is a net in S. Since S is compact, there exists a subnet T̂ of T
converging to some x0 in S. Then by the definition of u-type K-demi-lower semicontinuous,
we get,

F(x0) ≤u
C

⋂

x∈T̂

(F(x) − C). (3)

We claim that [F(x0)] � [F(x)] for every x ∈ T .
Suppose that our claim is false. Then there exists x̂ ∈ T such that [F(x0)] � [F(x̂)], which

implies, F(x0) �u
C F(x̂). That means, there exists y0 ∈ F(x0) such that y0 /∈ F(x̂) − C .

Now since T̂ is a subnet of T , theremust exists x̃ ∈ T̂ such that x̂ < x̃ . This implies, [F(x̃)] �
[F(x̂)], which means, F(x̃) ≤u

C F(x̂). Now F(x̃) ≤u
C F(x̂)means F(x̃) ⊆ F(x̂)−C , which

implies F(x̃) − C ⊆ (F(x̂) − C) − C = (F(x̂) − C). The last equality follows because
C is a convex cone. Now y0 /∈ F(x̂) − C implies y0 /∈ F(x̃) − C ⊇ ⋂

x∈T̂

(F(x) − C). But

then from the Eq. (3), y0 /∈ F(x0), which is a contradiction. Hence, our claim is true, that
is, [F(x0)] � [F(x)] for every x ∈ T . This means that the totally ordered subset {[F(x)] |
x ∈ T } has a lower bound. Hence using Zorn’s lemma, we can conclude (F(S)/ �,�) has
a minimal element, say [F(x∗)]. This means that [F(x∗)] � [F(x)] for every x ∈ S, which
then implies F(x∗) ≤u

C F(x) for every x ∈ S. So x∗ is a u-minimal solution of (1). 
�
The above two results will be useful to derive two existence results for set robust solutions
in the latter Section. Now, let us recall some basic notions of robustness available in the
literature.
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2.2 Robustness for scalar and vector-valued optimization problem

Throughout this section and the rest of the paper, we shall consider robust optimization
problems with uncertainty only in the objective, and we assume that the constraint(s) is(are)
deterministic with no uncertainty. A robust scalar optimization problemwith uncertainty only
in the objective is defined by (see [3])

min f (x, ξ)

subject to x ∈ S, (4)

where f : Rm × U → R is a given map, S ⊆ Rm is a known constraint/feasible set,
and U ⊆ Rk is the set of uncertain scenarios. For each fixed ξ ∈ U , this is just a scalar
optimization problem and hence (4) can be thought of as a family of scalar optimization
problems {P(ξ) : ξ ∈ U }, where P(ξ) is given as:

min f (x, ξ) P(ξ)

subject to x ∈ S.

There are various ways to define robust solutions for the problem (4) based on its applica-
tion of how the uncertainty is understood in the solution concept. A scenario-based approach
gives rise to the concepts of highly and flimsily robust solutions. A point x0 ∈ S is called a
highly (or flimsily) robust solution of (4), if x0 is optimal for P(ξ) for all ξ ∈ U (respectively
for at least one ξ ∈ U ).

The most celebrated and researched concept of robust solution ismin–max robust solution
(also known as worst case robust or strict robust or simply robust solution in the literature)
that deals with the so-called robust counterpart:

min (sup
ξ∈U

f (x, ξ))

subject to x ∈ S. (5)

Note that (5) is a single scalar optimization problem, and in terms of the solution of this
associated problem, a robust solution is defined for (4) (see [3]). A point x0 ∈ S is called
a min–max robust solution to (4) if it is an optimal solution of (5), that is, sup

ξ∈U
f (x0, ξ) ≤

sup
ξ∈U

f (x, ξ) for all x ∈ S.

While min–max robustness is a pessimistic view, the optimistic view is the concept of
optimistic robustness (see [4,22]). Corresponding to (4), consider the counterpart as:

min ( inf
ξ∈U

f (x, ξ))

subject to x ∈ S. (6)

A point x0 ∈ S is called an optimistic robust solution to (4) if it is an optimal solution of
(6), that is, inf

ξ∈U
f (x0, ξ) ≤ inf

ξ∈U
f (x, ξ) for all x ∈ S.

There are many other concepts of robustness, for example, regret robustness, light robust-
ness, cardinality constrained robustness, recoverable robustness, adjustable robustness, etc.
(see, for instance [8] and references therein for a detailed study). In [22], the authors have
associated for each feasible x ∈ S, a map fx : U → R and studied various robustness by
defining different order relations on the vector space RU .
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Robustness for multi-objective optimization problems has also been studied in the lit-
erature. The first instance in this direction can be [1], where the author has not precisely
mentioned the word ‘robust’, but considered interval of coefficient matrices, which can be
formulated as a problem of multi-objective linear robust optimization problem. The concept
of highly and flimsily robustness can be extended straightforward for the multi-objective case
(see [15]). Consider an uncertain multi-objective optimization problem

min f (x, ξ)

subject to x ∈ S, (7)

where f : Rm × U → Rn is a given map, S ⊆ Rm is a known constraint/feasible set, and
U ⊆ Rk is the set of uncertain scenarios. Similar to the scalar case, the above problem (7)
can be thought as a family of parametrized problems P = {P(ξ) | ξ ∈ U }, given by

min f (x, ξ) P(ξ)

subject to x ∈ S.

Given an uncertain multi-objective optimization problem P , a solution x ∈ S is called
flimsily (or highly) robust solution for P if it is efficient for P(ξ) for at least one ξ ∈ U
(respectively for all ξ ∈ U ). Here efficiency is understood as follows: Consider P(ξ) for
some ξ ∈ U . A point x ∈ S is efficient for P(ξ) if there does not exist any y ∈ S such that
f (y, ξ) ∈ { f (x, ξ)} − (Rn+ \ {0}).
The min–max robustness has been extended in a first attempt for robust multi-objective

optimization problems by Kuroiwa and Lee in [21]. Their approach was later called a
point-based approach. A set-based approach was first formulated by Ehrgott et al. in [7].
Corresponding to the problem (7), for each x ∈ S, consider the set of objective values of f at
x as fU (x) = { f (x, ξ) | ξ ∈ U }. A feasible solution x0 ∈ S is called a set-based min–max
robust solution, if there is no x ∈ S \ {x0} such that fU (x) ⊆ fU (x0) − (Rn+ \ {0}).

The termoptimistic robustness for robustmulti-objective optimizationproblem (7) through
the l-minimal solutions of the ‘set-valued optimistic counterpart’ with the map fU has been
mentioned in [6, Section 2].

A new robustness concept, called multi-scenario robust efficiency, has been introduced
for robust multi-objective optimization by Botte and Schöbel in [5], which follows a similar
approach, as given in [22, Subsection 2.1]. Precisely, for the problem (7), amap Fx : U → Rn

has been defined as
Fx (ξ) = f (x, ξ) for all ξ ∈ U , (8)

and the multi-scenario robust efficient solution is defined as follows: a point x0 ∈ S is
called multi-scenario robust efficient if there does not exist an element x ∈ S \ {x0} such
that Fx (ξ) � Fx0(ξ) for all ξ ∈ U , where for a, b ∈ Rn , a � b means ai ≤ bi for all
i = 1, 2, . . . , n and a �= b. For x and y in S if Fx (ξ) � Fx0(ξ) for all ξ ∈ U , then it is called
that y dominates x .

In [14], the robustness for uncertain vector-valued optimization problems has been further
explored with objective functions from any topological space X to a topological real vector
space Z ordered by a nonempty, closed, convex, pointed coneC ⊆ Z . In fact, based on various
set order relations as introduced in Sect. 2.1.1, in [14], several new robustness concepts have
been defined. Below we summarise some of the definitions of robustness given in [14].
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Consider the problem

min F(x, ξ)

subject to x ∈ S, (9)

where F : X × U → Z is a vector-valued map, X is a topological space, Z is a topological
real vector space ordered by a nonempty, closed, convex, pointed cone C , S ⊆ X is a known
constraint/feasible set, andU ⊆ Rk is the set of uncertain scenarios. Let Q denote one ofC or
C \{0} or int C , provided they are nonempty, and let ∗ denote one of {l, u}. Let FU : X → 2Z

be defined by FU (x) := {F(x, ξ) | ξ ∈ U }.
Definition 3 [14, Definition 6, Definition 7] A point x0 ∈ S is called a ≤∗

Q-robust solution

for (9) if there is no solution x ∈ S other than x0 such that FU (x) ≤∗
Q FU (x0).

Remark 1 Though the robustness for the multi-objective and vector-valued optimization
problems has been equivalently formulated as set-valued optimization problems as in [7,14]
with the set-valued maps fU and FU , respectively, there is a very subtle difference between
what is defined as set-based robust solutions and what is known as solutions of a set-valued
optimization problem in the set approach. For a point x0 to be a set-based robust solution of
(9), there should not exists any x other than x0 which satisfies FU (x) ≤∗

Q FU (x0) (where ∗
can be l or u, and Q can beC ,C \{0} or intC); but to be an l-minimal or a u-minimal solution
for the set-valued optimization problem with the set-valued map FU , the definition demands
that if there exists x such that FU (x) ≤∗

C FU (x0), then FU (x0) ≤∗
C FU (x) (where ∗ repre-

sents l or u). In [6, Section 2], the authors have considered the latter approach to define robust
counterpart and optimistic counterpart of a robust multi-objective optimization problem via
the u-minimal and l-minimal solutions, respectively. We shall follow a similar approach as
in [6].

We refer to [5–7,14,15,21] and references therein for further information on robust vector-
valued optimization. It is interesting to study the problem (9) when F is replaced by a set-
valued map, in which case, the problem becomes a robust set-valued optimization problem.

3 Robustness for set-valued optimization problem

Consider the robust set-valued optimization problem

min F(x, ξ)

subject to x ∈ S, (10)

where F : X × U → 2Z is a set-valued map, Z is ordered by a closed, convex, pointed cone
C , S ⊆ X is a known constraint set and U ⊆ Rk is the set of uncertainty.

As in the scalar and vector-valued cases, the first question that arises as to what it means
to solve the problem (10). We answer that in the following subsection by introducing five
different robustness concepts, namely highly set robustness, flimsily set robustness, min–max
set robustness, optimistic set robustness, andmulti-scenario set robustness. We take guidance
from their analogues for robust scalar and vector-valued optimization problems and define
corresponding solutions concepts for the problem (10).
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3.1 Different concepts of robustness

3.1.1 Highly and flimsily set robustness

Considering each ξ ∈ U as a scenario, problem (10) can be viewed as a family of set-
valued optimization problems, one corresponding to each scenario. Since there are different
approaches to solve a set-valued optimization problem, we need to specify in what sense
we understand a solution to those set-valued optimization problems. As mentioned in the
introduction, we follow the set approach and understand the notion of a solution to a set-
valued optimization problem in terms of the two set order relations, namely ≤u

C and ≤l
C .

Based on these two set order relations,we canwrite (10) as families of set-valued optimization
problems {P(F, ξ,≤∗

C ) | ξ ∈ U }:
min F(x, ξ) P(F, ξ,≤∗

C )

subject to x ∈ S,

where ∗ can be one of u and l.

Definition 4 Consider the problem (10). A point x0 ∈ S is called

• a ≤u
C -type highly set robust solution to (10) if x0 is an optimal solution for P(F, ξ,≤u

C )

for all ξ ∈ U .
• a≤u

C -type flimsily set robust solution to (10) if x0 is an optimal solution for P(F, ξ,≤u
C )

for at least one ξ ∈ U .
• a ≤l

C -type highly set robust solution to (10) if x0 is an optimal solution for P(F, ξ,≤l
C )

for all ξ ∈ U .
• a≤l

C -type flimsily set robust solution to (10) if x0 is an optimal solution for P(F, ξ,≤l
C )

for at least one ξ ∈ U .

The following proposition follows immediately from the definition.

Proposition 1 Every ≤u
C -type highly set robust solution is a ≤u

C -type flimsily set robust solu-
tion. Similarly, every ≤l

C -type highly set robust solution is a ≤l
C -type flimsily set robust

solution.

Proof These follow from the definition. 
�

3.1.2 Min–max and optimistic set robustness

As mentioned in the earlier sections, the min–max robustness is the earliest and most
researched concept of robustness in robust scalar and vector-valued optimization problems.
It deals with the formation of the so-called ‘min–max robust counterpart’, which converts
the family of problems to a single optimization problem. For robust scalar optimization, the
min–max robust counterpart formulation has been shown in (5). The ‘optimistic robust coun-
terpart’ was introduced in [4] to study the duality theory in robust optimization problems.
For robust vector-valued optimization problem, the min–max robustness has been extended
in many ways and has been equivalently posed as a set-valued optimization problem through
a set-valued robust counterpart in [6,7,14]. For problem (10), constructing these so-called
‘robust counterparts’ will be interesting. Following [6,7,14], we define a set-valued map
FU : X → 2Z as

FU (x) =
⋃

ξ∈U

F(x, ξ). (11)
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As seen in the case of a robust vector-valued optimization problem, this map FU (x) captures
all the “good things” as well as all the “bad things” that can happen, if we choose the decision
x . This motivates us to define the following two robust solutions for the set-valued case for
the problem (10). We consider the following set-valued robust counterpart to (10):

min FU (x)

subject to x ∈ S. (12)

Definition 5 Consider the problem (10). A point x0 ∈ S is called

• a min–max set robust solution of (10) if x0 is a u-minimal solution of (12), that is, for
any x ∈ S, FU (x) ≤u

C FU (x0) implies FU (x0) ≤u
C FU (x).

• an optimistic set robust solution of (10) if x0 is an l-minimal solution of (12), that is, for
any x ∈ S, FU (x) ≤l

C FU (x0) implies FU (x0) ≤l
C FU (x).

Remark 2 Obviously, when |U | = 1, (10) reduces to a set-valued optimization problem, and
in that case, the min–max set robust (similarly the optimistic set robust) solutions corre-
spond to the u-minimal (respectively the l-minimal) solutions of the set-valued optimization
problem.

Also when F is just single-valued, that is, F maps X into Z , the min–max set robust
(similarly the optimistic set robust) solution corresponds to the min–max robust (respectively
the optimistic robust) solution of the robust vector-valued optimization problem defined as
in [6, section 2].

3.1.3 Multi-scenario set robustness

Another way to define a robust solution to the problem (10) is to extend the idea as proposed
in [5] to define a multi-scenario set robust solution. Corresponding to the problem (10), let
us define for each x ∈ S, a set-valued map Fx : U → 2Z given by

Fx (ξ) = F(x, ξ) for all ξ ∈ U . (13)

Definition 6 Consider the problem (10). A point x0 ∈ S is called

• a ≤u
C -type multi-scenario set robust solution if there exists no x ∈ S such that Fx (ξ) ≤u

C
Fx0(ξ) for all ξ ∈ U , but Fx0(ξ) �u

C Fx (ξ) for at least one ξ ∈ U .
• a ≤l

C -type multi-scenario set robust solution if there exists no x ∈ S such that Fx (ξ) ≤l
C

Fx0(ξ) for all ξ ∈ U , but Fx0(ξ) �l
C Fx (ξ) for at least one ξ ∈ U .

Note 1 In the above definition if we replace Z by Rn , C by Rn+ and if F is just a vector-
valued map from X × U into Rn , all these multi-scenario set robust solution definitions as
in Definition (6) boil down to that of multi-scenario efficiency as in [5].

For two points x and y in S, we say that x u-dominates y with respect to F , if Fx (ξ) ≤u
C Fy(ξ)

for all ξ ∈ U . Similarly, we say that x l-dominates y with respect to F , if Fx (ξ) ≤l
C Fy(ξ)

for all ξ ∈ U . In terms of domination, the above Definition 6 can be reformulated as:

• x0 ∈ S is a ≤u
C -type multi-scenario set robust solution if there does not exist x ∈ S such

that x u-dominates x0 with respect to F , but x0 does not u-dominate x with respect to F .
• x0 ∈ S is a ≤l

C -type multi-scenario set robust solution if there does not exist x ∈ S such
that x l-dominates x0 with respect to F , but x0 does not l-dominate x with respect to F .
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Fig. 1 Illustration of the problem
in the Example 1

(0,-1)

(0,1)

(1,0)

y = 2x+ 1

(-1,-1) (− 3
5 ,− 4

5 )

(-1,0)

y = x−1
2

x2 + y2 = 1

Wehavedefinedvarious set robust solution concepts. Let us nowunderstand these concepts
through an example.

Example 1 Let X = {x1, x2} with discrete topology, Z = R2 ordered by C = R2+ and

U = [−1, 1] ⊆ R. Define F : X × U → 2R
2
as:

F(x1, ξ) = [(ξ,−
√
1 − ξ2), (ξ,

√
1 − ξ2)] for all ξ ∈ [−1, 1]

F(x2, ξ) =
{

[(ξ,
ξ−1
2 ), (ξ, 2ξ + 1)] ξ ≤ 0

[(ξ,
ξ−1
2 ), (ξ,

√
1 − ξ2)] ξ ≥ 0

(14)

In this example, it holds that both x1 and x2 are u-minimal solutions for P(F, ξ,≤u
C ) for

ξ ≥ 0 and only x2 is the u-minimal solution for P(F, ξ,≤u
C ) for ξ < 0. Hence both x1 and

x2 are ≤u
C -type flimsily set robust solutions, and x2 is a ≤u

C -type highly set robust solution.
Similarly, for the l-minimal case, only x2 is an l-minimal solution for P(F, ξ,≤l

C ) when
ξ < − 3

5 and only x1 is an l-minimal solution for P(F, ξ,≤l
C ) when ξ > − 3

5 . Hence both
x1 and x2 are ≤l

C -type flimsily set robust solutions, but it has no ≤l
C -type highly set robust

solution.
From Fig. 1, we see that FU (x1) ≤u

C FU (x2) and FU (x2) ≤u
C FU (x1). Thus both x1 and

x2 are min–max set robust solutions. Similarly, FU (x2) ≤l
C FU (x1) but FU (x1) �l

C FU (x2).
So, x2 is an optimistic set robust solution.

Also, x2 is a ≤u
C -type multi-scenario set robust solution.

Let us now look at amore practical example ofmin–max set robustness andmulti-scenario
set robustness connecting these to two-person-zero-sum games with multidimensional pay-
offs as discussed in the paper [13]. We recall some of the notations used in the paper [13]
and refer the readers to the same for more detailed discussion.

Example 2 Consider a two-person-zero-sum game with multidimensional pay-off. Let G =
(gi j )m×n be the pay-off matrix where gi j = (g1

i j , g2
i j , . . . , gd

i j )
T ∈ Rd . G is interpreted as
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the loss matrix for the row choosing player I. Let the sets

P =
{

p ∈ Rm+ |
m∑

i=1

pi = 1

}

and Q =
⎧
⎨

⎩
q ∈ Rn+ |

n∑

j=1

q j = 1

⎫
⎬

⎭

denote all possible mixed strategies for player I and player II, respectively. On Rd , the partial
order is considered with respect to the ordering cone Rd+. The following notations are taken
from the mentioned paper:

– for p ∈ P and q ∈ Q, v(p, q) =
m∑

i=1

n∑

j=1
pi gi j q j ∈ Rd .

– for p, p̄ ∈ P , p ≤I p̄ denotes that for all q ∈ Q, v(p, q) ≤
R

d+ v( p̄, q).
– for p, p̄ ∈ P , p =I p̄ denotes that for all q ∈ Q, v(p, q) = v( p̄, q).
– for p ∈ P , vI (p) = {v(p, q) | q ∈ Q}
– for p ∈ P , VI (p) = vI (p) − Rd+.

The following two solutions for the game G for player I have been discussed in the paper.
For player I, a strategy p ∈ P is called

• [13, page 376] ≤I -minimal if ( p̄ ∈ P, p̄ ≤I p) implies p =I p̄.
• [13, Definition 3.4] minimal if there is no p̄ ∈ P with VI ( p̄) ⊆ VI (p) and VI (p) �=

VI ( p̄).

Now observe that for p, p̄ ∈ P and q ∈ Q, v(p, q) ≤
R

d+ v( p̄, q) if and only if (v(p, q) −
Rd+) ≤u

R
d+

(v( p̄, q)−Rd+). Also VI (p) = vI (p)−Rd+ = ⋃

q∈Q
(v(p, q)−Rd+). Thesemotivate

us to define the following uncertain optimization problem

min F(p, q)

subject to p ∈ P, (15)

where F : P × Q → 2R
d
is the set-valued map F(p, q) = v(p, q) − Rd+. Then it can be

seen that a ≤u
C -type multi-scenario set robust solution to (15) corresponds to a ≤I -minimal

strategy for player I and a min–max set robust solution to (15) corresponds to a minimal
strategy for player I.

As we have defined five kinds of set robust solutions for (10), let us now see how we can talk
about their existence for certain class of problems. We derive some results in this direction
via factorization in Sect. 3.2, via scalarization in Sect. 3.3, and via some semicontinuity type
assumptions in Sect. 3.4.

3.2 Factorization

The idea behind factorization applies to those problems which can be split into lower-
dimensional subproblems, and information is available for their lower-dimensional part.
Suppose that Z can be written as Z = Z1 × Z2 × · · · × Z p and the ordering cone C as
C = C1 × C2 × · · · × C p . Then, for A, B ⊆ Z , A ≤u

C B implies Ai ≤u
Ci

Bi for all
i = 1, 2, . . . , p, where Ai (respectively Bi ) denotes the projection of A (respectively B)
into Zi . Similarly, A ≤l

C B implies Ai ≤l
Ci

Bi for all i = 1, 2, . . . , p, where Ai and Bi are
understood as above.
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3.2.1 Highly and flimsily set robustness

In the above setting, the map F of problem (10) can be broken into F = (F1, F2, . . . , Fp),
where Fi (x, ξ) is the projection of F(x, ξ) into Zi . Thus, each Fi is a set-valued map from
X × U to Zi . For each i = 1, 2, . . . , p, consider the following families of optimization
problems:

min Fi (x, ξ) P(Fi , ξ,≤∗
Ci

)

subject to x ∈ S,

where ∗ can be one of u and l.

Proposition 2 Consider the problem (10)where Z, C, and F are factored as above. For some
i0 ∈ {1, 2, . . . , p}, let x0 ∈ S be a unique optimal solution for P(Fi0 , ξ,≤u

Ci0
) for all ξ ∈ U.

Then x0 is a ≤u
C -type highly set robust solution for (10).

Proof Suppose that x0 is not a ≤u
C -type highly set robust solution for (10). Then there exist

some ξ0 ∈ U and some x ∈ S \ {x0} such that F(x, ξ0) ≤u
C F(x0, ξ0) but F(x0, ξ0) �u

C
F(x, ξ0). Now, F(x, ξ0) ≤u

C F(x0, ξ0) implies that Fi0(x, ξ0) ≤u
Ci0

Fi0(x0, ξ0), which

contradicts the fact that x0 is a unique optimal solution for P(Fi0 , ξ,≤u
Ci0

) for all ξ ∈ U .

Hence, x0 is a ≤u
C -type highly set robust solution for (10). 
�

Corollary 1 In addition to the conditions on Z , C and F as that of in Proposition 2, suppose
that there exists i0 ∈ {1, 2, . . . , p} such that Fi0 is independent of ξ , that is, Fi0(x, ξ) = G(x)

for all ξ ∈ U and for all x ∈ S, where G : S → 2Zi0 is some set-valued map. If x0 ∈ S is a
unique ≤u

Ci0
-minimal solution for G, then x0 is a ≤u

C -type highly set robust solution for (10).

Proposition 3 Consider the problem (10)where Z, C, and F are factored as above. For some
i0 ∈ {1, 2, . . . , p}, let x0 ∈ S be a unique optimal solution for P(Fi0 , ξ,≤l

Ci0
) for all ξ ∈ U.

Then x0 is a ≤l
C -type highly set robust solution for (10).

Proof The proof follows in a similar way as that of Proposition 2 by replacing u with l in the
set order relations. 
�
Corollary 2 In addition to the conditions on Z , C and F as that of in Proposition 3, suppose
that there exists i0 ∈ {1, 2, . . . , p} such that Fi0 is independent of ξ , that is, Fi0(x, ξ) = G(x)

for all ξ ∈ U and for all x ∈ S, where G : S → 2Zi0 is some set-valued map. If x0 ∈ S is a
unique ≤l

Ci0
-minimal solution for G, then x0 is a ≤l

C -type highly set robust solution for (10).

3.2.2 Min–max and optimistic set robustness

For min–max and optimistic set robust solutions, the map FU defined through equation
(11) plays a crucial role. If Z and C are factored as Z = Z1 × Z2 × · · · × Z p and C =
C1 × C2 × · · · × C p , respectively, then FU can be written as FU = (FU1, FU2, . . . , FU p),
where FUi (x) is the projection of FU (x) into Zi . For each i ∈ {1, 2, . . . , p} consider the
following set-valued optimization problem

min FUi (x) P(FUi )

subject to x ∈ S.
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Proposition 4 Assume that Z and C are factored as above. If x0 ∈ S is a unique u-minimal
solution for P(FUi0) for some i0 ∈ {1, 2, . . . , p}, then x0 is a min–max set robust solution
for (10).

Proof Suppose that x0 is not a min–max set robust solution for (10). Then there exists
x ∈ S \ {x0} such that FU (x) ≤u

C FU (x0) but FU (x0) �u
C FU (x). Now FU (x) ≤u

C FU (x0)
implies that FUi0(x) ≤u

Ci0
FUi0(x0), contradicting the fact that x0 is a unique u-minimal

solution for P(FUi0). Hence, x0 is a min–max set robust solution for (10). 
�

Proposition 5 Assume that Z and C are factored as above. If x0 ∈ S is a unique l-minimal
solution for P(FUi0) for some i0 ∈ {1, 2, . . . , p}, then x0 is an optimistic set robust solution
for (10).

Proof The proof follows in a similar way as that of Proposition 4. 
�

3.2.3 Multi-scenario set robustness

A reducing/splitting result can be derived for multi-scenario set robust solutions for (10) as
well. Suppose that Z andC are factored as Z = Z1×Z2×· · ·×Z p andC = C1×C2×· · ·×C p ,
respectively. Then for each x ∈ S, the map Fx , defined as in equation (13) can be written as
Fx = (F1x , F2x , . . . , Fpx ), where Fix (ξ) is the projection of Fx (ξ) into Zi , that is, Fix is a
set-valued map from U to Zi .

Proposition 6 If for some i0 ∈ {1, 2, . . . , p} there does not exist x ∈ S \ {x0} such that
Fi0x (ξ) ≤u

Ci0
Fi0x0(ξ) for all ξ ∈ U, then x0 is a ≤u

C -type multi-scenario set robust solution

of (10).

Proof If not, then there exists x ∈ S \ {x0} such that Fx (ξ) ≤u
C Fx0(ξ) for all ξ ∈ U . But

this implies Fi0x (ξ) ≤u
Ci0

Fi0x0(ξ) for all ξ ∈ U , contradicting the assumption. 
�

Proposition 7 If for some i0 ∈ {1, 2, . . . , p} there does not exist x ∈ S \ {x0} such that
Fi0x (ξ) ≤l

Ci0
Fi0x0(ξ) for all ξ ∈ U, then x0 is a ≤l

C -type multi-scenario set robust solution

of (10).

Proof The proof follows in a similar way as that of Proposition 6. 
�

3.3 Scalarization

Scalarization is always a very standard technique for set-valued/vector-valued optimization
problems that convert those problems into scalar optimization problems and study properties
through their scalarized versions. For scalarization techniques, the idea of monotone function
is very useful.

Definition 7 A function φ : Z → R is called C-monotone if for all z1 and z2 in Z ,

z1 ≤C z2 ⇒ φ(z1) ≤ φ(z2).

For example, each z∗ ∈ C∗ defines a C-monotone function, where C∗ is the dual cone of C .
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3.3.1 Highly and flimsily set robustness

For a C-monotone function φ, consider the following two families of scalar optimization
problems:

min ( sup
z∈F(x,ξ)

φ(z)) P(φ, F, ξ,≤u
C )

subject to x ∈ S,

and

min ( inf
z∈F(x,ξ)

φ(z)) P(φ, F, ξ,≤l
C )

subject to x ∈ S.

Proposition 8 Consider the problem (10). If x0 ∈ S is a unique optimal solution for
P(φ, F, ξ,≤u

C ) for some nonzero C-monotone function φ and for all ξ ∈ U, then x0 is
a ≤u

C -type highly set robust solution for (10).

Proof Suppose that x0 is not a ≤u
C -type highly set robust solution for (10). Then there exist

ξ0 ∈ U and x ∈ S \{x0} such that F(x, ξ0) ≤u
C F(x0, ξ0) but F(x0, ξ0) �u

C F(x, ξ0). Now

F(x, ξ0) ≤u
C F(x0, ξ0) implies that for every z ∈ F(x, ξ0), there exists z0 ∈ F(x0, ξ0) such

that z ≤C z0. Then, since φ is C-monotone, φ(z) ≤ φ(z0) ≤ supẑ∈F(x0,ξ0) φ(ẑ). This is true
for every z ∈ F(x, ξ0). Hence, supz∈F(x,ξ0) φ(z) ≤ supẑ∈F(x0,ξ0) φ(ẑ). But this contradicts
the fact that x0 ∈ S is a unique optimal solution for P(φ, F, ξ,≤u

C ) for all ξ ∈ U . Hence,
x0 is a ≤u

C -type highly set robust solution for (10). 
�
Proposition 9 Consider the problem (10). If x0 ∈ S is a unique optimal solution for
P(φ, F, ξ,≤l

C ) for some nonzero C-monotone function φ and for all ξ ∈ U, then x0 is
a ≤l

C -type highly set robust solution for (10).

Proof The proof follows in a similar way as that of Proposition 8. 
�

3.3.2 Min–max and optimistic set robustness

Let φ : Z → R be a C-monotone function. Consider the following two scalar optimization
problems:

min
x∈S

sup
z∈FU (x)

φ(z) (16)

min
x∈S

inf
z∈FU (x)

φ(z). (17)

Proposition 10 If x0 is a unique optimal solution of (16) for some nonzero C-monotone
function φ, then x0 is a min–max set robust solution for (10).

Proof Let x0 be a unique optimal solution of (16) for some nonzero φ. That means

sup
z∈FU (x0)

φ(z) < sup
z∈FU (x)

φ(z) for all x ∈ S \ {x0}. (18)
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Suppose that x0 is not a min–max set robust solution for (10). Then there exists x̄ ∈ S \ {x0}
such that

FU (x̄) ≤u
C FU (x0) but FU (x0) �u

C FU (x̄).

Now, from the definition of ≤u
C , FU (x̄) ≤u

C FU (x0) implies for any z̄ ∈ FU (x̄), there exists
z0 ∈ FU (x0) with z̄ ≤C z0.

Since φ is C-monotone, φ(z̄) ≤ φ(z0) ≤ sup
z∈FU (x0)

φ(z).

This is true for any z̄ ∈ FU (x̄). Taking supremum on the left side of this inequality, we get

sup
z̄∈FU (x̄)

φ(z̄) ≤ sup
z∈FU (x0)

φ(z).

But this contradicts (18). Hence x0 must be a min–max set robust solution to (10). 
�
Proposition 11 If x0 is a unique optimal solution of (17) for some nonzero C-monotone
function φ, then x0 is an optimistic set robust solution for (10).

Proof It follows in a similar way as the proof of Proposition 10. 
�

3.3.3 Multi-scenario set robustness

Let us derive one scalarization result for multi-scenario set robust solutions. Let φ be a
C-monotone function. For each x ∈ S, consider the following two functions:

(φ ◦ F) x (ξ) = sup
z∈F(x,ξ)

φ(z)

(φ ◦ F) x (ξ) = inf
z∈F(x,ξ)

φ(z)

The domination definition can be given with respect to these functions. For two points x and
y ∈ S, we say that

• x dominates y with respect to φ ◦ F , if (φ ◦ F) x (ξ) ≤ (φ ◦ F) y(ξ) for all ξ ∈ U .
• x dominates y with respect to φ ◦ F , if (φ ◦ F) x (ξ) ≤ (φ ◦ F) y(ξ) for all ξ ∈ U .

Proposition 12 Consider the problem (10). If x0 ∈ S is nondominated with respect to φ ◦ F,
that is, if there is no x ∈ S other than x0 such that (φ ◦ F) x (ξ) ≤ (φ ◦ F) x0(ξ) for all
ξ ∈ U, then x0 is a ≤u

C -type multi-scenario set robust solution.

Proof Suppose that x0 ∈ S is nondominated with respect to φ ◦ F but not a ≤u
C -type multi-

scenario set robust solution to (10). Then there exists x ∈ S\{x0} such that Fx (ξ) ≤u
C Fx0(ξ)

for all ξ ∈ U but Fx0(ξ
0) �u

C Fx (ξ
0) for some ξ0 ∈ U . But Fx (ξ) ≤u

C Fx0(ξ) for all ξ ∈ U
implies F(x, ξ) ≤u

C F(x0, ξ) for all ξ ∈ U . Since φ is C-monotone, this implies that
supz∈F(x,ξ) φ(z) ≤ supz∈F(x0,ξ) φ(z) for all ξ ∈ U , that is, (φ ◦ F) x (ξ) ≤ (φ ◦ F) x0(ξ)

for all ξ ∈ U . But this is a contradiction to the fact that x0 is nondominated with respect to
φ ◦ F . Hence x0 ∈ S is a ≤u

C -type multi-scenario set robust solution to (10). 
�
Proposition 13 Consider the problem (10). If x0 ∈ S is nondominated with respect to φ ◦ F,

that is, if there is no x ∈ S other than x0 such that (φ ◦ F) x (ξ) ≤ (φ ◦ F) x0(ξ) for all

ξ ∈ U, then x0 is a ≤l
C -type multi-scenario set robust solution.

Proof The proof follows in a similar way as that of Proposition 12. 
�
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3.4 Semicontinuity type property

We shall derive two more existence results, one each for min–max set robust solution and
optimistic set robust solution. But for that, we need the map F to satisfy some stronger
property.

Definition 8 Consider the problem (10). The map F is calledU -coordinated u-decreasing, if
for any x1, x2 ∈ X with FU (x1) ≤u

C FU (x2), we have F(x1, ξ) ≤u
C F(x2, ξ) for all ξ ∈ U .

Definition 9 Consider the problem (10). The map F is called U -coordinated l-decreasing, if
for any x1, x2 ∈ X with FU (x1) ≤l

C FU (x2), we have F(x1, ξ) ≤l
C F(x2, ξ) for all ξ ∈ U .

Theorem 3 Consider the problem (10) with S compact. If F is U-coordinated u-decreasing
and for each fixed ξ ∈ U, the set-valued map x �→ F(x, ξ) is u-type K-demi-lower semicon-
tinuous on S, then (10) has a min–max set robust solution.

Proof In light of Theorem 2, it is enough to prove that x �→ FU (x) = ⋃

ξ∈U
F(x, ξ) is u-type

K-demi-lower semicontinuous on S.
Consider x0 ∈ S and a net {xλ} converging to x0 such that λ̄ < λ implies FU (xλ) ≤u

C
FU (xλ̄). Since F is U -coordinated u-decreasing, for any ξ ∈ U and λ̄ < λ, we get,
F(xλ, ξ) ≤u

C F(xλ̄, ξ ).
Let us choose and fix ξ ∈ U . Since x �→ F(x, ξ) is u-type K-demi-lower semicontinuous

on S, we have,

F(x0, ξ) ≤u
C

⋂

λ

(F(xλ, ξ) − C),

that is,

F(x0, ξ) ⊆
[
⋂

λ

(F(xλ, ξ) − C)

]

− C

=
⋂

λ

[(F(xλ, ξ) − C) − C]

=
⋂

λ

(F(xλ, ξ) − C)

⊆
⋂

λ

⎡

⎣
⋃

ξ̃

(F(xλ, ξ̃ ) − C)

⎤

⎦

=
⋂

λ

⎡

⎣
(⋃

ξ̃

(
F

(
xλ, ξ̃

)) − C

⎤

⎦

=
⋂

λ

[FU (xλ) − C] .

The above relation is valid for all ξ ∈ U and hence taking union over ξ on both sides, we get
⋃

ξ

F(x0, ξ) ⊆
⋃

ξ

⋂

λ

[FU (xλ) − C]

=
⋂

λ

[FU (xλ) − C] .
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That is,

FU (x0) ⊆
⋂

λ

[FU (xλ) − C] = (
⋂

λ

[FU (xλ) − C]) − C .

So,

FU (x0) ≤u
C

⋂

λ

[FU (xλ) − C].

Thus, the function x �→ FU (x) = ⋃

ξ∈U
F(x, ξ) is u-type K-demi-lower semicontinuous

at x0. Since x0 ∈ S is arbitrary, we conclude that x �→ FU (x) = ⋃

ξ∈U
F(x, ξ) is u-type

K-demi-lower semicontinuous on S. 
�

Theorem 4 Consider the problem (10) with S compact. If F is U-coordinated l-decreasing
and for each fixed ξ ∈ U, the set-valued map x �→ F(x, ξ) is l-type K-demi-lower semicon-
tinuous on S, then (10) has an optimistic set robust solution.

Proof In light of Theorem 1, it is enough to prove that x �→ FU (x) = ⋃
ξ∈U F(x, ξ) is l-type

K-demi-lower semicontinuous on S.
Consider x0 ∈ S and a net {xλ} converging to x0 such that λ̄ < λ implies FU (xλ) ≤l

C
FU (xλ̄). Since F is U -coordinated l-decreasing, for any ξ ∈ U and λ̄ < λ, we get,
F(xλ, ξ) ≤l

C F(xλ̄, ξ ).
Let us choose and fix ξ ∈ U . Since x �→ F(x, ξ) is l-type K-demi-lower semicontinuous

on S, we have,

F(x0, ξ) ≤l
C

⋃

λ

(F(xλ, ξ) + C),

that is,

F(x0, ξ) + C ⊇
⋃

λ

(F(xλ, ξ) + C).

The above relation is true for all ξ ∈ U and hence taking union over ξ on both sides, we
get

⋃

ξ

(F(x0, ξ) + C) ⊇
⋃

ξ

⋃

λ

(F(xλ, ξ) + C)

=
⋃

λ

⋃

ξ

(F(xλ, ξ) + C)

=
⋃

λ

(
⋃

ξ

F(xλ, ξ)) + C)

=
⋃

λ

(FU (xλ) + C).

Thus

FU (x0) + C ⊇
⋃

λ

(FU (xλ) + C).
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So,

FU (x0) ≤l
C

⋃

λ

[FU (xλ) + C].

Thus, the function x �→ FU (x) = ⋃
ξ∈U F(x, ξ) is l-type K-demi-lower semicontinuous

at x0. Since x0 ∈ S is arbitrary, we conclude that x �→ FU (x) = ⋃
ξ∈U F(x, ξ) is l-type

K-demi-lower semicontinuous on S. 
�
We have defined various robustness concepts for robust set-valued optimization problem.

Now let us see some relationships among them.

3.5 Relationship between different set robustness

3.5.1 Highly/flimsily andmin–max/optimistic set robust solution

Proposition 14 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤u

C -type highly set robust solution to (10). If F is U-coordinated u-decreasing, then x0 is a
min–max set robust solution to (10).

Proof Let x ∈ S be such that FU (x) ≤u
C FU (x0). Since F is U -coordinated u-decreasing,

F(x, ξ) ≤u
C F(x0, ξ) for all ξ ∈ U . Since x0 is a ≤u

C -type highly set robust solution to (10),
we have F(x0, ξ) ≤u

C F(x, ξ) for all ξ ∈ U . This means that F(x0, ξ) ⊆ F(x, ξ) − C for
all ξ ∈ U . Hence FU (x0) = ⋃

ξ∈U F(x0, ξ) ⊆ ⋃

ξ∈U
[F(x, ξ) − C] = [ ⋃

ξ∈U
F(x, ξ)] − C =

FU (x) − C . Thus, FU (x0) ≤u
C FU (x). It is true for any x ∈ S with FU (x) ≤u

C FU (x0).
Hence x0 is a min–max set robust solution to (10). 
�
Proposition 15 Consider the robust set-valued optimization problem (10) with F U-
coordinated u-decreasing. Let x0 ∈ S be a ≤u

C -type flimsily set robust solution to (10)
with the additional hypothesis that there exists ξ0 ∈ U such that x0 is a unique u-minimal
solution for P(F, ξ0,≤u

C ). Then x0 is a min–max set robust solution.

Proof Let x ∈ S be such that FU (x) ≤u
C FU (x0). Since F is U -coordinated u-decreasing,

F(x, ξ) ≤u
C F(x0, ξ) for all ξ ∈ U . In particular F(x, ξ0) ≤u

C F(x0, ξ0). But this contradicts
the fact that x0 is a unique u-minimal solution for P(F, ξ0,≤u

C ). Hence no such x ∈ S exists
with the property that FU (x) ≤u

C FU (x0). Hence x0 is a min–max set robust solution to (10).

�

Proposition 16 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤l

C -type highly set robust solution to (10). If F is U-coordinated l-decreasing, then x0 is an
optimistic set robust solution to (10).

Proof The proof follows in a similar way as that of Proposition 14. 
�
Proposition 17 Consider the robust set-valued optimization problem (10) with F U-
coordinated l-decreasing. Let x0 ∈ S be a ≤l

C -type flimsily set robust solution to (10) with
the additional hypothesis that there exists ξ0 ∈ U such that x0 is a unique l-minimal solution
for P(F, ξ0,≤l

C ). Then x0 is an optimistic set robust solution to (10).

Proof The proof follows in a similar way as that of Proposition 15. 
�
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3.5.2 Highly/flimsily andmulti-scenario set robust solution

Proposition 18 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤u

C -type highly set robust solution to (10). Then x0 is a ≤u
C -type multi-scenario set robust

solution to (10).

Proof Suppose that x0 is not a≤u
C -type multi-scenario set robust solution to (10). Then there

exists x ∈ S \ {x0} such that Fx (ξ) ≤u
C Fx0(ξ) for all ξ ∈ U , but Fx0(ξ

0) �u
C Fx (ξ

0) for
some ξ0 ∈ U . This means that F(x, ξ0) ≤u

C F(x0, ξ0) but F(x0, ξ0) �u
C F(x, ξ0). This

contradicts the fact that x0 is a ≤u
C -type highly set robust solution to (10). Hence x0 is a

≤u
C -type multi-scenario set robust solution to (10). 
�

Proposition 19 Consider the set robust optimization problem (10). Let x0 ∈ S be a ≤l
C -type

highly set robust solution to (10). Then x0 is a ≤l
C -type multi-scenario set robust solution to

(10).

Proof The proof follows in a similar way as that of Proposition 18. 
�
Proposition 20 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤u

C -type flimsily set robust solution to (10) with the additional hypothesis that there exists
ξ0 ∈ U such that x0 is a unique u-minimal solution for P(F, ξ0,≤u

C ). Then x0 is a ≤u
C -type

multi-scenario set robust solution to (10).

Proof If x0 is not a ≤u
C -type multi-scenario set robust solution to (10), then there exists

x ∈ S \ {x0} such that Fx (ξ) ≤u
C Fx0(ξ) for all ξ ∈ U but Fx0(ξ

0) �u
C Fx (ξ

0) for
some ξ0 ∈ U . But Fx (ξ) ≤u

C Fx0(ξ) for all ξ ∈ U implies Fx (ξ
0) ≤u

C Fx0(ξ
0), that is,

F(x, ξ0) ≤u
C F(x0, ξ0), which contradicts the fact that x0 is a unique u-minimal solution of

P(F, ξ0,≤u
C ). Hence x0 is a ≤u

C -type multi-scenario set robust solution to (10). 
�
Proposition 21 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤l

C -type flimsily set robust solution to (10) with the additional hypothesis that there exists
ξ0 ∈ U such that x0 is a unique l-minimal solution for P(F, ξ0,≤l

C ). Then x0 is a ≤l
C -type

multi-scenario set robust solution to (10).

Proof The proof follows in a similar way as that of Proposition 20. 
�

3.5.3 Multi-scenario andmin–max/optimistic set robust solution

Proposition 22 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be
a ≤u

C -type multi-scenario set robust solution to (10). Suppose that F is U-coordinated u-
decreasing. Then x0 is a min–max set robust solution to (10).

Proof Let x ∈ S be such that FU (x) ≤u
C FU (x0). Since F is U -coordinated u-decreasing,

F(x, ξ) ≤u
C F(x0, ξ) for all ξ ∈ U , that is, Fx (ξ) ≤u

C Fx0(ξ) for all ξ ∈ U . Since x0 is
≤u

C -type multi-scenario set robust solution, we have Fx0(ξ) ≤u
C Fx (ξ) for all ξ ∈ U . But

this implies that FU (x0) ≤u
C FU (x). This is true for any x ∈ S with FU (x) ≤u

C FU (x0).
Hence x0 is a min–max set robust solution to (10). 
�
Proposition 23 Consider the robust set-valued optimization problem (10). Let x0 ∈ S be a
≤l

C -type multi-scenario set robust solution to (10). If F is U-coordinated l-decreasing, then
x0 is an optimistic set robust solution to (10).

Proof The proof follows in a similar way as that of Proposition 22. 
�
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