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Abstract
This paper discusses second-order cone tensor eigenvalue complementarity problem. We
reformulate second-order cone tensor eigenvalue complementarity problem as two con-
strained polynomial optimizations. For these two reformulated optimizations, Lasserre-type
semidefinite relaxation methods are proposed to compute all second-order cone tensor com-
plementarity eigenpairs. The proposed algorithms terminate when there are finitely many
second-order cone complementarity eigenvalues. Numerical examples are reported to show
the efficiency of the proposed algorithms.

Keywords Second-order cone · Tensor eigenvalue complementarity · Semidefinite
relaxation

Mathematics Subject Classification 15A18 · 15A69 · 90C22 · 90C33

1 Introduction

For positive integers m and n1, n2, . . . , nm , an mth order and (n1, n2, . . . , nm)-dimensional
real tensor can be viewed as an array in the space R

n1×n2×···×nm . Such a tensor A can be
indexed as

A = (Ai1...im ), 1 ≤ i j ≤ n j , j = 1, . . . ,m.

Whenn1 = · · · = nm = n,A is called anmth ordern-dimensional square tensor. In such case,
the tensor spaceRn1×···×nm is denoted as Tm(Rn). A tensor in Tm(Rn) is said to be symmetric
if its entries are invariant under permutations of indices. That is, Ai1...im = A j1... jm for any
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permutation ( j1, . . . , jm) of index (i1, . . . , im). For A ∈ Tm(Rn) and x := (x1, . . . , xn)T ∈
R
n , we use the notation

⎧
⎪⎨

⎪⎩

Axm := ∑

1≤i1,...,im≤n
Ai1i2...im xi1xi2 . . . xim ,

Axm−1 :=
( ∑

1≤i2,...,im≤n
A j i2...im xi2 . . . xim

)

j=1,...,n
.

Clearly, Axm−1 ∈ R
n is an n-dimensional vector.

In this paper, we consider the second-order cone tensor eigenvalue complementarity prob-
lem (SOCTEiCP): for two given tensors A,B ∈ Tm(Rn+1), SOCTEiCP is to find a nonzero
vector x with a real number λ such that

K � x ⊥ (Axm−1 − λBxm−1) ∈ K∗, (1.1)

whereK is the second-order cone (orLorentz cone, ice-creamcone in the literature) definedby
K := {x = (z, t) ∈ R

n+1 : ‖z‖2 ≤ t}, and here K∗ is the dual cone of K, defined by K∗ :=
{y| xT y ≥ 0,∀x ∈ K}. For (λ, x) satisfying (1.1), λ is called an SOC-complementarity
eigenvalue and x is called an SOC-complementarity eigenvector of (A,B), respectively.
Furthermore, we call such (λ, x) an SOC-complementarity eigenpair of (A,B).

For a general closed and convex cone, problem (1.1) is called the tensor generalized
eigenvalue complementarity problem (TGEiCP), introduced and studied in [20]. When the
cone is specified as the nonnegative orthant cone R

n+ := {x ∈ R
n :x ≥ 0}, the problem

is called the tensor eigenvalue complementarity problem (TEiCP) in [9,20]. For such cone,
the pair (λ, x) is called a Pareto-eigenpair of (A,B). Theoretical and numerical results
are presented in [2,3,8,9,20,27,28]. When the cone is a general second-order cone, that is,
K = Kn1 × Kn2 × · · · × Knr , where Kni is a second-order cone. Then problem (1.1) is the
second-order cone tensor eigenvalue complementarity problem discussed in [13]. Clearly,
our considered problem is a special case of the considered problem in [13].

Numerical methods have been discussed for the second-order cone tensor eigenvalue com-
plementarity problem. A scaling-and-projection algorithm (SPA) was proposed in [20] and
applied to solve SOCTEiCP in [13], which converges to an SOC-complementarity eigenpair.
In general, the extreme SOC-complementarity eigenvalue is the most important one among
all SOC-complementarity eigenvalues. For example, the nonnegativity of the smallest SOC-
complementarity eigenvalue of matrix pair (A, I ) asserts the SOC-copositivity of symmetric
matrix A, here I is an identity matrix and m = 2. However, it is hard to get the extreme
SOC-complementarity eigenvalue by SPA. On the other hand, existing algorithms can not
check whether if there are no SOC-complementarity eigenpairs of (A,B).

In recent years, SDP relaxation methods have become an efficient numerical method for
solving tensor optimization problems. Specifically, all tensor eigenvalues can be computed
by solving a finite hierarchy of semidefinite relaxations [4,24] when they are finite. Tensor
complementarity problem and tensor eigenvalue complementarity problems can be solved
efficiently by SDP relaxation methods [8,9,29]. Furthermore, the SDP relaxation methods
present numerical certificates when there are no solutions to the tensor complementarity
problemand the tensor eigenvalue complementarity problem.Motivatedby these,we consider
how to apply SDP relaxation methods to get all SOC-complementarity eigenpairs when they
are finite.

Themain contribution of this paper is to compute all real SOC-complementarity eigenpairs
when there are finitely many ones. For convenience, we denote bdS and intS as its sets of
boundary SOC-complementarity eigenpairs and interior SOC-complementarity eigenpairs.
Both boundary SOC-complementarity eigenpairs and interior SOC-complementarity eigen-
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pairs can be reformulated as feasible solutions of polynomial optimization problems. Based
on these reformulations, all SOC-complementarity eigenpairs can be computed by solving a
finite hierarchy of semidefinite relaxations.

Contributions: In this paper, we study the second-order cone tensor eigenvalue com-
plementarity problem. First, we show that the solution set of SOCTEiCPs is two real
polynomial systems. Based on this equivalence, an upper bound on the number of the SOC-
complementarity eigenvalues is established. Then we reformulate the SOCTEiCP as two
polynomial optimization problems. By solving a hierarchy of Lasserre-type semidefinite
programming (SDP) relaxations, all SOC-complementarity eigenpairs of (A,B) can be com-
puted if they are finite.

The paper is organized as follows. Section 2 presents preliminaries in polynomial
optimization. Section 3 reformulates SOCTEiCPs as polynomial optimization problems.
Section 4 proposes Lasserre-type semidefinite relaxations for computing all boundary SOC-
complementarity eigenpairs of SOCTEiCPs if there are finitely many ones. Section 5
proposes Lasserre-type semidefinite relaxation methods for computing all interior SOC-
complementarity eigenpairs of SOCTEiCPs if there are finitely many ones. In Sect. 6, we
report numerical results to show the efficiency of the proposed algorithms of this paper.

2 Preliminaries

In this paper, [n] = {1, 2, . . . , n}. We use lowercase letters, e.g. x, y, to denote vectors.
Higher-order tensors are denoted as A,B, C, . . .. For any i ≤ n, x[i] := (x1, . . . , xi )T ∈ R

i .
(x1, x2) ∈ R

n ×R is simplified as (x1, x2) ∈ R
n+1. For a given tensorA ∈ Tm(Rn) and any

i ∈ [n], Ai ∈ Tm−1(Rn) and A[i] ∈ R
i×n×···×n with its entries

(Ai ) j2... jm = Ai j2... jm , (A[i]) j1 j2... jm = A j1 j2... jm , j1 ≤ i .

In the following, we review some basics in polynomial optimization. We refer to [17,18]
for surveys in polynomial optimization.

In the space Rn , the symbol ‖ · ‖2 denotes the standard Euclidean norm. Let R[x] be the
ring of polynomials with real coefficients and in variables x := (x1, . . . , xn)T , and let R[x]d
be the set of real polynomials in x whose degrees are at most d .

For a polynomial tuple h = (h1, h2, . . . , hs), the ideal generated by h is the set

I (h) := h1 · R[x] + h2 · R[x] + · · · + hs · R[x].
The kth truncation of I (h) is the set

Ik(h) := h1 · R[x]k−deg(h1) + · · · + hs · R[x]k−deg(hs ).

The complex and real algebraic varieties of h are respectively defined as

VC(h) := {x ∈ C
n | h(x) = 0}, VR(h) := VC(h) ∩ R

n .

A polynomial p is said to be sum of squares (SOS) if there exist p1, p2, . . . pr ∈ R[x] such
that p = p21 + p22 +· · ·+ p2r . The set of all SOS polynomials is denoted as �[x]. For a given
degree m, denote

�[x]m := �[x] ∩ R[x]m .

The quadratic module generated by a polynomial tuple g = (g1, . . . , gt ) is the set

Q(g) := �[x] + g1 · �[x] + · · · + gt · �[x].
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The kth truncation of the quadratic module Q(g) is the set

Qk(g) := �[x]2k + g1 · �[x]2k−deg(g1) + · · · + gt · �[x]2k−deg(gt ).

Note that if g = ∅ is an empty tuple, then Q(g) = �[x] and Qk(g) = �[x]2k .
Let N be the set of nonnegative integers. We refer to [5,11,16–19] for details about poly-

nomial optimization. For x := (x1, . . . , xn)T , α := (α1, . . . , αn) and a degree d , denote

xα := xα1
1 · · · xαn

n , |α| := α1 + · · · + αn, N
n
d := {α ∈ N

n : |α| ≤ d}.
Denote by R

N
n
d the space of all real vectors y that are indexed by α ∈ N

n
d . For y ∈ R

N
n
d , we

can write it as

y = (yα), α ∈ N
n
d .

For f = ∑
α∈Nn

d
fαxα ∈ R[x]d and y ∈ R

N
n
d , we define the operation

〈 f , y〉 :=
∑

α∈Nn
d

fα yα. (2.1)

For an integer t ≤ d and y ∈ R
N
n
d , denote the t th truncation of y as

y|t := (yα)α∈Nn
t
. (2.2)

Let q ∈ R[x] with deg(q) ≤ 2k. For each y ∈ R
N
n
2k , 〈qp2, y〉 is a quadratic form in

vec(p), the coefficient vector of the polynomial p with deg(qp2) ≤ 2k. Let L(k)
q (y) be the

symmetric matrix such that

〈qp2, y〉 = vec(p)T
(
L(k)
q (y)

)
vec(p). (2.3)

The matrix L(k)
q (y) is called the kth localizing matrix of q generated by y. It is linear in y.

For instance, when n = 2, k = 2 and q = 5x1 + 4x1x2 − 6x22 ,

L(2)
5x1+4x1x2−6x22

(y) =
⎛

⎝
5y10 + 4y11 − 6y02 5y20 + 4y21 − 6y12 5y11 + 4y12 − 6y03
5y20 + 4y21 − 6y12 5y30 + 4y31 − 6y22 5y21 + 4y22 − 6y13
5y11 + 4y12 − 6y03 5y21 + 4y22 − 6y13 5y12 + 4y13 − 6y04

⎞

⎠ .

If q = (q1, . . . , qr ) is a tuple of polynomials, we then define

L(k)
q (y) := Diag

(
L(k)
q1 (y), . . . , L(k)

qr (y)
)

. (2.4)

When q = 1 (the constant 1 polynomial), L(k)
1 (y) is called the kth moment matrix generated

by y, and we denote

Mk(y) := L(k)
1 (y). (2.5)

For instance, when n = 2 and k = 2,

M2(y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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For a degree d , denote the monomial vector

[x]d := [
1, x1, . . . , xn, x21 , x1x2, . . . , x2n , . . . , xd1 , . . . , xdn

]T
. (2.6)

3 Reformulation and properties of the SOCTEiCP

For given tensors A,B ∈ Tm(Rn+1), x ∈ R
n+1 is an SOC-complementarity eigenvector

of (A,B) associated with SOC-complementarity eigenvalue λ if and only if αx (∀ α > 0)
is an SOC-complementarity eigenvector of (A,B) associated with SOC-complementarity
eigenvalue λ. Moreover, x is an SOC-complementarity eigenvector means that x �= 0, and
hence xn+1 > 0 from x ∈ K. Motivated by this fact, it is asserted that there exists an
SOC-complementarity eigenvector (z, 1) ∈ K with z ∈ R

n for an SOC-complementarity
eigenvalue. It suffices to consider the set of SOC-complementarity eigenpairs of (A,B) as

S (A,B) := {(λ, x) : K � x ⊥ (Axm−1 − λBxm−1) ∈ K∗, x = (z, 1) ∈ R
n+1}.

Let

bd S := {(λ, x) : x ∈ bd K, (λ, x) ∈ S(A,B)},
int S := {(λ, x) : x ∈ int K, (λ, x) ∈ S(A,B)},

where bd K := {x = (z, 1) ∈ R
n+1 | zT z = 1} and int K := {x = (z, 1) ∈ R

n+1 |
zT z < 1}. For convenience, we call (λ, x) ∈ bd S (intS) the boundary (interior) SOC-
complementarity eigenpair. The corresponding λ and x are called the boundary (interior)
SOC-complementarity eigenvalue and eigenvector, respectively.

In order to compute all the SOC-complementarity eigenpairs by SDP relaxation methods,
we reformulate the second-order cone tensor eigenvalue complementarity problem as poly-
nomial optimization problems. Before proceeding, we recall some related definitions and
properties, which are necessary for the reformulation.

We first recall the definition of Jordan product.

Definition 3.1 [10] For any x = (x1, x2) ∈ R
n+1, y = (y1, y2) ∈ R

n+1 with x2, y2 ∈ R,
their Jordan product is defined as

x ◦ y = (xT y, x2y1 + y2x1).

Based on Jordan product, we have the following result.

Lemma 3.2 [10, Proposition 2.1] For any x, y ∈ R
n+1, we have

xT y = 0, x ∈ K, y ∈ K ⇐⇒ x ◦ y = 0, x ∈ K, y ∈ K.

The next lemma, which can be checked by Sect. 1 and Proposition 1.1.3 in [7], describes
the interior solution case of the complementarity problem (CP(K, F)) when K is a cone
and F : K → R

n is a general mapping. Here CP(K, F) is to find a vector x such that
K � x ⊥ F(x) ∈ K∗.

Lemma 3.3 Let K be a cone in R
n. Suppose that a vector x ∈ int K solves the C P(K, F).

Then F(x) = 0.

Based on Lemmas 3.2 and 3.3, we have the following result.

Theorem 3.4 Let A,B ∈ Tm(Rn+1) and x = (z, 1) ∈ R
n+1.

123



720 Journal of Global Optimization (2021) 79:715–732

(1) (λ, x) ∈ int S if and only if (λ, z) ∈ �, where

� =
{
(λ, z)

∣
∣Axm−1 − λBxm−1 = 0, zT z < 1

}
. (3.1)

(2) (λ, x) ∈ bd S if and only if (λ, z) ∈ �̂, where

�̂ =
{

(λ, z)
∣
∣
∣

(Axm−1 − λBxm−1)[n] + (Axm−1 − λBxm−1)(n+1)z = 0,
(Axm−1 − λBxm−1)(n+1) ≥ 0, zT z = 1

}

. (3.2)

Proof (1)“⇒” (λ, x) ∈ int S means that

x ∈ int K, Axm−1 − λBxm−1 ∈ K∗, xT (Axm−1 − λBxm−1) = 0.

Let F(x) = Axm−1 − λBxm−1. Then x ∈ int K solves CP(K, F). From Lemma 3.3, we
have that Axm−1 − λBxm−1 = 0. Together with x ∈ int K, we have (λ, z) ∈ �.

“⇐” (λ, z) ∈ � leads to x = (z, 1) ∈ int K, Axm−1 − λBxm−1 = 0 ∈ K and
xT (Axm−1 − λBxm−1) = 0. Hence (λ, x) ∈ int S is asserted.

(2) “⇒” From Lemma 3.2 and (λ, x) ∈ bd S, it follows that

x ◦ (Axm−1 − λBxm−1) = 0, x ∈ bd K, (Axm−1 − λBxm−1) ∈ K.

x ◦ (Axm−1 − λBxm−1) = 0 implies that (Axm−1 − λBxm−1)[n] + (Axm−1 −
λBxm−1)(n+1)z = 0. From x ∈ bdK, it is clear that (λ, z) ∈ �̂.

“⇐” From (λ, z) ∈ �̂, we have

(Axm−1 − λBxm−1)[n] + (Axm−1 − λBxm−1)(n+1)z = 0, (Axm−1 − λBxm−1)(n+1) ≥ 0.

By direct computation,

‖(Axm−1 − λBxm−1)[n]‖2 = (Axm−1 − λBxm−1)(n+1),

and hence

(Axm−1 − λBxm−1) ∈ bd K ⊂ K.

Together with zT z = 1, it holds

xT (Axm−1 − λBxm−1) = (Axm−1 − λBxm−1)T[n]z + (Axm−1 − λBxm−1)(n+1) · 1
= −((Axm−1 − λBxm−1)(n+1)zT )z + (Axm−1 − λBxm−1)(n+1) = 0.

Hence, we can assert that (λ, x) ∈ bd S. ��
Based on Theorem 3.4, we now discuss the upper bound for the number of SOC-

complementarity eigenvalues. Before proceeding, we need the following definition. Let
A and B be two mth order tensors in Tm(Cn), (A,B) is called a regular tensor pair if
det(αA − βB) = 0 for some (α, β) ∈ C × C. Conversely, we call (A,B) a singular tensor
pair if det(αA − βB) = 0 for all (α, β) ∈ C × C. Here, the determinant of the tensor was
introduced by Qi [25] firstly, and was further discussed by Hu et al. [14]. The determinant of
anmth order n-dimensional tensorA is the resultant of the system of homogeneous equation
Axm−1 = 0 with x ∈ R

n , which is the unique polynomial on the entries of A such that

det(A) = 0 ⇔ Axm−1 = 0 hasanonzero solution.

For convenience of notation, tensors Ā, B̄ ∈ Tm+1(Cn+1) are defined as below with
x = (z, t) ∈ R

n+1

Āxm = tA[n]xm−1 + A(n+1)x
m−1z, B̄xm = tB[n]xm−1 + B(n+1)x

m−1z. (3.3)
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Theorem 3.5 (1) Let A,B ∈ Tm(Rn+1). Then there are at most (n + 1)(mn + (m − 1)n)
SOC-complementarity eigenvalues of (A,B) if (A,B) and (Ā, B̄) are regular tensor
pairs, respectively.

(2) IfA,B are generic tensors inTm(Rn+1), then for each SOC-complementarity eigenvalue,
there is a unique SOC-complementarity eigenvalue (up to scaling).

Proof (1) For SOC-complementarity eigenpair (λ, x) with x ∈ int K, we have (A −
λB)xm−1 = Axm−1 − λBxm−1 = 0 from Theorem 3.4. This means that (λ, x) is a general-
ized tensor eigenpair of (A,B). From Theorem 2.1 in [6], there are at most (n + 1)(m − 1)n

eigenvalues counting multiplicity when (A,B) is a regular tensor pair.
For SOC-complementarity eigenpair (λ, x) with x = (z, t) ∈ bd K, we have

t(Axm−1 − λBxm−1)[n] + (Axm−1 − λBxm−1)(n+1)z = 0, zT z = t2.

Let Ā, B̄ ∈ Tm+1(Rn+1) be as in (3.3). Then above equality can be rewritten as

Āxm − λB̄xm = 0.

Thus, (λ, x) is a generalized tensor pair and there are at most (n+1)mn eigenvalues counting
multiplicity from Theorem 2.1 in [6] when (A,B) is a regular tensor pair.

Together with these two cases, there are at most (n + 1)(mn + (m − 1)n) SOC-
complementarity eigenvalues of (A,B) and the result (1) is established now.

(2) When A,B are generic in Tm(Rn+1), Ā, B̄ are also generic in Tm+1(Rn+1). From
Theorem 3.1 in [8], x in Axm−1 − λBxm−1 = 0 or Āxm − λB̄xm = 0 is unique for each λ,
up to scaling. Therefore, each SOC-complementarity eigenvector is unique for each SOC-
complementarity eigenvalue. ��

The existence of SOCTEiCP can be found by Theorem 2.3 in [13], which is restated as
follows.

Lemma 3.6 There exists at least one SOC-complementarity eigenpair whenB is strictly SOC-
positive, where tensor B is called strictly SOC-positive if Bxm > 0 for all nonzero vectors
in second-order cone.

SOC-positivity can be tested by solving a polynomial optimization problem, which is similar
to [23] and omitted here.

Motivated by Theorem 3.4, we consider the following polynomial optimization problems
to compute the SOC-complementarity eigenpair

min λ

s.t. Axm−1 − λBxm−1 = 0,
zT z ≤ 1, x = (z, 1) ∈ R

n+1,

(3.4)

and

min λ

s.t. (Axm−1 − λBxm−1)[n] + (Axm−1 − λBxm−1)(n+1)z = 0,
(Axm−1 − λBxm−1)(n+1) ≥ 0,
zT z = 1, x = (z, 1) ∈ R

n+1.

(3.5)

Clearly, � is included in the feasible set of (3.4), and �̂ is the feasible set of (3.5). Moreover,
it is easy to check whether a feasible solution of (3.4) lies in �. Motivated by these facts, we
consider how to solve (3.4) and (3.5) in the following.
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4 Computation of boundary SOC-complementarity eigenpairs

In this section, we study how to compute all boundary SOC-complementarity eigenpairs. For
general tensors A and B, there are finitely many SOC-complementarity eigenvalues from
Theorem 3.5. This motivates us to assume that λ2 ≤ M for some M > 0. We order them
monotonically as follows if they are finite:

λ1 < λ2 < · · · < λN .

Let

Si := {(λ, z) ∈ �̂ | λ = λi }, i = 1, 2, . . . , N .

Then bd S := {(λ, x) : x = (z, 1), (λ, z) ∈ S1 ∪ S2 ∪ · · · ∪ SN }. Therefore, it suffices to
compute Si to get bd S.

In the following, we compute all boundary SOC-complementarity eigenpairs sequentially
if they are finite.

4.1 Computation of S1

We first consider the following polynomial optimization problem:

min λ

s.t. (Axm−1 − λBxm−1)[n] + (Axm−1 − λBxm−1)(n+1)z = 0,
(Axm−1 − λBxm−1)(n+1) ≥ 0,
zT z = 1, λ2 ≤ M, x = (z, 1) ∈ R

n+1.

It is clear that (λ, z) is feasible if and only if (λ, z) ∈ �̂. For convenience of notation, let
g = (g1, g2), h = (h1, . . . , hn+1) with g1 = (Axm−1 − λBxm−1)(n+1), g2 = M − λ2,
hi = (Axm−1 − λBxm−1)i + (Axm−1 − λBxm−1)(n+1)zi for i ∈ [n] and hn+1 = zT z − 1.
Then above problem can be rewritten as follows:

λ1 := min λ

s.t. h(λ, z) = 0,
g(λ, z) ≥ 0,

(4.1)

which is a polynomial optimization problem of degree m + 1 on (λ, z). To solve (4.1), we
consider Lasserre-type semidefinite relaxations. For convenience of notation, let ē be the
vectorized polynomial coefficient of objective function in polynomial optimization (4.1).
Then Lasserre’s hierarchy of semidefinite relaxations for solving (4.1) is

ν1,k := min 〈ē, y〉
s.t. 〈1, y〉 = 1, Lk

h(y) = 0,
Lk
g(y) � 0, Mk(y) � 0,

y ∈ R
N
n+1
2k ,

(4.2)

for the order k = k0, k0 + 1, . . ., where k0 = �m+2
2 �. In the above, 〈1, y〉 = 1 means that

the first entry of y is one, and the matrices Lk
h(y), L

k
g(y), Mk(y) are defined as in (2.3), (2.4)

and (2.5). Its dual problem is

ν̄1,k := max γ

s.t. ē − γ ∈ I2k(h) + Qk(g).
(4.3)

123



Journal of Global Optimization (2021) 79:715–732 723

It can be shown that for all k

ν̄1,k ≤ ν1,k ≤ λ1

and the sequences {ν1,k} and {ν̄1,k} are monotonically increasing, that is,

ν1,k ≤ ν1,k+1 ≤ · · · ≤ λ1, ν̄1,k ≤ ν̄1,k+1 ≤ · · · ≤ λ1.

Suppose that y1,k is the optimizer of (4.2). If the truncation ȳ := y1,k |2t satisfies the rank
condition

rank Mt−k0(ȳ) = rank Mt (ȳ) (4.4)

for some integer t ∈ [k0, k], then λ1 = ν1,k and we can get r := rank Mt (ȳ) distinct real
global optimizers of (4.1) according to [21]. All such optimizers returned by optimizers y1,k

of (4.2) constitute S1.

Theorem 4.1 Let A,B ∈ Tm(Rn+1), and �̂ be the feasible set of problem (4.1). Then we
have the following properties:

(1) If �̂ = ∅ if and only if the semidefinite relaxation (4.2) is infeasible for some k.
(2) If �̂ �= ∅, then the feasible set of (4.2) is nonempty and compact. Furthermore,

lim
k→∞ ν1,k = lim

k→∞ ν̄1,k = λ1.

(3) If there are finitely many boundary SOC-complementarity eigenvalues, then for all big
enough k,

ν1,k = ν̄1,k = λ1.

Furthermore, if there are finitely many x = (z, 1) such that (λ, z) ∈ S1, then for all
big enough k and each minimizer y1,k of (4.2), rank condition (4.4) is satisfied for some
t ≤ k.

Proof (1) “⇒” Suppose that �̂ = ∅. By Positivstellensatz of [1], −1 ∈ I (h) + Q(g). Hence
−1 ∈ I2k(h) + Qk(g) for big enough k. This means that problem (4.3) is unbounded above
and hence (4.2) is infeasible for such k from weak duality.

“⇐” Suppose that problem (4.2) is infeasible for some k. Then problem (4.1) is infeasible
since [(λ, z)]2k will be a feasible solution of (4.2) for any feasible solution (λ, z) of (4.1),
and hence �̂ = ∅.

(2) �̂ �= ∅ means that the feasible set of (4.2) is nonempty since (4.2) is a relaxation of
(4.1). With a similar discussion of Theorem 3.2 in [23], the feasible set of (4.2) is always
compact. Furthermore, ν1,k with optimizer y1,k is always achievable for all k. Since M − λ2

and 1− zT z are polynomials of tuple g and h, Assumption 4.1 in [15] is satisfied by adopting
u(λ, z) = M + 1− zT z − λ2 in such assumption. Therefore, the asymptotic convergence is
established from Theorem 4.2 [15].

(3) Suppose that all boundary SOC-complementarity eigenvalues are listed as: λ1 < λ2 <

· · · < λN . Let si (i ∈ [N ]) be univariate real polynomials in λ such that

fi (λ, x) = (λi − λ1)si (λ) and si (λ j ) =
{
1 i �= j,
0 i = j .

Let f := f1 + f2 + · · · + fN ∈ ∑[x]2k′ for some positive integer k′ and f̄ := ē − λ1 − f .
Clearly, f̄ = 0 for all (λ, x) ∈ bd S. By Real Nullstellensatz [17, Theorem 2.12], there exists
a q ∈ Q(g) and a positive integer l such that f̄ 2l + q ∈ I (h). Although the remainder proof
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is similar to that of Theorem 3.1 in [24], we present here for completeness. For any δ > 0
and c > 0, let

θδ := −cδ1−2l( f̄ 2l + q), φδ = δ

(

1 + f̄

δ
+ c

(
f̄

δ

)2l)

+ cδ1−2lq.

From Lemma 2.1 in [22], there exists k1 such that

θδ ∈ I2k1(h) and φδ ∈ Qk1(g)

for all δ > 0 and c ≥ 1
2l (1 − 1

2l )
2l−1. This means that ē − (λ1 − δ) = θδ + φδ + f ∈

I2k1(h) + Qk1(g).
Thus, for all δ > 0, λ1 − δ is feasible in (4.3) for order k1 and ν̄1,k1 ≥ λ1 from the

arbitrariness of δ > 0.
On the other hand, ν̄1,k ≤ λ1 for all k. Now we can assert that ν̄1,k1 = λ1 and hence

ν1,k1 = λ1. Since {ν1,k}k is monotonically increasing, ν1,k = λ1 for all k ≥ k1. This means
that for all big enough k,

ν1,k = ν̄1,k = λ1.

Furthermore, if there are finitely manyminimizer of (4.1), rank condition must be satisfied
from Theorem 2.6 in [21], which completes the proof. ��

4.2 Computation of Si+1

We now discuss how to determine whether Si+1 exists and how to compute Si+1 (i = 1, . . .)
if it exists. Suppose that Si is known and there exists ε > 0 such that 0 < ε < λi+1 − λi .
Consider the following optimization problem:

λi+1 := min λ

s.t. h(λ, z) = 0,
g(λ, z) ≥ 0,
λ − λi − ε ≥ 0.

(4.5)

Similarly, Lasserre-type semidefinite relaxations can be applied to solve (4.5). For the
order k = k0, k0 + 1, . . ., the kth-order Lasserre relaxation is

νi+1,k := min 〈ē, y〉
s.t. 〈1, y〉 = 1, L(k)

h (y) = 0,
L(k)
g (y) � 0, Mk(y) � 0,

L(k)
λ−λi−ε(y) � 0, y ∈ R

N
n+1
2k .

(4.6)

The dual problem of (4.6) is

ν̄i+1,k := max γ

s.t. ē − γ ∈ I2k(h) + Qk(g, λ − λi − ε).

Similarly, we have

ν̄i+1,k ≤ νi+1,k ≤ λi+1.

Moreover, the sequence {νi+1,k} and {ν̄i+1,k} are monotonically increasing with k.
If problem (4.6) is infeasible for some k, then Si+1 is empty, which means that bdS :=

{(λ, x) | x = (z, 1), (λ, z) ∈ S1 ∪ S2 ∪ · · · ∪ Si }. Otherwise, suppose that yi+1,k is an
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optimizer of (4.6). If for some integer t ∈ [k0, k], the truncation ȳ := yi+1,k |2t satisfies the
rank condition (4.4), then νi+1,k = λi+1 and we get global optimizers of (4.5) returned by
yi+1,k . Then we have all global optimizers of (4.5) returned by all optimizers yi+1,k of (4.6).

In practice, the existence of λi+1 is usually unknown in advance. Even if it exists, its value
is typically not available. Sowe need to determine the value of ε satisfying 0 < ε < λi+1−λi .
For this aim, we consider the polynomial optimization problem:

τ := max λ

s.t. h(λ, z) = 0,
g(λ, z) ≥ 0,
λ ≤ λi + ε.

(4.7)

It can be computed by Lasserre relaxations like (4.2) and (4.3). For numerical reasons, the
value ε > 0 can not be too small. Let τ be the optimal value of (4.7) and let ε = 0.05 in
(4.7). If τ > λi , we decrease ε as ε = ε/2 and solve (4.7) again. By repeating this process,
we can get τ = λi ultimately.

4.3 The choice of M

Suppose that there exists M > 0 such that all feasible solutions (λ, z) of (3.5) satisfy that
λ2 ≤ M . Now we discuss how to obtain such M . To this end, we consider the following
problem:

min F(λ, z)
s.t. h(λ, z) = 0,

ḡ(λ, z) ≥ 0,
(4.8)

where F(λ, z) is a general SOS polynomial on (λ, z) and ḡ = (g1,−g2). Consider the
following kth-order Lasserre-type semidefinite relaxation:

min 〈F, y〉
s.t. 〈1, y〉 = 1, Lk

h(y) = 0,

Lk
ḡ(y) � 0, Mk(y) � 0, y ∈ R

N
n+1
2k .

(4.9)

Clearly, M is big enough if and only if (4.8) is infeasible. Furthermore, problem (4.8) is
infeasible if (4.9) is infeasible for some order k. Solve (4.9) with M := M0 and k := k0. If
an optimal solution of (4.8) is obtained by solving (4.9), let M := 2M and solve (4.9) again.
Otherwise, (4.9) is infeasible for some k and the corresponding M is the needed one.

4.4 Algorithm for computing boundary SOC-complementarity eigenpairs

Algorithm 4.2 For given tensors A,B ∈ Tm(Rn+1), compute all the boundary SOC-
complementarity eigenpairs as follows:

Input: Choose a general SOS polynomial F and M > 0. Let k := k0 = �m+2
2 �, ε0 = 0.05,

i = 1, and S = ∅.
Step 1: Solve the kth-order semidefinite relaxation (4.9). If it is infeasible, let k := k0 and

go to Step 2. Otherwise, if an optimizer y1,k is obtained with the rank condition
(4.4), let M := 2M, k := k0 and go to Step 1; else let k := k + 1 and go to Step 1;

Step 2: Solve the kth-order semidefinite relaxation (4.2). If it is infeasible, then there are
no boundary SOC-complementarity eigenpairs and stop. Otherwise, optimal value
v1,k with an optimizer y1,k can be computed.
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Step 3: If the rank condition (4.4) is satisfied, then λ1 = ν1,k and all optimal solutions
(λ, z) can be extracted, which constitute S1. Let S := S∪ S1, k := k0, ε := ε0 and
go to Step 4. Otherwise, let k := k + 1 and go to Step 2.

Step 4: Solve problem (4.7). If τ > λi , let ε := ε/2 and go to step 4. If τ = λi , go to Step 5.
Step 5: Solve the relaxation (4.6). If it is infeasible, then Si+1 = ∅ and stop. Otherwise,

compute the optimal value νi+1,k with an optimizer yi+1,k . If (4.4) is satisfied with
ȳ = yi+1,k |2t for some t ∈ [k0, k], then νi+1,k = λi+1 and optimal solutions (λ, z)
of (4.5) can be extracted, which constitute Si+1. Let k := k0, ε := ε0, S := S∪Si+1,
i := i + 1 and go to Step 4. Otherwise, let k := k + 1 and go to Step 5.

Output: bd S := {(λ, x) | x = (z, 1), (λ, z) ∈ S}.
Theorem 4.3 Suppose that there are finitely many boundary SOC-complementarity eigen-
values, then Algorithm 4.2 terminates by solving finitely many semidefinite relaxations.

The proof can be induced similarly to the proof of Theorem 4.1 and we omit here.

5 Computation of interior SOC-complementarity eigenpairs

In this section, we consider how to compute all interior SOC-complementarity eigenpairs.
Based on Theorem 3.4, the interior SOC-complementarity eigenpair set can be rewritten as

int S = {(λ, x)
∣
∣Axm−1 − λBxm−1 = 0, zT z < 1, x = (z, 1)}.

From Theorem 3.5, there exists M > 0 such that all interior SOC-complementarity eigen-
values are contained in a ball. Similarly, F(λ, z) achieves different values at different
(λ, x) ∈ int S since F(λ, z) is generically chosen. We order λ monotonically as follows
if they are finite:

λ̄1 < λ̄2 < · · · < λ̄N̄ .

For i ∈ [N̄ ], let S̄i := {(λ̄i , z)
∣
∣Axm−1 − λ̄iBxm−1 = 0, zT z ≤ 1, x = (z, 1)} and

int S̄ := S̄1 ∪ S̄2 ∪ · · · ∪ S̄N̄ , then we have

int S = {(λ, x) | x = (z, 1), (λ, z) ∈ int S̄}\bd S.

5.1 Computation of S̄1

In this subsection, we show how to compute S̄1. Clearly, (λ, z) is the optimal value of the
following polynomial optimization problem:

λ̄1 := min λ

s.t. h̄(λ, z) = 0,
ḡ(λ, z) ≥ 0,

(5.1)

where h̄(λ, z) = Axm−1 − λBxm−1 and ḡ(λ, z) = (1 − zT z, M − λ2).
The kth-order Lasserre’s hierarchy of semidefinite relaxation for (5.1) is

ρ1,k := min 〈ē, y〉
s.t. 〈1, y〉 = 1, L(k)

h̄
(y) = 0,

L(k)
ḡ (y) � 0, Mk(y) � 0, y ∈ R

N
n+1
2k ,

(5.2)
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where k ≥ k0 = �m+1
2 �. The dual optimization problem of (5.2) is

ρ̄1,k := max γ

s.t. ē − γ ∈ I2k(h̄) + Qk(ḡ).
(5.3)

Similarly, we have

ρ̄1,k ≤ ρ1,k ≤ λ̄1, k = k0, k0 + 1, . . . ,

and the sequences{ρ1,k}, {ρ̄1,k} are monotonically increasing. If there exists t ∈ [k0, k] such
that (4.4) on ȳ1,k , an optimal solution of (5.2), is satisfied, then ρ1,k = λ̄1. Furthermore, the
optimal solutions can be extracted, which are in S̄1.

5.2 Computation of S̄i+1

Suppose that S̄i is known. We want to determine the next SOC-complementarity eigenpair.
If it exists, we compute it. Let ε > 0 be a small number such that λ̄i+1 > λ̄i + ε. Consider
the following optimization problem:

λ̄i+1 := min λ

s.t. h̄(λ, z) = 0, ḡ(λ, z) ≥ 0,
λ ≥ λ̄i + ε.

(5.4)

The kth-order Lasserre’s hierarchy of semidefinite relaxation for (5.4) is

ρi+1,k := min 〈ē, y〉
s.t. 〈1, y〉 = 1, L(k)

h̄
(y) = 0,

L(k)
ḡ (y) � 0, Mk(y) � 0,

L(k)
λ−λ̄i−ε

(y) � 0, y ∈ R
N
n+1
2k ,

(5.5)

where k = k0, k0 + 1, . . .. The dual optimization problem of (5.5) is

ρ̄i+1,k := max γ

s.t. ē − γ ∈ I2k(h̄) + Qk(ḡ, λ − λ̄i − ε).
(5.6)

By solving (5.5) sequentially, all global optimizers (λ, z) of (5.4) can be computed. By a
similar way for computing bd S, we can get int S. The choice of M and ε are similar to
Sect. 4.3 with h̄(λ, z) and ḡ(λ, z) instead of h(λ, z) and g(λ, z). Hence we omit the details
here.

5.3 Algorithm for computing interior SOC-complementarity eigenpairs

Algorithm 5.1 For given tensors A,B ∈ Tm(Rn+1), compute all interior SOC-complemen-
tarity eigenpairs as follows:

Input: Choose a general polynomial F and a positive number M. Let k := k0 = �m+1
2 �,

ε0 = 0.05, i = 1, and int S̄ = ∅.
Step 1: Solve (4.9) with h̄, ḡ instead of h, g. If it is infeasible, let k := k0 and go to Step 2.

Otherwise, if an optimizer y1,k is obtained with the rank condition (4.4) being
satisfied, let M := 2M, k := k0 and go to Step 1; else, let k := k + 1 and go to
Step 1;
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Step 2: Solve the kth-order relaxation (5.2). If it is infeasible, then int S̄ = ∅ and stop.
Otherwise, optimal value ρ1,k with an optimizer ȳ1,kcan be computed.

Step 3: If rank condition (4.4) is satisfied, then λ̄1 = ρ1,k and optimal solution set S̄1 of
(5.1) can be obtained. Let int S̄ := int S̄∪ S̄1, k := k0, and go to Step 4. Otherwise,
let k := k + 1 and go to Step 2.

Step 4: Solve problem (4.7) with h̄, ḡ. If τ > λ̄i , let ε := ε/2 and go to step 4. If τ = λ̄i ,
go to Step 5.

Step 5: Solve the relaxation (5.5). If it is infeasible, then S̄i+1 = ∅ and stop. Otherwise,
compute the optimal value ρi+1,k with an optimizer ȳi+1,k . If (4.4) is satisfied with
ŷ = ȳi+1,k |2t for some t ∈ [k0, k], then λ̄i+1 = ρi+1,k and S̄i+1 can be computed.
Let int S̄ := int S̄∪ S̄i+1. Let k := k0, i := i + 1, ε := ε0 and go to Step 4. If such
t does not exist, let k := k + 1, and go to step 5.

Output: Let int S = {(λ, x) | x = (z, 1), (λ, z) ∈ int S̄}\bd S.
The finite convergence of Algorithm 5.1 is presented as follows.

Theorem 5.2 Assume that there are finitelymany interior SOC-complementarity eigenvalues,
then Algorithm 5.1 must terminate after solving finitely many semidefinite relaxations.

6 Numerical reports

In this section, we present numerical experiments for computing SOC-complementarity
eigenvalues. We use the software GloptiPoly 3 [12] and SeDuMi [26] to solve the semidef-
inite relaxation problems. The experiments are implemented in MATLAB R2015 on a Dell
laptop with an Intel Core i5CPU (1.70GHz) and 4GB of RAM. We display four decimal
digits in computational results.

In this section, we use a column vector (λ, x) to denote the SOC-complementarity eigen-
pair. The first entry in (λ, x) ∈ R

n+2 isλ ∈ R, which is the SOC-complementarity eigenvalue,
and the remainder entries constitute the SOC-complementarity eigenvector x . For conve-
nience of notation, we denote the problem studied in [13] as:

K � x ⊥ (λÂxm−1 − B̂xm−1) ∈ K∗,

which can be rewritten as problem SOCTEiCP of this paper with A = −B̂ and B = −Â.

Example 6.1 Consider SOCTEiCP with matrices A, B ∈ T2(R2) given by

A =
(
1 2
1 −2

)

, B =
(
1 1
1 1

)

.

By direct computation, there are no SOC-complementarity eigenpairs.
Algorithm 4.2 presents a numerical certificate to indicate that no boundary SOC-

complementarity eigenpairs exist with 0.654s. Algorithm 5.1 presents a numerical certificate
to indicate that no interior SOC-complementarity eigenpairs exist with 0.181s. However, the
matrix ±B̂ = −A is not strictly SOC-positive, which is assumed to be SOC-positive in
Algorithm SPA proposed in [20] to solve SOCTEiCP in [13]. Hence Algorithm SPA is not
applicable for this example.

Example 6.2 Consider SOCTEiCP with the matrices A, B ∈ T2(R2) given by

A =
(
1 1
3 5

)

, B =
(
2 1
0 2

)

.
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Applying Algorithm 4.2, the boundary SOC-complementarity eigenpairs (λ, x) =
(0.6667,−1.0000, 1.0000)T and (λ, x) = (2.0000, 1.0000, 1.0000)T are computed with
5.313s.

Theunique interior SOC-complementarity eigenpair (λ, x) = (2.0000,−0.3333, 1.0000)T

can be found by Algorithm 5.1. It takes about 1.489s.

Example 6.3 Consider SOCTEiCP with the tensors A,B ∈ T4(R2), whose nonzero entries
are listed below

A1111 = 8, A1221 = 6, A1222 = 9, A2111 = 4, A2112 = 2,
A2222 = 6, B1111 = 1, B1112 = 1, B1222 = 3, B2222 = 2.

By Algorithm 4.2, we get two boundary SOC-complementarity eigenpairs

(λ, x) = (−9.0000,−1.0000, 1.0000)T and (λ, x) = (5.0000, 1.0000, 1.0000)T .

This computation takes about 2.484s.
By Algorithm 5.1, there are two interior SOC-complementarity eigenpairs

(λ, x) = (3.0000, 0.0000, 1.0000)T and (λ, x) = (4.1580, 0.6941, 1.0000)T .

This computation takes about 2.215s.

Example 6.4 [20, Example 5.1] This example deals with SOCTEiCP with two 4th-order
2-dimensional tensors A,B, and all nonzero entries of tensors A and B are listed below

A1111 = 0.8147, A1211 = 0.5164, A2111 = 0.5164, A2211 = 0.9134,
A1112 = 0.4218, A1212 = 0.8540, A2112 = 0.8540, A2212 = 0.9595,
A1121 = 0.4218, A1221 = 0.8540, A2121 = 0.8540, A2221 = 0.9595,
A1122 = 0.6787, A1222 = 0.7504, A2122 = 0.7504, A2222 = 0.3922,

and

B1111 = 1.6324, B1211 = 1.1880, B2111 = 1.1880, B2211 = 1.5469,
B1112 = 1.6557, B1212 = 1.4424, B2112 = 1.4424, B2212 = 1.9340,
B1121 = 1.6557, B1221 = 1.4424, B2121 = 1.4424, B2221 = 1.9340,
B1122 = 1.6555, B1222 = 1.4386, B2122 = 1.4386, B2222 = 1.0318.

Applying Algorithm 4.2, there is a boundary SOC-complementarity eigenpair (λ, x) =
(0.4783, 1.0000, 1.0000)T computed with 1.431s. On the other hand, there is an interior
SOC-complementarity eigenpair (λ, x) = (0.4848, 0.3936, 1.0000)T returned by Algo-
rithm 5.1 with 0.924s.

Example 6.5 Consider SOCTEiCP with the tensors A,B ∈ T5(R3), whose nonzero entries
are listed as

A11111 = 9, A13333 = 3, A21111 = −15, A23333 = 5,
A31111 = 7, A33333 = 7, B11112 = 4, B11233 = 11,
B21233 = 2, B11133 = 6, B31133 = 4, B21133 = 10.

By Algorithm 4.2, there are four boundary SOC-complementarity eigenpairs

(0.3206,−0.8552, 0.5183, 1.0000)T , (1.0413, 0.6999, 0.7142, 1.0000)T ,

(−2.5419, 0.5466,−0.8374, 1.0000)T , (−1.0000,−1.0000, 0.0000, 1.0000)T .

This computation takes about 9.727s. However, there are no interior SOC-complementarity
eigenpairs by Algorithm 5.1 with 2.685s.
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Table 1 Nonzero components of the tensor A for Example 6.6

A1111 = 2, A3111 = 3, A2211 = 3, A1311 = 3, A3311 = 3, A4411 = 2,

A1221 = 2, A2121 = 2, A2321 = 2, A3221 = 2, A1131 = 3, A1331 = 2,

A2231 = 2, A3131 = 2, A3331 = 3, A4431 = 3, A1441 = 3, A3441 = 2,

A4141 = 3, A4341 = 2, A1212 = 2, A2112 = 2, A2312 = 2, A3212 = 2,

A1122 = 2, A1322 = 2, A2222 = 3, A3122 = 2, A3322 = 3, A4422 = 3,

A1232 = 3, A2132 = 3, A2332 = 3, A3232 = 3, A2442 = 3, A4242 = 3,

A1113 = 3, A1313 = 2, A2213 = 2, A3113 = 2, A3313 = 3, A4413 = 3,

A1223 = 3, A2123 = 3, A2323 = 3, A3223 = 3, A1133 = 2, A1333 = 3,

A2233 = 2, A3133 = 3, A3333 = 2, A4433 = 2, A1443 = 2, A3443 = 3,

A4143 = 2, A4343 = 3, A1414 = 3, A3414 = 2, A4114 = 3, A4314 = 2,

A2424 = 3, A4224 = 3, A1434 = 2, A3434 = 3, A4134 = 2, A4334 = 3,

A1144 = 3, A1344 = 3, A2244 = 3, A3144 = 3, A3344 = 2, A4444 = 2,

Table 2 Nonzero components of the tensor B for Example 6.6

B1111 = 1, B1311 = 1, B2211 = 3, B2311 = 1, B2411 = −1, B3111 = 1,

B3211 = 1, B4211 = −1, B4411 = −2, B1121 = 1, B1321 = −1, B1421 = −1,

B2221 = −, B2321 = 1, B3121 = −1, B3221 = 1, B3421 = 1, B4121 = −1,

B4321 = 1, B4421 = −1, B2231 = −2, B3331 = 1, B3431 = 1, B4331 = 1,

B4431 = 1, B1241 = 2, B1441 = 1, B2141 = 2, B2241 = 1, B2341 = 1,

B2441 = 2, B3241 = 1, B4141 = 1, B4241 = 2, B1112 = 1, B1312 = −1,

B1412 = −1, B2212 = −1, B2312 = 1, B3112 = −1, B3212 = 1, B3412 = 1,

B4112 = −1, B4312 = 1, B4412 = −1, B1122 = 1, B1322 = 2, B1422 = 1,

B2222 = 2, B2322 = 1, B2422 = −1, B3122 = 2, B3222 = 1, B3422 = 1,

B4122 = 1, B4222 = −1, B4322 = 1, B4422 = 1, B1432 = 1, B2232 = 1,

B3332 = 2, B4132 = 1, B4432 = 1, B1142 = −2, B1241 = −1, B1342 = 1,

B2142 = −1, B2342 = 1, B3142 = 1, B3242 = 1, B3342 = 1, B3442 = 1,

B4342 = 1, B2213 = −2, B3313 = 1, B3413 = 1, B4313 = 1, B4413 = 1,

B1423 = 1, B2223 = 1, B3323 = 2, B4123 = 1, B4423 = 1, B1133 = −2,

B1233 = 1, B1333 = 1, B2133 = 1, B2233 = −2, B2433 = −1, B3133 = 1,

B3333 = −1, B3433 = 1, B4233 = −1, B4333 = 1, B4433 = −1, B1143 = −2,

B1243 = 1, B1443 = 1, B2143 = 1, B2243 = −2, B4143 = 1, B4443 = −1,

B1214 = 2, B1414 = 1, B2114 = 2, B2214 = 1, B2314 = 1, B2414 = 2,

B3214 = 1, B4114 = 1, B4214 = 2, B1124 = −2, B1224 = −1, B1324 = 1,

B2124 = −1, B2324 = 1, B3124 = 1, B3224 = 1, B3324 = 1, B3424 = 1,

B4324 = 1, B1134 = −2, B1234 = 1, B1434 = 1, B2134 = 1, B2234 = −2,

B4134 = 1, B4434 = −1, B1444 = 1, B2244 = −1, B2444 = −1, B3344 = 1,

B4144 = 1, B4244 = −1, B4444 = −1.

Example 6.6 Consider Example 4.1 in [13] with two 4th-order 4-dimensional tensors A,B
with K = K2 × K2. That is, to find solutions of the following system

K � x ⊥ (λAxm−1 − Bxm−1) ∈ K∗.
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The nonzero entries of tensors A and B are listed in Tables 1 and 2, respectively.
Applying Algorithm SPA in [13] with 10 different initial points generated randomly, we

have the same SOC-complementarity eigenpair

(λ, x) = (0.1613, 0.1221, 0.0388, 0.5433, 0.2699)T .

Note that for any α > 0, α(0.1221, 0.0388, 0.5433, 0.2699)T is an SOC-complementarity
eigenvector. Hence, (1.0000, 0.3176, 4.4498, 2.2109)T is an SOC-complementarity eigen-
vector by letting α = 1

0.1221 .
To solve this problem, we first divide the SOC-complementarity eigenpairs into boundary

SOC-complementarity eigenpairs, boundary-interior SOC-complementarity eigenpairs and
interior SOC-complementarity eigenpairs, respectively. Here, the boundary (interior) SOC-
complementarity eigenpairs mean that the eigenvectors are in the boundary (interior) of
K2×K2. The boundary-interior SOC-complementarity eigenvectors are in (bdK2×intK2)∪
(intK2 × bdK2). To get all SOC-complementarity eigenpairs, four algorithms are proposed,
which are similar to Algorithms 4.2 and 5.1, so we omit the details here. By such four
algorithms, all SOC-complementarity eigenpairs are listed as:

(0.1375, 1.0000, 1.0000, 0.6240,−0.6240)T , (0.2300, 1.0000, 1.0000, 0.5295, 0.5295)T ,

(0.1613, 1.0000, 0.3176, 4.4498, 2.2109)T , (0.2269, 1.0000, 0.4121, 0.4265, 0.0089)T .

Comparing the two results, it is asserted that our SDP relaxation method can get more
SOC-complementarity eigenpairs than SPA.
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