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Abstract
An important part of the well-known iterative closest point algorithm (ICP) is the variational
problem. Several variants of the variational problem are known, such as point-to-point, point-
to-plane, generalized ICP, and normal ICP (NICP). This paper proposes a closed-form exact
solution for orthogonal registration of point clouds based on the generalized point-to-point
ICP algorithm. We use points and normal vectors to align 3D point clouds, while the com-
mon point-to-point approach uses only the coordinates of points. The paper also presents a
closed-form approximate solution to the variational problem of the NICP. In addition, the
paper introduces a regularization approach and proposes reliable algorithms for solving varia-
tional problems using closed-form solutions. The performance of the algorithms is compared
with that of common algorithms for solving variational problems of the ICP algorithm. The
proposed paper is significantly extended version of Makovetskii et al. (CCIS 1090, 217–231,
2019).

Keywords Variational functionals · Global optimization · Exact solution · Closed-form
solution · Iterative closest points (ICP) · Normal ICP (NICP) · Affine transformations ·
Orthogonal transformations · Surface reconstruction · Computer geometry

1 Introduction

Creating a 3D spatial environment for a robot or sensor is based on algorithms for registering
point clouds. Point cloud registration methods have been the subject of research since the
early 1990s, and a wide range of options have been proposed. Aligning two point clouds
means finding either an orthogonal or affine transformation in R3 that maximizes consistent
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overlap between the two clouds. The iterative closest points algorithm (ICP) is the most
common method for aligning point clouds based on exclusively geometric characteristics.
The algorithm is widely used to record data obtained with 3D scanners. The ICP algorithm,
originally proposed by Besl and Mckay [2], Chen and Medioni [3], consists of the following
iteratively applied basic steps:

(1) search for correspondence between the points of two clouds;
(2) minimization of the error metric (variational problem of the ICP algorithm).

The two steps of the ICP algorithm alternate among themselves, that is, the estimation of
the geometric transformation based on the fixed correspondence (step 2) and updating the
correspondences to their closest matches (step 1). The key point of the ICP algorithm [4] is
the search for either an orthogonal or affine transformation, which is the best with respect to
a metric for combining two point clouds with a given correspondence between points.

The variational problem of the ICP algorithm contains the following three basic
components: functional to be minimized; class of geometric transformations; functional
minimization method. The most common types of functionals are presented in different
variants of the ICP; that is, point-to-point [2], point-to-plane [3], generalized ICP [5], and
normal ICP (NICP) [6]. Geometric transformations can belong to the groups of GL(3),
O(3), SO(3) (affine transformations, orthogonal transformations, orthogonal transforma-
tions with positive determinants, respectively) extended by translations. A minimization
method can be either iterative or closed (closed-form solution). A closed-form solution can
be an exact solution to a variational problem or its approximation. Among all iterative meth-
ods, Levenberg-Marquardt, Gauss-Newton, conjugate gradients are most often used. For
example, the variational problem [2] contains the point-to-point functional, the transforma-
tion class of SO(3), and the Gauss – Newton minimization method. Note that the solution
to a variational problem in the class of orthogonal transformations is mathematically more
complicated than in the class of affine transformations, since in the former case it is necessary
to deal with the manifold O(3) (or SO(3)) in R9.

Many different variants of the variational problem have been proposed. In [7] is described
closed form solution for point-to-point affine problem. Closed form solutions of the affine
point-to-plane problem are described in [8,9]. Closed-form solutions to the point-to-point
problem in the class of orthogonal transformations were obtained by Horn [10,11]. In [10],
the solution is based on quaternions and belongs to SO(3). In [11], the transformation matrix
belongs to O(3) and may have negative determinant, and therefore, the ICP algorithm may
not converge. This problem was solved by modifying the Horn’s algorithm for the class of
SO(3) in [12]. More robust ICP algorithms with other functionals called the generalized ICP
[5] and NICP [6] were also proposed. The corresponding variational problems are solved by
iterative conjugate gradients and Gauss-Newton methods.

Typically, the ICP algorithmmonotonically reduces the functional values, but owing to the
problem non-convexity, the algorithm often stops at suboptimal local minima. The accuracy
of the solution depends on the quality of correspondence between source and target point
clouds. Suppose that the target cloud is obtained from the source cloud by a true orthogonal
transformation, and the ideal correspondence between the points of the source and target
clouds is known. In this case, any variational problem finds the true orthogonal transforma-
tion (with obvious conditions for iterative methods). For example, in this case the simplest
point-to-point variational problem (for GL(3) class) [7] finds the true (even orthogonal)
transformation. Note that in real applications, the correspondence between point clouds is
far from ideal. If the source and target clouds are located far from each other, then a common
algorithm of searching for correspondence between clouds matches all points of the source
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cloud with a small subset of the target cloud. In this case the affine variational problem finds
a transformation that strongly distorts the source cloud. Also the bad correspondence signif-
icantly reduces the probability to obtain a good answer for orthogonal variants of variational
problems. Thus, the probability of obtaining an acceptable transformation as a result of the
ICP algorithmwith initial poor correspondence is the comparative criterion for different types
of variational problems.

Experimental comparative analysis of the NICP algorithm, generalized ICP, NDT [13],
and KinFu [14] is presented [6]. The analysis shows that the NICP yields better results and
higher robustness compared to other state-of-the-art methods.

In [1] there is proposed the functional of generalized point-to-point ICP variational prob-
lem and a method to solve it. The proposed paper is significantly extended version of [1].

The proposed paper consists of the two main parts. The first part describes a variational
problem in which information on the coordinates of points and normal vectors of point cloud
is used. We offer a closed-form exact solution to this variational problem. Since the solution
of the variational problem [1] using the method from [11] can have a rotation matrix with
negative determinant, in this paper we propose a closed-form exact solution to the variational
problem in the class of SO(3) using the method from [12]. This variational problem with
regularization is denoted as λ_MH-RICP.

Note that the λ_MH-RICP functional without regularization term coincides with the NICP
functional [6] if all point information matrices are identity matrices, and all normal informa-
tion matrices are diag(λ). To solve the variational problem, the authors [6] use the iterative
Gauss-Newton method based on quaternion parametrization of SO(3), while in this paper
we derive a closed-form exact solution.

In the second part of the paper, we deal with the variational problem with a functional
that coincides with the NICP functional, but for arbitrary information matrices. To solve
the variational problem, a three-stage method is proposed. First, we find a solution to the
variational problem in the class of GL(3). Second, we project the obtained onto the sub-
manifold SO(3) in R9. Third, the translation vector is computed. These three steps offer
a closed-form solution to the variational problem, which approximates the exact solution.
A similar approximation method is used [15] for point-to-plane ICP. This variational prob-
lem with regularization is denoted as Ω_MH-RICP. The Ω_MH-RICP functional (without
regularization term) coincides with NICP functional.

Here we emphasize that the variational problems of Ω_MH-RICP (for the zero value of
the regularization parameter α) and NICP in terms of the three basic components have the
same first and second elements and different third elements.

The aim of the different types of variational problems implementation is increasing a prob-
ability tofind a suitable transformation betweenpoint cloudswith poor initial correspondence.
In the proposed paper we compare the Ω_MH-RICP and NICP variational problems, since
NICP variational problem offers better results than other known methods [6].

An analysis of the ICP algorithm work allows us to formulate the regularized variant of
the ICP algorithm (RICP). We add an additional regularization term with the parameter α

to the functional. The use of the regularization term increases the probability of obtaining
a good result of the ICP algorithm work with poor correspondence in the first steps of the
ICP algorithm. The experimental results show that convergence of the λ_MH-RICP and
Ω_MH-RICP methods is better than the convergence of the λ_MH-ICP and Ω_MH-ICP
methods without regularization respectively (in case of poor correspondence). In such a way
the proposed variant of the ICP variational problem improves the quality of the ICP algorithm
work to solve the global optimization problem.

Note that the proposed approach can be applied to various ICP variational functionals.
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With the help of extensive computer simulation, we show that the proposed algorithms
yield good convergence to a suitable transformation, even when the correspondence of points
is estimated incorrectly at the first iterations.

The paper is organized as follows. In Sect. 2, a closed-form exact solution to the gen-
eralized point-to-point variational problem in the class of SO(3) is presented. In Sect. 3,
we propose a closed-form approximation of the exact solution to the variation problem with
NICP functional. In Sect. 4, computer simulation results are presented and discussed. Sec-
tion 5 summarizes our conclusions.

2 Generalized point-to-point approach

Let P = {p1, . . . , ps} be a source point cloud, and Q = {q1, . . . , qs} be a target point cloud
in R3. Suppose that the relation between points of P and Q is given in such a manner that
for each point pi exists a corresponding point qi . Denote the surfaces constructed from the
clouds P and Q by S(P) and S(Q) respectively; let TP (pi ) and TQ(qi ) be the tangent planes
of S(P) and S(Q) at points pi and qi , respectively.

The ICP algorithm is defined as a geometrical transformation for rigid objects, mapping
P to Q

Rpi + T ,

R =
⎛
⎝
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠ , pi = (pi1 pi2 pi3)

t , qi = (qi1 qi2 qi3)
t , (1)

where R is a rotation (orthogonal) matrix, T is a translation vector, i = 1, . . . , s. Denote by
Jh(R, T ) the following functional:

Jh(R, T ) =
s∑

ı=1

‖ Rpi + T − qi ‖2 . (2)

The point-to-point variational problem is formulated as follows: to find

argmin
R,T

Jh(R, T ). (3)

Let nip and n
i
q be the normal vectors to planes TP (pi ) and TQ(qi ), respectively, i = 1, . . . , s.

Remark 1 Suppose that normal vectors are given. The coordinates of the vectors can be
provided initially with the point clouds or calculated from the local context [6].

Consider the functional Jg(R, T ) as

Jg(R, t) =
s∑

ı=1

‖ Rpi + T − qi ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2, (4)

where λ is a parameter. A the generalized point-to-point variational problem is given as
follows: to find

argmin
R,T

Jg(R, T ). (5)
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Let us define a functional Jrg(R, T ) as

Jrg(R, T ) = α ‖ R − I ‖2

+
s∑

ı=1

‖ Rpi + T − qi ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2, (6)

where α is a regularization parameter, I is the identity matrix. The corresponding variational
problem is looking for

argmin
R,T

Jrg(R, T ). (7)

Remark 2 The introduction of the proposed regularization term can be explained by the
following way. Since the initial steps of the ICP algorithm often show poor correspondence
between point clouds, this can lead to random rotation with large angles of the clouds relative
to each other. In this case, the probability of finding good correspondence between the
clouds for the next steps of the ICP algorithm is low, and the ICP algorithm often stops at
a suboptimal local minimum. Sufficiently large values of the parameter α and the proposed
form of regularization prevent large rotation angles at the first stages of the ICP algorithm.
On the other hand, the use of large values of the regularization parameter α even with a good
correspondence between point clouds often lead to poor results, while the processing time of
the ICP algorithm after the first few steps increases significantly. Therefore, the parameter
value should be reduced after the first steps of the ICP algorithm.

Let us denote versions of the ICP algorithm based on variational problems (5) and (7) as
λ_MH-ICP and λ_MH-RICP, respectively.

2.1 Exclusion of translation vector

Let us apply to all points of the cloud P the following transformation:
⎧⎨
⎩

(p′)i1 = pi1 − 1
s

∑s
ı=1 p

i
1

(p′)i2 = pi2 − 1
s

∑s
ı=1 p

i
2

(p′)i3 = pi3 − 1
s

∑s
ı=1 p

i
3

, (8)

and the corresponding transformation to points of the cloud Q,
⎧⎨
⎩

(q ′)i1 = qi1 − 1
s

∑s
ı=1 q

i
1

(q ′)i2 = qi2 − 1
s

∑s
ı=1 q

i
2

(q ′)i3 = qi3 − 1
s

∑s
ı=1 q

i
3

, (9)

where i = 1, . . . , s. We get new clouds P ′ and Q′ from P and Q by translations. For clouds
P ′ and Q′, the functional (4) takes the form

Jg(R) =
s∑

ı=1

‖ R(p′)i − (q ′)i ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2, (10)

where (p)i and (q ′)i are points of the clouds P ′ and Q′, i = 1, . . . , s. The variational problem
(5) takes the following form: to find

argmin
R

Jg(R). (11)
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The functional (6) and variational problem (7) can be rewritten respectively as

Jrg(R) = α ‖ R − I ‖2 +
s∑

ı=1

‖ R(p′)i − (q ′)i ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2, (12)

to find
argmin

R
Jrg(R). (13)

Remark 3 We will use the notation pi and qi in Sects. 2.2 and 2.3 instead of (p′)i and
(q ′)i , respectively, for simplicity. The original notation (p′)i and (q ′)i will be used again in
Sect. 2.4.

2.2 Reduction of the variational problem

Let us reduce the variational problem (11) to a problem that can be solved by the Horn’s
method [11]. The functional (10) can be rewritten as

Jg(R) =
s∑

ı=1

< Rpi − qi , Rpi − qi > +λ

s∑
ı=1

< Rnip − niq , Rn
i
p − niq >

=
s∑

ı=1

(< Rpi , Rpi > −2 < Rpi , qi > + < qi , qi >)

+λ

s∑
ı=1

(< Rnip, Rn
i
p > −2 < Rnip, n

i
q > + < niq , n

i
q >), (14)

where < ·, · > denotes the inner product. Note that expressions < qi , qi > and < niq , n
i
q >

do not depend on R. Therefore, these expressions do not affect the variational problem (11).
The functional Jg(R) takes the form

Jg(R) =
s∑

ı=1

(< Rpi , Rpi > −2 < Rpi , qi >)

+λ

s∑
ı=1

(< Rnip, Rn
i
p > −2 < Rnip, n

i
q >) + const

=
s∑

ı=1

(< Rt Rpi , pi > −2 < Rpi , qi >)

+λ

s∑
ı=1

(< Rt Rnip, n
i
p > −2 < Rnip, n

i
q >) + const . (15)

Since R is an orthogonal matrix, then Rt R = E . The inner products < pi , pi > and
< nip, n

i
p > do not depend on R. It follows that the functional Jg(R) takes the form

Jg(R) = −2

(
s∑

ı=1

< Rpi , qi > +λ

s∑
ı=1

< Rnip, n
i
q >

)
+ const . (16)
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The variational problem (11) can be rewritten as follows: to find

argmax
R

(
s∑

ı=1

< Rpi , qi > +λ

s∑
ı=1

< Rnip, n
i
q >

)
. (17)

Note that the inner product < Rpi , qi > can be expressed by the matrix trace

< Rpi , qi >= tr(R · (pi (qi )t )). (18)

Denote the matrix pi (qi )t by Mi . It means that

s∑
ı=1

< Rpi , qi >=
s∑

ı=1

tr(R · (pi (qi )t )) =
s∑

ı=1

tr(R · Mi )

= tr

(
s∑

ı=1

(R · Mi )

)
= tr(R ·

s∑
ı=1

Mi ). (19)

Let denote the matrix Dp as

Dp =
s∑

ı=1

Mi . (20)

Then we can write
s∑

ı=1

< Rpi , qi >= tr(R · Dp). (21)

Note that the following condition holds:

s∑
ı=1

< Rpi , qi >= tr(R · Dp) =< R, (Dp)
t >, (22)

where < R, (Dp)
t > denotes the sum of the products of the corresponding matrix elements.

Denote the matrix nip(n
i
q)

t by Mi
n , and let Dn be the following matrix:

Dn =
s∑

ı=1

Mi
n . (23)

In a similar way, we get

s∑
ı=1

< Rnip, n
i
q >= tr(R · Dn) =< R, (Dn)

t > . (24)

The variational problem (17) can be rewritten as follows: to find

argmax
R

(
s∑

ı=1

< Rpi , qi > +λ

s∑
ı=1

< Rnip, n
i
q >

)

= argmax
R

(< R, (Dp)
t > +λ < R, (Dn)

t >). (25)

Let D be the following matrix:

D = (Dp)
t + λ(Dn)

t . (26)
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Then the variational problem (25) takes the following form: to find

argmax
R

< R, D > . (27)

So, the variational problem (5) is reduced to (27). In a similar manner, the variational problem
(7) can be reduced to the following problem: to find

argmax
R

< R, D + α I > . (28)

Remark 4 The solution (27) was obtained [1] using the Horn’s method [11]. The problem
(28) can be solved in a similar way. The disadvantage of this approach is that the solution
belongs to the class of transformations O(3). Next, we obtain a closed-form exact solution
to the variational problem in the class of transformations SO(3) using the method from [12].

2.3 Closed-form solution to the variational problem

In [12] is considered the following variational problem: to find

argmin
R

‖ RP − Q ‖2, (29)

where 3× s matrix P consists of the vector-columns pi , 3× s matrix Q is composed of the
vector-columns qi , i = 1, . . . , s. The variational problem (29) is equivalent to the standard
point-to-point problem after exclusion of the translation vector. The problem (29) has a
solution USV t , where matrices U and V are elements of a singular value decomposition
UDV t of the matrix QPt (suppose that D is a diagonal matrix with non-increasing diagonal
elements), and S is defined as

S =
{
I , i f det(U )det(V ) = 1
diag(1, 1, . . . 1,−1), i f det(U )det(V ) = −1,

(30)

To solve the variational problems (3), (5) and (9), the matrix QPt is replaced by the matrices
(Dp)

t (see (20)), D (see (26)) and (D + α I ), respectively. Solutions to these variational
problems are orthogonal matrices with positive determinants.

2.4 Return from P′ andQ′ to P andQ

Let matrix R∗ be a solution to the variational problem (27). Then R∗ is also a solution to the
variational problem (11)

R∗ = argmin
R

(
s∑

ı=1

‖ R(p′)i − (q ′)i ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2
)

. (31)

Denote by vp and vq the following vectors:

vp =
(

s∑
ı=1

pi1

s∑
ı=1

pi2

s∑
ı=1

pi3

)t

, vq =
(

s∑
ı=1

qi1

s∑
ı=1

qi2

s∑
ı=1

qi3

)t

. (32)
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Rewrite (8) and (9) as

(p′)i = pi − 1

s
vp, (33)

(q ′)i = qi − 1

s
vq . (34)

The functional in (31) can be rewritten by taking into account (33) and (34) as

s∑
ı=1

‖ R(pi − 1

s
vp) − (qi − 1

s
vq) ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2

=
s∑

ı=1

‖ Rpi − qi + 1

s
(vq − Rvp) ‖2 +λ

s∑
ı=1

‖ Rnip − niq ‖2 . (35)

It can be seen that the matrix R∗ minimizes both the left and right sides of the Eq. (35). It
means that the optimal translation vector T∗ is obtained as

T∗ = 1

s
(vq − R∗vp). (36)

The matrix R∗ and the vector T∗ are solutions to the variational problem (5). In the same
way, the vector T∗ for the variational problem (7) can be computed.

3 Closed-form approximation of the exact solution to the NICP
variational problem

Denote by JΩ the following functional:

JΩ(R, T ) = α ‖ R − I ‖2

+
s∑

ı=1

(Rpi + T − qi )tΩ p
i (Rpi + T − qi )

+
s∑

ı=1

(Rnp
i − nqi )

tΩn
i (Rnp

i − nqi ), (37)

where Ω p = {Ω p
1 , . . . Ω

p
s } and Ωn = {Ωn

1 , . . . Ωn
s } are point information and normal

informationmatrices, respectively. Informationmatrices have size of 3×3 and are symmetric.
The informationmatriceswere introduced in [6] to enlarge the basin of convergence of the ICP
algorithm. Let us briefly recall a general method for calculating point and normal information
matrices.

The informationmatrices characterize the surface around a pointqi ∈ Qwith its normal nqi
and curvature σi . To compute the normal, the covariance matrix of the Gaussian distribution
Ni (μi ,Σi ) of all points lying in a sphere of radius r centered at the query point qi , where
the mean μi and the covariance Σi are calculated as follows:

μi = 1

|Vi |
∑

q j∈Vi
q j , (38)

Σi = 1

|Vi |
∑

q j∈Vi
(q j − μi )

t (q j − μi ), (39)
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whereVi is the set of points composing the neighborhoodofqi . The eigenvalue decomposition
of the matrix Σi is calculated as

Σi = �
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠�t , (40)

where λ1, λ2, λ3 are the eigenvalues ofΣi in ascending order,� is the matrix of eigenvectors.
The normal nqi is taken as the smallest eigenvector and, if necessary, reoriented to the observer.
The curvature σi is computed as

σi = λ1

λ1 + λ2 + λ3
. (41)

If the curvature σi is sufficiently small, then the matrix Σi is given as

Σi = �
⎛
⎝

ε 0 0
0 1 0
0 0 1

⎞
⎠�t , (42)

where ε is a small coefficient. The point information matrix Ω
p
i of point qi is defined as

Ω
p
i = (Σi )

−1. (43)

If the curvature σi is small enough, the normal information matrix Ωn
i is set as follows:

Ωn
i = �

⎛
⎝

1
ε
0 0

0 1 0
0 0 1

⎞
⎠ �t , (44)

otherwise, the matrix Ωn
i is equal to the identity matrix.

All informationmatrices are symmetric. Note that the point and normal informationmatri-
ces can be individually selected as symmetric matrices for special point cloud types.

The functional JΩ (37) coincides with the functional (24) from [6] when the parameter
α is equal to zero. To solve the variational problem, the authors [6] use the iterative Gauss-
Newton method based on quaternion parametrization of SO(3), while we derive a closed
form solution to the following variational problem: to find

argmin
R,T

JΩ(R, T ). (45)

The proposed solution is an approximation of the exact solution of the problem (45).

3.1 Functional J in homogeneous coordinates

The functional JΩ(R, T ) in homogeneous coordinates takes the form

JΩ(A) = α ‖ R − I ‖2

+
s∑

ı=1

(Api − qi )tΩhp
i (Api − qi ) +

s∑
ı=1

(Anp
i − nqi )

tΩhn
i (Anp

i − nqi ), (46)
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where

A =

⎛
⎜⎜⎝
r11 r12 r13 T1
r21 r22 r23 T2
r31 r32 r33 T3
0 0 0 1

⎞
⎟⎟⎠ , pi = (pi1 pi2 pi3 1)t , qi = (qi1 qi2 qi3 1)t ,

n p
i = ((n p

i )1 (n p
i )2 (n p

i )3 0)t , nqi = ((nqi )1 (nqi )2 (nqi )3 0)t ,

Ω
hp
i =

⎛
⎜⎜⎝

(Ω
p
i )11 (Ω

p
i )12 (Ω

p
i )13 0

(Ω
p
i )21 (Ω

p
i )22 (Ω

p
i )23 0

(Ω
p
i )31 (Ω

p
i )32 (Ω

p
i )33 0

0 0 0 0

⎞
⎟⎟⎠ ,Ωhn

i =

⎛
⎜⎜⎝

(Ωn
i )11 (Ωn

i )12 (Ωn
i )13 0

(Ωn
i )21 (Ωn

i )22 (Ωn
i )23 0

(Ωn
i )31 (Ωn

i )32 (Ωn
i )33 0

0 0 0 0

⎞
⎟⎟⎠ ,

T = (T1 T2 T3 0)t , i = 1, . . . s.

The matrices Ω
hp
i and Ωhn

i are symmetric, i = 1, . . . s. The matrix R is the 3× 3 submatrix
of the matrix A. The variation problem (45) takes the following form: to find

argmin
A

JΩ(A). (47)

3.2 Gradient of the functional J

Denote by J1(A), J2(A) and J3(A) the following functionals:

J1(A) =
s∑

ı=1

(Api − qi )tΩhp
i (Api − qi ),

J2(A) =
s∑

ı=1

(Anp
i − nqi )

tΩhn
i (Anp

i − nqi ),

J3(A) = α ‖ R − I ‖2 . (48)

Since JΩ(A) = J1(A) + J2(A) + J3(A) then we have ∇ JΩ(A) = ∇ J1(A) + ∇ J2(A) +
∇ J3(A). At first, we consider the gradient ∇ J1(A). The functional J1(A) can be rewritten
as

J1(A) =
s∑

ı=1

(Api − qi )tΩhp
i (Api − qi )

=
s∑

ı=1

(pi )t AtΩ
hp
i Api − 2

s∑
ı=1

(qi )tΩhp
i Api +

s∑
ı=1

(qi )tΩhp
i qi . (49)

Let us look at the functional J1(A + h), where h is a small variation of the function A.

J1(A + h) =
s∑

ı=1

(pi )t (A + h)tΩ
hp
i (A + h)pi

−2
s∑

ı=1

(qi )tΩhp
i (A + h)pi +

s∑
ı=1

(qi )tΩhp
i qi
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=
s∑

ı=1

(pi )t AtΩ
hp
i Api +

s∑
ı=1

(pi )t htΩhp
i Api +

s∑
ı=1

(pi )t htΩhp
i hpi

−2
s∑

ı=1

(qi )tΩhp
i Api − 2

s∑
ı=1

(qi )tΩhp
i hpi +

s∑
ı=1

(qi )tΩhp
i qi . (50)

The difference between J1(A + h) and J1(A) is as follows:

J1(A + h) − J (A) = 2
s∑

ı=1

(pi )t htΩhp
i Api − 2

s∑
ı=1

(qi )tΩhp
i hpi + o(h). (51)

Proposition 1 Let u and v be 4 × 1 columns, M be a 4 × 4 matrix. Then the following
conditions holds:

ut Mv = tr(Mvut ) = tr(vut M) =< vut , Mt > . (52)

Using Proposition 1, the linear part of (51) can be written as

2
s∑

ı=1

(pi )t htΩhp
i Api − 2

s∑
ı=1

(qi )tΩhp
i hpi

= 2
s∑

ı=1

tr(htΩhp
i Api (pi )t ) − 2

s∑
ı=1

tr(hpi (qi )tΩhp
i )

= 2tr

(
s∑

ı=1

htΩhp
i Api (pi )t

)
− 2tr

(
s∑

ı=1

hpi (qi )tΩhp
i

)

= 2tr

(
s∑

ı=1

Ω
hp
i Api (pi )t ht

)
− 2tr

(
s∑

ı=1

Ω
hp
i qi (pi )t ht

)

=< 2
s∑

ı=1

Ω
hp
i Api (pi )t , h > − < 2

s∑
ı=1

Ω
hp
i qi (pi )t , h >

=< 2
s∑

ı=1

Ω
hp
i Api (pi )t − 2

s∑
ı=1

Ω
hp
i qi (pi )t , h > . (53)

We get that the gradient J1(A) is expressed as

∇ J1(A) = 2
s∑

ı=1

Ω
hp
i Api (pi )t − 2

s∑
ı=1

Ω
hp
i qi (pi )t . (54)

In the same way, we can obtain the gradient of the functional J2(A)

∇ J2(A) = 2
s∑

ı=1

Ωhn
i An p

i (n p
i )t − 2

s∑
ı=1

Ω
hp
i nqi (n

p
i )t . (55)

Finally, the gradient of the functional J3(A) is given as

∇ J3(A) = 2α

⎛
⎜⎜⎝
r11 − 1 r12 r13 0
r21 r22 − 1 r23 0
r31 r32 r33 − 1 0
0 0 0 0

⎞
⎟⎟⎠ . (56)
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3.3 Computation of the solution

Let us compute the extremal function of the functional JΩ

∇ JΩ(A) = ∇ J1(A) + ∇ J2(A) + ∇ J3(A) = 0. (57)

Let Pi and Ni be defined as follows:

Pi = pi (pi )t , Ni = n p
i (n p

i )t , (58)

where i = 1, . . . , s. We also define the data matrix M as

M =
s∑

ı=1

Ω
hp
i qi (pi )t −

s∑
ı=1

Ωhn
i nqi (n

p
i )t . (59)

Then the formula (57) can be rewritten as
s∑

ı=1

Ω
hp
i APi +

s∑
ı=1

Ωhn
i ANi + ∇ J3(A) = M . (60)

Let us rewrite the system of linear equations (60) in the matrix form as

BA′ = M ′, (61)

where

M ′ = (M11 + α M12 M13 M14 M21 M22 + α

M23 M24 M31 M32 M33 + α M34)
t ,

A′ = (A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34)
t ,

B is a 12 × 12 matrix. In order to determine the entries of B, we first define

Hklmn =
s∑

ı=1

(Ω
hp
i )kl(P

i )mn, Gklmn =
s∑

ı=1

(Ωhn
i )kl(N

i )mn, (62)

where k = 1, . . . , 3, n = 1, . . . , 4, l = 1, . . . , 3 andm = 1, . . . , 4. Auxiliary 12×12 matrix
B̂ is defined as

B̂4(k−1)+n,4(l−1)+m = Hklmn + Gklmn . (63)

The matrix B is calculated as

B = B̂ + diag(α α α 0 α α α 0 α α α 0) (64)

Proposition 2 The matrix B is symmetric.

Proposition 2 follows from

Hklmn =
s∑

ı=1

(Ω
hp
i )kl(P

i )mn =
s∑

ı=1

(Ω
hp
i )lk(P

i )nm = Hlknm . (65)

Corollary 1 In general, to calculated the matrix B, it is necessary to know 144 elements of
Hklmn. Proposition 2 reduces this number to 78 (the same for Gklmn). Proposition 2 also
helps to numerically solve the linear system (62) using methods with self-conjugate matrices.
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3.4 Projection on SO(3) and recalculation of translation vector

Let Â be a 3× 3 left-upper (affine) submatrix of the matrix A. Let us consider singular value
decompositionUDV t of the matrix Â. The projection R∗ of Â to the manifold SO(3) is the
matrix USV t , where S is given by the formula (30).

The translation vector T∗ is computed as

T∗ = W
s∑

ı=1

Ω
hp
i (qi − R∗ pi ), (66)

where

W =
(

s∑
ı=1

Ω
hp
i

)−1

.

The orthogonal transformation (R∗, T∗) is the proposed approximation of the exact solution
to the variational problem (45).

3.5 Summary of the algorithm

The input data for the algorithm are the point clouds P and Q, the correspondence between
clouds, the point and normal information matrices Ω p and Ωn . The algorithm consists of
the following steps:

(1) represent the functional JΩ(R, t) (37) as the functional JΩ(A) (46) in homogeneous
coordinates;

(2) compute the gradient ∇ JΩ(A) of the functional JΩ(A);
(3) compute extremal matrix A from the equation ∇ JΩ(A) = 0 (57);
(4) extract a left-upper 3 × 3 submatrix Â from the matrix A;
(5) compute orthogonal matrix R∗ as the projection Â to submanifold SO(3) (see detailed

description in Section 3.4);
(6) compute translation vector T∗ by the formula (66).

4 Computer simulation

In this section,with the help of computer simulation,we show theperformanceof the proposed
andNICP [6] algorithms in terms of the following criteria: convergence rate (the frequency of
convergenceof ICPalgorithm to a correct solution for given conditions); total processing time;
processing time for solving a variation problem; number of iterations (for ICP algorithm).
The tested algorithms use the same parameters of the ICP algorithm, with the exception of
the parameters of variational problems. Implementation of the NICP variational problem is
taken from [16]. The same level of parallel optimization of theNICP and proposed algorithms
for software implementations are used. All values of parameters were manually selected for
the best performance of the all tested algorithms.

The experiments are organized as follows. Orthogonal geometric transformation given by
a known matrix is applied to a source point cloud. Source and transformed clouds are input
to a tested ICP algorithm. The ICP algorithm converges if the reconstructed transformation
matrix coincides with the original matrix with a given accuracy.
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The program realization of the NICP variational problem allows to vary the number of
iterations of the Gauss-Newton method. We consider here the variants with one iteration (of
the Gauss-Newton method) λ_NICP_1 and Ω_NICP_1, with 15 iterations (of the Gauss-
Newton method) λ_NICP_15.

We denote by λ_MH-ICP the ICP algorithm variant based on the variation problem (5),
by λ_MH-RICP the ICP variant based on the variational problem (7). The NICP functional
(24) in [6] coincides with functional (4) when all point information matrices are identity and
all normal information matrices are λI , where I is identity matrix

Ω
p
i = I , Ωn

i = λI , (67)

where i = 1, . . . , s. We denote by λ_NICP_1 and λ_NICP_15 the respective variants of
the NICP algorithm with restriction (67), by Ω_NICP_1 the respective variant of the NICP
algorithm with nontrivial information matrices.

We denote byΩ_MH-RICP the ICP algorithmvariant based on the variation problem (45),
by Ω_MH-ICP the ICP variant based on the same variational problem when the parameter α
is equal to zero. When comparing the performance ofΩ_MH-RICP with that ofΩ_NICP_1,
the best information matrices are selected for each algorithm and each 3D model.

4.1 Separate examples

4.1.1 Stanford bunny

3Dmodel of the Stanford bunny [17] consists of 34817 points. The resultant point cloud Q is
obtained from the cloud P by an orthogonal transformation, defined by the following matrix
Atrue:

Atrue =

⎛
⎜⎜⎝

0.554098 0.445902 0.702956 0.986970
0.445902 0.554098 −0.702956 2.070842

−0.702956 0.702956 0.108196 2.958520
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

For both algorithms λ = 0.3. The recovered matrix by the proposed λ_MH-RICP algorithm
is

Aλ_MH−RICP =

⎛
⎜⎜⎝

0.554098 0.445902 0.702956 0.986970
0.445902 0.554098 −0.702956 2.070842

−0.702956 0.702956 0.108196 2.958520
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

The recovered matrix by the λ_NICP_1 algorithm is

Aλ_N ICP_1 =

⎛
⎜⎜⎝
0.326606 0.369834 −0.869799 1.138148
0.384461 0.788708 0.479718 1.539322
0.863434 −0.491083 0.115410 4.719121
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

Figure 1a shows a source cloud P (yellow color) and the resultant cloud Q (green color)
obtained from P by the geometrical transformation Atrue. Figure 1b shows the alignment
result of the clouds with the λ_MH-RICP algorithm. Figure 1c shows alignment result of the
clouds with the λ_NICP_1 algorithm.
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Fig. 1 a Test cloud P (yellow), resultant cloud Q (green); b alignment result of the clouds with λ_MH−RICP
algorithm; c alignment result with λ_NICP_1 algorithm. (Color figure online)

4.1.2 Armadillo

3Dmodel of Armadillo [17] consists of 21259 points. The resultant point cloud Q is obtained
from the cloud P by the orthogonal transformation, defined by an following matrix Atrue:

Atrue =

⎛
⎜⎜⎝

0.589745 −0.410255 0.695623 1.017242
−0.410255 0.589745 0.695623 1.997038
−0.695623 −0.695623 0.179491 3.022741
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

For both algorithms λ = 0.3. The recovered matrix by the proposed λ_MH-RICP algo-
rithm is

Aλ_MH−RICP =

⎛
⎜⎜⎝

0.589745 −0.410255 0.695623 1.017242
−0.410255 0.589745 0.695623 1.997038
−0.695623 −0.695623 0.179490 3.022741
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

The recovered matrix by the λ_NICP_1 algorithm is

Aλ_N ICP_1 =

⎛
⎜⎜⎝

0.805599 0.358720 0.471518 0.325207
0.285274 0.462664 −0.839381 2.300575

−0.519257 0.810717 0.270388 1.718160
0.000000 0.000000 0.000000 1.000000

⎞
⎟⎟⎠ .

Figure 2a shows a source cloud P (yellow color) and the resultant cloud Q (green color)
obtained from P by the geometrical transformation Atrue. Figure 2b shows the alignment
result of the clouds with the λ_MH-RICP algorithm. Figure 2c shows the alignment result
of the clouds with the λ_NICP_1 algorithm.

4.2 Influence of regularization to the performance of the proposed algorithms

The purpose of this section is to study the influence of the proposed regularization on the
performance of different ICP algorithms with poor correspondence between the source and
target point clouds at the first iterations.

We consider here λ_MH-ICP, λ_MH-RICP, Ω_MH-RICP and Ω_MH-ICP algorithms.
For the first five iterations of ICP algorithm with regularization are used the following values
of α: 10000; 5000; 2500; 1250; 625. And for the following iterations, zero values of the
parameter α are used.
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Fig. 2 a Test cloud P (yellow), resultant cloud Q (green); b alignment result of the clouds with λ_MH-RICP
algorithm; c alignment result with λ_NICP_1 algorithm. (Color figure online)

(a) (b)

Fig. 3 a The convergence rate of λ_MH-RICP (blue), λ_MH-ICP (blue dashed line), Ω_MH-RICP (green),
Ω_MH-ICP (green dashed line) algorithms; b the convergence rate of λ_MH-RICP_1, λ_MH-RICP_2,
λ_MH-RICP_3, λ_MH-RICP_4 algorithms (blue lines) and Ω_MH-RICP_1, Ω_MH-RICP_2,
Ω_MH-RICP_3, Ω_MH − RICP_4 algorithms (green lines). (Color figure online)

In this experiment, a 3D model of the Stanford bunny consisting of 1250 points is used.
Note that the point cloud P lies in a centered cube with the edge length of 2. Let us set the
value of the rotation angle.We fix the value of the rotation angle.We take a random, uniformly
distributed direction vector that defines a line containing the origin of the coordinate system.
This line is the axis of rotation at a fixed angle. Also, the components of the translation
vector are a random variable uniformly distributed in the interval [8, 10]. The synthesized
geometric transformation matrix (original matrix) is applied to the source cloud of points
P. The resulting cloud is Q. The tested algorithms are applied to the clouds P and Q. We
say that the ICP algorithm converges to true data if the reconstructed transformation matrix
coincides with the original matrix with accuracy up to three digits after the decimal point.
To guarantee statistically correct results, 1000 trials for each fixed rotation angle are carried
out. The rotation angle varies from 0 to 90 degrees with a step of 5 degrees. Figure 3a shows
the convergence rate of λ_MH-RICP (blue), λ_MH-ICP (blue dashed line), Ω_MH-RICP
(green), Ω_MH-ICP (green dashed line) algorithms.

Remark 5 The convergence rate of the algorithms with regularization (λ_MH-RICP and
Ω_MH-RICP) is much better than that of the corresponding algorithms without regular-
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(a) (b)

Fig. 4 The convergence rate ofλ_MH-ICP_nf, λ_MH-RICP_nf,λ_MH-ICP_n andλ_MH-RICP_n algorithms
in the case of: a Gaussian noise; b impulse noise

ization (λ_MH-ICP and Ω_MH-ICP). Therefore, in further experiments, only the proposed
algorithms with regularization will be used.

Now we study the convergence of the ICP algorithms with regularization for a different
choice of α at the first iterations. Four following variants of choosing the values of α are
tested:

(1) 10000, 5000, 2500, 1250, 625, 0, …, (λ_MH-RICP_1 and Ω_MH-RICP_1);
(2) 10000 for the first ten iterations, 0, …, (λ_MH-RICP_2 and Ω_MH-RICP_2);
(3) 1000000, 1000000

2 , 1000000
4 , 1000000

8 , …, (λ_MH-RICP_3 and Ω_MH-RICP_3);
(4) 1000000 for the first ten iterations, 0, …, (λ_MH-RICP_4 and Ω_MH-RICP_4).

Figure 3b shows the convergence rate of the tested algorithms depending on the rotation
angle between point clouds. Note that the third variant of choosing the values of α yields
the best convergence rate. However, we use further the first variant because it gives suitable
convergence and requires the minimal processing time among the tested algorithms.

Next, we examine the performance of the proposed algorithm with regularization in the
presence of outliers modeled by additive and impulse noise. As the source point cloud, a 3D
model of the Stanford bunny is used (in the original coordinate system, the points lie in a
centered cube with the edge length of 2). Clouds P and Q are independently corrupted noise.
The L2 norm of the residual of the matrices of the true geometric transformation and the
result of the ICP algorithm is calculated. If the norm value is less than the threshold of 0.2,
then we say that the ICP algorithm finds the correct transformation.

First, outliers are modeled by additive Gaussian noise. Each coordinate of each point is
distorted by adding a Gaussian random variable with a zero-mean and a standard deviation
of σ = 0.12.

Second, outliers are modeled by impulse noise. The probability of distortion of a point by
impulse noise is 0.1. Each coordinate of the distorted point is changed by adding a random
variable uniformly distributed in the interval [−0.4; 0.4].

Denote by λ_MH-RICP_nf and λ_MH-ICP_nf the respective algorithms applied to noise-
free clouds. Denote by λ_MH-RICP_n and λ_MH-ICP_n the respective algorithms applied
to noisy clouds. Figure 4a, b show the convergence rate of the tested algorithms in the case
of additive Gaussian noise and impulse noise, respectively.
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(a) (b)

(c) (d)

Fig. 5 The performance of the tested algorithms: a convergence rate of λ_NICP_1 (red), λ_NICP_15 (purple)
and λ_MH-RICP (blue); b total processing time of λ_NICP_1 (red), NICP_15 (purple) and λ_MH-RICP
(blue); c processing time for solving the variational problem of λ_NICP_1 (red), λ_NICP_15 (purple) and
λ_MH-RICP (blue); d number of ICP iterations of λ_NICP_1 (red), λ_NICP_15 (purple) and λ_MH-RICP
(blue). (Color figure online)

One can observe that the algorithm λ_MH-RICP is much robust to outliers that the same
algorithm without regularization λ_MH-ICP.

4.3 Comparison of �_NICP_1 and �_NICP_15 algorithms

Since the performance of the NICP algorithm depends on the number of iterations of the
Gauss-Newton method, in our experiments we compare the performance of the algorithm
with 1 (λ_NICP_1) and 15 (λ_NICP_15) iterations with respect to convergence rate, total
processing time, processing time for solving a variation problem, and number of iterations
(for ICP algorithm). Additionally, the proposed algorithm λ_MH-RICP is also tested. The
value of λ for the tested algorithms is equal to 0.3.

Figure 5 shows the performance of the algorithms with respect to the used criteria.
One can observe that the performance of the λ_NICP_1 algorithm is better in terms of

convergence rate, total running time, processing time for solving a variation problem than that
of the λ_NICP_15 algorithm. So, in further experiments, only the NICP algorithm variants
utilized one iteration of the Gauss-Newton method will be used.
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4.4 Comparison of the proposed algorithms and NICP

The Sect. 4.4 is themain part of the Sect. 4. Nowwe compare the performance of the proposed
algorithms and the λ_NICP_1, Ω_NICP_1 algorithms.

4.4.1 Stanford bunny

The conditions of the experiment are described in the Sect. 4.2.
In this experiment, λ_MH-RICP and Ω_MH-RICP use variable values of the regulariza-

tion parameter α. For the first five iterations of the ICP algorithm the parameter α takes the
following values of: 10000; 5000; 2500; 1250; 625. For the next iterations, zero values of
the parameter are used.

The point and normal information matrices are computed by formulas (43) and (44),
respectively.

If the curvature (formula (41)) is more or equal 0.02 we use diagonal matrices (instead
diagonal matrix in formula (40)) diag(1.5, 1, 1, 0) and diag(0.005, 1, 1, 0) (as normal
information matrices, formula (44)) for Ω_MH-RICP algorithm, diag(1, 1, 1, 0.0) (instead
diagonal matrix in formula (40)) and diag(0.0005, 0.1, 0.1, 0) (as normal informationmatri-
ces, formula (44)) for Ω_NICP_1.

If the curvature is less 0.02 we use diagonal matrices diag(1, 1, 1, 0) (instead diagonal
matrix in formula (42)) and diag(0.1, 1, 1, 0) (instead diagonal matrix in formula (44))
for Ω_MH-RICP algorithm, diag(10, 1, 1, 0) (instead diagonal matrix in formula (42))
and diag(0.1, 0.01, 0.01, 0) (instead diagonal matrix in formula (44)) for Ω_NICP_1. The
parameters of point and normal information matrices were manually selected for best per-
formance for the all considered algorithms.

Figure 6 shows the performance of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP
(blue) and Ω_MH-RICP (green) algorithms for:(a) convergence rate; (b) total processing
time; (c) processing time for solving the variational problem; (d) ICP iterations numbers.

One can observe that the λ_MH-RICP algorithm outperforms the λ_NICP_1 algorithm
with respect all the criteria used, and of the performance of the Ω_MH-RICP algorithm is
better than that of the Ω_NICP_1 algorithm in terms of convergence rate, total processing
time, and processing time for solving a variation problem.

4.4.2 Armadillo

The conditions of the experiment are described in the Sect. 4.2.
In this experiment, λ_MH-RICP and Ω_MH-RICP use variable values of the regulariza-

tion parameter α. For the first five iterations of the ICP algorithm the parameter α takes the
following values of: 10000; 5000; 2500; 1250; 625. For the next iterations, zero values of
the parameter are used.

The point and normal information matrices are computed by formulas (43) and (44),
respectively.

If the curvature (formula (41)) is more or equal 0.02 we use diagonal matrices (instead
diagonal matrix in formula (40)) diag(0.5, 1, 1, 0) and diag(0.005, 1, 1, 0) (as normal infor-
mation matrices, formula (44)) for Ω_MH-RICP algorithm, diag(0.15, 0.1, 0.1, 0) (instead
diagonal matrix in formula (40)) and diag(0.1, 1, 1, 0) (as normal information matrices,
formula (44)) for Ω_NICP_1.

If the curvature is less 0.02 we use diagonal matrices diag(1, 1, 1, 0) (instead diagonal
matrix in formula (42)) and diag(0.1, 1, 1, 0) (instead diagonal matrix in formula (44))
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(a) (b)

(c) (d)

Fig. 6 The performance of the tested algorithms: a convergence rate of λ_NICP_1 (red),Ω_NICP_1 (yellow),
λ_MH-RICP (blue) and Ω_MH-RICP (green); b total processing time of λ_NICP_1 (red), Ω_NICP_1 (yel-
low) , λ_MH-RICP (blue) and Ω_MH-RICP (green); c processing time for solving the variational problem
of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP (blue) and Ω_MH-RICP (green); d number of ICP
iterations of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP (blue) and Ω_MH-RICP (green). (Color
figure online)

for Ω_MH-RICP algorithm, diag(10, 1, 1, 0) (instead diagonal matrix in formula (42))
and diag(0.1, 0.01, 0.01, 0) (instead diagonal matrix in formula (44)) for Ω_NICP_1. The
parameters of point and normal information matrices were manually selected for best per-
formance for the all considered algorithms.

Figure 7 shows the performance of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP
(blue) and Ω_MH-RICP (green) algorithms for:(a) convergence rate; (b) total processing
time; (c) processing time for solving the variational problem; (d) ICP iterations numbers.

One can observe that the λ_MH-RICP algorithm outperforms the λ_NICP_1 algorithm
with respect all the criteria used, and of the performance of the Ω_MH-RICP algorithm is
better than that of the Ω_NICP_1 algorithm in terms of convergence rate, total processing
time, and processing time for solving a variation problem.

Remark 6 The experiments show that the proposed λ_MH-RICP algorithm has a slightly
better convergence rate compared to the λ_NICP_1 algorithm and is significantly faster, and
the proposed Ω_MH-RICP algorithm has a better convergence rate than the Ω_NICP_1
algorithm and also faster than it.

Remark 7 The proposed algorithms have some disadvantages. So the proposed regulariza-
tion increases the processing time of the ICP algorithm. In addition, the Ω_MH-ICP and
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(a) (b)

(c) (d)

Fig. 7 The performance of the tested algorithms: a convergence rate of λ_NICP_1 (red),Ω_NICP_1 (yellow),
λ_MH-RICP (blue) and Ω_MH-RICP (green); b total processing time of λ_NICP_1 (red), Ω_NICP_1 (yel-
low) , λ_MH-RICP (blue) and Ω_MH-RICP (green) algorithms; c processing time for solving the variational
problem of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP (blue) and Ω_MH-RICP (green); d number
of ICP iterations of λ_NICP_1 (red), Ω_NICP_1 (yellow), λ_MH-RICP (blue) and Ω_MH-RICP (green).
(Color figure online)

Ω_MH-RICP algorithms, as well as the Ω_NICP_1 algorithm, are sensitive to the choice of
point and normal information matrices.

5 Conclusion

In this paper, we proposed a regularization approach to 3D point cloud registration. New
variants of the variational problem of the ICP algorithm were formulated. A closed-form
exact solution for orthogonal registration of point clouds based on the generalized point-to-
point ICP algorithm and a closed-form approximate solution to the NICP variational problem
were derived. We also proposed robust ICP algorithms by adding a regularization term to
common variational functionals that are able to find a suitable transformation between point
cloudswith poor correspondence.With the help of extensive computer simulation,we showed
that the proposed algorithms yield good convergence to a suitable transformation, even when
the correspondence of points is estimated incorrectly at the first iterations. The proposed
approach can be applied to various ICP variational functionals.
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