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Abstract
Global optimization of expensive functions has important applications in physical and com-
puter experiments. It is a challenging problem to develop efficient optimization scheme,
because each function evaluation can be costly and the derivative information of the function
is often not available.Wepropose a novel global optimization framework using adaptive radial
basis functions (RBF) based surrogate model via uncertainty quantification. The framework
consists of two iteration steps. It first employs an RBF-based Bayesian surrogate model to
approximate the true function, where the parameters of the RBFs can be adaptively estimated
and updated each time a new point is explored. Then it utilizes a model-guided selection cri-
terion to identify a new point from a candidate set for function evaluation. The selection
criterion adopted here is a sample version of the expected improvement criterion. We con-
duct simulation studies with standard test functions, which show that the proposed method
has some advantages, especially when the true function has many local optima. In addition,
we also propose modified approaches to improve the search performance for identifying
optimal points.

Keywords Expected improvement · Markov chain Monte Carlo · Radial basis functions ·
Sequential design

1 Introduction

In this paper, we consider the problem of global optimization of expensive functions, i.e.,
functionswhich require large computational costs to evaluate. For physical and computational
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experiments, these functions represent the relationship between input and output variables,
and may require days or even weeks to evaluate at a single input setting. One example is
the high-pressure mixing and combustion processes in liquid rocket engines, which requires
numerically solving a large, coupled system of partial differential equations; see Oefelein
and Yang [18]. Even when computation is parallelized over thousands of processing cores,
a comprehensive simulation of a single injector may take months to complete. An important
problem about expensive functions is how to optimize the output/response by choosing
appropriate settings of the input variables. This problem can be challenging for two reasons.
First, it is not feasible to conduct extensive runs of function evaluations to find the optimal
input settings, since each function evaluation is expensive. It is thus desirable to identify
the optimal input settings with as few runs as possible. The second challenge comes from
the complicated nature of the functional relationship. They are usually regarded as “black-
boxes”, because there is no explicit relationship between the input and output. Although
various local optimization methods are available when the derivatives of the functions are
known or can be easily obtained, see Boyd and Vandenberghe [3], such methods are not
applicable in the present scenario.

In the literature, a widely used practice for global optimization of expensive functions is
to sequentially select input settings for function evaluations based on some criterions. The
approach consists of two steps. First, it constructs a surrogate model to approximate the true
function based on all the observed function outputs. The advantage of employing surrogate
model is that it can provide predictions at any input settings with much cheaper computation.
Second, it identifies a new input setting for function evaluation according to some surrogate
model based selection criteria. With this approach, it is feasible to approximate the global
optimizer of the true function via the surrogate model optimization. The commonly used
surrogate models are the kriging models [12,13] and models based on radial basis func-
tions [11,20]. Chen et al. [5,6] proposed to construct the surrogate models via overcomlpete
pre-specified basis functions. In addition, another type of optimization approach is statisti-
cal global optimization which chooses the next point based on a probability improvement
criterion, like P-algorithm [23]. Gutmann [11] and Žilinskas [24] have showed the equiva-
lence of the P-algorithm and the surrogate approach proposed in Gutmann [11] under certain
conditions. For more details along these lines, see a review in Žilinskas [25].

The primary objective of this paper is to propose a novel global optimization framework
for optimizing expensive functions. Our approach is motivated by Regis and Shoemaker [20],
in which they utilize Radial Basis Functions (RBF) to build a deterministic surrogate model
and guide the selection of the next explored point based on the predicted response and some
distance criteria. The rationale of using RBFs is that they can capture the nonlinear trend
of functions. However, the RBFs they used are pre-determined and lack the flexibility of
modeling. Also, it is less efficient to perform function evaluation from their surrogate model,
because they use RBFs in an interpolation way without providing prediction uncertainties.
Although a distance criterion is used to avoid getting trapped at local optima, it does not
incorporate the information in prediction uncertainty for the surrogate models. To make
better use of all information in the data, we propose to construct surrogate model with RBFs
that are chosen adaptively based on the updated outputs, and to select new points based on
surrogate models with quantified uncertainties.

There are other approaches for global optimization of expensive functions in the literature.
Jones et al. [13] propose a global optimization scheme by constructing a surrogate model
with the kriging method. Our approach is different in that they make strong assumptions
on the correlation structure between explored points while ours does not. A detailed review
related to the kriging model in global optimization can be found in Jones [12]. Chen et al. [6]
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propose a global optimization scheme that builds a mean prediction model with linear basis
functions selected from a dictionary of functions, and then imposes a Bayesian structure over
the mean model to quantify the uncertainty of the prediction. Our approach is also different
from Chen et al. [6]. Instead of using a predetermined discrete function dictionary with a
large number of linear functions, we use a moderate number of RBFs that can be adaptively
updated based on observed data.

The paper is organized as follows. In Sect. 2, we give a mathematical formulation of the
global optimization problem, and provide a review of the RBFs. In Sect. 3, we present the
proposed global optimization framework that utilizes adaptive RBF-based Bayesian surro-
gate model. In Sect. 4, we present simulation studies to validate and compare our proposed
method with the methods by Regis and Shoemaker [20] and Jones et al. [13]. A modi-
fication of the proposed method to avoid getting trapped in local optima is presented in
Sect. 5.1. In addition, we study the effect of the grid size which is used as the candidate
points in the proposed method. Concluding remarks and future research directions are given
in Sect. 6.

2 Problem formulation and review of RBFs

Suppose f (x) is an expensive function of interest, where x = (x1, . . . , x p)T ∈ V , and V is
a p-dimensional convex domain in Rp . The objective is to identify an optimal input setting
xopt that maximizes f (x),

xopt = argmax
x∈V f (x). (1)

Because it is not practical to evaluate f (x) over V to search the global maximizer due
to the huge computational cost, a well-established practice is to sequentially select a few
input settings for function evaluation using a two-step strategy. Suppose a set of N function
evaluations {(xi , f (xi ))}Ni=1 are taken. In step 1, a surrogate model is constructed and the
resulting model approximation is denoted by fN (x). Unlike the true function f (x), the
surrogate model is much cheaper to build and evaluate. Therefore it is feasible to predict
function values over all x ∈ V .

In step 2, the next input setting xN+1 is selected for function evaluation via certain criterion
based on the surrogate model from step 1. Steps 1 and 2 iterate until the total computational
budget is met. The best point among all the chosen input settings, x̂opt = argmaxxi f (xi ),
can be treated as an approximation to the true optimal point xopt .

By adopting this two-step strategy, we will present in Sect. 3 our proposed framework
in detail. Note that the surrogate construction may not necessarily be an interpolator of the
observed points, i.e., fN (xi ) �= f (xi ). Because our goal is optimization, the surrogate is
used to predict the location of the optimal points, rather than to approximate the response
with high accuracy [5]. Thus we want to capture the trend of the true response surface
quickly and to serve this purpose, our surrogate model does not have to meet the interpolation
requirement.

In the remaining part of this section, we give a brief review of the RBFs, which will be
used in the proposed framework for the surrogate model construction. In the literature, the
RBF is popularly deployed in applied mathematics and neural networks. See Buhmann [4]
and Bishop [2]. Several commonly used functions are: (1) Gaussian functions: r(x;μ, s) =
exp{−s2||x−μ||2}; (2) generalizedmulti-quadratic functions: r(x;μ, t) = (||x−μ||2+t2)δ

with t > 0, 0 < δ < 1; (3) generalized inverse multi-quadratic functions: r(x;μ, t) =
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(||x − μ||2 + t2)−δ with t > 0, δ > 0; (4) thin plate spline functions: r(x;μ) = ||x −
μ||2 ln(||x−μ||),whereμ is the center of the function, and s and t are pre-specified constants
which vary with the chosen function.

In our work, we will focus on the Gaussian RBFs. The Gaussian RBFs have two types of
parameters: the center parameter μ ∈ V that determines the location of the RBFs, and the
scale parameter s that measures the degree of fluctuation of the function. One advantage of
using the Gaussian RBFs over other basis functions is that it can capture different trends of
response by choosing different centers and scales. For example, a larger s indicates a more
concentrated change in the surface, and vice versa.

3 General global optimization framework

In this section, we propose a global optimization framework that utilizes adaptive RBF-based
surrogate model via uncertainty quantification. In Sect. 3.1, we propose a novel hierarchical
normalmixture Bayesian surrogatemodel with RBFs to approximate the true function, where
themodel coefficients are sparsely represented to avoid over-fitting, and the parameters of the
RBFs are adaptively updated each time a new point is explored. This allows us to predict the
function value at any given candidate point. In Sect. 3.2, we propose amodel-guided selection
criterion and based on the posterior samples, a sample version of the expected improvement
criterion is adopted. A new point can then be selected to identify a more promising area of
global maximizer. A summary of the algorithm and some discussions will be presented in
Sect. 3.3.

3.1 Normal mixture surrogatemodel with RBFs

Suppose we observe N explored points Pexp = {x1, . . . , xN }, and its function values y =
(y1, . . . , yN )T = ( f (x1), . . . , f (xN ))T . Without loss of generality, we assume E(yi ) = 0,
because otherwise we can approximate (yi − ȳ)’s instead of yi ’s, where ȳ is the sample
mean of y1, . . . , yN , i.e., ȳ =∑N

i=1 yi/N . We propose to construct a surrogate model by a
summation of N Gaussian RBFs r(x;μi , si ) = exp{−s2i ||x−μi ||2} and an error term ε(x):

f (x) = fN (x) + ε(x) =
N∑

i=1

βi r(x;μi , si ) + ε(x). (2)

Here, an error term is used tomodel the discrepancy between themodel approximation fN (x)
constructed by the RBFs and the true function f (x). We assume that ε(x) are independent
normal distributions with mean 0 and vairance σ 2. Note that if the center parameters μi ’s
and the scale parameters si ’s are known and fixed, then the surrogate model in (2) is exactly
the same as linear regression.

3.1.1 Prior distributions

Because both μi ’s and si ’s are unknown, the proposed modeling approach can handle highly
nonlinear functions. A uniformprior over a rectangular region is used forμ = (μ1, . . . ,μN ),

μi ∼ Uniform(Ω), i = 1, . . . , N , (3)
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where Ω = ∏p
j=1[min(x j

1:N ),max(x j
1:N ))], whose hypervolume is Vol(Ω). Ω denotes the

smallest hyper-rectangle to cover the current explored points, and it is adaptively changed
with the addition of new explored points, see Andrieu et al. [1]. A gamma prior is used for
the scale parameters s = (s1, . . . , sN )T ,

si ∼ Gamma(as, bs), (4)

where as and bs are common to all i’s.
We also impose a hierarchical structure on the coefficients βi ’s. Define a latent variable

γ = (γ1, . . . , γN )T to indicate whether a certain basis function is important or not: γi = 1
indicates that the i th basis is important, while γi = 0 indicates the opposite. Specifically, we
set βi |(γi = 0) ∼ N(0, τi ) with small τi , and βi |(γi = 1) ∼ N(0,Cτi ) with relatively large
C , where C can be interpreted as a variance ratio. This hierarchical setting is first employed
in the Stochastic Search Variable Selection (SSVS) scheme by George and McCulloch [10]
and is also used for uncertainty quantification studies in Chen et al. [6]. Indeed, it is one type
of the “g-prior” (see Zellner [26]) for avoiding over-fitting. Now the mixture normal prior of
the model coefficient β = (β1, . . . , βN )T can be written as follows:

β|γ ∼ N (0,Σ2
τ ), where Στ = diag(a1τ1, . . . , aN τN ), (5)

with ai = 1 if γi = 0 and = C if γi = 1, and a binomial prior for the latent variable γi ,

P(γi = 0) = pi , P(γi = 1) = 1 − pi , i = 1, . . . , N . (6)

Note that the choice of C plays an important role in the posterior sampling and control the
model complexity. We also impose an inverse-gamma prior for the residual variance σ 2,

σ 2 ∼ IG

(
ν0

2
,
ζ0

2

)

. (7)

By combining (2)–(7) with independent prior assumptions, we obtain the full posterior
distribution of {β,μ, γ , σ 2, s}

p(β,μ, γ , σ 2, s|Pexp, y) ∝ p(y|β,μ, γ , σ 2, s,Pexp) · p(β|γ ,μ) · p(γ ) · p(s) · p(μ) · p(σ 2)

=
[

(2πσ 2)−N/2 exp

{

− 1

2σ 2 (y − D(μ, s) · β)T (y − D(μ, s) · β)

}]
⎡

⎣
N+p∏

i=1

pγi
i (1 − pi )

(1−γi )

⎤

⎦

[

det(2πΣ2
τ )−1/2 exp

{

−1

2
βTΣ−2

τ β

}] N∏

i=1

[
bass

Γ (as)
sas−1
i exp(−bssi )

] [
1Ω(μ1:N )

Vol(Ω)

]

[

(σ 2)−(ν0/2+1) exp

{

− ζ0

2σ 2

}]

, (8)

where the coefficient matrix D(μ, s) is defined as

D(μ, s) =
⎛

⎜
⎝

r(x1;μ1, s1) · · · r(x1;μN , sN )
...

. . .
...

r(xN ;μ1, s1) · · · r(xN ;μN , sN )

⎞

⎟
⎠ ,

and the indicator function 1Ω(μ) = 1 if μ ∈ Ω, = 0 if μ /∈ Ω.
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3.1.2 Posterior sampling

The posterior distribution defined in (8) is computationally intractable. Markov ChainMonte
Carlo (MCMC) method is utilized to solve this problem, see Andrieu et al. [1] and Kout-
sourelakis [14]. That is, we use the MCMC method to generate the posterior samples from
p(β,μ, γ , σ 2, s|Pexp, y). Thus we sequentially sample β, γ , σ 2, μ and s by fixing the other
components and the data {Pexp, y}. Under certain conditions, we can guarantee that these
samples can be treated as the posterior samples of β, γ , σ 2,μ, s. Here the MCMC method
iterates the following two steps:

– Sample β, γ , σ 2 by fixing μ, s, Pexp and y.
– Sample μ and s by fixing β, γ , σ 2, Pexp , and y.

Specifically, we use the Gibbs sampler to generate the posterior samples for the parame-
ters β, γ , σ 2, and the Metropolis–Hasting algorithm to obtain the posterior samples for the
parameters μ and s, because there is no explicit formula for the posterior distributions of μ

and s.
Start with the posterior distributions for β, γ , σ 2. Denote M = (D(μ, s)T D(μ, s)/σ 2 +

Σ−2
τ )−1, and h = MD(μ, s)T y/σ 2. Then, the samples of γ can be generated by

β|μ, σ 2, γ , s,Pexp, y ∼ N(h, M). (9)

The samples of σ 2 can be generated by

σ 2|β,μ, γ , s,Pexp, y ∼ IG

(
ν0 + N

2
,
ζ0 + |y − D(μ, s)β|2

2

)

. (10)

For the samples of γ , it would be simple to sample γi sequentially conditional on the other
components, and γi can be generated by

P(γi = 1|β,μ, s, σ, γ−i ,Pexp, y) = p1/(p1 + p0), (11)

where

p1 = p(β|γi = 1, γ−i ,μ, s)p(γi = 1, γ−i ) ∝ det(Σ∗)−1/2 exp

{

−1

2
βT (Σ∗)−1β

}

(1 − pi )

with Σ∗ = Di+
r , and Di+

r is Στ with γi = 1;

p0 = p(β|γi = 0, γ−i ,μ, s)p(γi = 0, γ−i ) ∝ det(Σ∗)−1/2 exp

{

−1

2
βT (Σ∗)−1β

}

pi

with Σ∗ = Di−
r , and Di−

r is Στ with γi = 0. Here the notation γ−i = (γ1, . . . , γi−1, γi+1,

. . . , γN )T represents the vector of all γ j ’s except γi .
Now we turn to the parameters μ and s. First, consider the sampling procedure for μ.

Instead of directly sampling the vector μ, we suggest sampling μi sequentially from

p(μi |μ−i ,β, s, σ,Pexp, y)

∝ exp

{

− 1

2σ 2 (y − D(μ, s)β)T (y − D(μ, s)β)

}

1Ω(μ1:N ), (12)

where μ−i = (μ1, . . . ,μi−1,μi+1, . . . ,μN ) denotes the vector of all μ j ’s except μi . We
use the Metropolis–Hasting algorithm to generate posterior samples for μi . Specifically, at a
new step (k+1), we set the proposed density to be amixture of two densities, and a temporary
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sample μ∗
i can be obtained from the whole domain Ω with uniform probability, or it can be

a perturbation of the current iteration μ
(k)
i within its local neighborhood, i.e.,

q1(μ
∗
i ) = Uniform(Ω), with probability ω,

and q2(μ
∗
i ) = N (μ

(k)
i , σ 2

μ) with probability 1 − ω. (13)

Then we accept this temporary sample μ∗
i with the acceptance rate

A(μi ,μ
∗
i ) = min{1,

(
exp{−1/(2σ 2)|y − D(μ∗, s)β|2}
exp{−1/(2σ 2)|y − D(μ, s)β|2}

)

1Ω(μ1, . . . ,μ
∗
i , . . . ,μN )}

where μ∗ = (μ1, . . . ,μ
∗
i , . . . ,μN )T .

Similarly, we can use the Metropolis–Hasting algorithm to generate samples of si . At
step (k + 1), we choose a temporary s∗

i as a perturbation of the current sample s(k)
i by the

proposed density

q3(s
∗
i ) = N (s(k)

i , σ 2
s ). (14)

And we accept such sample s∗
i with the acceptance rate

A(si , s
∗
i ) = min

{

1,

(
exp{−1/(2σ 2)|y − D(μ, s∗)β|2}
exp
{−1/(2σ 2)|y − D(μ, s)β|2} · (s∗

i )as−1 exp(−bss∗
i )

sas−1
i exp(−bssi )

)}

where s∗ = (s1, . . . , s∗
i , . . . , sN ).

From (9)–(14),we generate samples for γ ,β, σ,μ, s iteratively based the updated estimate
for the remaining parameters. Then, the Gibbs sequence,

γ (0),β(0), σ (0),μ(0), s(0), . . . , γ (k),β(k), σ (k),μ(k), s(k), . . . , γ (K ),β(K ), σ (K ),μ(K ), s(K ),

can be obtained, where K is the total number of iterations. After discarding the first say 40%
samples, the remaining samples can be treated as the posterior samples of β, γ , σ 2, μ and s
from p(β,μ, γ , σ 2, s|Pexp, y). Thus the posterior sample f (k)

N (x̃) for model approximation
at a candidate explored point x̃ can be calculated by

f (k)
N (x̃) =

N∑

i=1

β
(k)
i r(x̃;μ

(k)
i , s(k)

i ). (15)

Then the function prediction fN (x̃) can then be calculated as the average of f (k)
N (x̃)’s, and

the prediction uncertainties can be calculated as the sample variance of f (k)
N (x̃)’s.

Finally, we note that the mean value of the posterior density of β in (9) is h = ((D(μ, s)T ·
D(μ, s)/σ 2 +Σ−2

τ )−1)D(μ, s)T y/σ 2, which is a biased estimator of β with a nugget value
Σ−2

τ . Hence, this estimate of β can be regarded as a ridge-type regression estimate. It is
deployed to prevent the model coefficients from being too large. Its use can lead to a more
stable surrogate model.

3.1.3 Tuning parameters

A remaining issue in the Bayesian computation is the tuning of the hyper-parameters, which
is critical for the model performance. For the hyper-parameters related to the RBF, we adopt
the settings in Andrieu et al. [1] and Koutsourelakis [14]. Specifically, for the proposed
density of the RBF centers μi in (13), we set σ

2
μ = 0.001. For the prior of the RBF scales si
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in (4), we set as = 2, bs = 0, and for the proposed density of si in (14), we set σ 2
s = 0.5.

For the hyper-parameters related to model coefficients and residuals, we follow the settings
in Chipman et al. [7]. Specifically, for τi , we suggest to set τi = Δy/(3Δx), where Δx =
max(x1:p1:N ) − min(x1:p1:N ), i.e., the largest change in x1:N , and Δy = √

Var(y)/5. For the
prior of the indicator variable γi , we set pi = 0.5, i.e., the probability of selecting a variable
is 50%. For the hyper parameter ν0 and γ0 in (7), we set ν0 = 2, and ν0γ0 to be the 99%
quantile of the inverse gamma prior that is close to

√
Var(y). Consider the variance ratio C .

Usually we choose a large positive value for C , e.g., C ≥ 10. From our experience, we fix
C = 25 in the first simulation example.

3.2 A point selection criterion

In this section, we discuss how to select new explored points based on the uncertainty of the
response prediction for exploring uncertain regions. The ideal selection criterion should
perfectly balance between exploration and exploitation properties to efficiently identify
the optimal points within the given search budget. Here a sample version of the Expected
Improvement criterion is adopted.

The EI criterion, initially proposed by Mockus et al. [16], is used to select points close
to the global maxima based on a chosen surrogate model. Using this criterion, an explored
point is selected to maximize the expected improvement over the best observed response

E(I (x)) = E(max{y − fmax, 0}), (16)

where fmax = max{y1, . . . , yN } is the maximum of the observed model outputs. It is pointed
out in Jones et al. [13] that under the Gaussian assumption of y ∼ N (μ0, s20 ), E(I (x)) has
the following closed form expression:

E(I (x)) = (μ0 − fmax)Φ

(
μ0 − fmax

s0

)

+ s0φ

(
μ0 − fmax

s0

)

. (17)

By examining the terms, we see that the expected improvement is large for those x having
either (i) a predicted value at x that is much larger than the maximum of outputs obtained so
far, i.e., μ0 	 fmax, or (ii) having much uncertainty about the value of y(x), i.e., when s0 is
large.

In our scenario, since the proposed surrogate model does not satisfy the Gaussian assump-
tion, there is no analytical form for y, and thus it is not practical to calculate E(I (x)) directly.
Instead, we calculate the Sampled Expected Improvement (SEI) as suggested in Chipman et
al. [8] and Chen et al. [6], i.e., to estimate E(I (x)) based on the posterior samples of y,

Ê(I (x)) =
M∑

m=1

(max{y(m)(x) − fmax, 0})/M, (18)

where y(m)(x) = f (m)
N (x) is the mth posterior sample by (15), and M is the total number of

posterior samples. Unlike in the Gaussian case, the SEI value in (18) may not be expressed
as a weighted sum of the improvement term and the prediction uncertainty term. From its
definition, only the prediction posterior samples y(m)(x) that are larger than the current best
value, fmax , are taken in the summation. Thus SEI first identifies the possible “improvement”
area, {x|y(m)(x) > fmax for some m}, and then sums over these terms.
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A new explored point xN+1 at step N + 1 is then selected to maximize the SEI criterion
Ê(I (x)),

xN+1 = arg max
x∈V \Pexp

Ê(I (x)), (19)

where Pexp is the current explored point set.

3.3 The proposed algorithm and remarks

In the first part of this section, we will present a summary of the algorithm and the flexible
usage of the proposed adaptive RBF-based global optimization framework. For abbreviation,
we will refer to the proposed method as BaRBF, where “Ba” stands for “Bayesian adaptive”.
In the second part, we will compare our method with the baseline method proposed in Regis
and Shoemaker [20].

One key element of the proposed BaRBF algorithm is to sequentially identify the next
explored points. Since the SEI criterion does not have a closed form, it may not be easy
to determine the next explored point by solving (19). Instead of directly solving (19) over
V \Pexp, we choose a set of candidate points, χN , from V first and then find the next point
as

xN+1 = arg max
x∈χN

Ê(I (x)). (20)

There are two approaches for generating the candidate points.

– Pre-specify a grid over the experimental region, V , and treat the these unexplored grid
points as candidates.

– Randomly and uniformly sample the candidate points from V \Pexp .
For the scenario of pre-specified grid, this idea is quite natural.We simply specify a fixed grid,
χ , overV before implementing theBaRBF, and setχN = χ\Pexp . In practice, the precision of
each variable should be limited and thus we can have the grid point set by setting the grid size
as the variable precision. However, the problem for the grid set is the curse of dimensionality
especially when the dimension optimization problem becomes larger. In addition, to keep a
huge number of grid points in the process would slow down the computational speed. Instead
of the grid point set, we may follow the idea in Regis and Shoemaker [20], i.e., we decide the
number of candidate points before implementing the BaRBF, and then we uniformly sample
the new candidate points from V to form χN at each iteration. In practice, given the current
Pexp , we uniformly and independently sample the candidate points from V and once the
selected points are in Pexp , we would replace the points by re-sampling them again.

Algorithm 1 summarizes the proposed global optimization method. In the beginning, the
initial design is chosen as a space-filling design. In this paper, the maximin Latin hypercube
design [17] is used. Then the main body of Algorithm 1 is to iterate between the two steps
for the surrogate model construction in Sect. 3.1 and the point selection criterion in Sect. 3.2.

Note that the proposed BaRBF can be flexibly used in different scenarios. For example,
when the number of available function evaluations is small to moderate, there may not be
enough observations to estimate all the parameters. In this case, we only need to update some
part of RBF parameters, say the scale parameter s by setting all the scale parameters si ≡ s,
(i = 1, . . . , N ), and need not update the μi parameters. The choice of whether to update all
parameters or part of them can be decided based on the magnitude of the model residuals
at the initial stage. If updating all parameters leads to relative large model residuals, then
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Algorithm 1 Global Optimization Algorithm
1: Choose a small set of initial explored points Pexp = {x1, x2, . . . .xNmin } using a maximin

Latin hypercube design, and evaluate f (xi ) on Pexp
2: for N = Nmin, . . . , Nmax do
3: Construct a Bayesian surrogate model as in Sect. 3.1 based on {(xi , f (xi )), i = 1, . . . , N }
4: Generate the candidate point set, χN .
5: Calculate the SEI in (18), and select a new explored point based on (20).
6: Update Pexp = Pexp ∪ xN+1 and evaluate f (xN+1)
7: end for
8: Return the current best optimal point, x̂opt = argmaxx∈Pexp f (x) and

the corresponding function value, f (x̂opt).

we can fix certain parameters instead. The formulas of the posterior distribution in (8)–(14)
need some minor changes accordingly if certain RBF parameters are fixed. For the above
example, one only needs to set si in Eq. (8) to be the same s, and update only one s in (14),
and does not need to update the μi ’s in (12) and (13).

Now we consider the convergence property of Algorithm 1. Suppose the candidate set
is based on a pre-specified grid. If we have enough resource, then we would be able to
check all grid points and identify the best point over this grid. When we generate candidates
from the uniform distribution over V \Pexp , the convergence result in Theorem 1 of Regis
and Shoemaker [20] is applicable to our situation. In that theorem, there are two important
conditions for the generation of the candidate points. The first one is that the candidate points
are conditionally independent given the current explored points. Since we independently
generate the candidate points over V \Pexp , this condition is satisfied in our approach. The
second one, related to the generation distribution, is that there must be positive probability
such that each candidate point falls within a δ-neighborhood of a point of V . In fact, this
second condition is to ensure that every point has a positive probability to be selected as a
candidate point. FollowingRegis and Shoemaker [20], our second approach does satisfy these
two conditions because we generate candidates uniformly and randomly over V . Therefor,
according to their Theorem 1, under certain conditions for the objective functions, the unique
global optimal point in V can be identified almost surely.

For the remaining part of this section, we will compare our BaRBF with the Global
metric stochastic RBF (G-MSRBF) algorithm proposed by Regis and Shoemaker [20] from
a theoretical perspective. The G-MSRBF method will be regarded as the baseline method
from now on. First we give a brief review. The G-MSRBF employs a surrogate model SN (x)
using RBFs,

SN (x) =
N∑

i=1

λi r(x; xi , s)+p(x), (21)

where p(x) is a polynomial term. The RBF parameters in (21) are pre-specified, i.e., the
RBF centers are set at the explored points xi , and s is pre-calculated at the initial stage of
optimization. Themodel coefficients λi in (21) are estimated by solving a deterministic linear
system of equation Φλ = F, where Φi j = r(xi ; x j , s), F = ( f (x1), . . . , f (xN ))T . And
their point selection criterion

WN (x) = (1 − ωG
N )V R

N (x) + ωG
NV

D
N (x). (22)
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is a weighted average of the scaled response prediction V R
N (x) with

V R
N (x) =

{
(SN (x) − Smin

N )/(Smax
N − Smin

N ) for Smax
N �= Smin

N ,

1 o.w,
(23)

and the maximin distance criterion V D
N (x) with

V D
N (x) = (dN (x) − dmin

N )/(dmax
N − dmin

N ), (24)

where Smax
N = max{SN (x)}, Smin

N = min{SN (x)}, dN (x) = min1≤i≤N ||x − xi ||2, dmin
N =

min dN (x), dmax
N = max dN (x).TheωG

N can take values in {1, 0.8, 0.6, 0.4, 0.2} periodically.
For example, if at time N = 20, ωG

N = 0.8, then at the next time N = 21, ωG
N = 0.6. Then

a new point xN+1 is selected to maximize WN (x), and finally the global maximizer is also
estimated by x̂opt = argmaxi f (xi ).

Although both methods use RBFs, there are two main differences. First, the surrogate
model is different. BaRBF uses a Bayesian surrogate model that provides not only pre-
dictions but also its uncertainties, while the G-MSRBF utilizes a deterministic surrogate
model that only provides predictions. Because our proposed surrogate model is similar to
ridge regression, the approximation of response is more robust and smooth compared to the
interpolation surrogate model in G-MSRBF. The second difference lies in the choice of the
selection criterion for new explored points. In our method, we utilize the expected improve-
ment criterion E(max{y− fmax, 0}),which can be regarded as a soft-thresholding version of
E(y). As previously discussed, thresholding the prediction makes it easier to identify global
optima. In addition, under the Gaussian prediction, EI criterion contains the measure of the
prediction improvement and the model uncertainty. Here the part of the prediction improve-
ment can be treated as exploitation and the uncertainty part is used to explore the search space.
In G-MSRBF, the global exploration is based on the maximin distance criterion, V D

N (x), and
the V R

N (x) is used for local refining. The weighted average of these two criteria is adopted
with pre-specific weight pattern. Simulation studies will be presented in Sects. 4 and 5 to
further understand and compare the empirical performance of the two methods.

4 Simulation study

To assess the performance of BaRBF, we compare it with G-MSRBF, which is regarded as
the baseline method. To make a fair comparison, we center the response first and set the
polynomial term in G-MSRBF p(x) as 0. In Sect. 4.1, the candidate points are fixed as a
pre-specified grid, χ , in the experimental region and both methods will be implemented over
the same grid. Then in Sect. 4.2, both methods are implemented by randomly and uniformly
generating the candidates over the experimental region, V .

In addition to theG-MSRBF,we also consider another global optimization approach based
on Gaussian process surrogate model for comparisons. Jones et al. [13] proposed the efficient
global optimization (EGO) approach by using the Gaussian process for surrogate construc-
tion. EGO starts from an initial point set. After evaluating the response values of the initial
design points, a numerical optimization approach, like genetic algorithm, is used to obtain
the MLE of the parameters in the Gaussian process and then the corresponding surrogate
model is obtained. Since the Gaussian process prediction follows a normal distribution, the
EI criterion in Eq. (17) is used to identify the next explored point over the feasible candidate
point set, χN , and then the surrogate model is updated. Iterate these two steps until a stopping
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Fig. 1 The contour plot of the Branin function on [0, 1]2 with grid size 0.04. The red triangle represents the
global optimum and two red crosses denote the other two local optima. (Color figure online)

criterion is met. Usually the stopping criterion can be the number of explored points or the
maximum value of the EI criterion over the unexplored points.

4.1 Grid candidate set

In this subsection, we demonstrate the performance of the BaRBF with a pre-specified grid
set, and we refer it as grid BaRBF. First we start with a 2D global optimization example,
whose objective function has few local optima. Then we consider another 2D objective
function which is not smooth and has multiple global optima. Finally the higher-dimensional
cases are also illustrated.

4.1.1 2D Branin function

We consider the standard 2D test function “Branin function”, which has been widely used
in the global optimization literature, e.g. Jones et al. [13]. The scaled version of “Branin
function” we use here is defined as follows,

f (x) = −1

51.95
[(x̄2 − 5.1x̄21

4π2 + 5x̄1
π

− 6)2 +
(

10 − 10

8π

)

cos(x̄1) − 44.81], (25)

where x̄1 = 15x1 − 5, x̄2 = 15x2, and x1 ∈ [0, 1], x2 ∈ [0, 1]. To simplify our code, we
further restrict this function on the evenly spaced grid χ = [0, 0.04, . . . , 1]2. The contour
plot of the Branin function over the pre-specified grid points is given in Fig. 1, where there
will be two local maxima and one global maximum on [0.96, 0.16] with the maximum value
1.0473. In BaRBF, we first measure the prediction uncertainties for all grid points in χ and
then identify the next explored point via (19) from the set χ\Pexp .

The objective is to find x that maximizes f (x) in (25) with as few evaluations as possible.
At each iteration of the algorithm, the current optimal point, x̂opt , and its function value
f (x̂opt ) are recorded together with all the explored points. We randomly choose a small set
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of Nmin(= 16) initial explored points using a maximin Latin hypercube design [22]. All
three methods start with the same set of xi ’s. Each time the surrogate model is updated by
incorporating the f value of a new explored point. Then we calculate and update the x̂opt
value. For each algorithm, new explored points are selected and evaluated sequentially until
the total number of explored points reaches Nmax (= Nmin + 30) = 46. This process is
repeated 60 times, and the average performances are reported and compared for the two
methods.

For fair comparison among BaRBF and G-MSRBF, we set the initial sampler of the RBF
parameters in BaRBF to be the same as the fixed RBF parameters in G-MSRBF. Specifically,
we use Algorithm 1 in Fasshauer and Zhang [9] to select an optimal value of s in G-MSRBF
that minimizes a cost function that collects the errors for a sequence of partial fits to the data.
The center parameters μi ’s are set as the explored points xi ’s.

From many simulation trials, we found out that, for the Branin test function, updating
all parameters in BaRBF will lead to relatively large model residuals that do not converge.
This might be caused by the small number of function evaluations. Thus we only update one
scale parameter s with all si ≡ s and fix the center parameter μi ’s at the explored points. We
iterate the MCMC 10,000 times. Also, we discard the first 40% of the samples, and take 1
out of every 5 samples in the remaining 60% of the samples, in order to obtain stable and less
correlated posterior samples for model fitting. In order to implement BaRBF, two important
tuning parameters need to be pre-specified. The first one is the value of C in the coefficient
prior. Here we set C = 25.

In this subsection, we first illustrate the proposed BaRBF with one particular simulation
sample. Figure 2 plots the contours of the surrogate model in BaRBF and the locations of the
explored points using BaRBF with N = 16, 21, 26, 31, 36, 41 for one simulation sample.
Figure 2a shows the initial status of BaRBF. The initial design is a 16-run maximin Latin
hypercube indicated by 16 green squares. The next explored point chosen by the selection
criterion, i.e. the 17th point, is indicated by the black circle in the lower right corner. In
Fig. 2b, the five additional points (17th to 21st) are indicated by the five blue squares.

These five points are divided into three sets, one closer to the global maximum, the other
closer to the other two local maximums. As in Fig. 2a, the next explored point, i.e., the 22nd
point, is indicated by the black circle. In Fig. 2c, all the 21 points from Fig. 2b are indicated
by green squares, the additional five points by blue squares, and the next explored point by
black circle. Then the same symbols are used in Fig. 2d–f to demonstrate the progression of
points for N = 31, 36 and 41. Amazingly, except the initial design points, all the explored
points are located closer to the three maxima, none for exploring bad regions. Finally the
global maximum is identified in point 39 as shown by the black square in Fig. 2f. In summary
these contour plots show that BaRBF efficiently explores the experimental space and quickly
approaches the optimal points.

We report the performance ofBaRBFandG-MSRBFbased on60 replications by randomly
generating the initial LHD designs. The purpose is to see whether BaRBF provides a more
efficient search path to identify the global maximum compared with G-MSRBF, for the
same number of function evaluations. The numerical results are summarized in Table 1. First
BaRBF has the higher mean value, 1.0443, than that of G-MSRBF, 1.0425, and is more stable
because of its smaller standard deviation. Based on the sample quantiles of the optimal values
identified by both approaches, there is a detectable difference at the 5% quantile values. We
found out that for several cases, the best points identified by G-MSRBF are not close to the
true optimal point and after checking the corresponding search processes, G-MSRBF did
not efficiently explore the experimental space by properly choosing the next points. On the
other hand, G-MSRBF performs better than BaRBF for the first quartile Q1. In addition,
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Fig. 2 The contours of surrogate model using grid BaRBF. Each of the six plots corresponds to a surrogate
model with N=16, 21, 26, 31, 36, 41 respectively (explanation of symbols is given in the text)

among the 60 replications, BaRBF can identify the true optimal values 26 times, which is
higher than 20 times for G-MSRBF. Overall BaRBF has a better performance. Here we plot
in Fig. 3 the mean value as well as the 5% and 95% quantile curves of the current optimal
values with respect to the number of iterations for both methods. The mean curves in the two
plots are very similar. More meaningful is the comparison of the two 5% quantile curves.
For G-MSRBF, the curve moves up quickly until N = 13; then it gets stuck (flat) until about
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Table 1 Summary of optimal values obtained by grid BaRBF, G-MSRBF and EGO with 60 replications in
the 2-dimensional experiment with Branin function

Approach 5% Quantile Q1 Median Q3 95% Quantile Mean SD Frequencies
with true
optimal values

BaRBF (SEI) 1.0397 1.0397 1.0464 1.0473 1.0473 1.0448 0.0033 29/60

G-MSRBF 1.0176 1.0438 1.0464 1.0473 1.0473 1.0425 0.0152 20/60

EGO 1.0473 1.0473 1.0473 1.0473 1.0473 1.0473 0.000 60/60

The run size of the initial design is 16, and the optimal value of the Branin function is 1.0473
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Fig. 3 The mean value (solid line) and the 5% and 95% quantiles (dashed line) of current optimal values based
on 60 replications for the example of Branin function. Upper panel: G-MSRBF, lower panel: grid BaRBF
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N = 23. By comparison, the 5% quantile curve for BaRBF moves up quickly until N = 18.
By then, the band between the upper and lower quantile curves is very narrow and continues
to shrink. The corresponding band for G-MSRBF does not shrink even to the end (N = 30).
In fact it remains very wide when N = 26. This figure gives a more informative comparison
than the numerical results in Table 1. It clearly shows the better performance of BaRBF over
G-MSRBF.

When we compare the results with EGO, it seems that EGOworks perfectly in this Branin
example because EGO can quickly identify the global maximum point in each replications.
The possible reason should be that since the Branin function can be treated as a smooth
function, it can be fitted quit well by the Gaussian process model and thus the EI criterion in
EGO can rapidly guide the search process to the target point. For our BaRBF, we do have a
error assumption in the surrogate model and the model fitting may not be as well as Gaussian
process model. In addition, SEI is computed as the sample expectation of the improvement
function without any distributed assumption. Thus if the Gaussian assumption is satisfied, it
is not surprised that EI can be more efficient in getting the global optimal point. In fact, when
we monitor the search process of BaRBF, sometimes it may stay in a local area for a while.
This should be related to that the exploration effect of the SEI criterion does not function
well.

4.1.2 2D Ronkkonen function

In addition, we consider another 2D objective function in Rönkkönen et al. [21], i.e.,

f (x1, x2) = −1

4

2∑

i=1

[cos(4πwi ) + 0.8 cos(8πwi )], (26)

where wi = ∑ni
j=0

(ni
j

)
Pi j (1 − xi )ni− j x j

i for i = 1, 2, n1 = n2 = 4, and P1 =
(0, 0.1, 0.2, 0.5, 1), P2 = (0, 0.5, 0.8, 0.9, 1) and the experimental region is [0, 1]2. This
objective function has been used as a test function in Chipman et al. [8]. Here we also
restrict the function on the evenly spaced grid χ = [0, 0.04, . . . , 1]2. The contour plot of
this Ronkkonen function over the pre-specified grid points is given in Fig. 4, where there are
12 local maximums and 4 global maximal points with the maximum value, 0.4777. Because
of its multiple local and global optimal points, this Ronkkonen function is not as smooth as
the Branin function.

In this example, the initial point sets are the same as those in Sect. 4.1, and the total number
of explored points is set as Nmax = 16+ 30 = 46, i.e., based on 16 initial points, the search
algorithm iterates 30 times by sequentially adding 30 points. Then the best value among the
46 explored points is reported. Here the goal is to identify one of the four global maximum
points. The average performances of BaRBF, G-MSRBF and EGO over 60 replications are
summarized in Table 2.

First, G-MSRBF performs worst in terms of the frequencies of reaching one of the four
global maximum points (see the last column of Table 2). Then we focus on comparing the
performance between BaRBF and EGO. From Table 2, the mean of the best function value
found by BaRBF is 0.4775 with standard deviation 4.6850e−4, while the corresponding
values for EGO are 0.4526 and 0.0344 respectively. We also compute the sample quantiles
of the best values found by both methods. Table 2 shows that BaRBF touches the global
maximum at the 50% sample quantile, while EGO reaches 0.4777 at the 75% quantile. In
addition, for the BaRBF, the frequency of reaching a global optimum is 43/60, while the
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Fig. 4 The contour plot of the Ronkkonen function on [0, 1]2 with grid size 0.04. The red triangle represents
the global optimum and 12 red crosses denote the other two local optima. (Color figure online)

Table 2 Summary of optimal values obtained by BaRBF, G-MSRBF and EGO with 60 replications of the
Ronkkonen function over a pre-spcified grid

Approach 5% Quantile Q1 Median Q3 95% Quantile Mean SD Frequencies
with true
optimal values

BaRBF (SEI) 0.4766 0.4775 0.4777 0.4777 0.4777 0.4775 4.6850e−4 43/60

G-MSRBF 0.3635 0.4407 0.4766 0.4775 0.4777 0.4529 0.0363 11/60

EGO 0.3922 0.4405 0.4766 0.4777 0.4777 0.4526 0.0344 18/60

The run size of the initial design is 16, and the optimal value of the Ronkkonen function is 0.4777

frequency for the EGO is 18/60. The mean value of 60 replicates, and the 5% and 95%
quantile curves of the current optimal values with respect to the number of iterations for
EGO and BaRBF are shown in Fig. 5. The mean curve of the BaRBFmoves up quickly to the
global optimal value, while the curve for EGO moves up more slowly. In addition, the 5%
quantile curve for EGO does not get much improvement before adding 25 explored points,
i.e., N = 16+25 = 41, while the same curve for BaRBF moves up quickly and gets close to
the global optimal value after adding 15 points, i.e., N = 16 + 15 = 31. Another attractive
feature for BaRBF is the extremely low standard deviation (see the SD column), which may
suggest that the BaRBF can perform stably over repeated implementations. In summary, the
BaRBF outperforms the EGO in this example.

Chipman et al. [8] have pointed that when the test function has multiple global optima,
the EI criterion might lead the search process to jump out of the neighborhood of one global
optimum to another one and cannot stick around one global optimum. This may be explained
by the fact that the EI criterion tries to minimize the prediction uncertainties among different
global optima. The 5% quantile curve for EGO in Fig. 5 seems to support this point. For the
BaRBF, by using SEI, it can quickly locate one neighborhood of a global maximum and then
identify the best value. In addition, since this Ronkkonen function has more local optima
than that of the Branin function and is more oscillating, the normality assumption and the
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Fig. 5 The mean value (solid line) and the 5% and 95% quantiles (dashed line) of current optimal values based
on 60 replications, Ronkkonen function. Upper panel: EGO, lower panel: grid BaRBF

interpolation property of the Gaussian process may not give advantages for the surrogate con-
struction. For the BaRBF, the surrogate model consists of additive radial basis functions and
their parameters are simultaneously adjusted via the proposed Bayesian approach. Thus our
surrogate construction approach may be more advantageous for non-smooth test functions.

4.1.3 Simulation studies for three and four dimensions

In addition to these two 2D test functions, we consider 3D and 4D examples to illustrate that
the grid BaRBF can deal with higher dimension problems and also compare its performances
with EGO and G-MSRBF.
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Two test functions are considered. The first one is the 3D Ronkkonen function [21] shown
below,

f (x1, x2, x3) = −1

4

3∑

i=1

[cos(4πwi ) + 0.8 cos(8πwi )], (27)

where wi = ∑ni
j=0

(ni
j

)
Pi j (1 − xi )ni− j x j

i for i = 1, 2, 3, n1 = n2 = 4, and P1 =
(0, 0.1, 0.2, 0.5, 1); P2 = (0, 0.5, 0.8, 0.9, 1); P3 = (0, 0.6, 0.7, 0.9, 1). The second one
is a 4D Hartmann function [19] defined as

f (x1, x2, x3, x4) = − 1

0.839

⎡

⎣1.1 −
4∑

i=1

αi exp

⎛

⎝−
4∑

j=1

Ai j (x j − Pi j )
2

⎞

⎠

⎤

⎦ , (28)

where α = (αi ) = (1.0, 1.2, 3.0, 3.2); A = (Ai j ) =

⎛

⎜
⎜
⎝

10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10

⎞

⎟
⎟
⎠ and

P = (Pi j ) = 10−4

⎛

⎜
⎜
⎝

1312 1696 5569 124
2329 4135 8307 3736
2348 1451 3522 2883
4047 8828 8732 5743

⎞

⎟
⎟
⎠ . The experimental region considered

is [0, 1]d with d = 3 and 4 respectively. According to Rönkkönen et al. [21], there are 53

local maximum points and 27 of them are the global maximum points. For the 4D Hartman
function, there are fewer local optimal points.

The candidate set is based on a pre-specified grid. For the 3D case, we divide the exper-
imental region into (26)3 grid points by setting the grid size as 0.04. For this grid, there is
only one global maximum point (0.32, 0.68, 0.44) with the function value 0.3584. For the
4D case, we divide the experimental region into (21)4 grid points by setting the grid size
as 0.05. The maximum function value over these grid points is 3.1218. To implement the
BaRBF, we follow the same RBF set-up in Sect. 4.1. That is, we set the scale parameter s
with all si ≡ s and fix the center parameterμi ’s at the explored points. For the tuning variable
C , we fix C as 15 and 10 for d = 3 and 4 respectively. In both cases, the number of initial
points and iterations are 50, and the initial points are from a maximim LHD with respect to
the corresponding dimenaionality. Here the performance of the BaRBF is measured by the
maximum function value identified among 100 explored points and is summarized based on
20 replications by independently re-generating the initial design points. For the comparison
purpose, we also implement EGO and G-MSRBF.

Table 3 gives a summary of the maximum values obtained by the three approaches. First,
consider the 3D case. G-MSRBF performs worst in this case because G-MSRBF cannot
identify any true global maximum value within the 20 replications. Between BaRBF and
EGO, BaRBF has better performance in the average maximum function values and the
frequency of reaching the global maximum point, but both approaches share similar values
in the first and third quartiles, Q1 and Q3, and the median value. Because there are few
replications, the maximum value identified by EGO is less than 0.34. A possible reason
should be similar to what was stated in Sect. 4.1.2, namely, the Ronkkonen function contain
too many local optimal points and EGO may jump around different local modes. Finally, the
SD value for BaRBF is much lower than that for the others. This is similar to what we observe
in Table 2 for the 2D case and has a similar implication on the stability of the BaRBF. For this
4-dimensional Hartmann function, BaRBF outperformsG-MSRBF in terms of the frequency,
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Table 3 Summary of maximum values obtained by BaRBF, G-MSRBF and EGO with 20 replications in the
3- and 4-dimensional cases with the grid candidate sets

Function Approach Q1 Median Q3 Mean SD Frequencies
with true
optimal values

3D Ronkkonen fn. BaRBF 0.3578 0.3580 0.3584 0.3581 3.3973e−04 9/20

G-MSRBF 0.3203 0.3362 0.3576 0.3334 0.0234 0/20

EGO 0.3579 0.3580 0.3583 0.3566 0.0048 5/20

4D Hartman function BaRBF 3.1119 3.1218 3.1218 3.0936 0.0746 15/20

G-MSRBF 3.0948 3.1218 3.1218 3.0903 0.0972 13/20

EGO 3.1218 3.1218 3.1218 3.1099 0.0531 19/20

the mean of the optimal values and a smaller standard deviation. As shown in Table 3, for
BaRBF, the middle 50% of values between Q1 and Q3 is extremely tiny and smaller than
that for G-MSRBF. However, EGO has the best performance in this case. We think it should
be related to the target function because this Hartmann function has few optimal points and
thus it favors the EGO approach.

4.2 Uniform candidate points

In this subsection, we demonstrate the performance of the BaRBF with uniformly gener-
ating the candidate set, i.e., grid-free BaRBF. In addition to the four objective functions,
four different benchmark problems for the special session and competition on Single
Objective Real-Parameter Numerical Optimization in 2014 IEEE Congress on Evolution-
ary Computation (CEC) are considered [15]. The corresponding test functions with different
dimensionalities, d , are shown in the following.

– High Conditioned Elliptic Function with d = 2 and 4:

f (x) = −
d∑

i=1

(106)
i−1
d−1 (2 × (xi − 0.5))2.

– Ackley Function with d = 2, 4 and 6:

f (x) = 20 exp

⎛

⎝−0.2

√
√
√
√ 1

d

d∑

i=1

(2 × (xi − 0.5))2

⎞

⎠

exp

(
1

d

d∑

i=1

cos(2π(2 × (xi − 0.5))) − 20 − exp(1)

)

.

– Griewank Function with d = 2, 4 and 6:

f (x) = −
d∑

i=1

100 × (xi − 0.5)2

4000
+

d∏

i=1

cos

(
100 × (xi − 0.5)√

i

)

+ 1.
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– Rastrigin function with d = 8:

f (x) = −10d −
d∑

i=1

[(xi − 0.5) − 10 cos(2π(xi − 0.5))].

Note that, following Liang et al. [15], we have modified these functions by shifting the center
to be (0.5, . . . , 0.5) and re-scaling variables with different constants. For these 9 functions,
when the experimental region is V = [0, 1]d , with d = 2, 3, 4, 6, and 8, the global optimal
point is (0.5, . . . , 0.5) with maximum value 0.Overall there are 13 test functions.

To implement grid-free BaRBF, G-MSRBF and EGO with respect to these test functions,
we need to specify the following parameters. First, when the 2-; 3- and 4-dimensional prob-
lems are considered, the numbers of initial points and iterations are the same as in Sect. 4.1.
For the 6-dimensional cases, we choose 50 initial points from a maximin LHD and iterate
the approach 50 times. For the 8-dimensional case, there are 80 initial points from a max-
imin LHD and 60 iterations. For the grid-free approach, we need to choose certain numbers
of candidates at each iteration. Here we uniformly sample 1000 × d points from V \Pexp.
Consider the tuning parameters in BaRBF. We set C = 15 for the 2-, 6- and 8-dimensional
cases and for the other dimensionalities, C is set as 25. Except for the value of C , the other
parameters are the same as those in Sect. 3.1.3. For the 2D cases, we repeat the experiment
60 times; for the 3D; 4D and 6D cases, the number of the replication is 20. For the 8D case,
we repeat 30 times. In addition, for each replication, we would regenerate the initial points
from a maximin LHD independently. Finally, we collect the best values identified from the
different approaches and summarize them as Tables 4 and 5. Use the result of the 8DRastrigin
function as an illustration. Figure 6 shows the corresponding 5%, 95% quantile curves and
the mean values with respect to the number of iterations. Overall the results suggest that the
proposed grid-free BaRBF does improve the objective function values over the whole search
process; especially in the first few iterations, the improvement is significant. However, the
improvement slows down later. The other cases share similar patterns.

Next we compare numerical results among three methods. Due to the different types of
local optima, we cluster all functions into the three groups as follows.

Bowl-Shaped (Unimodal): 2D and 4D High Conditioned Elliptic Functions;
Few Local Optima: 2D Branin function and 4D Hartman function;
Many Local Optima: 2D, 4D, 6DAcklay functions; 2D, 4D, 6DGriewank functions; 2D,
3D Ronkkonen functions and 8D Rastrigin function.

We summarize the comparisons in the following:
Bowl-Shaped (Unimodal): In the high conditioned elliptic function for 2D and 4D, the

range of response is large. From the the numerical results, BaRBF performs better than EGO
and G-MSRBF, in terms of the quantile values, the mean values and the standard deviations.
The EGO performs worst in the 4-dimensional case.

Few Local Optima: EGO and G-MSRBF outperform BaRBF in both cases. However,
except for the standard deviations, the differences among themean values and quantile values
are small. In both case, EGO performs best in all measures.

Many Local Optima: BaRBF performs better in the cases of 2D Ackley function, 4D
and 6D Griewank functions and 2D and 3D Ronkkonen functions. MSRBF is the best for the
case of the 2D Griewank function. But EGO does better for the 4D and 6D Ackley function
and the 8D Rastrigin function.

Overall, our approach, BaRBF, performs better in 7 out of 13 cases. Based on these
numerical results, we have the following summary remarks:
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Fig. 6 Three lines are the 5% quantile; mean value and 95% quantile of current optimal values obtained by
grid-free BaRBF based on 30 replications for the example of Rastrigin function

– Consider the cases of Branin function; 2D and 3DRonkkonen functions and 4DHartman
function. The performances among the three methods share similar patterns whether
the candidate points are randomly generated from a uniform distribution or based a
pre-specified grid. For the Branin function and 4D Hartman function, EGO is the best
approach. For the 2D and 3D Ronkkonen functions, BaRBF outperforms G-MSRBF and
EGO.

– When the function contains few local optimal points, EGO can exploit its advantages
due to its surrogate fitting.

– Based on our numerical results, our sequential approach would gear toward “exploita-
tion”. Thus we can do well for the cases with multiple local optimal points. Because part
of the EI criterion is to select the next explored point to minimize the prediction variance
of the surrogate model, it can be problematic for EGO when the objective function has
several local optima. Instead of focusing on the search for a global optimal point, it can
move around several local optimal points. A similar point was observed in Chipman et
al. [8].

– A possible reason why EGO performs well for the 4D and 6D Ackley function is that
there are not many local optimal points when we consider larger dimensionality.

– Based on the numerical results, G-MSRBF is usually the 2nd or 3rd best among the
three method. For the cases of few local optima and many local optima, G-MSRBF share
similar performances with that of EGO. However, G-MSRBF does not do well for the
unimodal cases. This may be due to the choice of its selection criterion.

5 Discussions

In this session, several issues are studied. First we modify the proposed algorithm by adding
a step to force the search process to jump out from a local optimal area. Then we study the
effects of grid size on the performance of the proposed method when we choose the grid
points as the candidate point set.
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5.1 Amodified version of BaRBF

From tracing the search process of the BaRBF in the Branin function example in Sect. 4.1,
we found out that sometimes the BaRBF gets stuck in a local area and cannot leave the
area for a while. In fact, even for the uniform candidates, the BaRBF can still get stuck in
a local area. To overcome this potential weakness, we have the following modification. To
jump out of this local area, we add an additional step, called the escape step, by monitoring
the search process of the current best value. That is, we record the number of consecutive
non-improvement iterations, i.e., iterations for which the current best function value cannot
get improved from the new explored point. Denote this number by Cnon . Once Cnon exceeds
a pre-specified number, MI , it indicates that the BaRBF is stuck in a local area. Instead of
continuing the search, we add some additional points to explore the experiment region. The
additional point is chosen based on the maximin-distance criterion in the region. That is,
given the current explored points, we find the point such that the union set of this point with
the current explored points has the maximal value of the minimal distance between any two
points in this union set. The purpose is to put additional points in the unexplored area as
far away as possible from the existing points. We continue adding points until we obtain a
better function value or until we add MT points. Then we will return to the original search
procedure. A similar idea has been adopted in Regis and Shoemaker [20] to detect if the
search algorithm converges to a local optimum. We refer to this modification as M-BaRBF.

We implement the M-BaRBF for the Branin function by setting MI = MT = 3 by taking
the pre-specified grid as the candidates, which is the same as shown in Sect. 4.1. For the same
initial points sets and other tuning parameters, the average performance of the 60 replicates
forM-BaRBF is shown in Table 6. Compare with the results for BaRBF in Table 1. Except for
the 5% sample quantile value, the M-BaRBF performs better in the mean value and median
value. In addition, the frequency to reach the global optimum is 38/60 which is much higher
than 29/60 for the BaRBF. The Q1 value for M-BaRBF is significantly higher than that for
BaRBF and the median value touches the global maximum of the Branin function.

5.2 The effects of the grid size

In the BaRBF, when we want to choose the next explored point from a grid set, we need
to pre-specify the grid size. This size may be chosen based on the prior knowledge. In the
numerical examples in Sect. 4.1, the grid size is fixed as 0.04 or 0.05. Supposewe can consider
different grid sizes for a given optimization problem. We will illustrate the effects of the grid
sizes on the performance.

We revisit the 2D Branin function example in Sect. 4.1. Instead of setting the grid size as
0.04, we choose the finer size 0.02 and divide the region into (51)2 grid points which still
cover the original grid, [0, 0.04, . . . , 1]2. Based on this finer grid, there are still two local
maxima and the global optimal point is located at [0.96, 0.16]. Since the number of grid
points is now about four times that of the original, we take more iterations, 4 × 30 = 120,
for the proposed BaRBF. Then based on the same initial points and tuning parameters, the
results with 60 replications are summarized in Table 7. In this table, in addition to the results
with 120 iterations, we also report the results with 30 iterations for comparison purpose.

Compare the performances of BaRBF and BaRBF(120) in Tables 1 and 7 respectively.
First, the BaRBF(120) is implemented over the finer grid and it has higher frequency, 40/60,
to reach the global optimal point. In addition, the 5%, 25% quantiles and the median value
of the best solutions of BaRBF(120) are 1.0471, 1.0471 and 1.0473 respectively which are
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significantly higher than the corresponding values shown in Table 1. Obviously BaRBF(120)
has the higher mean value 1.0472 and a smaller standard deviation. This may be related to the
fact that there are more candidate points and larger number of iterations. Thus BaRBF can
identify better function values due to finer grid and can still explore the experimental space
because of a larger number of iterations. To support this guess, we also report the summary
of the BaRBF with finer grid and 30 iterations, denoted by BaRBF(30). The corresponding
5%, 25% sample quantiles and the median value are still better than the corresponding values
shown in Table 1. But the frequency for obtaining the global optimal point is only 17/60. It
means that 30 iterations may not be large enough for BaRBF to explore the whole region and
the search process may get stuck in some local areas. Thus we need to have more iterations to
increase the probability to jump out of these local areas. Overall we can conclude that when
we have a finer grid, a larger number of iterations should be necessary.

6 Conclusion and future work

We have proposed a global optimization framework that utilizes an adaptive RBF-based
Bayesian surrogate model to approximate the true function, and to guide the selection of new
points for function evaluation. There is novelty in both steps of the strategy. First, we use
a hierarchical normal mixture surrogate model, where the parameters in the RBFs can be
automatically updated to best approximate the true function. Second, the sample EI criterion
is employed as a selection criterion. We have conducted some extensive numerical studies on
standard test functions. The results demonstrate that the proposed BaRBF is more efficient
and stable for searching the global maximizer compared with the G-MSRBF. For the com-
parison between the EGO and the BaRBF, their performance depends on the characteristics
of the true objective functions. For example, when the true objective function has many local
optimal points, like the 2D and 3D Ronkkonen functions, the BaRBF outperforms the EGO.
Otherwise, the EGO perform better.

There are some directions for future research. First, the point selection criterion is a key
element of BaRBF. A good selection criterion is to balance the trade-off between exploitation
and exploration. Currently the Sampled EI criterion is adopted in the BaRBF. When the
Gaussian prediction assumption is held, the EI criterion is a weighted sum of the prediction
improvement andpredictionvariationwhich canbe treated as away tobalance the exploitation
and exploration. However, in the BaRBF, we do not have the distribution assumption and
thus how SEI to balance these two properties is uncertain. Based on the numerical results
in two 2D functions, our SEI criterion tends to have the exploitation property but less effect
related to the exploration, because for the smooth Branin function, BaRBF may be stuck in a
local area, but BaRBF can quickly identify the global maximum close to the explored points
in the example of Ronkkonen function. Thus one possibility is to add the prediction variation
measurement, i.e., to quantify the prediction uncertainties by the 95% confidence interval
bandwidth of fN (x):

C I B( fN (x)) = UC I ( fN (x)) − LC I ( fN (x)), (29)

where UC I ( fN (x)), LC I ( fN (x)) are the upper CI and lower CI calculated as the 97.5%
and 2.5% quantiles of the posterior samples f (k)

N (x). However, the problem should be how
to integrate the SEI and CIB together.

Another issue is how to tune the proper parameters for BaRBF, especially the value of
C . Revisit the Branin function example in Sect. 4.1. We did test the BaRBF with different
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values of C like 5, 25, 100 and 150 by fixing the other parameters as done in Sect. 3.1.3.
Overall, the performances of the optimal values are similar when C > 5. This supports our
suggestion to set C ≥ 10 and shows that the choice of C may not be too sensitive for the
BaRBF. Of course, to identify the “best” C value is still problem-dependent. In addition, one
future work is to have a data-driven tuning procedure for hyper-parameters in BaRBF. The
tuning procedure suggested in Chen et al. [6] might serve as a starting point.

For the grid version of BaRBF, to identify the true optimal point, an adaptive grid BaRBF
method can be considered as follows. At each iteration, we refine the current grid locally
based on the hot spot areas identified from the surrogate surface, and then re-run grid BaRBF
in these local areas independently. Take the Branin function example in Fig. 2 for illustration.
In Fig. 2f, we can identify three hot spot areas. Then we can choose three smaller disjoint
regions with finer grid to cover these three areas, and then individually implement BaRBF
for each region. We can continue this procedure until the grid size in each region is small
enough.

In this paper, grid-free BaRBF searches the whole experimental region V based on the
surrogate model and then generates the candidates over V based on uniform distributed
points. In some sense, the proposed approach can be treated as a global search method. In
fact, Regis and Shoemaker [20] proposed a local MSRBF by sampling the candidates from
a d-dimensional normal distribution centered at the current best point with a small variance.
In order to cover the whole experimental region, local MSRBF can restart again and again
until a stopping criterion is met. This approach is called the Multistart Local MSRBF (ML-
MSRBF). In a similar fashion, the BaRBF can be modified accordingly. We can treat the
area around the current best value as the local hot spot and restart the grid-free BaRBF by
choosing candidates from a normal distribution centered at the best point in this local hot
spot with a certain variance. After some number of iterations, we may identify another best
point and restart the grid-free BaRBF again. Repeat this procedure until a stopping criterion
is met. We leave it as a future work.
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