
Journal of Global Optimization (2021) 81:203–231
https://doi.org/10.1007/s10898-020-00912-0

Surrogate optimization of deep neural networks for
groundwater predictions

Juliane Müller1 · Jangho Park1 · Reetik Sahu1 · Charuleka Varadharajan2 ·
Bhavna Arora2 · Boris Faybishenko2 · Deborah Agarwal1

Received: 27 August 2019 / Accepted: 25 April 2020 / Published online: 26 May 2020
© This is a U.S. government work and its text is not subject to copyright protection in the United States; however,
its text may be subject to foreign copyright protection 2020

Abstract
Sustainable management of groundwater resources under changing climatic conditions
require an application of reliable and accurate predictions of groundwater levels.Mechanistic
multi-scale, multi-physics simulation models are often too hard to use for this purpose, espe-
cially for groundwater managers who do not have access to the complex compute resources
and data. Therefore, we analyzed the applicability and performance of four modern deep
learning computational models for predictions of groundwater levels. We compare three
methods for optimizing the models’ hyperparameters, including two surrogate model-based
algorithms and a random sampling method. The models were tested using predictions of
the groundwater level in Butte County, California, USA, taking into account the temporal
variability of streamflow, precipitation, and ambient temperature. Our numerical study shows
that the optimization of the hyperparameters can lead to reasonably accurate performance
of all models (root mean squared errors of groundwater predictions of 2 meters or less), but
the “simplest” network, namely a multilayer perceptron (MLP) performs overall better for
learning and predicting groundwater data than the more advanced long short-termmemory or
convolutional neural networks in terms of prediction accuracy and time-to-solution, making
the MLP a suitable candidate for groundwater prediction.

Keywords Hyperparameter optimization · Machine learning · Derivative-free
optimization · Groundwater prediction · Surrogate models

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10898-020-
00912-0) contains supplementary material, which is available to authorized users.

B Juliane Müller
JulianeMueller@lbl.gov

1 Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd,
Berkeley, CA 94720, USA

2 Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd,
Berkeley, CA 94720, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00912-0&domain=pdf
http://orcid.org/0000-0001-8627-1992
https://doi.org/10.1007/s10898-020-00912-0
https://doi.org/10.1007/s10898-020-00912-0


204 Journal of Global Optimization (2021) 81:203–231

1 Introduction

The massive amount of data obtained from field observations and computer simulations has
resulted in heightening an interest in the application of machine learning (ML) models and
artificial intelligence to interpret observational data, detect patterns, and derive operational
decisions related tomanagement of water resources. Although scientists have been exploiting
ML tools for image recognition [53], development of autonomous vehicles [47], inferring
physical and chemical phenomena [77], and many more, their application for hydrological
predictions is still limited.

Selecting an appropriate ML model is a challenging problem and the model architecture
needs to be designed with an optimal set of hyperparameters such as the number of hidden
layers and nodes per layer in deep learning models. Once these hyperparameters have been
set, a very large-scale global optimization problemhas to be solved inwhichwefit the learning
model to the data by optimizing the network’s weights. Stochastic optimizationmethods such
as stochastic gradient descent [15,76] or the ADAM optimizer [44] have been successfully
used for this task. In practice, the hyperparameters are often tuned “by hand” [69,91], i.e.,
hyperparameters are chosen, perhaps, at random or based on previous experience, and then
theMLmodel’s weights are optimized. One of the drawbacks of this approach is that training
the model can be computationally expensive and, depending on the dataset, may require from
a few minutes to several hours of compute time, and thus, the final hyperparameters obtained
with this approach are usually not optimal.

To date, only a few systematic approaches have been developed to automate HPO in
learning models. This includes the widely-used random and grid search approaches [10].
However, the grid search does not scale well with the number of hyperparameters in the
model. Ilievski et al. [39] use a deterministic surrogate model algorithm based on radial
basis functions to tune the hyperparameters of deep neural networks. The authors show
the performance of the method on image data only, and it is unclear if the results can be
generalized to time series data. Snoek et al. [80] developed a Gaussian process (GP) based
algorithm for HPO, and the authors investigate how the choice of the GP kernel and the
GP’s own hyperparameters can influence the performance of the ML model. Bergstra [11]
used Bayesian methods for HPO. Bayesian optimization has also been used by [45] to train
support vector machines and convolutional neural networks (CNNs) for large data sets. The
authors train their learning model on a subset of the data in order to decrease the amount of
required training time. The developers of Auto-Keras [40] also used Bayesian optimization
with a new type of kernel for the GP model, and a new acquisition function that enables
the optimization of network morphism. The disadvantages of Bayesian optimization and
GPs, in general, are the underlying assumptions that are made regarding the distributions
of the errors and the covariance structure, which is usually not available a priori. Moreover,
GPs do not scale very well with the number of observations because optimizing the GP’s
own hyperparameters becomes computationally expensive. Another approach to HPO is the
use of genetic algorithms. For example, the Multinode Evolutionary Neural Networks for
Deep Learning [90] tool uses a genetic algorithm and support vector machines for tuning
the hyperparameters of CNNs. Evolutionary algorithms are known to require hundreds to
thousands of function evaluations to find a solution, which is not always feasible to do.
The authors of HyperNOMAD [48] extended the NOMAD algorithm [51] to automatically
optimize the hyperparameters and the learning process of deep neural networks using the
mesh adaptive direct search algorithm. The authors show the performance of HyperNOMAD
on image data. Finally, surrogate models have been used for the automated HPO of deep

123



Journal of Global Optimization (2021) 81:203–231 205

learning models by [9]. Their strategy is based on exploiting high performance computers
and asynchronous computations to evaluate a large number of model architectures.

In this article, we focus on the problem of ML model selection and hyperparameter
optimization (HPO) for a pressing application problem of predicting daily groundwater levels
in California (CA), United States, for groundwater wells that are affected by streamflow and
climatic changes. Due to the non-stationary nature of the groundwater levels, traditional
time series forecasting like ARIMA and regressionmethods are not suitable. We analyze the
performance of a long short-term memory recurrent neural network (LSTM), a multilayer
perceptron (MLP), a simple recurrent neural network (RNN), and a convolutional neural net
(CNN) because they represent themost widely used deep learningmodels and their suitability
for hydrological timeseries data has not been studied thoroughly. We compare the models
based on their prediction accuracy and the time it takes to find the best hyperparameters for
each model.

In order to find the best hyperparameters, we pose the HPO problem as a bilevel black-box
optimization problem. The upper level problem objective function, the model performance,
is not given in closed form as it requires solving a computationally expensive optimization
lower level problem, the model fitting problem. The goal is to find the best hyperparameters
(upper-level variables) with as few calls to the lower level problem as possible. We solve
this problem by using two types of adaptive, derivative-free surrogate model algorithms,
namely one based on radial basis functions (RBFs) and one based on GPs. We compare the
surrogate model approaches for HPO to the widely used method of randomly sampling the
hyperparameter space.We demonstrate the application of the surrogate model approaches for
a groundwater prediction application. Here, we consider two cases: one, in which we use a
single groundwater observation well, and the second, in which we use multiple groundwater
observation wells for model training and predictions.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the mathe-
matical problem description of HPO. We describe the details of the surrogate model based
optimization algorithms in Sect. 3. In Sect. 4, we briefly review the learning models we use in
our numerical experiments. In Sect. 5, we provide the details of the groundwater prediction
problem, and we describe the setup and the results of our numerical experiments. Finally,
Sect. 6 concludes the paper and outlines future research directions. Supplemental materials
contain additional data and results of numerical experiments.

2 Mathematical problem description of hyperparameter optimization

The problem of finding the best parameters of a learning model can be stated as a bilevel
optimization problem:

min
θ,w∗ �(θ ,w∗;Dval) (1)

s.t. θ ∈ Ω (2)

w∗ ∈ arg min
w∈W L(w; θ ,Dtrain). (3)

Here, we divide the datasetD into training dataDtrain and validation dataDval. At the upper
level, we optimize the d hyperparameters (model architecture), θ = [θ(1), . . . , θ (d)]T using
the validation dataDval [Eqs. (1) and (2)]. At the lower level, we fit the model to the training
data Dtrain by determining the optimal weights w∗ given the current network architecture θ

[Eq. (3)]. Note that there may be more than one vector w∗ that solve problem (3) for a given

123



206 Journal of Global Optimization (2021) 81:203–231

network architecture, however the python package we use to solve this lower level problem
in our implementation returns only a single solution.

The set Ω is modeled as a discrete finite set

Ω =
d∏

i=1

Ii (4)

where Ii denotes a discrete set of values that can be assumed by parameter θ(i). The domain
W over which the weights are optimized is continuous. We use the notation L(w; θ ,Dtrain)

in (3) to indicate that we optimize over the parameters w given a set of parameters θ and the
training data set Dtrain.

Our assumption that all hyperparameters can only assume a limited number of values
is motivated by practical considerations. Some parameters, such as the number of net-
work layers can only be integers. Other parameters, such as the dropout rate can range
between 0 and 1. However, in practice, only a finite number of options is considered for
all hyperparameters due to limited resources and an assumption that very small changes in
these hyperparameters are not likely to affect the performance of the learning model signif-
icantly.

The loss functions � and L in Eqs. (1) and (3) may be the same, for example, a root mean
squared error between the data (actual value) and the fitted model (estimated values), but
they may also be different depending on the goal of the analysis. For example, the upper
level function could also include a regularization term to encourage model simplicity or low
training and prediction times. In order to obtain the objective function value �(θ ,w∗;Dval)

for a certain architecture θ at the upper level, we have to solve the fitting problem (3) at the
lower level. The lower level problem is usually a difficult large-scale global optimization
problem and stochastic optimizers are commonly used to solve it. Due to the stochasticity of
the optimization method, solving problem (3) twice for the same hyperparameters but with
different random number seeds will in general lead to two different solutions. Therefore,
the upper level problem can be considered as a stochastic optimization problem. In order to
obtain a good estimate of � for a given θ , the lower level problem should be solved several
times, and thus instead of minimizing � at the upper level, we minimize its expected value
Eζ [�(θ ,w∗(ζ );Dval)] where ζ is a random variable that encodes the randomness due to the
lower level optimizer. Depending on the application, it might also be appropriate to minimize
the worst case loss. Thus, the optimal solution w∗ as well as the best hyperparameter choice
θ∗ depend on ζ .

Solving the lower level optimization problem is in general time-consuming and, depending
on the network architecture (defined by θ ), may require many minutes to hours (a large
number of layers, nodes, and epochs lead to long compute times at the lower level). This
compute time requirement restricts how many times the lower level problem can be solved
for each hyperparameter set in order to obtain statistically significant point estimates of the
expectation value.

Due to the problem structure described above, there is no algebraic description of the
upper level � available (black-box, see, e.g., [7] for a discussion of black-box optimization)
and neither is gradient information. The loss function is generally multimodal with several
local and global optima. Therefore, HPO requires an efficient, gradient-free, optimization
method that can search both locally and globally in order to be able to find good solutions,
yet be able to escape from local optima.

123



Journal of Global Optimization (2021) 81:203–231 207

3 Surrogatemodels for efficient hyperparameter optimization (HPO)

Surrogate model-based derivative-free optimization algorithms have been developed to
efficiently solve computationally expensive black-box problems. A surrogate model m
approximates the costly objective function [13]: �(θ) = m(θ) + e(θ), where e(·) denotes
the difference between the true objective and the surrogate approximation. Here we omit
the dependence of � on w∗(ζ ) for ease of notation and because we are only interested in
approximating the relationship between θ and the corresponding value of �, in which the
optimization over the w’s is implied.

Most surrogate model optimization algorithms have been developed for problems with
continuous parameters, which are constrained only by lower and upper bounds, see, e.g., [32,
37,41,75]. However, there are some algorithms for problems with other characteristics such
as computationally expensive-to-compute constraints [5,64,70,74], integer constraints on all
parameters [66], mixed-integer parameters [2,24,36,60,65], multiple conflicting objectives
[23,61], hidden constraints [30,54,63], and multiple levels of objective function fidelity [8,
26,62]. For an overview of derivative-free and black-box optimization topics, we refer the
reader to [6].

Many difficult optimization problems have been tackled successfully using surrogate
model methods, e.g., in the structure optimization of nanomaterials [43], in cloud simu-
lations [50], in climate modeling [67]; in watershed water quality management [64], and in
aerodynamic design [86].

In this article, we will use a surrogate model approach for optimizing the integer-
constrained hyperparameters of deep learning models. We implement and compare two
different approaches: (a) a radial basis function (RBF) as surrogate and a weighted score
to iteratively select sample points (similar to SO-I [66]); (b) a Gaussian process (GP) model
and an expected improvement [41] acquisition function, which we optimized over an integer
lattice, using a genetic algorithm to iteratively generate a new sample point (a new set of
hyperparameters θ ).

Global surrogate model algorithms generally follow the same structure: (1) Generate an
initial experimental design and evaluate the expensive objective function at the selected
points; (2) Use all input-output data pairs to compute the parameters of the surrogate model;
(3) Optimize a computationally cheap auxiliary function on the surrogate model to determine
the next point in the parameter space where the expensive objective will be evaluated. We
iterate between steps (2) and (3) until a stopping criterion has been met. Natural stopping
criteria include a maximum number of allowed function evaluations, a maximum CPU time,
or a maximum number of failed consecutive improvement trials. In step (2), different types
of surrogate models can be used, such as GP models [56], RBFs [72,73], or polynomial
regression models [68]. Different methods have been developed for iteratively selecting new
sample points. For example, [41] maximized an expected improvement criterion, [75] used a
stochastic sampling approach, and [32] minimized a “bumpiness” measure. In this article, we
compare the performance of the expected improvement criterion and the stochastic sampling
when all parameters are assumed to be integer values. The pseudocode of the hyperparameter
optimization method is shown in Algorithm 1, and the individual steps are described in more
detail in the following subsections.

123



208 Journal of Global Optimization (2021) 81:203–231

Algorithm 1 Algorithm for computationally expensive HPO of learning models
1: Prepare hyperparameters for optimization: Map the finite set of possible values using sequences of

consecutive integers, denote this domain by Ω .
2: Initial design: Create an initial experimental design with n0 points Θ = {θ1, . . . , θn0 } by randomly

selecting integer-valued vectors from Ω . For each θ j ∈ Θ , compute the upper level objective function
value (�(θ j )) by solving the lower level problem (3).

3: Set n ← n0.
4: Adaptive sampling:
5: Use all input-output pairs {(θ j , �(θ j ))}nj=1 to compute the parameters of the surrogate model.

6: Optimize an acquisition function to select the next evaluation point θnew.
7: Solve the lower level problem (3) to obtain the objective function value at θnew.
8: Set n ← n + 1 and go to Step 5.
9: Stop when the termination condition is satisfied.

3.1 Step 1: preparing the hyperparameters for optimization

When preparing the hyperparameters in Step 1, we have to take into account that they
may live on very different ranges and therefore we map them to sequences of consecu-
tive integers. For example, if the first parameter can assume the values {0, 0.1, . . . , 0.5}
and the second parameter can assume the values {50, 100, 150}, then the search domain is
Ω = {0, 1, . . . , 5}×{1, 2, 3}. This decreases the difference in parameter ranges.1 To evaluate
the loss function, we map the parameters back to their original values, e.g., by multiplying
with 0.1 and 50, respectively, for the two examples above.

3.2 Step 2: initial experimental design

In Step 2, we generate n0 randomly selected initial points from Ω at which we evaluate the
upper level objective function. These points satisfy the integer constraints by definition. For
each point, we solve the lower level problem N = 5 times and compute the upper level
objective function as the average of N evaluations. These N evaluations can be done in
parallel to reduce the required evaluation time.

3.3 Steps 4–9: the adaptive sampling loop

During the adaptive sampling loop, we compute the parameters of the surrogate model using
all previously evaluated points (which is different from trust region typemethods thatmay use
a subset of the evaluated points). Generally, any surrogatemodel can be used in the algorithm.
We consider RBFs and GPs in this article. In the following, we describe the details of these
surrogate models and the associated adaptive sampling methods.
Radial basis functions and stochastic sampling Our first approach (“RBF approach”) to the
HPO of learning models is based on RBF models with a cubic kernel. These models have
previously been shown to performwell for various optimization problems including problems
with integer constraints, see e.g., [43,64,88]. RBFs have the general form

1 Note that we usually use a similar approach in continuous optimization where we scale the parameters
to the unit hypercube, which improves the surrogate models and eliminates difficulties when sampling by
perturbation.

123



Journal of Global Optimization (2021) 81:203–231 209

mRBF(θ) =
n∑

j=1

λ jϕ(‖θ − θ j‖2) + p(θ), (5)

where θ j , j = 1, . . . , n, are already evaluated points, ϕ(r) = r3 is the RBF function with a
cubic kernel (other kernels are possible, see e.g., [32]), ‖ · ‖2 denotes the Euclidean norm,
and p(θ) = β0 + βT θ is a linear polynomial tail. The parameters λ1, . . . , λn, β0, and
β = [β1, . . . , βd ]T are determined by solving a linear system of equations:

[
Φ P
PT 0

] [
λ

β̃

]
=

[
�

0

]
, (6)

where the elements of the matrix Φ are Φk,l = ϕ(‖θk − θ l‖2), k, l = 1, . . . , n, 0 is a matrix
with all entries 0 of appropriate dimension, and

P =
⎡

⎢⎣
θT1 1
...

...

θTn 1

⎤

⎥⎦ λ =

⎡

⎢⎢⎢⎣

λ1
λ2
...

λn

⎤

⎥⎥⎥⎦ β̃ =

⎡

⎢⎢⎢⎢⎢⎣

β1

β2
...

βd

β0

⎤

⎥⎥⎥⎥⎥⎦
, � =

⎡

⎢⎢⎢⎣

Eζ [�(θ1,w∗
1(ζ );Dval)]

Eζ [�(θ2,w∗
2(ζ );Dval)]
...

Eζ [�(θn,w∗
n(ζ );Dval)]

⎤

⎥⎥⎥⎦ . (7)

The matrix in (6) is invertible if and only if rank(P) = d + 1 [72], where d denotes the
problem dimension. Here, w∗

j is an optimal weight vector (lower level solution obtained by
solving problem (3)) corresponding to the j th evaluated parameter vector θ j .

In order to identify thenext sample point,wefind thepoint θbest ∈ argmin{Eζ [�(θ j ,w∗
j (ζ );

Dval)], j = 1, . . . , n} that has the lowest objective function value (if there are multiple, we
select one at random). Then, we generate a large number M = 500 of candidate points by
perturbing each value of the best point found so far by either adding or subtracting a value
randomly chosen from {1, 2}. If the perturbed point falls outside of Ω , we reflect it over the
corresponding boundary to the inside ofΩ . The points created by perturbation enable a local
search around θbest. In addition, we generate a second set of candidate points by randomly
selecting another M points from Ω . These points represent our global search. Thus, we have
2M candidate points in total.

In order to select the next evaluation point θnew from the candidate points, we follow the
ideas of [75] in which two scores are computed for each point, namely the distance to the
already evaluated points (distance score) and the objective function value as predicted by the
RBF surrogate (RBF score). We compute a weighted sum of both scores and the candidate
point that achieves the best weighted sum will become the next evaluation point (for details,
see the online supplement Section A). By placing a large weight on the distance score, we
preferentially sample at points that are far away from already sampled points (global search).
If the weight for the RBF score is large, we preferentially sample points with low predicted
objective function values. This represents a local search, because points with low predicted
objective function values are usually in the vicinity of the best point found so far. Note that
candidates that have already been evaluated previously are discarded. Thus, if we did not have
a stopping criterion and sampling continued, the globally optimal solution would eventually
be found, following a simple counting argument.
Gaussian process models and expected improvement Our second approach (GP approach) to
the HPO of learningmodels is based on GPmodels and expected improvement sampling [41]
over an integer lattice. According to a literature review, GP (or kriging) models have been
widely used as surrogate models to approximate expensive-to-compute objective functions.
By definition, GP models not only provide a prediction of the function values at unsampled

123



210 Journal of Global Optimization (2021) 81:203–231

points, but also an estimate of the associated uncertainty. In kriging, we treat the function we
want to approximate like the realization of a stochastic process, and write the surrogate as

mGP(θ) = μ + Z(θ). (8)

Here, μ represents the mean of the stochastic process and Z(θ) is distributed as N (0, σ 2).
Thus, the term Z(θ) represents a deviation from the underlying global model (the mean).
We assume a correlation between the errors, which is based on the distance to the other
points. At an unsampled point θnew, the kriging prediction is treated like a realization of a
random variable MGP(θ

new) that is normally distributed with mean μ and variance σ 2. The
correlation between two random variables Z(θk) and Z(θ l) is defined as

Corr (Z(θk), Z(θ l)) = exp

(
−

d∑

i=1

γ i |θ(i)
k − θ

(i)
l |qi

)
, (9)

where γi determines how fast the correlation decreases in the i th dimension, and qi reflects
the smoothness of the function in the i th dimension (we use qi = 2 for all i). We denote by
R the n×n matrix whose (k, l)th element is given by (9). The kriging parameters μ, σ 2, and
γi are estimated by maximum likelihood. Then, the prediction at a new point θnew is defined
as

mGP(θ
new) = μ̂ + rTR−1(� − 1μ̂), (10)

where 1 is a vector of ones of appropriate dimension and � as in (7) and

r =
⎡

⎢⎣
Corr

(
Z(θnew), Z(θ1)

)

...

Corr
(
Z(θnew), Z(θn)

)

⎤

⎥⎦ . (11)

The corresponding mean squared error is

s2(θnew) = σ̂ 2

(
1 − rTR−1r + (1 − 1TR−1r)2

1TR−11

)
(12)

with

μ̂ = 1TR−1�

1TR−11
(13)

and

σ̂ 2 = (� − 1μ̂)TR−1(� − 1μ̂)

n
. (14)

From the properties of the GP model, we can now define an expected improvement function
which we use to iteratively select a new sample point θnew.We denote byL a random variable
that represents our uncertainty about the function value. Its mean and variance at a point θ

are defined by the kriging predictor, namelymGP(θ) and s2(θ). We denote by �best = �(θbest)

the best function value we have found so far during the upper level optimization. If the value
L is less than �best, we have an improvement I = �best − L. The expected value of this
improvement is computed as

E(I ) = s(θ) (vΦ(v) + φ(v)) , (15)

123



Journal of Global Optimization (2021) 81:203–231 211

where

v = �best − mGP(θ)

s(θ)
(16)

and Φ and φ are the normal cumulative distribution and density functions, respectively, and
s(θ) = √

s2(θ) is the squared root of the mean squared error.
In order to select the next evaluation point θnew, we have to maximize the expected

improvement. Since themaximum argumentwill not necessarily fall onto a point that satisfies
the integer constraints, we have to maximize the function over an integer lattice. Therefore,
we use a genetic algorithm (see [58] for introducing genetic algorithms), which returns an
integer-feasible point θnew ∈ Ω at which we do the next expensive function evaluation.

3.4 Algorithm parameters

Our algorithm has several parameters that can be adjusted and may impact the results of our
simulations. In our numerical experiments, we use n0 = d +1 points as the number of initial
experimental design points. Generally, we would like to use a large number, but the more
initial points we use, the fewer points can be acquired iteratively (as the bottleneck is usually
the number of allowed evaluations). For each hyperparameter vector, we solve the lower
level problem N = 5 times to obtain an estimate of the expected value of the outer objective
function. The value of N should be adjusted based on the available compute resources.

In each iteration, we generate 2M candidate points, with M = 500. If the number of
hyperparameters and the number of values each hyperparameter can assume are small, we
can alternatively generate candidate points by completely enumerating all possible solutions
for which we would then compute the weighted scores or the expected improvement values,
and choose the best candidate, but in our HPO setting, this is not applicable due to the huge
number of possible solutions (see also Table 1 in Sect. 5.3).

The weights for the selection criteria in the RBF approach cycle through the pattern
{0, 0.25, 0.5, 0.75, 1}. In the first iteration, the weight is 0; in the second iteration, the weight
is 0.25, and so on, and after the weight 1 was used, it will be set back to 0 in the next iteration.
This cycling enables the sampling to transition from searching locally to globally.

Another important parameter is the set of randomly chosen perturbations {1, 2} that are
added or subtracted to the current best solution. The goal of the perturbation is to enable a
local search and given that our parameter ranges are relatively small, using the values {1, 2}
is appropriate and a maximum perturbation of 2 is reasonable to prevent creating too many
candidate points that are outside the upper and lower bounds. If larger parameter ranges were
present, larger perturbation values could be chosen.

In general, the amount of available compute time and the number of hyperparameters to
be optimized dictate the algorithm parameter values for N , M , and the maximum number
of allowed upper level evaluations. We use a maximum number of 50 upper level function
evaluations as stopping criterion.

4 Review of learningmodels

In this section, we provide a brief review of the different deep learning models that we
are using in our numerical study and their associated hyperparameters. These hyperparam-

123



212 Journal of Global Optimization (2021) 81:203–231

eters determine the model architecture, and thus how well the model performs in terms of
minimizing the loss.

The number of layers, the number of nodes in each layer, the type of activation functions,
and the type of optimizer are examples of hyperparameters. Each node in a network layermay
have a different activation function. The Rectified Linear Unit (ReLU) activation function,
f (·) = max(0, ·), is commonly used. The learning model corresponding to a given architec-
ture (θ ) is trained to find the weight vector (w∗) that minimizes the loss L . The optimizers
used for this task share the idea of backpropagation [78] which is an iterative method based
on gradient descent and the chain rule. Therefore, the number of iterations (=the number of
epochs) and the batch size (=the number of samples in the gradient update) are additional
hyperparameters that must be determined. Among many existing optimizers, ADAM [44],
Adamax, and RMSprop [34] are widely used. Each of these optimizers has their own hyper-
parameters such as the learning rate and the decay rate. Finally, a dropout rate (α ∈ (0, 1))
can be set to help prevent overfitting at each layer except for the output layer. The dropout rate
means that randomly selected α×(number of nodes in the layer) nodes are ignored during
training.

4.1 Multilayer perceptronmodel (MLP)

The MLP [12] is a feed-forward neural network that consists of an input layer, at least one
hidden layer, and an output layer. It can model nonlinear patterns by introducing multiple
layers and nonlinear activation functions that transform input signals. It has been primarily
used for classification and function estimation problems [87]. MLPs have been used for, e.g.,
forecasting drought [3], estimating evapotranspiration [84], and predicting water flow [4].
Unlike other statistical models, the MLP does not make any assumptions regarding the prior
probability density distribution of the training data [28].

4.2 Convolutional neural networks (CNN)

TheCNN [52] is also a feed-forward neural network that applies a slidingwindowfilter on the
input dataset, and has three main characteristics, namely local connectivity, shared weight,
and spatial or temporal sub-sampling. The local connectivity means that the weighted linear
combination is restricted to within the filter (not fully connected). All local fields share the
same weights. The weighted values are transformed with the activation function f (·), and the
function returns a feature map. The sub-sampling is an optional step to extract other features
in the feature map by reducing its size. An example method of sub-sampling is to pool the
data to replace the input by a summary statistic such as the maximum (max-pooling) or mean
(avg-pooling) value. The filters can also be used to extract features. The filter can be applied
to both the input and the feature map to make deeper neural networks. Finally, the extracted
features are fully connected to the output layer. Note that additional hidden layers can be
constructed between the final feature layer and the output layer. Additional CNN specific
hyperparameters that must be optimized include the number of filters, the filter size, whether
or not to apply sub-sampling, and the method and the size of the sub-sampling.

In practice, CNN’s have been used for a variety of application areas ranging from image
recognition (e.g., ResNet [33]) to time series classification [21], and time series forecasting
[14].

123



Journal of Global Optimization (2021) 81:203–231 213

4.3 Simple recurrent neural networks (RNN)

Recurrent Neural Networks (RNNs) can represent dynamic temporal behavior by using a
directed graph structure between nodes to store sequence representations. The decision an
RNN sees at time t − 1 affects the decision at time t . Unlike feed-forward neural networks,
which take the entire sequence input as is, the RNN first takes in the output generated from
the previous sequence steps (memory) before taking the input step. In the simplest RNN, the
memory is carried forward through the hidden state, which is a function of the product of
the input at time t and a weight matrix that is added to a product of the hidden state at time
t − 1 and another hidden weight matrix. The output is a function of the product of the last
hidden state and a weight matrix. The activation function in the RNN is a hyperbolic tangent
function that allows an increase or decrease in the value of the state. The weight matrices
are adjusted by error backpropagation. A drawback of RNNs is that often, despite choosing
the optimal set of hyperparameters, errors flowing “backward in time” in a fully connected
RNNmay either vanish or blow up, which leads to oscillating weights or long training times.
RNNs have been used in applications like speech recognition [57], text generation [83], and
time series forecasting in hydrology [17,20], where system memory and context are critical
to prediction.

4.4 Long short-termmemory recurrent neural networks (LSTM)

Long short-term memory networks [35] are an improvement of RNNs and are able to learn
long-term dependencies. LSTMs have a structure that allows them to represent temporal
behavior and remember previous behavior through a special arrangement ofmodules. Besides
a hidden state, LSTMsalsohave a cell state that runs through the entire chain and is responsible
for storing the long termdependencies. The informationflowbetween the cell state, the hidden
state, and the input state is controlled through different types of gates. A simple LSTM unit
contains an input gate, an output gate, and a forget gate. The forget gate [29] enables the
network to overcome the potentially unbounded growth of cell states when a continuous
time series is used. The forget gate is a sigmoid activation function that decides how much
information from the previous cell state should be passed to the next. The output from
the forget gate is a function of the input, the previous hidden states with their corresponding
weight matrices, and a bias vector. It enables resetting the memory blocks once their contents
are out of date.

The input gate decides how to update the cell state. The hyperbolic tangent activation
function generates new candidate solutions using the weighted input and hidden state and a
bias vector. The new cell state is generated from the weighted sum of the previous cell state
and the input state. The output gate generates the new hidden state from the new cell state
and the input carrying the most recent information.

LSTMs have been used in many different applications, e.g, for language modeling [82],
speech recognition [31], traffic speed prediction [55], and time series modeling [38].

5 Numerical experiments for timeseries data

In the following, we describe our groundwater application problem, the data used in the
numerical experiments, and the setup and results of the experiments. Additional results and
data are provided in the online supplement.

123



214 Journal of Global Optimization (2021) 81:203–231

We designed numerical experiments to answer two main questions: (1) Which learning
model is best suited for making accurate predictions of groundwater levels? (2) Which HPO
method leads to the best results fastest? In order to answer these questions, we use our HPO
methods to train and validate the learning models on historical observations and we compare
the performance of the four learning models to each other. We use the optimized model
architectures to predict the future groundwater levels and we compare these predictions to
“future” data, i.e., groundwater data that was not used for optimizing the hyperparameters or
training the models.

5.1 Motivation and description of the groundwater prediction application

In California (CA), United States, groundwater has always been an important resource for
agriculture, drinking, and other beneficial purposes. An unprecedented multi-year drought
endured in the recent past (2012–2016) led to regulations on long-term water conservation
and management of groundwater (see the 2014 Sustainable Groundwater Management Act
(SGMA) [16] in CA).

However, this situation is not unique to CA, and drought severity is expected to increase
over many regions with changes in climate [19] increasing the agricultural dependencies
on groundwater [85]. There is therefore an increased urgency for time series forecasting of
groundwater depths.

Groundwater depths are typically estimated using mechanistic multi-scale, multi-physics
simulationmodels (see, e.g., [49,81,89]). However, these models require extensive character-
ization of hydrostratigraphic properties and accurate quantification of boundary conditions,
including recharge sources, climate variability as well as changes in pumping [79], which
are not always known apriori. Moreover, these models’ computational complexity does not
make them desirable when groundwater predictions for multiple future climate scenarios
are needed to make actionable decisions for sustainable groundwater management. Thus, it
is appealing to use purely data-driven machine learning methods that are computationally
inexpensive and that can be continually updated as new observations are obtained. Moreover,
in some cases data-informed learning models have shown better performance than process-
informed simulations, possibly due to deficiencies inmodel structure from incomplete process
representations [42].

In the groundwater modeling context, artificial neural networks (ANNs) have previously
been used for both modeling and prediction purposes (see e.g., [22]). More recently, RNNs
have been used to predict groundwater levels (e.g., [20,91]). The application of LSTMs is
still limited in the field of hydrologic sciences. For example, LSTMs have recently been used
to predict changes of river discharge from precipitation across the Continental United States
using publicly available datasets [46]. [91] use an LSTM to predict groundwater levels in the
Hetao Irrigation District in China.

In this article, we focus in particular on the Butte County watershed in CA. This area
belongs to CA’s Central Valley, which is one of the largest agricultural lands in the world and
produces over 250 crops a year [25]. Butte County is considered a high-priority watershed by
SGMA and it is therefore vital to develop tools for groundwater predictions that will enable
actionable and timely decision support for the planning and management of groundwater
resources in this region in the future.

123



Journal of Global Optimization (2021) 81:203–231 215

5.2 Observation data in Butte County, CA, USA

At the Butte County watershed, we have high-frequency (daily) observations of groundwater
levels available for the duration of approximately eight years (2010–2018). We train our
learning models on historic daily observations of temperature, precipitation, streamflow,
groundwater levels, as well as features such as the week and month of the year that the
measurement was taken.

Since there were gaps in the observations for temperature, precipitation, and groundwater
levels (e.g., which may happen due to faulty sensors or bad data quality), we imputed the
missing values using the R package imputeTS “Time Series Missing Value Imputation” [59].
This package provides state-of-the-art imputation algorithms along with plotting functions
for univariate time series missing data statistics. We use the na.seadec function with the
Kalman Smoothing and State Space Models algorithm. This algorithm removes the seasonal
component from the time series, performs imputation on the deseasonalized time series,
and then adds the seasonal component again. To create an uninterrupted time series (due to
some faulty data entries at the end of the hydrological year, i.e., end of September), we used
the na.locf algorithm (“Imputation by Last Observation Carried Forward”) of the imputeTS
package.

In the following study, we consider two scenarios, namely a“single well case” and “multi-
well case”. In the single well case, we train the model on the groundwater levels measured
only at a single well and we predict only for this one well. In the multi-well case, we use
the groundwater level data from three different wells to train the learning models, and we
make predictions for all three wells. Note that we do not train a separate model for each well,
but rather we have one model for all three wells. A summary of the data sources we use in
our study as well as the time series for all variables are shown in the online supplement in
Sect. B. The time series for the groundwater levels at all wells reflect the significant decline
in the amount of available groundwater between 2010 and 2016.

5.3 Setup of the numerical experiments

We conducted our numerical experiments with python (version 3.7) on Ubuntu 16.04 with
Intel® Xeon(R) CPU E3-1245 v6 @ 3.70 GHz × 8, and 31.2 GiB memory. We use the
Keras package [18] with the TensorFlow [1] backend for our deep learning architectures.
For the genetic algorithm in the GP approach we use the DEAP python package [27]. In the
genetic algorithm we use 100 generations with 100 individuals each and we use a crossover
probability of 0.75. For the GP itself, we use the implementation in Sklearn [71].
Preparing the dataWe divide our observation data into two sets—one for training the models
(Dtrain(θ)) and one for validating the models (Dval(θ)), i.e., comparing the model’s ground-
water predictions to the true observations. In our setting, there is a dependency of the number
of daily observations used for training and validating the models on a hyperparameter that
we are optimizing. This dependency is described in more detail in the following. The model
output is the groundwater level for the next day and the inputs are the values of all the vari-
ables at the current day and all values at some previous days. More specifically, we define
the number of previous days whose data are used as input as a lag number, G. The lag
number G means that the variable values of the G previous days are used. This lag thus
determines the size of Dtrain(θ) and Dval(θ). To illustrate it with an example, suppose that
there are a total 5 days of observations and for each day we have measurements of 6 vari-
ables. We denote δ(t), t = 1, . . . , 5, as the day of the measurement. If the lag G = 1, each

123



216 Journal of Global Optimization (2021) 81:203–231

sample consists of two days of observations (the current and the previous day) and there-
fore has 2 × 6 =12 variable values. The total number of samples we obtain is thus four:
({δ(1), δ(2)}, {δ(2), δ(3)}, {δ(3), δ(4)}, {δ(4), δ(5)}). If the lag G = 2, we use the measure-
ments for each variable at the two previous days in addition to the data for the current day, and
thus each sample consists of three days and has 3 × 6=18 variable values. The total number
of samples we have is then three: ({δ(1), δ(2), δ(3)}, {δ(2), δ(3), δ(4)}, {δ(3), δ(4), δ(5)}).
Thus, as is, the lag would determine the total number of samples for our model input. How-
ever, we divide the dataset such that the number of training samples is the same regardless
of the lag. In other words, the number of samples in Dtrain(θ) is always the same and the
dimension of each sample (= the number of days × the number of variables in each day)
varies depending on the lag. The samples that were not used for definingDtrain(θ) constitute
the validation setDval(θ). Therefore, the lag determines howmuch historical informationwill
be used in each sample. By setting the lag as a hyperparameter, the optimization aims to not
only find the best network architecture, but also the optimal amount of historical information
in each sample that leads to minimizing the outer objective function.

In order to make future groundwater predictions, we use the given values (here from
the dataset Dval(θ)) of temperature, precipitation, and streamflow discharge and predict the
corresponding groundwater levels with the trained models. Because the input groundwater
data in Dval(θ) are assumed to be unknown, we use the predicted groundwater level value
from the model. Therefore, the input groundwater data are dynamically obtained as we make
predictions for each additional day.

Before using the variable values for training and validating our learning models, we
normalize all variables’ values to [0,1]. The reason is that different observed variables affect
the groundwater level in specific ways and their values are generally on different ranges.
Scaling them to [0,1] enables us to better capture the variables’ interactionswithin the learning
models. For the groundwater data, this is, however, not straight-froward. The recent drought in
CA has caused the groundwater levels to drop to unprecedented low levels. Thus, for scaling
purposes, it is difficult to assign a maximum and a minimum groundwater level as future
groundwater levelsmaygobelowor above recordedvalues.We therefore assigned aminimum
groundwater level of 0, which here refers to the mean sea level and it is a fair assumption
that the water level can never drop below 0 even though this value has never been observed
(unless it is located near the sea coast). For the upper bound, we use the maximum observed
groundwater level. The reason is that over the past, we have observed a steadily decreasing
trend in the amount of groundwater. Although wet years may cause the groundwater levels
to go above the maximum recorded values, it is a good choice as it reflects the reality
observed so far. Another possible upper limit could be the ground surface elevation (GSE),
as groundwater cannot go above the ground. However, the GSE is also a dynamic parameter,
as several places in CA suffer from land subsidence due to groundwater withdrawal. For
the other variables (temperature, precipitation, streamflow discharge) the scaling is trivial
as we have full information of the minimum and maximum values of the whole time series
(past observations as well as future predictions). For the streamflow discharge, we applied a
log-transformation before scaling the data to [0,1] because of the huge variations that occur
(compare the time series in the online supplement). Note that the scaling does not mean
that the predicted groundwater levels will be below the chosen maximum, and the future
groundwater level predictions can go beyond their historical maximum levels depending on
the input values of the other variables.
Replications of inner and outer optimizations and hyperparameters The training of the
models in the inner optimization and the search for the optimal hyperparameter in the
outer optimization both have stochastic elements. For performing the inner large-scale opti-

123



Journal of Global Optimization (2021) 81:203–231 217

mization for a given hyperparameter set, we use stochastic optimizers. Therefore, given a
specific hyperparameter set θ̂ , we solve the inner problem five times and we define the inner
optimization’s loss function as the average over these five trials (as an approximation of
Eζ [�(θ̂ ,w∗(ζ );Dval(θ̂))]). The outer optimization also has stochastic elements (in the initial
experimental design and in the adaptive sampling methods). Therefore, in order to obtain
an average outer optimization performance, we repeat the HPO for each model with each
algorithm five times. We allow each HPO method to try 50 different hyperparameter sets.

The hyperparameters we optimize as well as the possible (unmapped) values for each
hyperparameter are summarized in Table 1. We keep the learning and the decay rates at their
default values of 0.001 and 0.0, respectively. From a practical perspective, allowing a lag of
365 days is reasonable as this would allow themodel to use the information from awhole year
worth of data, and thus recognize seasonality and correlations between the time of the year
and the groundwater levels. However, for RNN and also for LSTM, a maximum lag of 365
days was too large, causing problems with backpropagation in training and thus problems
in the optimization. We were able to run the LSTM and RNN five times successfully by
restricting the maximum lag to 60 days for the single well case.

Although the structure of the networks and their detailed mechanics are different (see
Sect. 4), the number of input/output nodes are formed in the same way. The number of input
nodes are the same as the number of variables in a sample. For the earlier example with five
days and lag G = 1, all models would have 12 input nodes. The number of output nodes are
the same as the number of wells whose groundwater data we are learning, i.e., one for the
single well case and three for the multi-well case.

For LSTM, we use the ReLu activation function in all the deeper layers except the outer
layer. For training the LSTM for a given hyperparameter set, we use the RMSprop optimizer.
In the MLP, we also use the ReLu activation function for all nodes except those in the
output layer. The nodes of the output layer have the linear activation function because we
are dealing with real-valued outputs. We use ADAM for the lower level optimization. During
the construction of the CNN, we add a fully connected hidden layer with 50 nodes between
the last convolution layer and the output layer. For simplicity, we do not apply the sub-
sampling option here. The activation function and the lower level optimizer for the CNN
and the RNN are the same as for the MLP. We leave the dropout rate of the recurrent step
fixed at 0. Even with our simplifying assumptions that all layers in the model have the same
hyperparameter values for the dropout rate, the number of nodes, the number of filters, the
filter size, and the large step sizes (e.g., steps of 50 for the number of epochs), we can see
from Table 1 (bottom) that the number of possible hyperparameter combinations ranges
from hundred thousands to millions. Trying all of these combinations is computationally
infeasible, especially in our setting where optimal hyperparameters have to be determined
fast to enable timely groundwater management decisions.

5.4 Numerical results

In the following subsections, we compare the results of our numerical experiments obtained
with LSTM, MLP, CNN, and RNN for the single well case. For the multi-well case, we
compare only LSTM, MLP, and CNN. We did not include the RNNmodel for the multi-well
case as it suffers from the problems with backpropagation mentioned earlier. It therefore
often fails to fit a model to a given architecture. Also, as we will see for the single well
results, the RNN performed worst among all learning models. Therefore, we do not include
the RNN in the multi-well analysis.

123



218 Journal of Global Optimization (2021) 81:203–231

Ta
bl
e
1

H
yp
er
pa
ra
m
et
er
s
in

th
e
op
tim

iz
at
io
n
an
d
th
ei
r
po
ss
ib
le
va
lu
es

L
ST

M
M
L
P

R
N
N

C
N
N

#E
po

ch
s

{50
,
10

0,
..

.,
45

0,
50

0}
{50

,
10

0,
..

.,
45

0,
50

0}
{50

,
10

0,
..

.,
45

0,
50

0}
{50

,
10

0,
..

.,
45

0,
50

0}
D
ro
po

ut
ra
te

{0.
0,

0.
1,

..
.,
0.
5}

{0.
0,

0.
1,

..
.,
0.
5}

{0.
0,

0.
1,

..
.,
0.
5}

{0.
0,

0.
1,

..
.,
0.
5}

B
at
ch

si
ze

{50
,
10

0,
..

.,
45

0,
50

0}
{50

,
55

,
..

.,
19

5,
20

0 }
{50

,
55

,
..

.,
19

5,
20

0}
{50

,
55

,
..

.,
19

5,
20

0}
#L

ay
er
s

{1,
2,

3,
4}

{1,
2,

3,
4,
5,
6}

{1,
2,

3,
4,
5,
6}

{1,
2,

3,
4,
5,
6}

L
ag

{3,
6,
9,

..
.,
60

}
{30

,
35

,
..

.,
36

0,
36

5}
{3,

6,
9,

..
.,
60

}
{30

,
35

,
..

.,
36

0,
36

5}
#N

od
es

pe
r
hi
dd

en
la
ye
r

{3,
6,

..
.,
27

,
30

}
{5,

10
,
..

.,
45

,
50

}
{5,

10
,
..

.,
45

,
50

}
N
A

#F
ilt
er
s

N
A

N
A

N
A

{5,
10

,
..

.,
45

,
50

}
Fi
lte
r
si
ze

N
A

N
A

N
A

{2,
3,
4,
5}

Po
ss
ib
le
co
m
bi
na
tio

ns
48

0,
00

0
7,
58

8,
80

0
2,
23

2,
00

0
30

,3
55

,2
00

N
A
m
ea
ns

th
at
a
m
od
el
do
es

no
th

av
e
th
at
pa
rt
ic
ul
ar

hy
pe
rp
ar
am

et
er

L
ST

M
lo
ng

sh
or
t-
te
rm

m
em

or
y
ne
tw
or
k,

M
L
P
m
ul
til
ay
er

pe
rc
ep
tr
on

,R
N
N

re
cu
rr
en
tn

eu
ra
ln

et
w
or
k,

C
N
N

co
nv
ol
ut
io
na
ln

eu
ra
ln

et
w
or
k

#I
nd

ic
at
es

“n
um

be
r
of
”

123



Journal of Global Optimization (2021) 81:203–231 219

Fig. 1 Boxplots of mean squared errors for the single well case over five HPO trials. Low values are better.
LSTM long short-term memory network, MLP multilayer perceptron, CNN convolutional neural network,
RNN recurrent neural network, GP Gaussian process, RBF radial basis function, RS random sampling

We compare the performance of our two optimization approaches (the RBF approach
and the GP approach) with a random sampling (RS) approach for HPO. We illustrate our
results in the form of progress plots, time series plots, wall clock time plots, and plots of
the distributions of the optimal hyperparameters found in each of the five trials. In addition,
we illustrate the models’ predictive performance for data in the future that was not used
during optimizing the hyperparameters or during training the models. This “out-of-sample
prediction” allows us to gain insights into the models’ extrapolation performance. We report
additional results including tables with the optimal hyperparameter values for eachmodel and
each optimization strategy as well as the corresponding losses (and the resulting groundwater
prediction errors) in the online supplement in Sect. C.

5.5 Results for predicting groundwater at a single well in Butte County, CA

Comparison of mean squared errors In Fig. 1 we show the distribution of the optimal outer
objective function values over five trials for all models and all optimization methods after
the optimization has finished. The final mean squared errors (MSEs) are fairly low for all
learning models and all optimization approaches. In the online supplement in Table 2, we
show the numerical MSE values for all trials as well as the corresponding deviation of the
predicted groundwater level from the truth. Almost all trials of all models reach a deviation
of about 2 meters or less, which is considered highly accurate. Figure 1 shows that there is
a noticeable difference between the performance of the types of learning models, with MLP
and CNN generally leading to the smallest (best) final MSEs. We also observe a difference
in the variation of the results over the five trials with RBF leading to the smallest variation
for all HPO methods. The RNN performs worst regardless of the HPO method used. This
may be related to the fact that all HPO methods have difficulties in finding optimal solutions
or that the RNN is simply not able to capture the groundwater data any better. Figure 1 also
indicates that the RBF approach generally leads to the lowest errors among all HPOmethods.

123



220 Journal of Global Optimization (2021) 81:203–231

Fig. 2 Distribution of the optimized hyperparameter values for MLP for the single well case. The colored
bars represent the mean and the black lines show the standard deviation over five solutions. LSTM long short-
termmemory network,MLPmultilayer perceptron,CNN convolutional neural network, RNN recurrent neural
network, GP Gaussian process, RBF radial basis function, RS random sampling

Analysis of optimized hyperparameters We compare the distributions of the final hyperpa-
rameter values over all five trials obtained with the different HPO methods. Figure 1 showed
that the MLP optimized with the RBF approach leads overall to the best results. Figure 2
shows the corresponding hyperparameters. Here, the colored bars represent the mean and
the black lines show the standard deviation over the five solutions for the MLP. We see that
generally all HPO methods lead to a more complex MLP network, the RBF method leading
to approximately 5 layers with approximately 25 nodes each. For the RBF method, the lag is
large, using almost a full year of past data. The dropout rate and the optimal number of epochs
for the RBF method are smaller than those obtained with the GP. Note that larger dropout
rates discourage overfitting of the models to the data. We observe the largest differences
between the HPO methods for the number of epochs.

The distributions of the optimal hyperparameters for LSTM, CNN, and RNN are shown in
the online supplement in Sect. C.1.1 in Fig. 3. For the CNN, we observe a similar behavior as
for the MLP: the optimal RBF solutions have a large number of layers, filters, and lags. For
LSTM, all HPO methods prefer smaller, less complex networks, and for the RNN, the HPO
methods return networks of different complexities with generally larger standard deviations
on the optimal hyperparameter values.
Analysis of HPO convergence Besides the final solutions obtained with the different HPO
methods, we are also interested in how fast the methods converge, i.e., how many calls to the
inner optimization loop are necessary. For this purpose, we use progress plots that illustrate
how quickly the average and the standard deviation of the outer objective function values
over five trials decrease as the number of function evaluations increases. Ideally, the graphs
should drop off fast, which means that improved network architectures were found within
very few hyperparameter evaluations. The plot of the standard deviation reflects how robust
each method is. Small standard deviation envelopes indicate that all five trials with the HPO
methods converged to an approximately equally good solution. We show these convergence
plots in Fig. 3.

123



Journal of Global Optimization (2021) 81:203–231 221

(a) LSTM (b) MLP

(c) CNN (d) RNN

Fig. 3 Convergence plots showing the average and the standard deviation of the outer objective function values
over five trials versus the number of function evaluations for all four learning models for the single well case

For the LSTM (Fig. 3a) we can see that the GP and RBF approaches lead to more robust
solutions (narrow standard deviation bands) than the RS approach. The standard deviation
associated with the random sampling remains the largest throughout. This can be expected
as the random sampling does not have a systematic search approach that allows it to intensify
the search locally around good solutions.

For MLP, on the other hand, the RBF performed best and the convergence plot (Fig. 3b)
reflects that the RBF approach also converged faster than the GP and the RS. For MLP, GP
has wider standard deviation bands than RBF throughout indicating less robustness. The
standard deviations obtained with RS are smaller for MLP than for LSTM. Since the RS
is lacking any systematic search for improvements, this may be an indicator that there are
several solutions for MLP with similar performance.

For CNN (Fig. 3c), we can see significant differences in the convergence behavior between
the three HPOmethods. The RBF approach has smaller standard deviations than GP and RS.
We notice that the search with the GP gets stuck after about 12 function evaluations and it gets
stuck in different solutions as is reflected by the width of the standard deviation envelopes.

Finally, for RNN (Fig. 3d), we observe the overall worst performance. All HPO models
make only slow progress towards improved solutions and the five trials with the RBFmethod
show the average best performance.
Analysis of computing times As training larger, more complex networks requires more com-
pute time, we also plot the cumulative function evaluation time for each network type and
each HPOmethod in order to compare the wall clock time to solution. Here, we only compare
the amount of time spent on function evaluations and we assume that the HPOmethods’ own
computational overheads are negligible. We show the average and the standard deviations of
the computing times over all five trials in Fig. 4. Comparing the figures, we see that optimiz-
ing the hyperparameters of the MLP (Fig. 4b) is fastest for all HPOmethods (within 5 hours)
even though the optimal MLP architectures were fairly complex.

123



222 Journal of Global Optimization (2021) 81:203–231

(a) LSTM (b) MLP

(c) CNN (d) RNN

Fig. 4 Cumulative function evaluation time versus number of function evaluations for all four learning models
for the single well case

For the LSTM (Fig. 4a), we can see that the computing times of all three HPO methods
are approximately equal. Since the final optimized networks are smaller compared to MLP
for all HPO methods and the number of epochs is approximately the same for RS and GP
(compare Fig. 3a in Sect. C.1.1 in the online supplement), we conclude that on average
all HPO methods tried networks of similar complexity. The computing times for the CNN
(Fig. 4c) are significantly larger than for all other network types (RBF needs on average over
30 hours for the CNN compared to less than 8 hours for all other network types). For RNN
(Fig. 4d), we observe large variations between the times for the individual optimization trials.
RBF may take from 3 to 11 hours and RS takes between 7 hours and 25 hours. Thus, if the
goal is to train learning models on a laptop or simple desktop computer to make predictions
for future groundwater levels in a timely manner, onemay prefer using theMLP or the LSTM
in terms of expected computing time.
Analysis of performance on validation data We illustrate in Fig. 5 how well the optimized
MLP and LSTM models capture the validation time series data (for CNN and RNN results,
see the online supplement, Sect. C.1.2, Fig. 4). As described earlier, we train the models
on a subset of the historical observations (approximately beginning 2010-end 2013) and we
validate their performance on another subset (approximately beginning 2014-end 2015) to
compute the outer objective function values. In Fig. 5a and b, we show the training data and
for each optimization trial, we show the predictions of the optimizedmodels for the validation
data. The closer the predictions (red graphs) are to the true data (blue), the better. We can see
that both MLP and LSTM are able to capture the seasonality in the data well. The predictions
made with the MLP appear more erratic, i.e, we see many small jumps in daily groundwater
predictions. This behavior is observed in the daily groundwater measurements and is due
to, e.g., irrigation or other water withdrawal activities. The LSTM predictions are somewhat
smoother, which indicates that the daily drawdown patterns are not learned as well.
Out-of-sample future groundwater predictions Finally, we are interested in how well the
optimized learning models will predict groundwater data that was not used during the HPO.

123



Journal of Global Optimization (2021) 81:203–231 223

(a) MLP (b) LSTM

Fig. 5 Groundwater level predictions obtained from five hyperparameter optimizations of MLP and LSTM,
respectively, for the single well case for each HPO method. GW groundwater

We retrain the models with the optimized hyperparameters on the whole dataset D (2010–
2016) andwepredict the groundwater levels fromFebruary 20, 2016 to February 28, 2018.We
illustrate these “out-of-sample” predictions for each of the five trials for MLP and LSTM in
Fig. 6. We see that both models are able to keep the trend in the data (decreasing groundwater
levels in the summer, increasing levels in the winter), but the MLP predictions are much
more accurate and less variable than the LSTM predictions. The LSTM is not able to capture
the higher groundwater levels in the wet years (2017, 2018). The out-of-sample predictions
for CNN and RNN are provided in the online supplement in Sect. C.1.3 in Fig. 5. The RNN
makes significantly worse out-of-sample predictions than the MLP. The distributions of the
MSEs for the out-of-sample predictions are provided in the form of boxplots in the online
supplement in Fig. 6.

5.6 Results for predicting groundwater at multiple wells in Butte County, CA

Watersheds are large and generally have more than a single well from which groundwater is
pumped or with the help of which the amount of available groundwater is monitored. Using
multiple wells will allow us to better assess the average health of a watershed, and thus to
avoid letting local fluctuations drive policies and decisions. Therefore, within Butte County,
we selected three additional wells. Ideally, we do not want to train and optimize a separate
learning model for each well, but rather we want one learning model that can be trained
on and used for predicting the data at multiple wells simultaneously. We train and optimize
the hyperparameters as before with the only difference that we now have three groundwater
input data streams and three nodes in each output layer. We use these data to optimize the
hyperparameters of MLP, LSTM, and CNN. For reasons of space considerations, we present
detailed results only for the MLP. The LSTM and CNN results are in the online supplement
in Sect. C.2.
Comparison of mean squared errors We show a comparison of the distributions of the final
mean squared errors for all three learning models and all HPO methods obtained from five
optimization trials in Fig. 7. The optimal mean squared errors are for almost all models and

123



224 Journal of Global Optimization (2021) 81:203–231

(a) MLP (b) LSTM

Fig. 6 Out-of-sample groundwater predictions with the five optimized MLP and LSTM models, respectively,
for the single well case. GW groundwater

HPO methods larger by an order of magnitude for the multi-well case than for the single
well case (see also the numerical data provided in Table 3 in the online supplement). This
is to be expected as more time series must be fit and one set of hyperparameters may not be
optimal for the data of all three wells. We can see that the MLP and the CNN optimized with
the RBF approach lead to the lowest errors. Also RS performs reasonably well for all three
models in the multi-well case, while it showed significantly worse performance in the single
well case. Thus, in terms of performance consistency, one should opt for an HPO method
that systematically explores the search space rather than the RS method.
Analysis of optimized hyperparameters We show the distribution of the optimized hyper-
parameters only for the MLP (Fig. 8). The results for LSTM and CNN are in the online
supplement in Sect. C.2.1 in Fig. 7. For the MLP, the RBF method chooses again a large
complex network (4–5 layers and on average over 30 nodes per layer) and a large lag. Also
the optimal solutions for the CNN (see online supplement) show that a complex network with
many layers and filters is preferred and also the lag is large. On the other hand, the optimal
LSTM network structure is significantly smaller with only 1–2 layers.
Analysis of HPO convergence As for the single well case, we illustrate how fast each HPO
method converges. We show the progress plots on the example of MLP in Fig. 9a (results for
LSTM and CNN are in the online supplement in Sect. C.2.2 in Fig. 8). We observe that all
HPO methods converge fast and the RBF method achieves on average the best performance.
Analysis of computing times The cumulative computation time for the MLP over all function
evaluations is shown in Fig. 9b. All HPO methods require approximately the same time and
the HPO is completed within 4 hours. The CNN again requires the largest amount of time to
solution (up to 30 hours) and the HPO for the LSTM completes within 10 hours (see Fig. 10
in Sect. C.2.4 in the online supplement). Thus, we conclude that the MLP optimized with
the RBF should be the learning model and HPO method of choice as it attains high quality
solutions within the lowest computation time.
Analysis of performance on validation data In Fig. 10, we show the predictions obtained
with the optimized MLP models for all three wells for the validation data. All three HPO
methods are able to capture the seasonality in the data and all three HPO methods appear to

123



Journal of Global Optimization (2021) 81:203–231 225

Fig. 7 Boxplots of mean squared errors for the multi-well case. LSTM long short-term memory network,
MLPmultilayer perceptron, CNN convolutional neural network, RNN recurrent neural network,GP Gaussian
process, RBF radial basis function, RS random sampling

Fig. 8 Distribution of the optimized hyperparameter values for MLP for the multi-well case. The colored bars
show the mean of the values over five trials and the black lines indicate the standard deviation. GP Gaussian
process, RBF radial basis function, RS random sampling

underpredict the true groundwater levels for wells A and B. Well C is generally better fitted
by all three HPOmethods. This same observation holds true for the CNN predictions (Fig. 9b
in Sect. C.2.3 in the online supplement). One possible explanation is that the errors made in
the predictions for well C dominate the HPO. This may be due to the more erratic behavior of
the groundwater levels for well C, which are manifested by more severe drawdowns and thus
more patterns must be learnt (the most complex time series dominated the optimization).

123



226 Journal of Global Optimization (2021) 81:203–231

(a) Convergence plot (b) Cumulative evaluation time

Fig. 9 Convergence plot showing the average and the standard deviation of the outer objective function value
versus the number of function evaluations (left) and cumulative function evaluation time versus number of
function evaluations (right) for MLP for the multiple well case

Fig. 10 Groundwater level predictions obtained from five hyperparameter optimizations of MLP for the
multiple well case for each HPO method. GWL groundwater level

Using a weighted sum of the wells’ errors as outer objective function could potentially
help mitigating this problem. The LSTM predictions (Fig. 9a in Sect. C.2.3 in the online
supplement) have generally a larger variability than CNN and MLP and we observe larger
jumps in the daily groundwater predictions. Note that for the multi-well case, we do not have
additional observations for all three wells for making “out-of-sample” predictions.

123



Journal of Global Optimization (2021) 81:203–231 227

6 Summary and directions of future research

Our work presented in this article is motivated by the need for computationally lightweight
approximation models that can run on a laptop or simple desktop computer and that can
reasonably accurately predict groundwater levels with the overarching goal to enable timely
and reliable water resources management decisions.

In this article, we studied the applicability of several purely data-informed learning mod-
els whose hyperparameters were optimized with three different methods for predicting the
groundwater level. We used four deep learning models, namely convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), multilayer perceptron (MLP), and long
short-term memory networks (LSTMs). We formulated a bilevel optimization problem for
finding the optimal hyperparameters of the learning models. At the upper level, we have a
pure-integer stochastic problem, and at the lower level, we have a large-scale global opti-
mization problem. We solved the hyperparameter optimization (HPO) problem with three
different methods. We used two surrogate model based optimization methods (one based
on radial basis functions (RBFs) and one based on Gaussian process (GP) models) and a
random sampling method. In our numerical experiments, we trained the learning models on
daily observation data of groundwater levels and meteorological variables at, respectively,
one (“single well case”) and three (“multi-well case”) groundwater monitoring wells in Butte
County, California, USA.

Our study shows that with the right HPOmethod, different types of deep learning models,
including CNN, LSTM, and MLP (and to a limited extend also RNN), can be tuned to make
accurate forecasts of daily groundwater levels (within two meters of the true values). The
main difference between the performance of the methods is the total optimization time and
the associated optimal model complexity. We showed that the surrogate model based HPO
methods lead to better performing network architectures than randomly sampling the hyper-
parameter space. Our results show that the “simplest” learning model, the MLP, optimized
with the RBF method, generally performs best and its optimization time is lowest. The RNN
is the worst performing model and the most cumbersome to use as it often fails to fit a model
for an architecture due to its problems during backpropagation. The CNN also performs well
in terms of prediction accuracy, but it requires considerably more computation time than the
other models. The results for the LSTM are less robust and have a large variation.

Directions of future research include applying the RBF-optimizedMLPmodel for ground-
water predictions at other watersheds in California and other parts of the United States to
assess how well our method generalizes to watersheds with different characteristics (e.g.,
geology, groundwater use, weather patterns). We will study the sensitivity of the model per-
formance to different input variables. This analysis will inform us about which data should
be collected and thus where the necessary data acquisition infrastructure investments should
be made. Similarly, we will study how sensitive the model predictions are to the amount of
training data points (daily versus monthly observations) and when fewer years of data are
used in training. This future research direction also includes applying ourmethod for learning
model optimization on other time series data such as predicting water quality.

Acknowledgements This work was supported by Laboratory Directed Research and Development (LDRD)
funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

123



228 Journal of Global Optimization (2021) 81:203–231

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J.,
Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016).
arXiv:1603.04467

2. Abramson, M.A., Audet, C., Chrissis, J., Walston, J.: Mesh adaptive direct search algorithms for mixed
variable optimization. Optim. Lett. 3, 35–47 (2009)

3. Ali, Z., Hussain, I., Faisal, M., Nazir, H.M., Hussain, T., Shad, M.Y., Shoukry, A.M., Gani, S.H.: Fore-
casting drought using multilayer perceptron artificial neural network model. Adv. Meteorol., 5681308, 9
pages (2017)

4. Araujo, P., Astray, G., Ferrerio-Lage, J.A., Mejuto, J.C., Rodriguez-Suarez, J.A., Soto, B.: Multilayer
perceptron neural network for flow prediction. J. Environ. Monit. 13(1), 35–41 (2011)

5. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17, 188–217 (2006)

6. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, Berlin (2017)

7. Audet, C., Kokkolaras, M.: Blackbox and derivative-free optimization: theory, algorithms and applica-
tions. Optim. Eng. 17(1), 1–2 (2016)

8. Audet, C., Savard, G., Zghal,W.: Amesh adaptive direct search algorithm formultiobjective optimization.
Eur. J. Oper. Res. 204(3), 545–556 (2010)

9. Balaprakash, P., Salim, M., Uram, T.D., Vishwanath, V., Wild, S.M.: Deephyper: asynchronous hyper-
parameter search for deep neural networks. In: 2018 IEEE 25th International Conference on High
Performance Computing (HiPC), pp. 42–51 (2018)

10. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1),
281–305 (2012)

11. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in
hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on
Machine Learning (2013)

12. Bishop, C.M., et al.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)
13. Booker, A.J., Dennis Jr., J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous frame-

work for optimization of expensive functions by surrogates. Struct. Multidiscip. Optim. 17, 1–13 (1999)
14. Borovykh,A., Bohte, S., Oosterlee, C.W.: Conditional Time Series ForecastingwithConvolutionalNeural

Networks (2017). arXiv:1703.04691
15. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: 19th International Confer-

ence on Computational Statistics, pp. 177–186 (2010)
16. California Department of Water Resources. SGMA groundwater management. https://www.waterboards.

ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf. Accessed 18 May 2020
17. Chiang, Y.-M., Chang, L.-C., Chang, F.-J.: Comparison of static-feedforward and dynamic-feedback

neural networks for rainfall-runoff modeling. J. Hydrol. 290(3–4), 297–311 (2004)
18. Chollet, F.: keras. GitHub Repository (2015). https://github.com/fchollet/keras. Accessed 18 May 2020
19. Cook, B.I., Mankin, J.S., Anchukaitis, K.J.: Climate change and drought: from past to future. Curr. Clim.

Change Rep. 4(2), 164–179 (2018)
20. Coulibaly, P., Anctil, F., Aravena, R., Bobée, B.: Artificial neural network modeling of water table depth

fluctuations. Water Resour. Res. 37(4), 885–896 (2001)
21. Cui, Z., Chen, W., Chen, Y.: Multi-scale Convolutional Neural Networks for Time Series Classification

(2016). arXiv:1603.06995
22. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K.: Groundwater level forecasting using artificial neural

networks. J. Hydrol. 309(1–4), 229–240 (2005)
23. Datta, R., Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimiza-

tion. Expert Syst. Appl. 57, 270–284 (2016)
24. Davis, E., Ierapetritou, M.: Kriging based method for the solution of mixed-integer nonlinear programs

containing black-box functions. J. Global Optim. 43, 191–205 (2009)

123

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1703.04691
https://www.waterboards.ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf
https://www.waterboards.ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf
https://github.com/fchollet/keras
http://arxiv.org/abs/1603.06995


Journal of Global Optimization (2021) 81:203–231 229

25. Faunt, C.C.: Groundwater Availability of the Central Valley Aquifer, California. Professional paper 1766,
225 p., U.S. Geological Survey (2009). https://pubs.usgs.gov/pp/1766/PP_1766.pdf. Accessed 18 May
2020

26. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Multi-fidelity optimization via surrogate modelling. Proc. R.
Soc. 463, 3251–3269 (2007)

27. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Gagné, C., Parizeau, M.: DEAP: evolutionary algo-
rithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

28. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron): a review of appli-
cations in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

29. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural
Comput. 12, 2451–2471 (2000)

30. Gramacy, R., Le Digabel, S.: The mesh adaptive direct search algorithm with treed Gaussian process
surrogates. Pac. J. Optim. 11, 419–447 (2015)

31. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In:
Proceedings of the 2013 International Conference on Acoustics, Speech, and Signal Processing (2013)

32. Gutmann, H.-M.: A radial basis function method for global optimization. J. Global Optim. 19, 201–227
(2001)

33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

34. Hinton, G., Srivastava, N., Swersky, K.: Neural Networks for Machine Learning. lecture 6a, Overview of
Mini-batch Gradient Descent. Lecture Notes (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf. Accessed 18 May 2020

35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
36. Holmström, K.: An adaptive radial basis algorithm (ARBF) for expensive black-boxmixed-integer global

optimization. J. Global Optim. 9, 311–339 (2008a)
37. Holmström, K.: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization.

J. Global Optim. 41, 447–464 (2008b)
38. Hsu, D.: Multi-period Time Series Modeling with Sparsity Via Bayesian Variational Inference (2018).

arXiv:1707.00666v3
39. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization of deep learning

algorithms using deterministic RBF surrogates. In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (2017)

40. Jin, H., Song, Q., Hu, X.: Auto-Keras: An Efficient Neural Architecture Search System (2019).
arXiv:1806.10282 [cs.LG]

41. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions.
J. Global Optim. 13, 455–492 (1998)

42. Karandish, F., Šimunek, J.: A comparison of numerical and machine-learning modeling of soil water
content with limited input data. J. Hydrol. 543, 892–909 (2016)

43. Karslıoğlu, O., Gehlmann, M., Müller, J., Nemšàk, S., Sethian, J., Kaduwela, A., Bluhm, H., Fadley,
C.: An efficient algorithm for automatic structure optimization in x-ray standing-wave experiments. J.
Electron Spectrosc. Relat. Phenom. 230, 10–20 (2019)

44. Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: ICLR 2015 (2015)
45. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimization of machine learning

hyperparameters on large datasets. In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA, vol. 54 (2017)

46. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M.: Rainfall-runoff modelling using long
short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 22(11), 6005–6022 (2018)

47. Kuderer,M.,Gulati, S., Burgard,W.: Learning driving styles for autonomous vehicles fromdemonstration.
In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2641–2646 (2015)

48. Lakhmiri, D., Digabel, S. Le, Tribes, C.: HyperNOMAD: Hyperparameter Optimization of Deep Neural
Networks Using Mesh Adaptive Direct Search (2019). arXiv:1907.01698 [cs.LG]

49. Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation
for the MODFLOW 6 Groundwater Flow Model. Technical Report, US Geological Survey (2017)

50. Langhans, W., Müller, J., Collins, W.: Optimization of the Eddy-diffusivity/mass-flux shallow cumulus
and boundary-layer parameterization using surrogate models. J. Adv. Model. Earth Syst. 11, 402–416
(2019)

51. Le Digabel, S.: Algorithm 909: NOMAD–nonlinear optimization with theMADS algorithm. ACMTrans.
Math. Softw. 37, 1–15 (2011)

52. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recog-
nition. Proc. IEEE 86(11), 2278–2324 (1998)

123

https://pubs.usgs.gov/pp/1766/PP_1766.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1707.00666v3
http://arxiv.org/abs/1806.10282
http://arxiv.org/abs/1907.01698


230 Journal of Global Optimization (2021) 81:203–231

53. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
54. Lee, H.K.H., Gramacy, R.B., Linkletter, C., Gray, G.A.: Optimization subject to hidden constraints via

statistical emulation. Pac. J. Optim. 7, 467–478 (2011)
55. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed

prediction using remote microwave sensor data. Transp. Res. C Emerg. Technol. 54, 187–197 (2015)
56. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)
57. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based

languagemodel. In: EleventhAnnual Conference of the International SpeechCommunicationAssociation
(2010)

58. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
59. Moritz, S., Bartz-Beielstein, T.: imputeTS: Time Series Missing Value Imputation in R. R J. 9, 207–218

(2017)
60. Müller, J.: MISO: mixed integer surrogate optimization framework. Optim. Eng. 17(1), 177–203 (2015)
61. Müller, J.: SOCEMO: surrogate optimization of computationally expensive multiobjective problems.

INFORMS J. Comput. 29(4), 581–596 (2017)
62. Müller, J.: An algorithmic framework for the optimization of computationally expensive bi-fidelity black-

box problems. INFOR Inf. Syst. Oper. Res. (2019). https://doi.org/10.1080/03155986.2019.1607810
63. Müller, J., Day,M.: Surrogate optimization of computationally expensive black-box problemswith hidden

constraints. INFORMS J. Comput. (2019). https://doi.org/10.1287/ijoc.2018.0864
64. Müller, J., Woodbury, J.: GOSAC: global optimization with surrogate approximation of constraints. J.

Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0496-y
65. Müller, J., Shoemaker,C.A., Piché,R.: SO-MI: a surrogatemodel algorithm for computationally expensive

nonlinear mixed-integer black-box global optimization problems. Comput. Oper. Res. 40, 1383–1400
(2013a)

66. Müller, J., Shoemaker, C.A., Piché, R.: SO-I: a surrogate model algorithm for expensive nonlinear integer
programming problems including global optimization applications. J. Glob. Optim. 59, 865–889 (2013b)

67. Müller, J., Paudel,R., Shoemaker,C.A.,Woodbury, J.,Wang,Y.,Mahowald,N.:CH4parameter estimation
in CLM4.5bgc using surrogate global optimization. Geosci. Model Dev. Discus. 8, 141–207 (2015)

68. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Methodology: Process and
Product Optimization Using Designed Experiments, 4th edn. John Wiley & Sons, Inc., Hoboken, NJ
(2016)

69. Najah, A., El-Shafie, A., Karim, O.A., El-Shafie, A.H.: Application of artificial neural networks for water
quality prediction. Neural Comput. Appl. 22(1), 187–201 (2013)

70. Nuñez, L., Regis, R.G.,Varela,K.:Accelerated random search for constrained global optimization assisted
by radial basis function surrogates. J. Comput. Appl. Math. 340, 276–295 (2018)

71. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P.,Weiss, R., Dubourg,V., Vanderplas, J., Passos, A., Cournapeau,D., Brucher,M., Perrot,M., Duchesnay,
E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

72. Powell, M.J.D.: Advances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial
Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis
Function Approximation in 1990. Oxford University Press, London (1992)

73. Powell, M.J.D.: Recent Research at Cambridge on Radial Basis Functions NewDevelopments in Approx-
imation Theory, pp. 215–232. Birkhäuser, Basel (1999)

74. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization involving expensive
black-box objective and constraint functions. Comput. Oper. Res. 38, 837–853 (2011)

75. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of
expensive functions. INFORMS J. Comput. 19, 497–509 (2007)

76. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
77. Rudy, S., Alla, A., Brunton, S.L., Kutz, J.N.: Data-driven identification of parametric partial differential

equations. SIAM J. Appl. Dyn. Syst. 18(2), 643–660 (2019)
78. Rumelhart, D.E., Hinton, G.E.,Williams, R.J., et al.: Learning representations by back-propagating errors.

Cognit. Model. 5(3), 1 (1988)
79. Sahoo, S., Russo, T.A., Elliott, J., Foster, I.: Machine learning algorithms for modeling groundwater level

changes in agricultural regions of the US. Water Resour. Res. 53(5), 3878–3895 (2017)
80. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms.

In: Advances in Neural Information Processing Systems (2012)
81. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau,V., Lichtner, P.C.,

Mayer, K.U., Meeussen, J.C.L., et al.: Reactive transport codes for subsurface environmental simulation.
Comput. Geosci. 19(3), 445–478 (2015)

123

https://doi.org/10.1080/03155986.2019.1607810
https://doi.org/10.1287/ijoc.2018.0864
https://doi.org/10.1007/s10898-017-0496-y


Journal of Global Optimization (2021) 81:203–231 231

82. Sundermeyer,M., Schluter, R., Ney, H.: LSTMneural networks for languagemodeling. In: Proceedings of
the 12th Annual Conference of the International Speech Communication Association, Portland, Oregon,
USA, pp. 601–608 (2012)

83. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In: Proceedings
of the 28th International Conference on Machine Learning (ICML-11), pp. 1017–1024 (2011)

84. Tabari, H., Talaee, P.H.: Multilayer perceptron for reference evapotranspiration estimation in a semiarid
region. Neural Comput. Appl. 23(2), 341–348 (2013)

85. Taylor, M.: Liquid Assets: Improving Management of the State’s Groundwater Resources. Legislative
Analyst’s Office, Technical Report (2010)

86. Toal, D., Keane, A.: Efficient multi-point aerodynamic design optimization via co-kriging. J. Aircr. 48(5),
1685–1695 (2011)

87. Trenn, S.: Multilayer perceptrons: approximation order and necessary number of hidden units. IEEE
Trans. Neural Netw. 19(5), 836–844 (2008)

88. Wild, S.M., Shoemaker, C.A.: Global convergence of radial basis function trust-region algorithms for
derivative-free optimization. SIAM Rev. 55, 349–371 (2013)

89. Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT version 2.0: a
simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput.
Geosci. 37(6), 763–774 (2011)

90. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-
parameters through an evolutionary algorithm. In: MLHPC’15 Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments, Volume Article No. 4 (2015)

91. Zhang, J., Zhu, Y., Zhang, X., Ye, M., Yang, J.: Developing a long short-term memory (LSTM) based
model for predicting water table depth in agricultural areas. J. Hydrol. 561, 918–929 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Surrogate optimization of deep neural networks for groundwater predictions
	Abstract
	1 Introduction
	2 Mathematical problem description of hyperparameter optimization
	3 Surrogate models for efficient hyperparameter optimization (HPO)
	3.1 Step 1: preparing the hyperparameters for optimization
	3.2 Step 2: initial experimental design
	3.3 Steps 4–9: the adaptive sampling loop
	3.4 Algorithm parameters

	4 Review of learning models
	4.1 Multilayer perceptron model (MLP)
	4.2 Convolutional neural networks (CNN)
	4.3 Simple recurrent neural networks (RNN)
	4.4 Long short-term memory recurrent neural networks (LSTM)

	5 Numerical experiments for timeseries data
	5.1 Motivation and description of the groundwater prediction application
	5.2 Observation data in Butte County, CA, USA
	5.3 Setup of the numerical experiments
	5.4 Numerical results
	5.5 Results for predicting groundwater at a single well in Butte County, CA
	5.6 Results for predicting groundwater at multiple wells in Butte County, CA

	6 Summary and directions of future research
	Acknowledgements
	References




