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Abstract

Recently, Kronqyvist et al. (J Global Optim 64(2):249-272, 2016) rediscovered the support-
ing hyperplane algorithm of Veinott (Oper Res 15(1):147-152, 1967) and demonstrated its
computational benefits for solving convex mixed integer nonlinear programs. In this paper
we derive the algorithm from a geometric point of view. This enables us to show that the
supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm (J Soc Ind
Appl Math 8(4):703-712, 1960) applied to a particular reformulation of the problem. As a
result, we extend the applicability of the supporting hyperplane algorithm to convex problems
represented by a class of general, not necessarily convex nor differentiable, functions.

Keywords Convex MINLP - Cutting plane algorithms - Supporting hyperplane algorithm -
Nonsmooth Optimization

1 Introduction

A mixed integer convex program (MICP) is a problem of the form
min{c'x : x € CN(ZP x R""P)}, 1)

where C is a closed convex set, c € R", and p denotes the number of variables with integrality
requirement. The use of a linear objective function is without loss of generality given that
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one can always transform a problem with a convex objective function into a problem of the
form (1). We can represent the set C in different ways, one of the most common being as the
intersection of sublevel sets of convex differentiable functions, that is,

C={xeR":gj(x)<0,jeJ} 2)

Here, J is a finite index set and each g; is convex and differentiable.

Several methods have been proposed for solving MICP. When the problem is continuous
and represented as (2), one of the first proposed methods was Kelley’s cutting plane algorithm
[1]. This algorithm exploits the convexity of a constraint function g in the following way.
The convexity and differentiability of g imply that g(y) + Vg(y)(x — y) < g(x) for every
x,y € R™. Since every feasible point x must satisfy g(x) < 0, it follows that g(y) +
Vg()(x —y) <0, for a fixed y, is a valid linear inequality. If x € R" does not satisfy the
constraint g(x) < 0, that is, if g(x) > 0, then

g(x) +Vgx)(x —x) <0 (3)
separates X from the feasible solution. In the non-differentiable case
gX) +v'(x —%) <0, withv € dg(%), 4)

is also a separating valid inequality. Here dg(x) denotes the subdifferential of g at x and we
recall its definition later. We will call both inequalities (3) and (4) gradient cut of g at x.

The idea of Kelley’s cutting plane algorithm is to approximate the feasible region with
a polytope, solve the resulting linear program (LP) and, if the LP solution is not feasible,
separate it using gradient cuts to obtain a new polytope which is a better approximation of
the feasible region and repeat, see Algorithm 1.

Algorithm 1: Kelley’s cutting plane algorithm

1 LP ={x: x€[l,ul},X < argmin,c; pc'x

2 while max;c; g;j(x) > € do

3 forall the j such that gj(x) > 0 do

4 LLP(—LPﬂ{x D gj(X) 4+ Vg;(X)(x — %) <0}
5 | X < arg minxeLPch

6 return x

Kelley shows that the algorithm converges to the optimum and it converges in finite time to a
point close to the optimum. By solving integer programs (IP) using Gomory’s cutting plane
[2] instead of LP relaxations, Kelley shows that his cutting plane algorithm solves purely
integer convex programs in finite time. The same algorithm works just as well for MICP.
However, Kelley did not have access to a finite algorithm for solving mixed integer linear
programs (MILP).

In an attempt to speed up Kelley’s algorithm, Veinott [3] proposes the supporting hyper-
plane algorithm (SH). A possible issue with Kelley’s algorithm is that, in general, gradient
cuts do not support the feasible region, see Fig. 1. Therefore, it is expected that better relax-
ations can be achieved by using supporting cutting planes.

In order to construct supporting hyperplanes, Veinott suggests to build gradient cuts at
boundary points of C. He uses an interior point of C to find the point on the boundary, X, that
intersects the segment joining the interior point and the solution of the current relaxation.
These cuts are automatically supporting hyperplanes of C, at x. However, since the cut is

@ Springer



Journal of Global Optimization (2020) 78:161-179 163

computed at X which is in C, it might happen that the gradient of the constraints active at X
vanishes. For this reason, Veinott also requires that the functions representing C have non-
vanishing gradients at the boundary. This is immediately implied by, e.g., Slater’s condition.
Veinott also identifies that one can use his algorithm to solve (1) when representing C by
quasi-convex functions, that is, functions whose sublevel sets are convex.

Recently, Kronqvist et al. [4] rediscovered and implemented Veinott’s algorithm [3]. They
call their algorithm the extended supporting hyperplane algorithm (ESH). They discuss the
practical importance of choosing a good interior point and propose some improvements over
the original method, such as solving LP relaxations during the first iterations instead of the
more expensive MILP relaxation. As a result, they present a computationally competitive
solver implementation for MICPs defined by convex differentiable constraint functions [5].

In this paper, we would like to understand when, given a convex differentiable function
g, gradient cuts of g are supporting to the convex set C = {x € R" : g(x) < 0}. This
question is motivated by the fact that in this case Kelley’s algorithm automatically becomes a
supporting hyperplane algorithm. In Theorem 1 we give a necessary and sufficient condition
for a gradient cut of g at a given point to be a supporting hyperplane of C. In particular, this
condition suggests to look at sublinear functions, i.e., convex and positively homogeneous
functions. As it turns out, this naturally leads to Veinott’s algorithm.

Sublinear functions and convex sets are deeply related. When the origin is in the interior
of a convex set C, then we can represent C via its gauge function ¢c, which is sublinear
[6]. We give the formal definition of the gauge function in Sect. 4, but for now it suffices to
know that we can represent C as C = {x € R" : ¢c(x) < 1} and that, in particular, for
every x # 0 a gradient cut of ¢ at x supports all of its sublevel sets. The following example
illustrates this.

Example 1 Consider the convex feasible region given by
C={(x.y) eR*: g(x.y) <0},

where g(x,y) = x> + y> — 1. We show through an example that gradient cuts of g are
not necessarily supporting to C, explain why this happens, and show that changing the
representation of C to use its gauge function solves the issue.

Separating the infeasible point x = (%, %) by a gradient cut of g at x gives

gX) +Veg(x)(x —x) <0

Sx+y=< 1
X —.
Y=
This cut does not support C, see Fig. 1. Alternatively, the gauge function of C is given

by oc(x,y) = /x2+y2and C = {(x, y) : v/x2 + y? < 1}. The gradient cut of ¢¢ at X is
x + y < +/2, which is supporting. O

From the previous discussion it is a natural idea to represent C via its gauge function,
namely, C = {x € R" : ¢c(x) < 1}. However, as mentioned before, C is usually given by
(2). Our main contribution is to show that reformulating (2) to the gauge representation will
naturally lead to the ESH algorithm, see Sect. 4.2. As a consequence, the convergence proofs
of Veinott [3] and Kronqvist et al. [4] follow directly from the convergence proof of Kelley’s
cutting plane algorithm [1,7], see Sect. 5. In other words, we show that the ESH algorithm
is Kelley’s cutting plane algorithm applied to a different representation of the problem.!

1 Strictly speaking, when the problem is mixed integer, the KCP algorithm only corresponds to the so-called
LP-step [4] of the ESH algorithm.
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Fig. 1 The feasible region C and the infeasible point X = (%, %) to separate. On the left we see that the
separating hyperplane is not supporting to C. On the right we see why this happens: the linearization of g at x
is tangent to the epigraph of g (shown upside-down for clarity) at (x, g(x)). However, when this hyperplane
intersects the x-y-plane, it is already far away from the epigraph, and in consequence, from the sublevel set.
The intersection of the hyperplane with the x—y-plane is the gradient cut

Motivated by this approach of representing C by its gauge function, we are able to show
that the ESH algorithm applied to (1) converges even when C is not represented by convex
functions. This is related to recent work of Lasserre [8] that tries to understand how different
techniques behave when the convex set C is not represented via (2). Lasserre considers sets
C={x:gj(x) <0, j e J}where g; are only differentiable, but not necessarily convex in
the following setting:

Assumption1 Forallx € C andall j € J,if g;j(x) =0, then Vg;(x) # 0.

Under this assumption, that is, if the gradients of active constraints do not vanish at the
boundary of C, Lasserre shows that the KKT conditions are not only necessary but also
sufficient for global optimality. In other words, every minimizer is a KKT point and every
KKT point is a minimizer.

A series of generalizations follow the work of Lasserre. Dutta and Lalitha [9] generalize
the previous result to the case where C is represented by locally Lipschitz functions, not
necessarily differentiable nor convex, but regular in the sense of Clarke [10] (see also Defini-
tion 2). Martinez-Legaz [11] further generalize the result to the case where C is represented
by tangentially convex functions [12,13]. Kabgani et al. [14] generalize the result to the case
where C is represented by functions that admit an upper regular convexificator URC [15]
(see also Definition 3). We note that regular functions in the sense of Clarke and tangentially
convex functions admit a URC [14], thus the URC assumption is the most general among
the ones considered in these works.

In terms of computations, Lasserre [16,17] proposes an algorithm to find the KKT point via
log-barrier functions. He shows that the algorithm converges to the KK T point if Assumption 1
holds.

For all these concepts of generalized derivative, there is a notion of directional derivative
and a notion of subdifferential. For example, for functions that admit a URC, the notion of

However, given that the KCP algorithm allows for an straightforward extension to the mixed integer case, we
will continue to compare the KCP algorithm to the ESH algorithm with respect to their technique of generating
cutting planes.
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directional derivative is the upper Dini directional derivative and its subdifferential is the
URC (see Definition 3). Let f be a function and let us denote by f ’(x; d) a generalized
directional derivative. We say that the directional derivative is well-behaved if f ' (x;d)>0
implies that there exists #, \( 0 such that f(x + t,d) > f(x).

In this sense we show that if C is represented by functions whose generalized direc-
tional derivatives are well-behaved, then the ESH converges to the global optimum, under
the equivalent of Assumption 1 [see (10)] for the corresponding subdifferential. The upper
Dini directional derivative is certainly well-behaved and, thus, our result shows that the ESH
converges when C is represented by functions that admit a URC. We also show that for
a°-pseudoconvex (see Definition 6) constraints, the Clarke directional derivative (see Def-
inition 2) is well-behaved. Therefore, our result generalizes the result of [18] that the ESH
converges when C is represented by d°-pseudoconvex functions.

We also show, via an example, that if we use Clarke’s subdifferential [10], the ESH does
not need to converge when the functions are only Lipschitz continuous but not regular in the
sense of Clarke [10].

Finally, we provide a characterization of convex functions whose linearizations are sup-
porting to their sublevel sets. Although elementary, the authors are not aware of its presence
in the literature. In particular, this result allows us to identify some families of functions
for which gradient cuts are never supporting (see Example 3) and some for which they are
always supporting (see Corollary 2 and Example 2).

Overview of the paper. In the remainder of this section we introduce the notation that will be
used throughout the paper. Section 2 provides a literature review on cutting plane approaches
and efforts on obtaining supporting valid inequalities. In Sect. 3, we characterize functions
whose linearizations are supporting hyperplanes to their O-sublevel sets. Section 4 introduces
the gauge function and shows how to use evaluation of the gauge function for building
supporting hyperplanes. We note that evaluating the gauge function is equivalent to the
line search step of the ESH algorithm [3,4]. This equivalence provides the link between
the ESH and Kelley’s cutting plane algorithm. In Sect. 5, we show that the cutting planes
generated by the ESH algorithm can also be generated by Kelley’s algorithm when applied
to a reformulation of the problem. This implies that the convergence of the ESH algorithm
follows from Kelley’s. In Sect. 6, we show that we can apply the ESH algorithm to problem (1)
when the convex set C is represented via functions whose generalized directional derivatives
are well-behaved as long as 0 does not belong to the generalized subdifferential at points
where the functions are zero. Finally, Sect. 7 presents our concluding remarks.

Notation and definitions. The boundary and the interior of a set C are denoted by dC and
C, respectively. The epigraph of a function g is denoted by epi g. The subdifferential of a
convex function g at x is denoted by dg(x). Recall that the subdifferential is the set of all
subgradients of g at x,

IgX) ={veR" : g@) +v (x — %) < g(x), Vx € R"}.

We say that an inequality «'x < B is valid for a set C if every x € C satisfies «'x < B.
Furthermore, we say that it is a supporting hyperplane of C, or that it supports C, if there is
anx € 9C such that «"x = B.

A function g is positively homogeneous if g(Ax) = Ag(x) for every A > 0. A function is
sublinear if it is positively homogeneous and convex.
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2 Literature review

We can think of the algorithms of Kelley [1] and Veinott [3] as a mixture of two ingredients:
which relaxation to solve and where to compute the cutting plane. Indeed, at each iteration we
have a point x* that we would like to separate with a linear inequality 8+ (x —xg) < 0. For
Kelley’s algorithm, xo = x*, while for Veinott’s algorithm, xo € dC, and for both & € dg(xp)
and B = g(xp). Choosing different relaxations and different points where to compute the
cutting planes yields different algorithms. This framework is developed in Horst and Tuy [7].

Following the previous framework, Duran and Grossmann [19] propose the, so-called,
outer approximation algorithm for MICP. The idea is to solve an MILP relaxation, but
instead of computing a cutting plane at the MILP optimum, or at the boundary point on
the segment between the MILP optimum and some interior point, they suggest to compute
cutting planes at a solution of the nonlinear program (NLP) obtained after fixing the integer
variables to the integer values given by the MILP optimal solution. This is a much more
expensive algorithm but has the advantage of finite convergence. Of course, this does not
work in complete generality and we need some assumptions, for example, requiring some
constraint qualifications. Moreover, when obtaining an infeasible NLP after fixing the integer
variables, care must be taken to prevent the same integer assignment in future iterations. To
handle such cases, Duran and Grossmann propose the use of integer cuts. However, Fletcher
and Leyffer [20] point out that this is not necessary. They show that the gradient cuts at
the solution of a slack NLP separates the integer assignment. In [21] show that a naive
generalization of the outer approximation algorithm to the non-differentiable case will not
work. They provide a generalization for a particular class of function. Wei and Ali [22,23]
provide further generalizations to the non-differentiable case.

Arelated algorithm to the outer approximation method is the so-called generalized Benders
decomposition [24]. We refer to [19,20,25] for discussions about the relation between these
two algorithms. A generalization of the generalized Benders decomposition to Banach spaces
can be found in [26].

Westerlund and Pettersson [27] propose the so-called extended cutting plane algorithm.
This algorithm is the extension of Kelley’s cutting plane to MICP and they show that the
algorithm converges. Further extensions and convergence proofs of cutting plane and outer
approximation algorithms for non-smooth problems are given in [21]. An interesting gener-
alization of the extended cutting plane algorithm to solve a class of non-convex problems is
the so-called « extended cutting plane algorithm introduced by Westerlund et al. [28]. They
consider problem (1) where C is represented by differentiable pseudoconvex constraints. The
idea is that, even though a gradient cut might not be valid, one can tilt the cut in order to
make it valid. The tilting is done by multiplying the gradient by some o, hence the name. We
refer to [28] for more details.

As mentioned at the beginning, the assumption that the objective function is linear is
without loss of generality, provided that the original objective function is convex. However,
some classes of problems cannot be encompassed by (1), for example, when the objective
function is quasi-convex. An extension of the KCP algorithm, the («) extended cutting plane
algorithm, and the ESH to convex problems with a class of quasi-convex objectives were
developed by Plastria [29], Eronen et al. [30], and Westerlund et al. [31], respectively.

Yet another technique for producing tight cuts is to project the point to be separated onto
C [7]. Using the projected point and the difference between the point and its projection, one
can build a supporting hyperplane that separates the point. In the same reference, Horst and
Tuy show that this algorithm converges.
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There have been attempts at building tighter relaxations by ensuring that gradient cuts are
supporting, in a more general context than convex mixed integer nonlinear programming.
Belotti et al. [32] consider bivariate convex constraints of the form f(x) — y < 0, where f
is a univariate convex function. They propose projecting the point to be separated onto the
curve y = f(x) and building a gradient cut at the projection. However, their motivation is
not to find supporting hyperplanes, but to find the most violated cut. Indeed, as we will see,
gradient cuts for these types of constraints are always supporting (Example 2). Other work
along these lines includes [33], where the authors derive an efficient procedure to project
onto a two dimensional constraint derived from a Gaussian linear chance constraint, thus
building supporting valid inequalities.

Another algorithm for solving non-smooth convex optimization problems is the so-called
bundle method [34]. This method has also been extended to consider the mixed integer case
[35].

Finally, in terms of applications, we would like to point out that the supporting hyperplane
algorithm is very popular in stochastic optimization [36—42].

3 Characterization of functions with supporting linearizations

We now give necessary and sufficient conditions for the linearization of a convex, not neces-
sarily differentiable, function g at a point x to support the region C = {x € R" : g(x) < 0}.
In order for this to happen, the supporting hyperplane has to support the epigraph on the
whole segment joining the point of C where it supports and (x, g(x)). In other words, the
function must be affine on the segment joining the set C and x. This is due to the convexity
of g.

Theorem 1 Ler g: R" — R be a convex function, C = {x € R" : g(x) < 0} # 0, and
x ¢ C. There exists a subgradient v € dg(x) such that the valid inequality

g® +v(x —%) <0 5)

supports C, if and only if; there exists xo € C such that . — g(xo + A(x — x0)) is affine in
[0, 1].

Proof (=) Letxy € dC be the point where (5) supports C. The idea is to show that the affine
function x — g(xX) + v'(x — X) coincides g at two points, x and xo. Then, by the convexity
of g, it must coincide with g on the segment joining both points.

In more detail, by definition of xo we have,

g(®) +v'(xo — ) = 0. 6)
For A € [0, 1], let /(X)) = xo + A(x — x0) and p(X) = g(l(})). Since g is convex and / affine,
p is convex.
Since v is a subgradient,
g@® + v — %) < p() forevery A € [0, 1].

After some algebraic manipulation and using that p(1) = g(x) = vT (X — x0), we obtain

p(DA < p(A).
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On the other hand, p(0) = 0 and p(}) is convex, thus we have p(L) < Ap(1) + (1 —
A)p(0) = rp(1) for A € [0, 1]. Therefore, p(A) = p(1)A, hence g(I(})) is affine in [0, 1].

(<) The idea is to show that there is a supporting hyperplane H of epig € R"” x R
which contains the graph of g restricted to the segment joining xo and x, that is, A =
{(xo + A(x — x0), g(x0 + A(x — xp))) : A € [0, 1]}. Then the intersection of such H with
R”™ x {0} will give us (5).

The set A is a convex nonempty subset of epi g that does not intersect the relative interior
of epi g. Hence, there exists a supporting hyperplane,

H={(x,2) eR" xR : v'x +az = b},

to epi g containing A ( [6, Theorem 11.6]).

Since g(xp) < 0 and g(x) > 0, it follows that A is not parallel to the x-space. Therefore,
H is also not parallel to the x-space and so v # 0. Since A is not parallel to the z-axis, it
follows that a # 0. We assume, without loss of generality, that a = —1.

The point (x, g(x)) belongs to A € H, thus vx — g(x) =band H = {(x, g(x) +
vT(x — X)) : x € R"}. Given that H supports the epigraph, then v is a subgradient of g, in
particular,

g(@) + v (x — %) < g(x) forevery x € R".

Let z(x) be the affine function whose graph is H, that is, z(x) = g(x) + v (x — ¥). We
now need to show that g(X) + v (x — ¥) < 0 supports C by exhibiting an £ € C such that
g(x) + (& — %) = 0. By construction, z(xo + A(x — xp)) = g(xo + A(x — xp)). Since
Z(xo + A(Xx — x¢)) is non-positive for A = 0 and positive for A = 1, it has to be zero for
some Ag. Let X = xg + Ag(xX — xo). Then g(X) = z(X) = 0 and we conclude that x € C and
g(X)+vT (& —x) =0. O

Specializing the theorem to differentiable functions directly leads to the following:

Corollary 1 Let g: R" — R be a convex differentiable function, C = {x € R" : g(x) <0},
and x ¢ C. Then the valid inequality

g(®) + Vg(®)(x — %) <0,

supports C, if and only if, there exists xo € C such that . — g(xo + A(x — x0)) is affine in
[0, 1].

Proof Since g is differentiable, the subdifferential of g consists only of the gradient of g. O

A natural candidate for functions with supporting gradient cuts at every point are functions
whose epigraph is a translation of a convex cone.

Corollary 2 (Sublinear functions) Let h(x) be a sublinear function. For this type of function,
gradient cuts always support C = {x : h(x) < c}, for any c > 0.

Proof This follows directly from Theorem 1, since 0 € C and A — h(\x) is affine in R
for any Xx. o

However, these are not the only functions that satisfy the conditions of Theorem 1 for

every point. The previous theorem implies that linearizations always support the constraint
set if a convex constraint g(x) < 0 is linear in one of its arguments.
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Example 2 (Functions with linear variables) Let f: R™ x R” — R be a convex function of
the form f(x, y) = g(x)+a'y+c, witha # Oand g: R™ — R convex. Then gradient cuts
support C = {(x,y) : f(x,y) < 0}. Indeed, assume without loss of generality that a; > 0
andlet (x, y) ¢ C.Thenthereexistsal > Osuchthat f(x, y—Aej) = g()?)—l—aT)')—i-c—alk =
0. The statement follows from Theorem 1.

Consider separating a point (xo, zo) from a constraintof the formz = g(x) withg: R — R
and convex, with zg < g(xo) (that is, separating on the convex constraint g(x) < z). As
mentioned earlier, in [32] the authors suggest projecting (xo, zo) to the graph z = g(x) and
computing a gradient cut there. This example shows that this step is unnecessary when the
sole purpose is to obtain a cut that is supporting to the graph. O

By contrast, if g(x) is strictly convex, linearizations at points x such that g(x) # 0 are
never supporting to g(x) < 0. This follows directly from Theorem 1 since A — g(x + Av)
is not affine for any v. We can also characterize convex quadratic functions with supporting
linearizations.

Example 3 (Convex quadratic functions) Let g(x) = x' Ax + b"x + ¢ be a convex quadratic
function, i.e., A is an n by n symmetric and positive semi-definite matrix. We show that
gradient cuts support C = {x € R" : g(x) < 0}, if and only if, b is not in the range of A,
ie,b ¢ R(A) ={Ax : x e R"}.

First notice that [, (1) = g(x + Av) is affine linear, if and only if, v € ker(A).
Let v € ker(A) and x ¢ C. Then there is a A € R such that x + Av € C if and only if
[, is not constant. Thus, gradient cuts are not supporting, if and only if, /, is constant for
every v € ker(A). But/, is constant for every v € ker(A), if and only if, bTv = 0 for every
v € ker(A), which is equivalent to b € ker(A)+ = R(AT) = R(A), since A is symmetric.
Hence, gradient cuts support C, if and only if, b ¢ R(A).

In particular, if b = 0, i.e., there are no linear terms in the quadratic function, then gradient
cuts are never supporting hyperplanes. Also, if A is invertible, b € R(A) and gradient cuts
are not supporting. This is to be expected since in this case g is strictly convex. O

4 The gauge function

Any MICP of form (1) can be reformulated to an equivalent MICP with a single constraint
for which every linearization supports the continuous relaxation of the feasible region. To
this end, we can use any sublinear function whose 1-sublevel set is C. Each convex set C has
at least one sublinear function that represents it, namely, the gauge function [6] of C.

Definition 1 Let C C R” be a convex set such that 0 € €. The gauge of C is
pc(x)=inf{t>0:xetC}.

Proposition 1 ( [43, Proposition 1.11]) Let C € R" be a convex set such that 0 € Co’, then
@c (x) is sublinear. If, in addition, C is closed, then it holds that

C={xeR": gclx) =1}
and
0IC={xeR": pc(x) =1}.
Combining Proposition 1 with Corollary 2, we can see that the gauge function is appealing

for separation, because it always generates supporting hyperplanes.
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4.1 Using the gauge function for separation

Even though the gauge function is exactly what we need to ensure supporting gradient cuts,
in general, there is no closed-form formula for it. Therefore, it is not always possible to
explicitly reformulate C as ¢c(x) < 1.

Furthermore, if one is interested in solving mathematical programs with a numerical
solver, performing such a reformulation might introduce some numerical issues one would
have to take care of. Solvers usually solve up to a given tolerance, that is, they accept points
that satisfy g;(x) < & for some & > 0. Then, even though C = {x : ¢c(x) < 1}, it might be
that {x € R" : ¢pc(x) <1+ ¢} g {x e R" : g;j(x) < &}. In fact, even simple constraints
show this behavior. Consider C = {x : xZ — 1 < 0}. In this case, ¢c(x) = |x| and for
xo = 1 + ¢, we have ¢c(xg) = 1 4 €. Then xg would be e-feasible for pc(x) < 1, although
it would be infeasible for x2 — 1 < 0, since 2¢ + &2 > .

Luckily, one does not need to reformulate in order to take advantage of the gauge function
for tighter separation. The next propositions show how to use the gauge function and a
point x ¢ C to obtain a boundary point of C and that linearizing at that boundary point
gives a supporting valid inequality that actually separates x. For ensuring the existence of
a supporting hyperplane we need Assumption 1. For example, Assumption 1 is satisfied
whenever Slater’s condition is satisfied for (1) with C represented by (2), that is, when there
exists xo such that g;(xo) < O forevery j € J.

Before we state the propositions we start with a simple lemma.

Lemma1 Let C C R”" be a closed convex set such that 0 € C, let? € 9C and x ¢ C. Let
o € R", B € R such that « # 0 and o"x < B is a valid inequality for C that supports C at
X. If the segment joining 0 and X contains X, then the inequality separates X from C.

Proof Consider /(1) = a' (AX) — B and let Ao € (0, 1) be such that Agx = x. The function
[ is a strictly increasing affine linear function. Indeed, O € C implies that /(0) < 0, while

[(Ag) = 0. Thus, [(1) > 0,i.e., a'% > B. |
Proposition2 Let C C R" be a closed convex set such that 0 € C and let & ¢ C. Then
ﬁ € aC.

Proof First, oc(x) # 0 since x ¢ C. The positive homogeneity of ¢¢c implies that
wc </7CX(5)) = iggi = 1. Proposition 1 implies ﬁ e aC. ]

Let Jo(x) be the set of indices of the active constraints at x, i.e., Jo(x) = {j € J :
gj(x) =0}

Proposition3 Let C = {x : gj(x) <0, j € J} be such that0 € C and let g¢ be its gauge
function. Assume that Assumption 1 holds. Given X ¢ C, define x = ﬁ. Then, for any
J € Jo(X), the gradient cut of g j at X yields a valid supporting inequality for C that separates

X.

Proof By the previous proposition, we have that * € dC. Let j € Jy(x). Then the gradient
cut of g; at X yields a valid supporting inequality. The fact that it separates follows from
Lemma 1. Note that Lemma 1 is applicable since Assumption 1 ensures that the normal of
the gradient cut is nonzero. O

Hence, we can get supporting valid inequalities separating a given point x ¢ C by using
the gauge function to find the point X = ﬁ € dC. Then Proposition 3 ensures that the
gradient cut of any active constraint at x will separate x from C. But how do we compute
@c(X)?
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4.2 Evaluating the gauge function

Let C ={x : gj(x) <0, j € J} beaclosed convex set such that 0 € € and consider
f(x) = max g;(x). )
jeJ

In general, evaluating the gauge function of C at x ¢ C is equivalent to solving the following
one dimensional equation

f(x) =0, 2 €(0,1). 8)

If A* is the solution, then ¢¢ (X) = )3—*

One can solve such an equation using a line search. Note that the line search is looking
for a point £ € dC on the segment between 0 and x. This is exactly what the (extended)
supporting hyperplane algorithm performs when it uses O as its interior point.

We would also like to remark that a closed-form formula expression for the gauge function
of C is equivalent to a closed-form formula for the solution of (8). It is possible to find such
a formula for some functions, e.g., when f is a convex quadratic function.

Next, we briefly discuss what happens when 0 is not in the interior of C and when C
has no interior. In the next section we discuss the implications of the fact that evaluating the
gauge function is equivalent to the line search step of the supporting hyperplane algorithm.

4.3 Handling sets with empty interior

When € = @, we can still use the methods discussed above by applying a trick from [4].
Assuming C = {x € R" : g;(x) <0, € J} # 0, consider the set Cc = {x € R" :
gj(x) <€, j € J}. This set satisfies Cc‘6 # () and optimizing over C, provides an e-optimal
solution.

4.4 Using a nonzero interior point

If xo € € and xg # 0, we can translate C so that 0 is in its interior. Equivalently, we can
build a gauge function centered on xg. This is given by

(pxo,C(x) = (pC—X()(x - XO)-
Then, given x ¢ C, the point
R X —Xq
X=—"—"—"—"—+x )
PC—xo (X — x0)
belongs to the boundary of C. Equivalently, X = xo + A*(X — xq), where A* solves
fxo+A(x —x0) =0, A€ (0, 1),

with f(x) = max e, g;(x) asin (7).

5 Convergence proofs
Consider an MICP given by (1) with C represented as (2). Let f be defined as in (7). As

mentioned above, the ESH algorithm [3,4] computes an interior point of C (which we will
assume to be 0) and performs a line search between x ¢ C and O in order to find a point on the
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boundary. It computes a gradient cut at the boundary point, solves the relaxation again, and
repeats the process. From our previous discussion, computing a gradient cut at the boundary
point is equivalent to computing a gradient cut at ( 3 Therefore, the generated cuts are

Flaem) +v' (= o) < g

To prove the convergence of the ESH algorithm, Veinott [3] and Krongqvist et al. [4] use
tailored arguments. Here we show that the convergence of the algorithm follows from the
convergence of Kelley’s cutting plane algorithm (KCP) [1]. We note that the KCP algorithm
still converges when C is represented by a convex non-differentiable function. One needs
to replace gradients by subgradients and one can use any subgradient [7]. Therefore, given
that ¢c(x) is a convex function, we know that KCP converges when applied to min{c'x :
¢c(x) < 1}. Thus, in order to prove that ESH converges, it is sufficient to show that the
cutting planes generated by ESH can also be generated by KCP.

We first prove that the normals of (normalized) supporting valid inequalities are subgra-
dients of the gauge function at the supporting point.

Lemma2 Let a'x < 1 be a valid and supporting inequality for C. Let & € 9C be a point
where it supports C, i.e., % = 1. Then a € dgc (%).

Proof We need to show that g (X) +a' (x —X) < @¢(x) for every x. Note that since £ € 9C,
we have that ¢ (X) = 1 and we just have to prove that o"x < oc(x).

When x is such that ¢c(x) > 0, we have € C. Due to the validity of alx < 1,it
follows that a7 Cxx < 1.

Now let x be such that ¢c(x) = 0. Then ¢c(Ax) = O for every A > 0, i.e., Ax € C for
every A > 0. Hence, aT(Ax) < 1 for every A > 0 which implies that alx <0= oc(x). O

vc (x)

Now we prove that the inequalities generated by the ESH algorithm can also be generated
by the KCP algorithm. Given that the KCP algorithm converges even for non-smooth convex
function [7], the next theorem implies the convergence of the ESH algorithm.

Theorem 2 Consider an MICP given by (1) with C represented as (2) such that 0 € ¢
and Assumption 1 holds. Let f be defined as in (7) and let x ¢ C be the current relaxation
solution to separate. Letf((p (x))—i—vT(x wc(X)) <0,withv € 8f((p (x)) be the inequality

generated by the ESH algorithm using 0 as the interior point. Then KCP applied to min{c'x :
oc(x) < 1} can generate the same inequality.

Proof Let x = oo ( 3 First, let us show that Assumption 1 implies v # 0. Indeed, if v = 0,

then f(£) + v"(x — %) < f(x) and 0 € C imply that 0 > f(0) > f() +v'(0 — %) = 0.
Let j € J be such that g;(0) = f(0) = 0. Then A — g; (AX) is constant in [0, 1]. Thus,
its derivative at 1 is 0, i.e., Vg; (£)TX = 0. This implies that Vg j (#)"x = 0. Furthermore,
Vg;(x) # 0 by Assumption 1 and so Lemma 1 implies that Vg; (&)T(x — %) < 0 separates
X from C. But this contradicts the equality Vg; &Tx=0.

Let us manipulate the inequality obtained by the ESH algorithm. Notice that f'(X) = 0 and
so the inequality readsas v'x < v'%. By Lemma 1, ¥ iscutoffby v'x < v'%,ie.,v"x > v'%.
This, together with ¢¢(X) > 1, implies that v"x > 0. Summarizing, the inequality obtained
by the ESH algorithm can be rewritten as

(ws.r(ic) ) x < 1.

Lemma 2 implies that ‘”C (x) v € dpc(X). Since @ is positively homogeneous, dgc (£) =

dpc (x). Hence, if the KCP algorlthm applied to min{c'x : @c(x) < 1} separates ¥ using
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‘”%’?v € d¢pc(x), then it would generate the gradient cut

gc(®) — 1+ 2L (x —5) <0.

The left hand side of the above inequality is equivalent to —1 + ‘p%?)vTx. This shows that
the gradient cut constructed by the KCP algorithm is the same as the one construction by the
ESH algorithm. O

6 Convex programs represented by non-convex non-smooth functions

In this section we consider problem (1) with C represented as
C={x:gjx)=<0,jeJ},

where the functions g; are not necessarily convex. As mentioned in the introduction, convex
problems represented by non-convex functions have been considered in [8,9,11,14,16,17].
These different works have generalized each other by considering more general classes of
non-smooth functions.

6.1 The ESH algorithm in the context of generalized differentiability

When a function is non-smooth there are many ways of extending the notion of differen-
tiability. Informally, it is common to first define a notion of directional derivative and then
a generalization of the gradient. As the directional derivative of g at x in the direction d is
given by Vg(x)'d, the notion of generalized gradient tries to capture this relation.

A classic notion of generalized derivative is Clarke’s subdifferential.

Definition 2 ([10,44]) The Clarke directional derivative of a function g : R” — R at x in
the direction d € R” is defined as

td) —
g°(x; d) = limsup sbetid) —5(x) g(x).
x—X,1\0 t
The Clarke subdifferential of g at X is
3°g(X) ={n e R" : n'd < g°(x; d)Vd € R"}.
We say that g is directionally differentiable at x if directional derivatives of g at X exist, that
is,
o td) — ol
/(& d) = lim g(x +1td) g(X)’
N0 t

exists for every d € R". Finally, g is regular in the sense of Clarke at x if the g is directional
differentiable at X and g'(X; d) = g°(x; d) for every d € R.

Another interesting class is the following.

Definition 3 ([15]) Let g : R” — R. The upper Dini directional derivative of g at X in the
direction d € R" is

s ttd) — ofi
gt (x; d) =lim sup —g(x +1d) g(x).
N0 t
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The function g has an upper regular convexificator (URC) at x if there exists a closed set
9T g(x) € R” such that for each d € R”,

g+(i;d): sup o'd.
aecdtg(x)

‘We abstract the notion of directional derivative and subdifferential as follows.

Definition4 Let ¢ : R” — R be a function. A generalized directional derivative of g is
a function 2 : R” x R" — R, and the generalized directional derivative of g at x in the
direction d is h(x; d). We say that g admits a generalized subdifferential at x if there exists
A = A(x) € R" such that h(x; d) = sup,c(y) v'd foralld € R™.

For example, if g is locally Lipschitz, then Clarke’s directional derivative is a generalized
directional derivative and 0°g(x) is a generalized subdifferential as g°(x; d) = sup{de :
v € 0°g(x)} [44, Proposition 2.1.5]. Or, if g admits a URC, then Dini’s directional derivative
is a generalized directional derivative that admits a generalized subdifferential.

However, the above definition of generalized directional derivative and subdifferential is
so general, that any support function of a set yields a generalized directional derivative that
admits a generalized subdifferential. The following definition adds a further requirement in
order to make this general notion useful.

Definition 5 Let / be a generalized directional derivative of g. We say that the generalized
directional derivative is well-behaved if h(x; d) > 0 implies that there exists #, N\ 0 such
that g(x + t,d) > g(x).

As we will see, this is the key property to show that the ESH algorithm converges.

Clearly, if g is differentiable, then the directional derivative is well-behaved. Also, Dini’s
directional derivative is well-behaved. As we will see in the next section, Clarke’s directional
derivative is not well-behaved in general. However, if the function is regular in the sense
of Clarke, then it is well-behaved. Another important class of functions for which Clarke’s
directional derivative is well-behaved is the class of 9°-pseudoconvex functions.

Definition 6 A function g : R" — R is d°-pseudoconvex if

— itis locally Lipschitz and,
— forevery x,y € R",if g(y) < g(x), then g°(x; y —x) <0

To show that it is well-behaved, we need the following result.

Lemma 3 ( [45, Lemma 5.3]) If a function g is 0°-pseudoconvex, then for every x, y € R",
ifg(y) = g(x), then g°(x; y — x) < 0. In particular, if g(y) < g(x), then g°(x; y —x) <O.

The contrapositive of the last statement is if g°(x;y — x) > 0, then g(y) > g(x). As
g°(x; +) is positively homogeneous [44, Proposition 2.1.1], we conclude that if g is 9°-
pseudoconvex, g°(x; d) > 0 for some d € R", and ¢t > 0, then g(x + td) > g(x). Thus, if
g is 0°-pseudoconvex, then Clarke’s directional derivative is well-behaved.

Now we are ready to prove the main result of this section. Recall that Jo(x) = {j € J :
gj(x) =0}.

Theorem3 Let C = {x : gj(x) <0, j € J} be such that C is convex, closed, and 0 € C.
Assume that for each x € C and j € Jo(x), the function g; has a well-behaved generalized
directional derivative at x denoted by h;, and that it admits a generalized subdifferential,
0%g;(x). Furthermore, assume that

9%g;(x)\ {0} # 0 forallx € C and j € Jo(x). (10)
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Let ¢c be the gauge function of C. For X ¢ C, define x = Then, for every j € Jo(X)

X
pc(x)
and every v € 3*g; (%) \ {0}, the gradient cut, g;(X) + vT(x — %) <0, is a valid supporting
inequality for C that separates Xx.

Proof By Proposition 2 we have that X € dC. Let j € Jo(X) and let us a consider an arbitrary
v e d%g;(X) \ {0}. The gradient cut of g; at X is vT(x — %) <0.

We first show that the gradient cut is valid, that is, vT(y —X) <Oforall y € C.If this is
not the case, then there exists yp € C for which vT(yo —x)>0.
Since g; admits a generalized subdifferential at X, we have that

hi(%y0—%) = sup 7n'(yo— %)
n€d*g; (%)

As v € 9%g;(x), it follows that & (x; yo — X) > 0. Since & is well-behaved, there is a
sufficiently small r € (0, 1) such that g;(X 4+ #(yo — X)) > 0. Thus, ¥ +#(yo — X) ¢ C.
However, the convexity of C implies that X + A(yop — X) € C for A € [0, 1], which is a
contradiction.

The fact that the gradient cut separates x follows from Lemma 1. Note that v # O by
hypothesis. O

Theorem 3 extends the algorithm of Veinott [3] to further representations of the set C. In
particular, it implies that the ESH converges (via an argument similar to Theorem 2’s proof)
when the constraints admit a URC or are d°-pseudoconvex. Thus, it generalizes the result of
[18].

Remark 1 In [18], the authors assume that the constraint functions are 9°-pseudoconvex.
As we discussed above, for these functions the Clarke’s directional derivative is well-
behaved. However, being d°-pseudoconvex is a rather global property. In particular, if g

is d°-pseudoconvex and g°(x; d) > 0, then g is increasing in the direction d from x.
Theorem 3 states that the ESH will converge even if we only have this property locally.
Indeed, a well-behaved Clarke differentiable function g satisfies the following property: If
g°(x; d) > 0, then for every ¢ > O there is a t € (0, ¢) such that g(x + td) > g(x). Thus,
Theorem 3 includes functions that are not pseudoconvex. A simple example is x > x> —x—1.
O

Remark 2 Any representation of a convex set C as {x ¢ R" : g;(x) <0, j € J} yieldsa
way to evaluate its gauge function, namely,

. x
@c(x) =1nf{t >0 : mjaxgj (;) _0}_

This infimum can be computed using a line search procedure.

However, what is more important is the ability to compute subgradients. Given any method
to compute subgradients of the gauge function, we can apply the KCP algorithm using the
implicitly defined gauge function. This allows us, for example, to drop (10). This algorithm
is more general than the one proposed by Lasserre [16], but it will not necessarily converge
to a KKT point of the original problem. O

6.2 Limits to the applicability of the ESH algorithm

The idea of the proof of Theorem 3 is that since C is convex, ¥ + A(y — x) € C for every
y € C and A € [0, 1]. Hence, the functions g; do not increase when moving in the direction
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y — X from x. Thus, a notion of subdifferential that characterizes a well-behaved directional
derivative yields valid gradient cuts. The abstract definitions introduced above try to capture
this line of reasoning.

Note that this is also how the proofs of the ‘only if” parts of [§, Lemma 2.2], [14, Theorem
11, [9, Proposition 2.2], and the C inclusion of [11, Proposition 6] work. For example, Lasserre
[8] assumes that the g; is differentiable, in which case the generalized subdifferential is just
the singleton given by the gradient and the generalized directional derivative is the classic
directional derivative. Dutta and Lalitha [9] assume that the functions are locally Lipschitz
and regular in the sense of Clarke.

It is a natural question to wonder how important the regularity assumption is. As the
following example shows, the ESH algorithm can produce invalid cutting planes when using
Clarke’s subdifferential and the constraints are not regular in the sense of Clarke. In particular,
this shows that, without the assumption of regularity, Clarke’s directional derivative is not
well-behaved, in general.

Example 4 Consider the non-convex function g(xi,x) = max{min{3x; + x2,2x; +
3x2}, x1}. The set C = {(x1,x2) : g(x1,x2) < 0} is convex, closed and its inte-
rior is nonempty as shown in Fig. 2. Note that as g is piecewise linear, it is globally
Lipschitz continuous [46, Proposition 2.2.7]. Using [44, Theorem 2.8.1], it follows that
3°g(0) = conv{(3, 1), (2, 3), (1, 0)}. Then 2x1 4 3x < 0 is a gradient cut of g at 0. How-
ever, it is not valid as (—1, 3) is feasible but —2 + 9 > 0.

In particular, it must be that g is not regular in the sense of Clarke and that g° is not
well-behaved. To see that g is not well-behaved, consider the direction d = (—1, 1). Notice
that g((0,0) 4+ td) = tg(—1,1) = —t, and so g is strictly decreasing in the direction d.
However, g°(0; d) = maxyejog0) —v1 + v2 = 1. This also shows that g is not regular. The
directional derivative of g at O in the direction d is —1 # 1. O

Fig.2 Counterexample showing 2F ]
that, in general, the ESH
algorithm can generate invalid
cutting planes if the constraints
are just Lipschitz continuous. The
convex feasible region 1+ g
max{min{3x| + xp, 2x1 +

3x2}, x1} < 0 in blue and the
boundary of the invalid gradient
cut 2x1 4 3xp < 0 in red. (Color
figure online) or R

2 ]
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7 Concluding remarks

In this paper, we have shown that the extended supporting hyperplane algorithm studied by
Veinott [3] and Kronqvist et al. [4] is identical to Kelley’s classic cutting plane algorithm
applied to a suitable reformulation of the problem. We used this new perspective in order to
prove the convergence of the method for the larger class of problems with convex feasible
regions represented by non-convex non-smooth constraints which admit a generalized subd-
ifferential and whose generalized directional derivative is well-behaved. This class includes
a°-pseudoconvex functions and functions that admit a URC. Functions that admit a URC
include differentiable functions and locally Lipschitz functions that are regular in the sense
of Clarke. More generally, the algorithm extends to any representation of a convex set that
allows to compute subgradients of its gauge function. These theoretical results bear relevance
in practice, as the experimental results in [4,5] have already demonstrated the computational
benefits of the supporting hyperplane algorithm in comparison to alternative state-of-the-art
solving methods.
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