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Abstract

In this paper, we establish necessary and sufficient conditions to characterize weakly efficient
solutions in nonsmooth quasiconvex multiobjective programming. The results are proved in
terms of the Greenberg—Pierskalla, Penot, Plastria, Gutiérrez and Suzuki—Kuroiwa subdiffer-
entials. The established results can be used to provide powerful tools for sketching numerical
algorithms and deriving duality results.
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1 Introduction

This paper is connecting three active research fields: quasiconvex optimization, multi-
objective programming, and nonsmooth optimization. All these three issues have strong
intersections with global optimization because of the possibility of the presence of nons-
mooth nonconvex objective/constraint functions. We work with nonsmooth multiobjective
constrained optimization problems under generalized convexity assumptions; essentially qua-
siconvexity.

Quasiconvex functions, form an important class of generalized convex functions and
are widely used in various theoretical and practical fields, including microeconomics, game
theory, Multiple Criteria Decision Making (MCDM), industrial organization, probability, and
general equilibrium theory. In economics (resp. MCDM), quasiconcave utility (resp. value)
function implies that consumer (resp. Decision Maker (DM)) has convex preferences [28].
Quasiconvex programming problems build an important class of nonconvex optimization
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problems. Thanks to the wide range of their applications, these problems have been studied
from various standpoints by many scholars; see e.g. [9,15,16,20-24,29,30] among others.

Multiobjective optimization, which refers to minimizing/ maximizing more than one con-
flicting objective function simultaneously, has received a considerable amount of attention.
Indeed, in many real-world practical problems, arising in industry, economics, management
sciences, biological sciences, etc, the DM, manager, or user must optimize more than one
objective function. Such problems, can be modeled as multiobjective programs. For instances,
consider the portfolio selection problem in which the investor should maximize the expected
return and minimize the investment risk simultaneously [26, Section 3]. As another example,
consider minimizing the production cost and maximizing the quality, simultaneously, in a
company.

On the other hand, in recent decades nonsmooth analysis has played a crucial role in
solving problems arising in practice with nonsmooth data [2,6,18]. In this regard, various
generalized (sub)differentials and gradients have been defined and investigated. Some of
these generalized notions have been developed for general classes of functions while some
other ones concentrate on special functions.

In the current paper, we consider nonsmooth quasiconvex multiobjective programming
problems, and so we work with some subdifferentials devised for quasiconvex functions.
We consider Greenberg—Pierskalla [11], Penot [20,21], Plastria [25], and Gutiérrez [12,
13] subdifferential sets defined invoking the sublevel sets of quasiconvex functions. “It is
likely that a specific tool will be more efficient than an all-purpose tool” [20]. A function
is convex iff its epigraph is convex; and it is quasiconvex iff its sublevel sets are convex.
In analysing the convex functions from differentiation standpoint, the main focus is on the
properties of the epigraph, while in quasiconvex case this role is given to the sublevel sets.
The specific subdifferentials devised for quasiconvex functions are often insensitive to a
scaling of the function [20]. Several of them satisfy a stability (or robustness, or closedness)
property analogous to the one valid for the Fenchel subdifferential [20, Proposition]. The
all-purpose subdifferentials are usually local, while the ones we use are of global nature [16].
The character of these subdifferentials is highlighted if one looks at them from a duality
standpoint. Beside their links with duality, these subdifferentials are useful for algorithmic
purposes [25] and their use in problems in which quasiconvexity properties occur seems to
be sensible [16]. According to the nice properties of Greenberg—Pierskalla, Penot, Plastria,
and Gutiérrez subdifferentials, and also their dedication to quasiconvex functions (rather than
all-purpose subdifferentials), in the present work we deal with these subdifferentials in the
presence of nonsmooth quasiconvex functions. In addition, we apply a somehow different
subdifferential introduced by Suzuki and Kuroiwa [29,30] based upon an idea credited to
Penot and Volle [22]. Considering a nonsmooth quasiconvex multiobjective programming
problem, some necessary and sufficient optimality conditions in terms of the aforementioned
subdifferentials, are derived, leading to characterization of weakly efficient solutions. The
presented outcomes can be used for numerical purposes and deriving duality properties.
Although there are many works devoted to the investigation of (weakly) efficient solutions of
multiobjective programming problems in terms of all-purpose subdifferentials (see, e.g., [19]
and the references therein) and optimal solutions of single-objective problems in terms of
quasiconvex-devised subdifferentials (QDSs) (see, e.g., [15,16,20,22,25,29,30]), to the best
of our knowledge, the current work is the first one which studies multiobjective problems in
terms of the QDSs.

Section 2 addresses required preliminaries and Sect. 3 contains the main results.
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2 Preliminaries

In this section, we briefly address some notations, basic definitions, and standard preliminaries
which are used in the sequel. Given a nonempty set £2 C R”, four notations c/(£2), int(£2),
conv(£2), and cone(§2) denote the closure of 2, the interior of £2, the convex hull of £2,
and the cone generated by 2, respectively. Indeed, cone(§2) = Uy>oAS2. The standard inner
product of x, y € R" is denoted by x7 y.

The (Fenchel) normal and the tangent cones to 2 C R" at X € ¢l §2 are respectively
defined as

N(R2.5)={deR":d" (x—%) <0, Vxe 2},
T(2,%) :={d e R" : I(ay,dy)}» € (0,00) x R"; &, | 0, dyy > d, ¥+ aydy € 2, Yo}
The non-positive polar cone corresponding to a set 2 C R” is defined as
R :={deR":d"x <0, Vx € 2}.

It is known that (N (M, x))* = T(M, x) provided that M is convex. If 21, ..., §2; are
nonempty closed convex sets in R” with ﬂé‘z 1int($2;) # ¥, then by applying the intersection
normal cone formula [14, p. 139], we have

k
N(N_ 821, %) = > N($2i. %), Vi enf_ . (1
i=1
Let ¢ : R” — R be a real-valued function. The sublevel set and the strict sublevel set of
¢ at x € R" are, respectively, defined as

Si () : [x ER":g(x) < w(i)},
S3(p) = {x € R": p(x) < p(¥)

Definition 2.1 [3] The function ¢ : R” — R is called

i) quasiconvex if for each x, y € R" and each A € (0, 1) one has

e(x + (1 =21)y) < max{p(x), p(y)}.

ii) strongly quasiconvex if for each x, y € R" with x # y and each A € (0, 1) one has
e(x + (1= 2)y) < max{e(x), p(»)}.

It is easy to see that, if ¢ is quasiconvex, then {x € R" : ¢(x) <0} and {x € R" : p(x) <
0} are convex for any 6 € R. See, e.g., [2,3,7-9,15,28] for characterizations and applications
of (strongly) quasiconvex functions.

In the last three decades, various subdifferential sets for quasiconvex functions have been
proposed; see e.g. [7-9,11-13,17,20,21,25,29,30] and the references therein. In the current
paper, we consider some subdifferential sets defined utilizing the sublevel sets.

Let ¢ : R" — R be a quasiconvex function and x € R”. The Greenberg—Pierskalla’s
subdifferential [11] of ¢ at x is defined as

9GP (%) = {d ER" : o(x) < o) = dT(x — %) < 0}.
Another variant of Greenberg—Pierskalla’s subdifferential has been introduced by Penot [20]:

3P o(F) == [de]R" Do) < pF) = dT (x — %) 50] = N(Sz(p), %).
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The star subdifferential [20] of ¢ at x is defined as follows: If x is a minimizer of ¢, then
3*p(x) := R"; otherwise
P o(F) = [d ER"\ {0} : o(x) <) = dT(x — %) < 0].
The Plastria’s subdifferential [25] is defined as: d € d=¢(x) if and only if
p(x) —p(@) = d" (y —3). Vx € 53(¢).
The Gutiérrez’s subdifferential [12,13] is defined as: d € =¢(x) if and only if
p(x) —p(@) = d" (y — ). Vx € Sz(9).

The connections between these subdifferential sets as well as their properties can be found
in [20,21] .
Assume that f; : R" — R, i = 1, ..., m are real-valued functions, and F : R" — R"
is defined by
F(x):= (fl(x), ey fm(x)).

Definition 2.2 A vector X € R” is called a weak minimizer of F if there is no x € R”
satisfying f; (x) < fi(x¥), i =1, ..., m. The set of all weak minimizers of F is denoted by
wr.

Definition 2.3 A vector X € R” is called a locally weak minimizer of F if there exists some

& > 0 such that there is no x € B(X; ¢) satisfying f;(x) < fi(x), i =1, ..., m. The set of
all locally weak minimizers of F is denoted by W'F".

‘We consider the following quasiconvex multiobjective programming problem (QCMOP):

(QCMOP) : inf (fi(x),.... fn(x))
st. gi(x) <0, j=12,...,q,
x eX,

satisfying Assumption A.

Assumption A: Hereafter, in Problem (QCMOP), X is a nonempty closed convex set in R”,
and f;, gj,fori =1,2,...,m, j =1,2,..., g, are continuous quasiconvex functions from
R" to R.

Remark 1 Although we consider Assumption A for the whole paper, some of our results hold
under weaker conditions as well. For example, in some theorems lower/upper-semicontinuity
instead of continuity is enough.

For each j, set
Mj:={xeR":g;(x) <0}

Furthermore, set
M:=XnN <m‘j.=1 M,-).
Indeed, M is the set of feasible solutions of (QCMOP). For x € M, set
J@&) ={jef{l,2,...,q}: g;(X) =0}.

Definition 2.4 [10] A feasible solution x € M is said to be a weakly efficient solution of
(QCMOP) if there is no x € M satisfying fi(x) < fi(x), i = 1,...,m. The set of all
weakly efficient solutions of (QCMOP) is denoted by W9¢.
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3 Main results

The first part of this section is devoted to establishing necessary conditions for weakly efficient
solutions of (QCMOP) in terms of 3* and 3”. Deriving necessary optimality conditions in
multiobjective programming (for numerical, theoretical, and practical purposes) is the main
subject of many publications appeared in recent years; See e.g. [19, Chapters 9 and 10] and
the references therein.

The following Constraint Qualifications (CQs) help us in deriving optimality conditions.

Definition 3.1 We say

(1) (QCMOP) satisfies CQ1 if there exists some x € int X with g;(x) < 0, j =
1,2,...,q.
(ii) (QCMOP) satisfies CQ2° at £ € M if

N(M,x) C conv( U anj(;e)).

JjeI®)

C Qlisavariantof Slater CQ [4,27]. Theorem 3.1 presents necessary optimality conditions
in terms of 3* and 9%

Theorem 3.1 (Necessary conditions in terms of 3* and 9 ) Consider Problem (QCMOP)
satisfying Assumption A. Assume that f1, fa, ..., fm are strongly quasiconvex. Let X € W9°¢
while * ¢ WE. Under either (C Q1) or (C Q2F) one has

(i) (=X 07 i) 0 (L s 9781 @) + N (XL H) # 0k
(ii)) 0 € Y1 2% fi(X) + Zje]()?)anj()e) + N(X, X) for some Ay, ..., Ay > 0 with
Yk =1

Proof According to the strong quasiconvexity assumption, each locally weak minimizer of
F is a minimizer of F. So, X ¢ WE Two sets

A=l S3(f)

and M are convex (by quasiconvexity of the appearing functions, and convexity of X) and
nonempty (by feasibility of £, and £ ¢ W'F).

We show that c/S3(f;) = Sz (fi), i = 1,2,...,m. The inclusion cIS3(f;) € S;(fi) is
trivial due to the continuity assumption. To prove the converse inclusion, let i be arbitrary
and let x0 € S;(f;). If xO = %, since & ¢ W'F, there exists a sequence {x,}, in S2(fi)
convergent to £. So, x* = % € ¢l SI(fi). It xY # %, taking strong quasiconvexity assumption
into account,

H0x%+ (1 =13 < fi(®),

for each A € (0, 1). So, Ax" + (1 — 1% € S5(fi) while Ax® + (1 = )& — xOasr — 17,
Hence, x0 € ¢l S; (fi). So far, we proved

ASS(fi) = S:(f). i =1.2,....m.

Now, we claim int(A) N M = (. Notice that int(A) # @ because of £ ¢ W'F . By indirect
proof, assume that there exists some x* € M Nint(A). If x* = X, then X +d € A for some
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nonzero d € R", leading to f;(x £d) < fi(x), i = 1,2,..., m. So, according to strong
quasiconvexity, we get

fi(®) :ﬁ(%(£+d)+%(£—d)) <max{fi(x +d), ik —d)}) < fiX), i=1,2,...,m.

This obvious contradiction implies x* # X. As x* € int(A), there exists some € > 0 such
that

x € A=n1cl S{(fi) =0N{LS:(fi)), Vx € Bx™;e).

Also, x* € A leads in f;(x*) < f;(x) foreachi =1,2,...,m.If ff(x*) = fx(X) for some
k € {1,2,...,m}, then by setting

*

€ .
SR i

y =

we have y € B(x*;¢), leading to fi(y) < fr(X) = fr(x*). On the other hand, strong
quasiconvexity of fi implies

Jie(x™) < max{fi(»), fk(®)} = fi(x™)

(notice that x* is a strict convex combination of y and X). This obvious contradiction implies
fi(x™) < fi(x) foreachi =1, 2, ..., m. This contradicts X € W4¢. Therefore,

int(A)NM = .

Now, by applying a separation theorem (see corollaries of [3, Theorem 2.4.8]), there exist
some & € R"\{0} and some r € R such that

ey -2 zr=&Tw—%), Yue A=n" el Si(f;), Yy € M. )

Taking y = £, we get r < 0. On the other hand, since £ ¢ W'F, there exists a sequence {x, },
in ﬁ;”zl S)fc (fi) convergent to x. This leads to r > 0, according to (2). Therefore, r = 0, and
(2) implies

O;AgeN(mf"zl clS}'(ﬁ),y%)ﬁ(—N(M,y%)). 3)

Now, taking N/, int(cl S; (f)) # ¥ (derived from £ ¢ W'F) into account, invoking the
normal intersection formula (1), we get

ge (NN si(f). %)) = (iN(cl Sif). %))
i=1

m m
= (XN (S0, 8)) = D207 fich. @
i=1 i=1
If C Q1 is fulfilled, then there exists some x € X satisfying
% e (ine X) 00 (0L ine M),

Applying the normal cone intersection formula (1) again, due to the fact N(M;, X) = {0}
foreach j € {I,...,q}\ J(X) (since X € intM;), we deduce
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q
N(M, %) = N<X n (Nt M), x) — N(X.8) + Y N(Mj, 3)
j=1

=NX. B+ > NM;. 5.
jel@

Since for each j € J(x), we have
M; = {x eR":g;(x) < 0} = {x eR":gj(x) < gj(i)} = S:(g/)s

we get

NM.%)=NX. )+ Y N(Si(g).2) =NX.H+ Y a7g;®.
jel®) jeJ(®)
Now, the virtues of (3), (4), and (5) imply the desired result of part (i) under C Q1.
If C 027 holds, then

—{-‘eN(M,;?)gconv( U anj(;e))= 3 0P g). 6)

JjeJ () jeJ(x)

Equations (3), (4), and (6) lead to the desired result of part (i) under C 027,
Part (ii) is derived from Part (i) due to the relation 3% ¢(x) \ {0} C 8*p(x). O

There are some worth mentioning points about the assumptions and results of Theorem
3.1 as follows.

(1) Under the assumptions of Theorem 3.1, each weakly efficient solution of (QCMOP) is
a strictly efficient solution of this problem. Recall, from the literature, that a feasible
solution X € M is said to be a strictly efficient solution of (QCMOP) if there is no
x € M\ {x} satisfying f;(x) < fi(x), i =1,...,m. See [10].

(2) As each efficient [10]/robust efficient [31]/properly efficient [10] solution is a weakly
efficient solution, the necessary conditions provided in the current paper are valid for
aforementioned solution notions as well.

(3) Theorem 3.1 may not hold if one replaces “strong quasiconvexity” with “quasiconvex-
ity”. Examples 1 and 2 clarify it.

(4) Necessary optimality conditions for single-objective case, in terms of Plastria and
Gutiérrez subdifferentials, can be found in [16, Propositions 4, 7, 10]. See also the
proof of [16, Lemma 9] to have a better insight about C Q2. Furthermore, optimal-
ity conditions for multiobjective problems, with respect to all-purpose subdifferentials,
have been derived in several publications. See, e.g., [18,19] for some conditions in terms
of Mordukhovich subdifferentials.

Example 1 Consider a (QCMOP) in R withm = ¢ =2, X = R, and

x+2, x<-—1 x+1, x<-—1
filx) =11, xe[-1,1] Sa(x) =10, x €[-1,0]
X, x>1 X, x>0
Also, let g1(x) = x — 1 and g(x) = —x — 1. The above four functions are continuous

and quasiconvex while f1, f are not strongly quasiconvex. In the considered problem, M =
[—1, 1]. Considering £ = —1, we have £ € W?¢ and £ ¢ W¥. Both CQ1 and C 02° are
satisfied. Relation (i) in Theorem 3.1 does not hold here because 3” f; (£) = 8% f>(X) = {0}.
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Example 2 In Example 1, let £ = 1. We have £ € W9€ and £ ¢ W Both CQ1 and C 027
are satisfied. Relation (ii) in Theorem 3.1 does not hold here because

I*f1(X) = 98" fo(X) = (0, +00), J(&) = {1}, 37g1(}) = (0, +00), N(X, %) = {0}.

Theorem 3.2, derived from Theorem 3.1 and some results existing in the literature, pro-
vides necessary conditions for weakly efficient solutions of (QCMOP) with respect to other
aforementioned subdifferentials.

Theorem 3.2 (KKT necessary conditions with respectto 3*, 3< and 9=) Consider Problem
(OCMOP) satisfying Assumption A. Let x € W¢. Consider the following circumstances.

(la) fi, i =1,2,...,mare Lipschitz on S;(fi).

(2a) gj, j € J(X) are Lipschitz on S; (&)

(3a) There is no local minimizer of f;, i =1,2,...,p, in fi_l(f,'()?)).
(4a) There is no local minimizer of gj, j € J(X), in gj_l(gj (X)).

(5a) Each local minimizer of gj, j € J (%), is a global minimizer.

Then

(1b) Under the assumptions of Theorem 3.1, if (1a) holds, then there exist L1, A2, ..., A >0
such that Y ;' | Aj = 1 and

m
0ed nd“fith)+ Y 9Pg;(®)+NX, 3.
i=1 jel®)
(2b) Under the assumptions of Theorem 3.1, if (1a), (2a), and (4a) hold, then there exist
Moo, oo Am=0with 7L A =land pj > 0; j € J(X) such that

i=1

m
0ed Mo~ fi))+ Y wjd~gj® + NX. 5.
i=1 jeJ(®)
(3b) Under the assumptions of Theorem 3.1, if (1a)-(5a) hold, then there exist M1, 2, . .., Ay >0
with Y7 A = land wj > 0; j € J(X) such that

m
0 MISAE + Y njd“giE) + N(X, 2.
i=1 jeJ @)

Proof Part (1b) is derived from [20, Proposition 12] and Theorem 3.1(ii) (Notice that we
have continuity from Assumption A). Part (2b) is derived from [20, Propositions 8 and 12]
and Theorem 3.1(ii). Part (3b) results from [20, Proposition 9] and the preceding part. O

According to the results of [20], in the above theorem 9= can be replaced by 9¢% as well
(under appropriate assumptions). Furthermore, some remarks similar to those given after
Theorem 3.1 can be provided about Theorem 3.2 as well.

Remark 2 As mentioned before, some necessary optimality conditions for single-objective
case, in terms of Plastria and Gutiérrez subdifferentials, have been provided by Linh and
Penot [16]. They have derived their results under different conditions rather than ours. Pre-
cisely speaking, they have gotten 0 € 9= f(x) + N(£2, x) (Here, f is the single-objective
function) as a necessary condition for local optimality provided that X is not a local minimizer
of f, and the objective function is quasiconvex and upper semi-continuous (usc) fulfilling
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N(SI(f), %) = [0, 00)0= f(X). A function satistying the preceding equality is called a Plas-
tria function. Linh and Penot [16] have established analogous results invoking Gutiérrez
subdifferential as well.

At the first glance it may seem that one can characterize weakly efficient solutions of
multiobjective programs utilizing the results of [16] due to the connection between single-
objective and multiobjective programming because of the weighted sum scalarization tool
[10]. Such a trick does not work here because sum of quasiconvex functions is not quasiconvex
necessarily.

In the following, we work with some subdifferentials addressed by Suzuki and Kuroiwa
[29,30] based an interesting property which says a lower semi-continuous quasiconvex func-
tion consists of a supremum of some family of lower semi-continuous quasiaffine functions
[22].

Defining R := R U {+o00} and

Y= { h:R—> R : hislower semi-continuous (Isc) and non-decreasing},

Penot and Volle [23] proved that ¢ : R” — R is Isc and quasiconvex if and only if there
exists a family

{(kt,w,) : tef} C ¥ xR

such that
¢(x) = supk, (w] x), x e R".

tef
Suzuki and Kuroiwa [29,30] called the set {(k;, w;) : ¢ € [ } as a generator of ¢, and defined
another subdifferential for quasiconvex functions using Penot and Volle result.

In the following definition, D_h(a) stands for the lower left-hand Dini derivative of
h : R — R at a defined by
h(a —h(a
D_h(@) = liminf @18 @

e—>0~ &€
It is clear that D_h(a) > O for each h € X. A function 4 is called lower left-hand Dini
differentiable (LLD in brief) if D_h(a) is finite ateacha € R. A generator {(k;, wy) : ¢ € F }
is called LLD if k;, r € F,is LLD.

Definition 3.2 [29,30] Let ¢ : R” —> R be a Isc quasiconvex function with an LLD gener-
ator G := {(k;, wy) : t € F} € ¥ x R". The G-subdifferential of ¢ at x € R" is defined as
follows:

dGp(F) = cl<conv({D,k,(w,T;z)w, te F;])),

where
Tii={rel : ¢ =kw! %) (7

Theorem 3.3 presents a necessary condition for weakly efficient solutions of (QCMOP)
in terms of dg and 8% .

Theorem 3.3 (KKT necessary condition with respect to 3¢ and 3*) Consider Problem
(OCMOP) satisfying Assumption A. Let Gl = {(kf, wf) it e Fi}, i=1,2,...,m, bean
LLD generator of f;, i = 1,2, ..., m. Assume that, for each i, the set ' is compact, the
mappings t — wi and (t,a) — D_kf (a) are continuous, and the mapping (t,a) —
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kf (a) is upper semi-continuous (usc). If X € W9 and C Q1 is fulfilled, then there exist scalars
M,A2, ooy Am > Osuch that Y 'L ki = 1 and

0eY rdsfi)+ Y 97g;(®)+NX, D).
i=l1

jeI®)

Proof According to Assumption A, the feasible set M is a closed convex set. Set

m m

B = {Z/\id" c S k=1L =20,d e aGf,»()%)}.
i=1 i=1

Under the assumptions of the theorem, it can be shown that d¢ f;(.) is compact for each i;

see [29,30]. Hence, B is a compact set. We claim that the following system does not have

any solution d € R":

d'y <0, Yy € B, ®)
d'z <0, Yz€ N(M,3).
By contradiction, assume that a nonzero vector dy € R” is a solution of (8). We have

dy € (N(M, x))* =T (M, x), and hence
oy, | 0, A{dy} S R" s.t. dy, — dy, x,:=X+a,d, €M, V.
Leti € {1,2,...,m} be arbitrary. The set /' is compact and the mapping t — k! (wi” %)
is usc. Thus, 'y~ # ¢ for each v. Considering the sequence #, € I'} , this sequence has
a convergent subsequence. We denote this subsequence by 7, for simplicity, and assume
t, —> f € R. Since f; is continuous and (¢, a) —> k! (a) is usc, we get fi (%) = k;(w;ATJE),
and hence f € F}’C
On the other hand, D_k;;(w:;Ti) > 0 and w;Tdo < 0, because

felf = D_ki(w: H)w! € 36 fi(}) S B
= D_ki(wi' R wildy < 0.
N ———’
>0

Due to the continuity of (t, a) — D,kf (a) and the usc assumption on t —> wf, we have
D_kf”(w,'uri) > (0 and widev < 0 for sufficiently large v. Hence, for sufficiently large v,

fiow) — fith) _ K, (il & + e d,) — ki, (w]] %)

— T
(wi;v d, athvdv
. T A . T A
K (wil 5 +e) =k (wi] %)
. . v v v v
> lim inf
e—>0~ &

= D_K (] %) > 0.
This implies
Jv; €N 5.1, fi(xy) < fi(X), Vv > ;.

Since i was arbitrary, this contradicts the weak efficiency of x. Hence, (8) does not have any
solution d € R". On the other hand, B + N (M, %) is closed. Now, by applying Theorem 6
in [1], we have

0e B+NWM,Xx). )
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According to C Q1 and similar to the proof of Theorem 3.1, we infer

NM. %)= > a%g;(®) + N(X. ). (10)
JEJ @)
Now, the proof is completed according to (9) and (10). O

There are some worth mentioning points about Theorem 3.3 as follows.

(1) Theorem 3.3 is still valid if one replaces C Q1 with C Q2F.

(2) Some continuity assumptions considered in Theorem 3.3 are redundant when /' sets
are finite.

(3) Similar to Theorem 3.2, more necessary conditions in terms of <, 9=, and 3* (instead
of 87 can also be obtained.

Remark 3 Under the assumptions of Theorem 3.3, if m = 1 (i.e. one considers single-
objective case), then all assumptions of [29, Theorem 1(ii)] are fulfilled, and hence by [29,
Theorem 1], we get 0 € dg f(x) + N (M, x)). If one furthermore assumes CQ1, then we will
have

NM, &)=Y a7g;(®) + N(X, ),
jeI®)
leading to
OedfE) + Y 9Pg;i(®)+NX, 5.
jeI®
So, Theorem 3.3 can be considered as an extension of [29, Theorem 1].

In Theorem 3.4 below, we investigate a sufficient optimality condition.

Theorem 3.4 (KKT sufficient condition) Consider Problem (QCMOP) satisfying Assump-
tion A. If x € M satisfies

m
0ed i)+ Y aFgi(®)+NX. . (11)
i=1 jel®)
then X is a weakly efficient solution of (QCMOP).

Proof If0 € 0™ f; (x) for some i, then X is a minimizer of f;, and hence X is a weakly efficient
solution of (QCMOP). So, we assume 0 ¢ 9* f;(xX) for all i. By indirect proof assume that
there exists some x* € M such that

fix™) < fi®), Vi=1,...,m. (12)
Let J(X) := {J1, ..., jk}. Due to (11), the equality
Gl 4. +&n+g+.. .+ +n=0 (13)

holds for some & € 0* fi(X), i =1,...,m,and {;, € Bpgjv(f), v=1,2,...,k,and n €
N(X,X). Because of g, (x*) <0 =g, (%) forv=1,2,...,k, the inclusion x* € Sz(g;,)
holds, and hence

(=% <0, Yu=1,2,... k. (14)
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On the other hand, from (12) we deduce
gra*—%) <0, Vi=1,...,m. (15)
Also, & #0,foralli =1,..., m. We claim
gh(x*—%) <0, Vi=1,...,m. (16)
If (16) does not hold, in view of (15) we obtain
£t =% =0,

for some ig € {1,...,m}. The latter is equivalent to the existence of a sequence {u,};2,
converging to x* — X such that Eigu, > 0 for all# € N. Due to

Eb(u+3)—% >0

and the definition of 3* fj, (X), the inequality fj,(u; +%x) > f;,(X) is fulfilled. Thus passing to
the limit as t — oo and by continuity of f;,, we obtain fj,(x*) > f;, (%), which contradicts
(12). Hence, (16) holds.

Adding inequalities (14), (16), and nT (x* — %) <0we get

T
(gl +o &+ +n) x* =% <0,
which contradicts (13) and completes the proof. O

The following example shows that Theorem 3.4 may not be valid if one replaces 37 with
a* for constraint functions.

Example 3 Considera(QCMOP)inRwithm =2, g =1, X =R, fi(x) = x, fo(x) = x>,
and

-1, x €[2,4]

1—x xell,2]

x—5 xe€l[4)75]

0, otherwise.

g1(x) =

Here, M = R. Considering x = —1, we have J(—1) = {1}, and

SLi(g) = (1,5) = 3"g1(=1) = (—00,0),
SLi(f1) = SL1(f2) = (=00, =) = 8" fi(=1) = 3" fo(—1) = (0, 00).

Hence, 0 € 0* fi(—1) + 3* fo(—1) + 3*g1(—1) + N(X, X) while X is not a weakly efficient
solution to the considered problem.

Due to the proof of Theorem 3.1, under the assumptions of this theorem, one can get
m
(=07 h®) n (N, D) # (0}
i=1

as a necessary condition for weak efficiency of X. We close the paper with a result which
shows that the inward part

(— iapﬁ(x)> n (N(M, x))
i=1
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of the normal cone to M does not depend on the choice of feasible x in F~! (F ()2)). This
theorem extends the main results of [5].

Theorem 3.5 Consider Problem (QCMOP) satisfying Assumption A. Let x € M. Then for
eachy € M N (F_] (F()E))) we have

(- ia”ﬁ@)) n(ven.d) = (- ia”ﬁ(y)) (v ).
i=1 i=1

Proof Considering £* €

— X0 07 i) N (VM D)), we have £ = — (&1 + ...+ )
forsome & € F f;(X), i = 1,...,m. Since F(X) = F(§), we have € N7, Sz (fi), and
hence £7 (§ — %) < Oforalli =1,..., m. Thus G- =-Y", g7(H—%) >0.0n
the other hand, since y € M and §* € N(M, x), we have E*T (y —X) <0, and so

£ (G- =0 (17)
Therefore, for each x € M we have

=g -H-E G-H =0
—_—
<0

This means that
£ e N(M, ). (18)

As &I (5 — %) < 0foreachi, by (17) we deduce
G —-%=0, Vi=1,...,m. (19)

Foreach x; € S;(fi), i = 1,...,m, wehave x; € Sp(fi), i =1,...,m (since S;(f;) =
Sz (fi))- So, from (19), we have

i — =6 (i —)—£G—% <0, V5 € S;(f), Yi=1,....m.
e ——
<0

This implies &; € 8Pf,-()7) foralli =1, ..., m, and hence
m m
==Y &e—-Y £ (20)
i=1 i=1
Inclusions (18) and (20) yield &* € (— Y aP f,@)) N <N(M, 9)). Therefore,

(- Yo" o) n (Vo d) € (- S0 53 0 (vo. ).
i=1 i=1

The inclusion 2 can be proved similarly. O

As a final remark, although we considered Assumption A for the whole paper, some of
our results hold under weaker conditions as well. For example, in the preceding theorem we
did not use continuity.
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