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Abstract
This paper deals with a convex vector optimization problem with set-valued maps. In the
absence of constraint qualifications, it provides, by the scalarization theorem, sequential
Lagrange multiplier conditions characterizing approximate weak Pareto optimal solutions
for the problem in terms of the approximate subdifferentials of the marginal function asso-
ciated with corresponding set-valued maps. The paper shows also that this result yields the
approximate Lagrange multiplier condition for the problem under a new constraint qualifi-
cation which is weaker than the Slater-type constraint qualification. Illustrative examples are
also provided to discuss the significance of the sequential conditions.

Keywords Convex vector optimization problems with set-valued maps · Sequential
Lagrange multiplier conditions · Constraint qualifications · Scalarizations · Approximate
weak Pareto optimal solutions

Mathematics Subject Classification 90C26 · 90C29 · 90C46 · 90C48

1 Introduction

Vector optimization problems involving set-valued maps have received increasing attention
in the optimization community as the value of a given function can be made to vary in a
specified set because of forecasting errors or lack of complete information. Over the years,
there has been a growing interest in establishing Lagrangian-type optimality conditions for
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several kinds of solutions of vector optimization problems with set-valued maps in a general
setting by many scholars; see, e.g., [4,12,14,15,17,18,21,42] and the references therein.

On the other hand, vector optimization problems with set-valued maps do not necessarily
have the exact solutions, in which the global optimality is guaranteed. Moreover, a lot of
solution methods produce approximations to the theoretical solutions. Therefore, from both
the theoretical and the practical points of view, it is meaningful to consider various concepts
of approximate solutions instead to optimization problems. Rong andWu [36] initially intro-
duced an approximate weak Pareto optimal solution of vector optimization problems with
set-valued maps. Since the appearance of that paper, Lagrangian-type conditions for several
notions of approximate solutions of vector optimizations with set-valued maps have been
given in the literature; see, e.g., [9,28–30,38,40,43] and the references therein.

It is worth noting that in order to investigate optimality conditions for vector optimiza-
tion problems with set-valued maps we often formulate a corresponding scalar optimization
problem with set-valued maps. As a consequence, by employing the marginal function,
one can characterize inevitable solutions of the scalar optimization problem with set-valued
maps as a solution of a scalar optimization problem with single-valued maps. Nevertheless,
by following this approach, the scalar optimization problem may not satisfy any constraint
qualifications. Besides, most iterative algorithms or heuristic algorithms do not try out con-
straint qualifications at all, even though (approximate)-type Lagrangian conditions are always
evaluated. This manner of facts leads one to modify Lagrange multiplier conditions without
constraint qualifications; see, e.g., [6,24,25,39] and the references therein. Recently, sequen-
tial optimality conditions not only have been admitted to be valuable in designing algorithms
for finding approximate optimal solutions of nonlinear programming problems [1,2,32] but
also have been used as a termination condition to optimization algorithms [10,16,41] and the
references therein. Some modified Lagrangian optimality conditions have also been shown
to establish sequential Lagrange multipliers for a weak Pareto optimal solution as well as
a proper Pareto optimal solution of convex vector optimization problems with set-valued
maps as indicated in [15]. It is noteworthy, however, that the convexity of a set-valued map
considered in [15] is based on prescription by graph of the corresponding set-valued map so
that this notion is stronger than the cone-convexity notions, see Remark 1.

Motivated and inspired by the works in the literature, the main purposes of this work is to
establish sequential optimality conditions for approximate weak Pareto optimal solutions in
convex vector optimization problem with set-valued maps that do not require any constraint
qualifications by using the cone-convexity notions and the scalarization theorems.We employ
the relation between the conjugate function of the scalar set-valued map and of the marginal
function associated with corresponding the scalar set-valued map to examine an approximate
optimal solution of the obtained scalarization problem.We then obtain a new sequential form
of Lagrange multiplier condition for the approximate optimality in terms of the approximate
subdifferentials. This is achieved by employing the description of the epigraph of a conjugate
function written in terms of the approximate subdifferential. Our result, in the case of exact
solutions, differs from another sequential optimality result [15] established in the literature,
where the scalarization function the so-called oriented distance functions and coderivatives
are used. The significance of this result is that it yields the standard (approximate) Lagrange
multiplier rule condition for the vector optimization problem with set-valued maps under a
new constraint qualification which is guaranteed by the Slater-type constraint qualification.
For other results concerning on coderivatives and suboptimality of convex problems as well
as nonconvex problems, we refer the readers to [33] and the references therein. The interested
reader is referred to [34] for more information on basic properties of the marginal function.
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The layout of the paper is as follows. In Sect. 2, some basic definitions, notations and
several auxiliary results that will be used later in the paper are presented. In Sect. 3, without
any constraint qualifications, we obtain some sequential optimality conditions for both an
approximate weak Pareto optimal solution and a weak Pareto optimal solution in a convex
vector optimization problem with set-valued maps in terms of the subdifferentials of the
marginal function associatedwith scalar set-valuedmaps. Section 4describes a newconstraint
qualification which guarantees that the approximate Lagrange multiplier condition holds for
the approximate weak Pareto optimal solution. Section 5 summarizes the obtained results.

2 Preliminaries

In this section, we recall some notations, basic definitions, and preliminary results which will
be used in succeeding sections. We denote byRn the n-dimensional Euclidean space with the
inner product 〈·, ·〉 and the associated Euclidean norm ‖ · ‖. The non-negative orthant of Rn

is denoted by R
n+ and is defined by R

n+ := {(x1, . . . , xn) ∈ R
n : xi � 0, i = 1, . . . , n}. A

nonempty subset S ofRn is said to be a cone if t S ⊆ S for all t � 0. The dual (positive polar)
cone of S is denoted by S+ := {v ∈ R

n : 〈v, x〉 � 0 for all x ∈ S}. For a nonempty set E in
R
n , by int(E) (resp. ri(E), cl(E)) wewill denote the interior (resp. relative interior (see, e.g.,

[35]), closure) of the set E . The support function σE is defined by σE (v) := supx∈E 〈v, x〉,
and the indicator function δE respect to a set E is defined as δE (x) := 0 if x ∈ E and
δE (x) := +∞ else. We say that E is convex whenever t x1 + (1− t)x2 ∈ E for all t ∈ [0, 1],
x1, x2 ∈ E .

For an extended real-valued function f : Rn → R ∪ {±∞}, the effective domain and
the epigraph are respectively defined by dom f := {x ∈ R

n : f (x) < +∞} and epi f :=
{(x, α) ∈ R

n × R : f (x) � α}. We say that f is proper if f (x) > −∞ for all x ∈ R
n and

dom f 
= ∅. A function f is said to be convex if f (t x1 + (1− t)x2) � t f (x1)+ (1− t) f (x2)
for all t ∈ [0, 1] and x1, x2 ∈ R

n with the conventions: (+∞)+(−∞) = (−∞)+(+∞) =
0 · (+∞) = +∞, 0 · (−∞) = 0. The conjugate function of f , f ∗ : Rn → R ∪ {±∞}, is
defined by f ∗(v) = sup{〈v, x〉 − f (x) : x ∈ R

n} for any v ∈ R
n . Let ε � 0 and x̄ ∈ R

n

be such that f (x̄) ∈ R. The ε-subdifferential of f at x̄ [7] is the set ∂ε f (x̄) := {v ∈ R
n :

f (x) � f (x̄) + 〈v, x − x̄〉 − ε, ∀x ∈ R
n}. The ε-normal set of E at x̄ ∈ E is given by

N ε
E (x̄) := ∂εδE . When ε = 0, we denote the subdifferential of f at x̄ and the normal cone of

E at x̄ ∈ E , respectively, by ∂ f (x̄) and NE (x̄). For a proper lower semicontinuous convex
function f : Rn → R ∪ {±∞} and x̄ ∈ dom f , the epigraph of f ∗ can be represented as
follows (see, e.g., [22]):

epi f ∗ =
⋃

ε�0

{(u, 〈u, x̄〉 + ε − f (x̄)) : u ∈ ∂ε f (x̄)} . (1)

The following lemma is needed for our study.

Lemma 1 [5,11] Let f1, f2 : R
n → R ∪ {±∞} be proper convex functions such that

dom f1 ∩ dom f2 
= ∅.
(i) If f1 and f2 are lower semicontinuous, then,

epi( f1 + f2)
∗ = cl(epi f ∗

1 + epi f ∗
2 ).

(ii) If one of f1 and f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then,

epi( f1 + f2)
∗ = epi f ∗

1 + epi f ∗
2 .
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Let K ⊆ R
p be a nonempty convex cone. For a set-valued map F : R

n ⇒ R
p , the

domain and graph of F are, respectively, defined by dom(F) := {x ∈ R
n : F(x) 
= ∅},

gph(F) := {(x, y) ∈ R
n×R

m : x ∈ dom(F), y ∈ F(x)}. F is called proper if dom(F) 
= ∅.
For a nonempty set E inRn , the indicator function δ̃E of E in the set-valued version is defined
as δ̃E (x) := {0} if x ∈ E and δ̃E (x) := ∅ else. Let C ⊆ R

n be a nonempty convex set. We
say that F is K -convex on C whenever t F(x1) + (1 − t)F(x2) ⊆ F(t x1 + (1 − t)x2) + K
for any t ∈ [0, 1] and x1, x2 ∈ R

n with the conventions: E + ∅ = ∅ for any subset E in Rp ,
and t · ∅ = ∅ for any real numbers t . We also say that F is K -convex if dom(F) is a convex
set and F is K -convex on dom(F). It should be noted that if F is K -convex, then F(x) + K
is convex for any x ∈ R

n . In addition, for any proper set-valued map F : Rn ⇒ R
p we can

associate F with a linear scalarization set-valued map with respect to some λ ∈ K+ defined
by (λ ◦ F)(x) := {〈λ, y〉 : y ∈ F(x)} if x ∈ dom(F) and (λ ◦ F)(x) := ∅ else. Clearly,
dom(F) = dom(λ ◦ F) for every λ ∈ K+.

Remark 1 Let us now recall that a proper set-valuedmap F : Rn ⇒ R
p is convex if gph(F) is

convex.Due to the following characterization: F is K -convex if andonly if gph(F)+({0}×K )

is convex, see, e.g., [27, Proposition 3.3], we can verify that if F is convex then it is K -convex.
In general, K -convexity of F needs not imply convexity of F . For a simple example, it can
be observed that a proper set-valued map F : R ⇒ R, defined by F(x) := {y ∈ R : x3 �
y � x2} if x ∈ [0, 1] and F(x) := ∅ else, is not convex but it is R+-convex.

Unless otherwise stated, let A be a nonempty closed convex set in R
n , F : Rn ⇒ R

p

be a proper set-valued mapping and K ⊆ R
p be a nonempty pointed (K ∩ (−K ) = {0})

closed convex cone with nonempty interior. In this paper, we consider the following vector
optimization problem with set-valued map:

minK F(x) subject to x ∈ A. (P)

Let θ ∈ K be given. A point (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is said to be an θ -weak Pareto
optimal solution with respect to K of the problem (P) if

(F(Ω) − ȳ + θ) ∩ (−int(K )) = ∅,

where Ω := A ∩ dom(F) and F(Ω) := ⋃
x∈Ω F(x). When θ := 0, θ -weak Pareto optimal

solution deduces to be a weak Pareto optimal solution (if exists) of (P).
The next theorem yields a characterization of an θ -weak Pareto optimal solution of (P) in

terms of approximate solutions of the associated scalar set-valued optimization problem. In
the following, let us recall the scalar set-valued optimization problem (SP):

min H(x) subject to x ∈ A, (SP)

where A is a nonempty closed convex set inRn and H : Rn ⇒ R is a proper set-valued map.
Given ε � 0, let us recall also that a point (x̄, ȳ) ∈ gph(H) with x̄ ∈ A is said to be an

ε-optimal solution of (SP) if for any x ∈ A ∩ dom(H) and any y ∈ H(x),

ȳ − ε � y.

When ε := 0, ε-optimal solution deduces to be an optimal solution of (SP).

Theorem 1 [36, Theorem 2.1](see also [38, Theorem 3.2]) Let θ ∈ K, F be a proper set-
valuedmap fromR

n intoRp and (x̄, ȳ) ∈ gph(F)with x̄ ∈ A. Assume that F(A∩dom(F))+
intK is convex. Then (x̄, ȳ) is an θ -weak Pareto optimal solution of (P) if and only if there
exists λ ∈ K+\{0} such that (x̄, 〈λ, ȳ〉) is an 〈λ, θ〉-optimal solution of the problem (SP)
with H(·) := (λ ◦ F)(·).
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Remark 2 If a proper set-valued map F : Rn ⇒ R
p is K -convex, then F is K -convex on

A∩dom(F), and so, F(A∩dom(F))+K is a convex set. Consequently, F(A∩dom(F))+
intK = (F(A ∩ dom(F)) + K ) + intK is convex.

Interestingly, we point out that the scalar set-valued map can be employed by the marginal
function, which is used to establish a characterization of weak Pareto optimal solutions in
[18, Theorem 4.2]. In what follows, given a proper set-valued map H : R

n ⇒ R, by
ϕH : Rn → R ∪ {±∞} we denote the marginal function of H , i.e.,

ϕH (x) :=
{
inf{y ∈ R : y ∈ H(x)}, if x ∈ dom(H),

+∞, ohterwise.

It is clear that dom(H) = dom(ϕH ). Recall that the conjugate function of the proper set
valued map (see e.g., [28]) H , H∗ : Rn → R ∪ {±∞}, defined by for any v ∈ R

n ,

H∗(v) := sup {〈v, x〉 − y : x ∈ dom(H), y ∈ H(x)} .

For a nonempty set E in R
n , it could be convenient to observe that (̃δE )∗ = σE = (δE )∗.

We close the section by the following results that justifywhywe are allowed to characterize
an θ -weak Pareto optimal solution of (P) by using conjugate function of the scalar set valued
map.

Proposition 1 [28, Proposition 4.1] Let H1, H2 : R
n ⇒ R be proper set-valued maps

such that dom(H1) ∩ dom(H2) 
= ∅. Suppose that for any x ∈ dom(H1) ∩ dom(H2),
ϕH1(x) > −∞ and ϕH2(x) > −∞. Then,

(H1 + H2)
∗ = (ϕH1 + ϕH2)

∗.

In particular, for any proper set-valued map H : Rn ⇒ R such that ϕH (x) > −∞ for all
x ∈ dom(H), the identity H∗ = (ϕH )∗ holds.

Lemma 2 Let ε � 0 be given and H : Rn ⇒ R be a proper set-valued map. If dom(H) ∩
A 
= ∅, then the point (x̄, ȳ) with x̄ ∈ A is an ε-optimal solution of (SP) if and only if
(0,−ȳ + ε) ∈ epi(H + δ̃A)∗.

Proof A point (x̄, ȳ) with x̄ ∈ A is an ε-optimal solution of (SP) if and only if for any
x ∈ A ∩ dom(H) = dom(H + δ̃A) and any y ∈ H(x) = (H + δ̃A)(x), −y � −ȳ + ε, or
equivalently, (H + δ̃A)∗(0) � −ȳ + ε ⇔ (0,−ȳ + ε) ∈ epi(H + δ̃A)∗. ��
Remark 3 It is worth noting that from Lemma 2 and Proposition 1 we can obtain a result in
the line of [3, Lemma 3.1] by considering H(x) := { f (x)} if f (x) ∈ R and H(x) := ∅ else,
where f : Rn → R ∪ {+∞} is a proper lower semicontinuous function. In this case, for
x̄ ∈ dom f ∩ A, ȳ = f (x̄), ϕH = f and ϕδ̃A

= δA.

3 Sequential Lagrangemultiplier conditions for �-weak Pareto
solutions

In this section, we consider the vector optimization problem with set-valued map (P). Here,
the feasible set A of the problem (P) is given by

A := {x ∈ C : G(x) ∩ −S 
= ∅},
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where C is a nonempty closed convex subset of Rn , S is a nonempty closed convex cone
of Rm which does not necessarily have a nonempty interior, and G : Rn ⇒ R

m is a proper
set-valued map. The feasible set A has a quite general formulation, which provides a unified
framework for examining various feasible sets for scalar/vector optimization problems. For
example, if G(x) := {g(x)}, where g : Rn → R

m is a vector-valued function, the set A
reduces to {x ∈ C : g(x) ∈ −S}, which can be expressed of the form {x ∈ C : 〈μ, g(x)〉 �
0, ∀μ ∈ S+}. Unfortunately, in the set-valued setting, the equality

Ã := {
x ∈ R

n : G(x) ∩ −S 
= ∅} = {
x ∈ R

n : ϕμ◦G(x) � 0, ∀μ ∈ S+}
(2)

may fail to be true in general. In fact, by takingG(x) := {z := (z1, z2) ∈ R
n : exp(z1)− x �

z2} for all x ∈ R and S := R × R+. We see that dom(G) = R and 0 /∈ Ã. On the one hand,
for each μ := (μ1, μ2) ∈ S+ = {0} × R+, we have

0 � μ2 exp(z1) � μ2z2 = 〈μ, z〉, ∀z ∈ G(0).

This shows thatϕμ◦G(0) = 0 for allμ ∈ S+, and so, 0 ∈ {x ∈ R
n : ϕμ◦G(x) � 0, ∀μ ∈ S+}.

Recently, an additional condition on the set-valued map G has been shown to guarantee
the equality (2) (see, e.g., [37]). In what follows, one says that Assumption (A) holds if one
of the following conditions holds:

(A1) For each x ∈ dom(G), there exists z ∈ G(x) such that ϕμ◦G(x) = 〈μ, z〉 for every
μ ∈ S+.

(A2) For each x ∈ dom(G), G(x) is a compact subset of Rm .

It is worth noting that there are no implication relations between (A1) and (A2), see, e.g.,
[37]. Note also that under the validity of assumption (A), the closedness of the set Ã can be
guaranteed by the lower semicontinuity of ϕμ◦G for all μ ∈ S+. In the sequel, let us recall
thatG is S-proper (resp. nonnegatively S-lsc) if ϕμ◦G is proper (resp. lower semicontinuous)
for allμ ∈ S+. Hereafter, for the problem (P), we always assume in the rest of this paper that
the proper set-valued mapping F is K -proper, K -convex and nonnegatively K -lsc, and the
proper set-valued mapping G is S-proper, S-convex and nonnegatively S-lsc satisfying (A).

Remark 4 The following points are taken from [19, Remark 3.1], [26, Theorem 4.1] and [37],
respectively. Let F : Rn ⇒ R

p be a proper set-valued map. One has:

(i) ϕλ◦F is convex for each λ ∈ K+ if and only if F is K -convex.
(ii) ϕλ◦F is lower semicontinuous for each λ ∈ K+ provided that F is upper K -continuous

on dom(F) (see, e.g., [13, Definition 2.5.16] and [31, Definition 7.1]), i.e., for any
x ∈ dom(F) and any open set V ⊇ F(x), there exists a neighborhood U of x such
that F(u) ⊆ V + K for all u ∈ U .

(iii) ϕλ◦F is proper for each λ ∈ K+ if either F has compact values on dom(F) or F is
K -bounded from below on dom(F) in the sense that there exists a ∈ R

p such that
F(x) ⊆ a + K for all x ∈ dom(F).

Next, we will obtain some sequential characterizations of θ -weak Pareto optimal solution
for the problem (P) in terms of the approximate subdifferentials of the marginal functions
associated with F and G. We begin with the following two lemmas.

Lemma 3 [37, Proposition 2] Let a proper set-valued mapping G : Rn ⇒ R
m be S-proper,

S-convex and nonnegatively S-lsc satisfying (A). If Ã := {x ∈ R
n : G(x) ∩ −S 
= ∅} 
= ∅,

then

epiσ Ã = cl
(∪μ∈S+epi(ϕμ◦G)∗

)
.
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Remark 5 Wepoint out that the set∪μ∈S+epi(ϕμ◦G)∗ is a convex cone due to [37, Proposition
1]. Consequently, since epiδ∗

C is a convex cone, the set ∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C is also a

convex cone.

Lemma 4 If A 
= ∅, then
epi(̃δA)∗ = cl

(∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C

)
.

Proof Note by the definition of the indicator function in the set-valued version that δ̃A =
δ̃ Ã + δ̃C . So, invoking Proposition 1, Lemmas 1(i) and 3, we have

epi
(̃
δA

)∗ = epi
(
ϕδ̃ Ã

+ ϕδ̃C

)∗

= cl
(
epi

(
ϕδ̃ Ã

)∗ + epi
(
ϕδ̃C

)∗)

= cl
(
epi

(̃
δ Ã

)∗ + epi
(̃
δC

)∗)

= cl
(
epiσ Ã + epiσC

)

= cl
(
cl

(∪μ∈S+epi
(
ϕμ◦G

)∗) + epiδ∗
C

)

= cl
(∪μ∈S+epi

(
ϕμ◦G

)∗ + epiδ∗
C

)
,

and the proof is complete. ��
Theorem 2 For the problem (P), if Ω 
= ∅, then (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is an θ -
weak Pareto optimal solution of (P) if and only if there exist λ ∈ K+\{0}, {μl} ⊂ S+,
{εl}, {ηl}, {ζl} ⊂ R+, ul ∈ ∂εlϕλ◦F (x̄), vl ∈ ∂ηlϕμl◦G(x̄), wl ∈ N ζl

C (x̄) such that

ul + vl + wl → 0, as l → +∞ (3)

and
lim

l→+∞(εl + ηl + ζl − ϕμl◦G(x̄)) + 〈λ, ȳ〉 − ϕλ◦F (x̄) = 〈λ, θ〉. (4)

Proof Assume that a pair (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is an θ -weak Pareto optimal solution
of (P). On account of the K -convexity of F , by Remark 2, we apply Theorem 1 to assert
that there exists λ ∈ K+\{0} such that (x̄, 〈λ, ȳ〉) is a 〈λ, θ〉-optimal solution of (SP) where
H(x) := (λ ◦ F)(x). So, Lemma 2 together with Proposition 1 yields

(0,−〈λ, ȳ〉 + 〈λ, θ〉) ∈ epi(λ ◦ F + δ̃A)∗ = epi(ϕλ◦F + ϕδ̃A
)∗. (5)

In addition, Lemma 4 gives us that

epi
(
ϕλ◦F + ϕδ̃A

)∗ = cl
(
epi (ϕλ◦F )∗ + epi

(
ϕδ̃A

)∗)

= cl
(
epi (ϕλ◦F )∗ + cl

(∪μ∈S+epi
(
ϕμ◦G

)∗ + epiδ∗
C

))

= cl
(
epi (ϕλ◦F )∗ + ∪μ∈S+epi

(
ϕμ◦G

)∗ + epiδ∗
C

)
.

Taking (5) into account, we assert that there exist sequences {μl} ⊂ S+, {(ul , αl)} ⊂
epi(ϕλ◦F )∗, {(vl , βl)} ⊂ epi(ϕμl◦G)∗ and {(wl , γl)} ⊂ epiδ∗

C such that ul + vl + wl →
0 and αl + βl + γl → −〈λ, ȳ〉 + 〈λ, θ〉 as l → +∞. In view of (1), there exist sequences
{εl}, {ηl}, {ζl} ⊂ R+ such that

⎧
⎨

⎩

ul ∈ ∂εlϕλ◦F (x̄), αl = 〈ul , x̄〉 + εl − ϕλ◦F (x̄),
vl ∈ ∂ηlϕμl◦G(x̄), βl = 〈vl , x̄〉 + ηl − ϕμl◦G(x̄),
wl ∈ ∂ζl δC (x̄), γl = 〈wl , x̄〉 + ζl , ∀l ∈ N.
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It follows that αl + βl + γl = 〈ul + vl + wl , x̄〉 − ϕλ◦F (x̄) − ϕμl◦G(x̄) + (εl + ηl + ζl) for
each l ∈ N. Now, passing to the limit as l → +∞, we get

−〈λ, ȳ〉 + 〈λ, θ〉 = lim
l→+∞(αl + βl + γl) = −ϕλ◦F (x̄) + lim

l→+∞(εl + ηl + ζl − ϕμl◦G(x̄)),

and so, (3) and (4) have been justified.
Conversely, suppose that there exist λ ∈ K+\{0}, {εl}, {ηl}, {ζl} ⊂ R+, ul ∈ ∂εlϕλ◦F (x̄),

vl ∈ ∂ηlϕμl◦G(x̄),wl ∈ N ζl
C (x̄) such that (3) and (4) hold. Let x ∈ A∩dom(F) and y ∈ F(x)

be arbitrary. Then x ∈ C and there exists z ∈ G(x) such that z ∈ −S. By taking into account
the definitions of ϕλ◦F , ϕμl◦G and N ζl

C (x̄), we have, for each positive integer l,

〈λ, y〉 − ϕλ◦F (x̄) � 〈ul , x − x̄〉 − εl ,

〈μl , z〉 − ϕμl◦G(x̄) � 〈vl , x − x̄〉 − ηl ,

0 � 〈wl , x − x̄〉 − ζl .

Adding these inequalities, it holds that

〈λ, y〉 − ϕλ◦F (x̄) � 〈λ, y〉 − ϕλ◦F (x̄) + 〈μl , z〉 − ϕμl◦G(x̄) + ϕμl◦G(x̄)

� 〈ul + vl + wl , x − x̄〉 − (εl + ηl + ζl − ϕμl◦G(x̄)).

Passing to the limit as l → +∞, we obtain that 〈λ, y〉 � 〈λ, ȳ〉 − 〈λ, θ〉, showing that
(x̄, 〈λ, ȳ〉) is a 〈λ, θ〉-optimal solution of (SP). Therefore, in view of Theorem 1, (x̄, ȳ) is an
θ -weak Pareto optimal solution of (P) as desired. ��

Next let us provide an example illustrating Theorem 2 where the Slater-type constraint
qualification fails. Here, the set A := {x ∈ C : G(x) ∩ −S 
= ∅} is said to satisfy the Slater-
type constraint qualification if intS 
= ∅ and there exists x̂ ∈ riC such thatG(x̂)∩−intS 
= ∅.
Example 1 Let K = S := R

2+, C := [−1, 1], θ := (0.1, 0.1), (x̄, ȳ) := (0, (0.1, 0.1)) and
let F and G be defined by F(x) := (x,− 1

2

√
x) + R

2+ if x ∈ [0,+∞[ and F(x) := ∅ else,
G(x) := {(z1, z2) ∈ R

2 : (z1 − x)2 + (z2 − 1)2 � 1} for every x ∈ R. It can be easily
checked that K+ = S+ = R

2+, A = [−1, 0], (x̄, ȳ) is an θ -weak Pareto optimal solution of
(P) and that the Slater-type constraint qualification fails. Now, it can also be verified that for
each λ := (λ1, λ2) ∈ R

2+, ϕλ◦F (x) = λ1x − λ2
2

√
x for all x � 0; otherwise ϕλ◦F (x) = +∞,

and for each (μ1, μ2) ∈ R
2+, ϕμ◦G(x) = μ1x + μ2 −

√
μ2
1 + μ2

2 for all x ∈ R. Putting

λ̄ := (0, 1), εl = ηl := 1√
l
, ζl := 1

2
√
l
, μl := (μl

1, μ
l
2) := (

√
l
2 ,

√
l
4 ( l

2−1
l )) for each l ∈ N.

Then, −
√
l
2 ∈ ∂εlϕλ̄◦F (x̄) and

√
l
2 ∈ ∂ηlϕμl◦G(x̄). Indeed, a direct calculation shows that for

any x ∈ R
n , −

√
l
2 x � ϕλ̄◦F (x) + εl , since

−
√
l

2
x

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< +∞ = ϕλ̄◦F (x), if x < 0;
� 0 � − 1

2

√
x + εl = ϕλ̄◦F (x) + εl , if 0 � x � 1√

l
;

< − 1
2 < − 1

2

√
x < ϕλ̄◦F (x) + εl , if 1√

l
< x < 1;

� − 1
2 x � − 1

2

√
x < ϕλ̄◦F (x) + εl , if x � 1,

and
√
l
2 x �

√
l
2 x + ηl = ϕμl◦G(x) − ϕμl◦G(x̄) + ηl . In addition, it can be verified that

ϕμl◦G(x̄) =
√
l

4

(
l2 − 1

l

)
−

√
l

4
+ (l2 − 1)2

16l
= 1

4
√
l
((l2 − 1) − (l2 + 1)) = − 1

2
√
l
,
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〈λ̄, θ〉 − 〈λ̄, ȳ〉 + ϕλ̄◦F (x̄) = 0, and N ζl
C (x̄) = [−ζl , ζl ]. Letting ul := −

√
l
2 , vl :=

√
l
2 and

wl := ζl for each l ∈ N, we see that ul + vl + wl = ζl → 0 and εl + ηl + ζl − ϕμl◦G(x̄) =
3√
l

→ 0 as l → +∞, showing that the sequential conditions of Theorem 2 hold. ��

The special case of θ := 0 in the preceding theorem gives us a new characterization of
weak Pareto optimal solutions of (P) as follows.

Corollary 1 For the problem (P), if Ω 
= ∅, then (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is a weak
Pareto optimal solution of (P) if and only if there exist λ ∈ K+\{0}, {μl} ⊂ S+, {εl} ⊂ R+,
ul ∈ ∂εlϕλ◦F (x̄), vl ∈ ∂εlϕμl◦G(x̄), wl ∈ N εl

C (x̄) such that 〈λ, ȳ〉 = ϕλ◦F (x̄),

ul + vl + wl → 0, εl → 0 and ϕμl◦G(x̄) → 0 as l → +∞.

Proof By taking θ := 0 in Theorem 2, we know that (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is a
weak Pareto optimal solution of (P) if and only if there exist λ ∈ K+\{0}, {μl} ⊂ S+,
{̃εl}, {̃ηl}, {̃ζl} ⊂ R+, ul ∈ ∂̃εlϕλ◦F (x̄), vl ∈ ∂η̃lϕμl◦G(x̄), wl ∈ N ζ̃l

C (x̄) such that

ul + vl + wl → 0, as l → +∞
and

lim
l→+∞(̃εl + η̃l + ζ̃l − ϕμl◦G(x̄)) + 〈λ, ȳ〉 − ϕλ◦F (x̄) = 0.

Due to the feasibility of x̄ , there exits z̄ ∈ G(x̄) such that z̄ ∈ −S. It follows that for each l ∈ N,
ϕμl◦G(x̄) � 〈μl , z̄〉 � 0. By {̃εl}, {̃ηl}, {̃ζl} ⊂ R+, −ϕμl◦G(x̄) � 0 and 〈λ, ȳ〉−ϕλ◦F (x̄) �
0, we can obtain that 〈λ, ȳ〉 = ϕλ◦F (x̄) and liml→+∞ ε̃l = liml→+∞ η̃l = liml→+∞ ζ̃l =
liml→+∞ ϕμl◦G(x̄) = 0.

Letting εl := max{̃εl , η̃l , ζ̃l}. Then,we have that εl → 0 as l → +∞ and ul ∈ ∂εlϕλ◦F (x̄),
vl ∈ ∂εlϕμl◦G(x̄), wl ∈ N εl

C (x̄). So, we obtain the desired result. ��

4 A new constrained qualification for �-weak Pareto optimal solution

In this section, we give a new constrained qualification for θ -weak Pareto optimal solution
of problem (P). From now on, we say that the set A := {x ∈ C : G(x) ∩ −S 
= ∅} is said to
satisfy the closed cone constraint qualification when the set

∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C (CCCQ)

is closed.

Remark 6 In the case of G is a single-valued map, namely, G(x) := {g(x)} for every x ∈ R
n

where g : R
n → R

m , we get A = {x ∈ C : g(x) ∈ −S} and ϕμ◦G = μ ◦ g for each
μ ∈ S+. Then (CCCQ) collapses to the usual closed cone constraint qualification which
was proposed in [23] and was used in [3,11,24,25] and the references therein to establish
optimality conditions for convex (infinite) programming problems.

The following theorem establishes necessary/sufficient optimality criteria for θ -weak
Pareto optimal solution of problem (P) in terms of approximate subdifferentials under the
condition (CCCQ).
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Theorem 3 For the problem (P), suppose that dom(F) = R
n. If A 
= ∅ and (CCCQ) is

fulfilled, then (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is an θ -weak Pareto optimal solution of (P) if and
only if there exist λ ∈ K+\{0}, μ ∈ S+, ε, η, ζ ∈ R+ such that

0 ∈ ∂εϕλ◦F (x̄) + ∂ηϕμ◦G(x̄) + N ζ
C (x̄) (6)

and
ε + η + ζ − ϕμ◦G(x̄) + 〈λ, ȳ〉 − ϕλ◦F (x̄) = 〈λ, θ〉. (7)

Proof As seen before, we know that (x̄, ȳ) ∈ gph(F)with x̄ ∈ A is an θ -weak Pareto optimal
solution of (P) if and only if there exists λ ∈ K+\{0} such that (5) holds. Note that ϕλ◦F
is a convex function for each λ ∈ K+ due to K -convexity of F , and so, it is continuous
on ri(dom(ϕλ◦F )). As dom(ϕλ◦F ) = dom(λ ◦ F) = dom(F) = R

n , ϕλ◦F is a continuous
function on Rn . By Lemma 1(ii), one has

epi(ϕλ◦F + ϕδ̃A
)∗ = epi(ϕλ◦F )∗ + epi(̃δA)∗.

Since ∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C is closed, the above equality, by Lemma 4, becomes

epi(ϕλ◦F + δ̃A)∗ = epi(ϕλ◦F )∗ + ∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C .

This together with (5) in turn implies that there exist μ ∈ S+, (u, α) ∈ epi(ϕλ◦F )∗, (v, β) ∈
epi(ϕμ◦G)∗ and (w, γ ) ∈ epiδ∗

C such that 0 = u+ v +w and α +β +γ = −〈λ, ȳ〉+ 〈λ, θ〉.
In view of (1), there exist ε, η, ζ ∈ R+ such that

⎧
⎨

⎩

u ∈ ∂εϕλ◦F (x̄), α = 〈u, x̄〉 + ε − ϕλ◦F (x̄),
v ∈ ∂ηϕμ◦G(x̄), β = 〈v, x̄〉 + η − ϕμ◦G(x̄),
w ∈ ∂ζ δC (x̄), γ = 〈w, x̄〉 + ζ.

Therefore,

〈λ, θ〉 = α + β + γ + 〈λ, ȳ〉
= 〈u + v + w, x̄〉 + 〈λ, ȳ〉 − ϕλ◦F (x̄) − ϕμ◦G(x̄) + ε + η + ζ

= 〈λ, ȳ〉 − ϕλ◦F (x̄) − ϕμ◦G(x̄) + ε + η + ζ.

The converse conclusion can also be obtained easily by Theorem 2 and will be omitted. ��
The next example demonstrates that the approximate subgradient conditions (6) and/or

(7) in Theorem 3 may fail for an θ -weak Pareto optimal solution of (P) under the violation
of the condition (CCCQ).

Example 2 Let K , S, C , and G be defined as in Example 1. Let (x̄, ȳ) := (0, (1, 0.1)), θ :=
(0, 0.1), and let F be definedby F(x) := (x,−x)+R

2+ for every x ∈ R. Thenwehave already

seen that K+ = S+ = R
2+, and for each (μ1, μ2) ∈ R

2+, ϕμ◦G(x) = μ1x +μ2 −
√

μ2
1 + μ2

2
for all x ∈ R. It can be easily checked that (x̄, ȳ) is an θ -weak Pareto optimal solution of (P)
and that for each λ := (λ1, λ2) ∈ R

2+, ϕλ◦F (x) = (λ1 − λ2)x for all x ∈ R. We assert that
the conditions (6) and (7) in Theorem 3 do not hold for this setting. Otherwise, there exist
λ := (λ1, λ2) ∈ K+\{0}, μ := (μ1, μ2) ∈ S+, ε, η, ζ ∈ R+ such that

0 ∈ ∂εϕλ◦F (x̄) + ∂ηϕμ◦G(x̄) + N ζ
C (x̄) = {λ1 − λ2} + {μ1} + [−ζ, ζ ]

and
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0 = ε + η + ζ − ϕμ◦G(x̄) + 〈λ, ȳ〉 − ϕλ◦F (x̄) − 〈λ, θ〉
= ε + η + ζ − μ2 +

√
μ2
1 + μ2

2 + λ1.

We obtain that ε = η = ζ = λ1 = −μ2 +
√

μ2
1 + μ2

2 = 0 due to ε, η, ζ, λ1, −μ2 +
√

μ2
1 + μ2

2 � 0. It follows that μ1 = 0, which result in λ2 = 0, and therefore, we arrive at
a contradiction that λ 
= 0. Consequently, the conclusion of Theorem 3 fails to hold. The
reason is that the cone∪μ∈S+epi(ϕμ◦G)∗ +epiδ∗

C is not closed. To see this, for eachμ ∈ S+,

(ϕμ◦G)∗(ξ) =
{√

μ2
1 + μ2

2 − μ2, if ξ = μ1;
+∞, otherwise,

and δ∗
C (·) = | · |. So,

∪μ∈S+epi(ϕμ◦G)∗ = ∪μ1,μ2�0{μ1} × [
√

μ2
1 + μ2

2 − μ2,+∞[
= {(x1, x2) ∈ R

2 : x1 � 0, x2 > 0},
and hence,

∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C = {

(x1, x2) ∈ R
2 : x1 � 0, x1 + x2 � 0

} ∪ intR2+,

which is not closed.
On the other hand, letting λ̄ := (λ̄1, λ̄2) := (0, 1), εl = ηl = ζl := 1

2l , μl := (μl
1, μ

l
2) :=

(1 − 1
2l , l − 1), ul := −1, vl := μl

1, and wl := ζl for each l ∈ N. Then, elementary
calculations give us

ϕμl◦G(x̄) = l − 1 −
√(

1 − 1

2l

)2

+ (l − 1)2 = l − 1 −
√(

l − 1 + 1

2l

)2

= − 1

2l
,

〈λ̄, ȳ〉 − ϕλ̄◦F (x̄) − 〈λ̄, θ〉 = 0, ul + vl + wl = 0 and εl + ηl + ζl − ϕμl◦G(x̄) = 2
l → 0 as

l → +∞. So, the sequential conditions of Theorem 2 hold. ��

In the following corollary we derive an optimality condition for a weak Pareto optimal
solution of (P) under the condition (CCCQ).

Corollary 2 For the problem (P), suppose that dom(F) = R
n. If A 
= ∅ and (CCCQ) is

fulfilled, then (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is a weak Pareto optimal solution of (P) if and
only if there exist λ ∈ K+\{0} and μ ∈ S+ such that 〈λ, ȳ〉 = ϕλ◦F (x̄),

0 ∈ ∂ϕλ◦F (x̄) + ∂ϕμ◦G(x̄) + NC (x̄) and ϕμ◦G(x̄) = 0.

Proof We apply Theorem 3 with θ := 0 to assert that (x̄, ȳ) ∈ gph(F) with x̄ ∈ A is a weak
Pareto optimal solution of (P) if and only if there exist λ ∈ K+\{0}, μ ∈ S+, ε, η, ζ ∈ R+
such that

0 ∈ ∂εϕλ◦F (x̄) + ∂ηϕμ◦G(x̄) + N ζ
C (x̄)

and
ε + η + ζ − ϕμ◦G(x̄) + 〈λ, ȳ〉 − ϕλ◦F (x̄) = 0. (8)
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Due to the feasibility of x̄ , there exists z̄ ∈ G(x̄) such that z̄ ∈ −S. This leads us to
ϕμ◦G(x̄) � 〈μ, z̄〉 � 0. By ε, η, ζ ∈ R+, −ϕμ◦G(x̄) � 0 and 〈λ, ȳ〉 − ϕλ◦F (x̄) � 0, it
entails especially by (8) that

ε = η = ζ = ϕμ◦G(x̄) = 〈λ, ȳ〉 − ϕλ◦F (x̄) = 0.

The rest of the proof for the converse conclusion follows by using Theorem 3 and so is
omitted here. ��
Remark 7 In view of [28, Proposition 2.2.(ii)], we can also formulate a version of Theorem 2
andCorollary 1 (resp. Theorem3andCorollary 2) in termsof the radial ε-subdifferentials (see
e.g. [28, Definition 1.2]) (resp. radial subdifferentials) by assuming that x̄ ∈ int(dom(F)).

Remark 8 It is interesting to note here that we can obtain in a similar manner the sequential
characterizations of an approximate Pareto optimal solution aswell as an approximateBenson
proper Pareto optimal solution of (P) by using the scalarization theorems that given in [40,
Theorem 4.1 and Theorem 4.4].

Next, under an additional condition,wewill see that the Slater-type constraint qualification
guarantees the validity of (CCCQ). To this aim, we need the following lemma.

Lemma 5 Suppose that int(S) 
= ∅ and there exists x̂ ∈ R
n such that G(x̂) ∩ −int(S) 
= ∅.

Then the set ∪μ∈S+epi(ϕμ◦G)∗ is closed.

Proof Let (vl , αl) ∈ ∪μ∈S+epi(ϕμ◦G)∗ be such that (vl , αl) → (v, α) as l → +∞. We only
need to show that

(v, α) ∈ ∪μ∈S+epi(ϕμ◦G)∗.

To see this, as int(S) 
= ∅, there is a compact convex set B ⊆ S+ with 0 /∈ B and S+ =
cone(B) (see, e.g., [20, Lemma 1.28(a)]). Then, there exist {μl} ⊂ S+, {tl} ⊂ R+ and
{bl} ⊂ B such that μl = tlbl , (xl , αl) ∈ epi(ϕμl◦G)∗ = epi(μl ◦ G)∗ and bl → b ∈ B as
l → +∞.

We first show that {tl} is bounded. Otherwise, wemay assume that tl → +∞ as l → +∞.
Then, for each l ∈ N,

〈vl , x〉 − 〈μl , y〉 � (μl ◦ G)∗(vl) � αl , ∀x ∈ dom(G), y ∈ G(x).

In particular, due to x̂ ∈ R
n satisfying G(x̂) ∩ −int(S) 
= ∅, there is ŷ ∈ G(x̂) such that

−ŷ ∈ int(S). So, 〈vl , x̂〉 − 〈μl , ŷ〉 � αl , and consequently,

1

tl
〈vl , x̂〉 − 〈bl , ŷ〉 � αl

tl
.

Passing to limit, we see that 〈b, ŷ〉 � 0. On the one hand, as b ∈ S+\{0} and −ŷ ∈ int(S),
we have 〈b, ŷ〉 < 0, a contradiction.

Now, since {tl} is bounded, we may assume that tl → t as l → +∞ for some t ∈ R+.
Thus, for each x ∈ dom(G) and y ∈ G(x), one has 〈v, x〉 − 〈tb, y〉 � α, and consequently,
(μ̄ ◦ G)∗(v) � α where μ̄ := tb ∈ S+. Therefore,

(v, α) ∈ epi(μ̄ ◦ G)∗ ⊆ ∪μ∈S+epi(μ ◦ G)∗ = ∪μ∈S+epi(ϕμ◦G)∗,

and the proof is complete. ��

123



Journal of Global Optimization (2020) 77:273–287 285

Theorem 4 Suppose that int(S) 
= ∅and there exists x̂ ∈ ri(C) such that G(x̂)∩−int(S) 
= ∅.
If G is S-upper semicontinuous [13, Definition 2.5.21], i.e., {x ∈ R

n : G(x)∩ (y− int(S)) 
=
∅} is open for every y ∈ R

m, then (CCCQ) holds.

Proof As G is S-upper semicontinuous, the set {x ∈ R
n : G(x) ∩ (−int(S)) 
= ∅} is open,

and so, x̂ ∈ {x ∈ R
n : G(x) ∩ (−int(S)) 
= ∅} ⊆ int( Ã) ⊆ ri( Ã). Since C and Ã are closed

convex sets, and ri(C)∩ ri( Ã) 
= ∅, we have by [8, Proposition 3.2] that the set epiδ∗̃
A
+epiδ∗

C
is closed. According to Lemma 3 and 5, we obtain that ∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗

C is closed.
��

To this end, we give the following example that illustrates the case where (CCCQ) holds,
whereas the Slater-type constraint qualification fails.

Example 3 Let C := [−1, 1], S := {(x1, x2) ∈ R
2 : x2 � 0} and G(x) := {(x, r) ∈ R

2 :
r � max{x, 0}} for every x ∈ R. Then, int(S) 
= ∅ and G(x) ∩ −int(S) = ∅ for all x ∈ R.
On the one hand, direct calculations show that δ∗

C (·) = | · |, S+ = {(μ1, μ2) ∈ R
2 : μ1 =

0, μ2 � 0}, and for each μ ∈ S+, ϕμ◦G(x) = μ2 max{x, 0},

(ϕμ◦G)∗(u) =
{
0, if u ∈ [0, μ2];
+∞, otherwise.

Hence,

∪μ∈S+epi(ϕμ◦G)∗ + epiδ∗
C = ∪μ2�0[0, μ2] × R+ + {(x1, x2) ∈ R

2 : |x1| � x2}
= {

(x1, x2) ∈ R
2 : x1 � 0, x1 + x2 � 0

} ∪ R
2+,

which is a closed set.

5 Conclusions

In this paper, we have employed the scalarization theorem and the relation between the
conjugate function of the scalar set-valued map and of the marginal function associated
with corresponding the scalar set-valued map to provide sequential Lagrange multiplier
conditions characterizing approximate weak Pareto optimal solutions for the convex vector
optimization problem with set-valued maps. These conditions are expressed in terms of the
approximate subdifferentials of the related marginal functions. Moreover, the approximate
Lagrange multiplier conditions for the problem have also been provided by using a new
proposed constraint qualification, which is implied by the Slater-type condition.
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