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Abstract
This paper introduces a Delaunay-based derivative-free optimization algorithm, dubbed
Δ-DOGS(Ω), for problems with both (a) a nonconvex, computationally expensive objec-
tive function f (x), and (b) nonlinear, computationally expensive constraint functions c�(x)
which, taken together, define a nonconvex, possibly even disconnected feasible domain Ω ,
which is assumed to lie within a known rectangular search domain Ωs , everywhere within
which the f (x) and c�(x) may be evaluated. Approximations of both the objective function
f (x) aswell as the feasible domainΩ are developed and refined as the iterations proceed. The
approach is practically limited to the problemswith less than about ten adjustable parameters.
The work is an extension of our original Delaunay-based optimization algorithm (see JOGO
DOI: 10.1007/s10898-015-0384-2), and inherits many of the constructions and strengths of
that algorithm, including: (1) a surrogate function p(x) interpolating all existing function
evaluations and summarizing their trends, (2) a synthetic, piecewise-quadratic uncertainty
function e(x) built on the framework of aDelaunay triangulation amongst existing datapoints,
(3) a tunable balance between global exploration (large K ) and local refinement (small K ),
(4) provable global convergence for a sufficiently large K , under the assumption that the
objective and constraint functions are twice differentiable with bounded Hessians, (5) an
Adaptive-K variant of the algorithm that efficiently tunes K automatically based on a target
value of the objective function, and (6) remarkably fast global convergence on a variety of
benchmark problems.
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1 Introduction

The problem considered in this paper is as follows:

minimize f (x) with x ∈ Ω := Ωc ∩ Ωs ⊆ R
n where

Ωc = {x |c�(x) ≤ 0 , for � = 1, . . . ,m}, Ωs = {x |a ≤ x ≤ b}, (1)

where both f (x) and c�(x) for � = 1, . . . ,m are twice differentiable and possibly nonconvex
functions which map R

n → R within the search domain Ωs . The optimization problem (1)
has two sets of constraints:

a. a set of 2 n bound constraints that characterize the n-dimensional box domain Ωs =
{x |a ≤ x ≤ b}, dubbed the search domain, and

b. a set ofm possibly nonlinear inequality constraints c�(x) ≤ 0 that together characterize
the possibly nonconvex domain Ωc, dubbed the constraint domain.

The feasible domain is the intersection of these two domains, Ω := Ωs ∩ Ωc.
Potential applications of an efficient optimization algorithm of this type include: (a) min-

imizing the ratio of lift to drag, while holding the lift coefficient constant, in the design
optimization of airfoils [38] and hydrofoils [3]; (b) minimizing entropy generation, with a
constant wall temperature or wall heat flux, in the optimization of finned-tube heat exchang-
ers [48]; (c) optimization of cardiovascular stints [35,42]; (d) maximizing solar power plant
efficiency [4,36]; and (e) parameter optimization in deep learning networks [54]. In such
problems, the number of adjustable parameters of interest is generally quite low (less than
10). The objective and constraint functions for such problems often come from black-box
software, such as computational fluid dynamics codes, that often take several hours or more
to evaluate for any given set of parameters. The Hessian of the objective function in such
problems is often, apparently, bounded (though this smoothness is difficult or impossible to
establish mathematically), Further, in many application-based problems, there is an initial
reference design that one seeks to improve by a certain amount. The present optimization
algorithm is well suited for such problems.

Constrained optimization problems of the form given in (1), dubbed Nonlinear Inequality
Problems (NIPs), have been studied widely using both derivative-based and derivative-free
optimization strategies.

In the derivative-based setting, there are two main classes of approaches for NIPs. The
first, Sequential Quadratic Programming (SQP) methods (see, e.g., [20,21]), impose a local
quadratic model for the objective function and a local linear model for the constraint func-
tions to estimate the location of the local minimum at each step. These models are defined
based on the local gradient and Hessian of the objective function, and the local Jacobian of
the constraint functions; thus, these methods are applicable only when these derivatives, or
accurate approximations thereof, are available. SQP methods only converge to a KKT point,
or to a local minimum, and special care is needed to guarantee such convergence [20,22].
Application of SQP methods to problems with nonconvex feasible domains leads to some
especially difficult technical challenges. Effective implementations of Sequential Quadratic
Programming (SQP) methods include SNOPT [20] and SQP Filter [17].

The othermain class of derivative-based approaches for NIPs is penaltymethods (see, e.g.,
[19]), which modify the objective function by adding a penalty term which is successively
refined as the optimization proceeds. In this way, a series of unconstrained problems is
considered, and these problems are iteratively adjusted as convergence is approached such
that the iterative process eventually converges to a local minimizer of the original constrained
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problem. There are two main types of penalty functions used in such approaches: quadratic
penalty functions (see, e.g., [10,27,28]) and barrier functions (see, e.g., [18]).

Methods based on quadratic penalty functions add a smooth penalty outside the feasibility
boundary. This penalty goes to zero at the feasibility boundary, and is made successively
steeper near the feasibility boundary (that is, it increases without bound on the exterior of the
feasible domain) as convergence is approached.Methods basedonquadratic penalty functions
do not require the identification of an initial feasible point during initialization, though the
objective function is evaluated over a search domain that extends beyond the feasible domain,
so these infeasible objective function computations need to be well-behaved.

Methods based on barrier functions add a smooth penalty inside the feasibility boundary.
This penalty goes to infinity at the feasibility boundary, and is made successively steeper
near the feasibility boundary (that is, it is diminished towards zero on the interior of the
feasible domain) as convergence is approached. Methods based on barrier functions require
the identification of an initial feasible point during initialization, though all subsequent func-
tion evaluations are feasible, so the objective function need not be well-behaved outside the
feasible domain.

Derivative-based methods, though scaling to higher-dimensional optimization problems
far better than derivative-free methods, have certain distinct challenges. They are usually
not designed to find the global minimum of a nonconvex objective function. During the last
two decades new spatial branch-and-bound methods, e.g., BARON [55], COUENNE [9],
SCIP [2], ANTIGONE [41], that are able to find the global minimum of a nonconvex objec-
tive function were developed. However, these methods need an expression (or, a numerical
approximation) of the gradients of the objective and constraint functions; such derivative
information is often difficult or impossible to obtain.

Many derivative-free strategies for constrained optimization have been proposed. Some
of these methods, like the downhill simplex and direct search methods [including the gen-
eralized pattern search (GPS) and mesh-adaptive direct search (MADS) algorithms], only
assure convergence to a local minimum. Others, like simulated annealing, genetic algo-
rithms, exhaustive search strategies, and response surface methods, provide convergence to
the global minimum; however, most such methods perform global exploration steps in either
a random or an exhaustive fashion, and are thus quite inefficient with function evaluations.
Today, response surface methods are the most efficient class of optimization schemes in
derivative-free settings that provide global convergence [26].

Direct search methods do not use any model for the objective or constraint functions,
and the solution of the optimization problem is found based only on a series of exploratory
function evaluations inside the feasible domain. GPS methods [56], which are well-known
algorithms in this class, restrict all function evaluations to lie on an underlying grid that
is successively refined. GPS methods were initially designed for unconstrained problems,
but have been modified to address bound constrained problems [32], linearly-constrained
problems [33], and smooth nonlinearly constrained problems [34]. MADS methods [1,5–8]
are modified GPS methods which can handle nonsmooth constraints.

Response Surface Methods (RSMs) [8,14,16,23,52,60], on the other hand, leverage an
underlying inexpensive model, or “surrogate”, of the objective function.1 Kriging inter-
polation [29,50,51] was initially used to develop this surrogate. This convenient choice
provides both an interpolant and a model of the uncertainty of this interpolant. However,
such correlation-based interpolation strategies have a number of numerical shortcomings

1 This approach generalizes the SQPmethod, where a quadratic function is used to locally model the objective
function, and linear function is used to locally model the constraints.
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(see, e.g., the appendix of [12]). Thus, our group has explored [11,12] a new class of RSMs
that can employ any interpolation strategy for the surrogate.

The first method in this class [12] was limited to linearly constraint domain since a mesh
with simplices was required to construct the uncertainty function at each feasible point. Later
[11] extends it to problemswith nonlinear convex constraints. In this paper, wewill extend the
original algorithm to problems with nonconvex constraint. There are two main differences in
this approach compare to the previous works: a) The function evaluation is not limited to the
feasible points and a larger search space is considered. b) Unlike original algorithms which
defines surrogate functions only for objective function, the new method defines surrogate
function to estimate constraints as well.

The structure of this paper is as follows. Section 2 describes the main elements of the
optimization algorithm itself. Section 3 analyzes its convergence properties, and describes
the technical conditions needed to guarantee its convergence to a global minimizer. Section 4
presents a procedure to adjust the tuning parameter of the algorithm developed in Sect. 2 to
maximize the speed of convergence if an estimate of the global minimum (but, not the global
minimizer) is available. Section 5 discusses briefly the behavior of the algorithm proposed
when the feasible domain is empty. In Sect. 6, the algorithm is applied to some benchmark
optimization problems to illustrate its behavior. Conclusions are presented in Sect. 7.

2 Optimization algorithm

In this section, we present an algorithm to solve the optimization problem defined in (1), in
a manner which efficiently handles inequality constraint functions c�(x) that are nonlinear
and computationally expensive, and which (together with Ωs) define a feasible domain Ω

that may be nonconvex and, even, not connected.

2.1 Preliminary definitions

We first present some preliminary notions.

Definition 1 Consider the (n + 1) vertices V0, V1, . . . , Vn ∈ R
n such that the vectors (V0 −

V1), (V0 − V2), . . . , (V0 − Vn) are linearly independent. The convex hull of these vertices
is called a simplex (see, e.g., [15, p. 32]). Associated with this simplex, the circumcenter
z is the point that is equidistant from all n + 1 vertices, the circumradius r is the distance
between z and any of the vertices Vi , and the circumsphere is the set of all points within a
distance r from z.

Definition 2 If S is a set of points in R
n , a triangulation of S is a set of simplices whose

vertices are elements of S such that the following conditions hold:

– Every point in S is a vertex of at least one simplex in the triangulation. The union of all
of these simplices fully covers the convex hull of S.

– The intersection of two different simplices in the triangulation is either empty or a k-
simplex such that k = 0, 1, . . . , n − 1. For example, in the case of n = 3 dimensions,
the intersection of two simplices (in this case, tetrahedra) must be an empty set, a vertex,
an edge, or a triangle.

Definition 3 A Delaunay triangulation is a triangulation (see Definition 2) such that the
intersection of the open circumsphere around each simplex with S is empty. This special
class of triangulation, as compared with other triangulations, has the following properties:
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– The maximum circumradius among the simplices is minimized.
– The sum of the squares of the edge lengths weighted by the sum of the volumes of the

elements sharing these edges is minimized.

Definition 4 Let S be a set of points in Ωs , including its vertices. Define Δ as a Delaunay
triangulation (see [13]) of S. Then, for each simplex Δi ∈ Δ, the local uncertainty function
ei (x) is defined as

ei (x) = (ri )
2 − ‖x − zi‖2, (2)

where zi and ri are the circumcenter and circumradius of the simplex Δi , respectively. The
global uncertainty function e(x) is then defined as

e(x) = ei (x), ∀x ∈ Δi . (3)

The functions ei (x) and e(x) have a number of properties which are shown in Section 3
of [12], the most important of which, for the present purposes, are as follows.

Property 1 The global uncertainty function e(x) is piecewise quadratic, continuous, and
Lipschitz, with Lipschitz constant 2 Rmax, where Rmax is the maximum circumradius of the
corresponding Delaunay triangulation.

Property 2 The Hessian of local uncertainty function ei (x) is equal to −2 I .

Property 3 The global uncertainty function e(x) is equal to the maximum of the local uncer-
tainty functions ei (x), that is,

e(x) = max
i=1,...,E

ei (x), ∀x ∈ Δ, (4)

where E is the number of simplices in the triangulations.

Definition 5 Let S be a set of (both feasible and infeasible) points inΩs , including its vertices,
at which the objective function f (x) has been evaluated. Consider p(x) as an interpolating
function in Δ that interpolates the objective function f (x) at all points in S. Then, for each
simplex Δi ∈ Δ, the local search function si (x) is defined as

si (x) = p(x) − K ei (x), (5)

where K is a tuning parameter. The global search function s(x) is defined as

s(x) = si (x) ∀x ∈ Δi , (6)

where Δi is the i’th simplex in Δ. Note that

s(x) = min
i=1,...,E

si (x) ∀x ∈ Δ.

Definition 6 Consider g1(x), g2(x), . . ., gm(x) as interpolating functions inΔ that interpolate
the constraint functions c1(x), c2(x), . . ., cm(x), respectively, through the points in S. Then,
for each simplex Δi ∈ Δ, the �’th local constraint search function s̃�,i (x) is defined as

s̃�,i (x) = g�(x) − K ei (x) ≤ 0, � = 1, 2, . . . ,m, (7)

where K is a constant tuning parameter. The �’th global constraint search function s̃�(x) is
defined as

s̃�(x) = s̃�,i (x), ∀x ∈ Δi , � = 1, 2, . . . ,m. (8)
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Note that, by Property 3 above,

s̃�(x) = min
i=1,...,E

s̃�,i (x), ∀x ∈ Δ.

Remark 1 The (single) constant K is a tuning parameter that specifies the trade-off between
global exploration, for large K , and local refinement, for small K , when (simultaneously)
exploring both the shape of the objective function, via the search function s given in Defini-
tion 5, and the extent of the feasible domain, via the constraint search functions s̃� given in
Definition 6.

2.2 Feasible constraint projections

The feasible constraint projection process (developed in Section 4 of [12] for linearly con-
strained domains), when applied to a Delaunay optimization algorithm, ensures that the
maximum circumradius of the Delaunay triangulation of the datapoints remains bounded as
the iterations proceed, thus leading to better-behaved uncertainty functions near the boundary
of the feasible domain.

In this paper, since the search domain Ωs = {x |a ≤ x ≤ b} is a simple bound domain,
implementation of the feasible constraint projection process is simpler than in [12], as
described below.

We first define some preliminary concepts.

Definition 7 A finite set of points Sk ⊂ Ωs = { x | a ≤ x ≤ b } is called well-situated [12]
with a factor of r > 1 if, for any point xk ∈ Sk and for all constraints cT x ≤ d of the search
domain Ωs which are not active at xk , a point z ∈ Sk lies on the hyperplane cT x = d such
that

‖xk − z‖
‖xk − x ′‖ ≤ r , (9)

where x ′ is the projection of xk on the hyperplane cT x = d .

We now present the feasible constraint projection algorithm, developed in Sect. 4 of [12],
for the simple bound domain Ωs = { x | a ≤ x ≤ b }.
Definition 8 Consider xk ∈ Ωs , and Sk as a set in Ωs that is well-situated with factor r . A
feasible constraint projection is the iterative adjustment of the point xk inΩs until the resulting
augmented set, Sk+1 = Sk ∪ {xk}, is also well-situated with factor r . This projection may be
achieved with Algorithm 1.

Algorithm 1 Feasible constraint projection of xk prior to appending to Sk .

1: If Sk+1 = Sk ∪ {xk } is well situated with factor r (see Definition 7), exit.
2: Otherwise, there is a constraint cT x = d that is not active at xk , such that there is no point z ∈ Sk that lies

on the hyperplane cT x = d for which (9) is satisfied. In this case, redefine xk as the projection of xk on
the hyperplane cT x = d, and repeat from step 1.

In this paper, the value r = 2 is found to be suitable for the feasible constraint projection
process in our numerical simulations. A detailed explanation of the above algorithm, and
proofs of the following properties of the result, are given in [12].
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Algorithm 2 Scheme for solving (1) with constant K

1: Set k = 0 and initialize S0 with all of the vertices of Ωs together with the user-defined initial points (if
any are provided). Evaluate f (x) and c�(x), ∀ � ∈ {1, 2, . . . ,m}, for all x ∈ S0.

2: Calculate (or, for k > 0, update) interpolating functions pk (x) and gk
�
(x) for the evaluations of f (x) and

c�(x), respectively, at all x ∈ Sk .
3: Calculate (or, for k > 0, update) a Delaunay triangulation Δk over all of the points in Sk .
4: Determine x̂k as the solution of the following optimization problem:

min
x∈Ωs

sk (x) = pk (x) − Kek (x) (10a)

subject to s̃k� (x) = gk� (x) − Kek (x) ≤ 0 ∀ � ∈ {1, 2, . . . ,m}. (10b)

where the global search function sk (x) and the �’th global constraint search function s̃k
�
(x) are introduced

in Definitions 5 and 6.
5: Define xk as the feasible constraint projection of x̂k (Algorithm 1).
6: Evaluate f (xk ) and c�(xk ) ∀ � ∈ {1, 2, . . . ,m} and set Sk+1 = Sk ∪ {xk }. Increment k and repeat from

step 2.

Property 4 Consider Rmax as the maximum circumradius of a Delaunay triangulation
of a set S ⊂ Ωs = { x | a ≤ x ≤ b } that is well-situated with factor r . Define
D = maxx,y∈Ωs ‖x − y‖ as the diameter of the feasible domain, and d = min1≤i≤n{bi −ai }.
Then,

Rmax ≤ D rn−1
1 where r1 = max

{
r ,

D

d

}
.

Property 5 Consider x ′ as the feasible constraint projection of x. Then,

min
z∈S ‖z − x‖ ≤ ρ min

z′∈S
‖z′ − x ′‖, ρ =

[
2 r21

(
1 − 1

r2

)]− n−1
2

, r1 = max

{
r ,

D

d

}
.

That is, if the projected point x ′ is close to some point z′ ∈ S, then the original point x is
correspondingly close to z ∈ S as well.

Remark 2 Since the maximum circumradius Rmax is bounded for all iterations, the Lipschitz
constant of e(x) is bounded by some corresponding value Le.

2.3 A Delaunay-based constant K algorithm for solving (1)

A Delaunay-based constant K algorithm for solving (1), dubbed Δ-DOGS(Ω), is presented
in Algorithm 2.

Figure 1 illustrates the application of Algorithm 2 to a representative n = 2 example, in
which the objective function f (x) = x2 is minimized within the search domainΩs = {x |0 ≤
x1 ≤ 1, 0 ≤ x2 ≤ 1} subject to c(x) = x2 + 0.8 sin(x1π) = 0 (that is, c1(x) = c(x) ≤ 0
and c2(x) = − c(x) ≤ 0), which defines the constraint domain Ωc as a 1D curve. Note that
the feasible region Ω := Ωc ∩ Ωs is nonconvex.

At each iteration k, by minimizing the search function sk(x) within the approximation
of the feasible domain defined by the s̃k� (x) (e.g., within the shaded regions in Fig. 1),
the objective function and the extent of the feasible domain are explored simultaneously
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(a) k = 0 (b) k = 1 (c) k = 2

(d) k = 3 (e) k = 4

Fig. 1 Illustration of Algorithm 2 on a representative example (see text). The search domain Ωs is the 2D
square indicated, and the global optimum is illustrated by the star. The feasible domain Ω is the 1D curve
shown in black. An approximation of Ω (illustrated by the shaded regions) is developed from the available
datapoints (black squares) at each iteration k, and is refined by the optimization algorithm as the iterations
proceed

using analogous interpolating functions. The solution of (10) in step 4 of Algorithm 2 at
each iteration leads to improved estimates of both the objective function and the constraint
functions, leading quickly to the minimum of the objective function within the actual feasible
domain.

Remark 3 Algorithm 2 is not listed with a specific stopping criterion. It is shown in Sect. 3
that a limit point of the dataset obtained by this algorithm is a solution of the original
problem (1). A practical stopping criterion is easily added such that Algorithm 2 terminates
after a finite number of iterations. A convenient stopping criterion is δk ≤ δdesired, where
δk = minz∈Sk ‖z − xk‖. It follows from the compactness of the search domain Ωs and
the Bolzano–Weierstrass theorem that such termination will occur after a finite number of
iterations (see, e.g., Remark 3 in [11]). It is shown later in this paper (see Lemma 2) that a
point z ∈ Sk is computed via this approach such that the residual of the objective function
value, | f (z) − f (x∗)|, as well as the worst-case constraint function violation, max{c�(z), 0}
for all �, are both bounded by δk times a prefactor related to the Lipschitz bounds on f (x) and
c�(x), which can thus both be made as small as desired by appropriate selection of δdesired.

Step 4 of Algorithm 2 computes the global minimizer of the search functionwithin the cur-
rent approximation of the feasible domain. In the next subsection, we consider this important
step in greater detail.
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2.4 Minimizing the search function inside the approximated feasible domain

At step 4 of Algorithm 2, at each iteration k, the global search function sk(x) is minimized
inside the approximation of the feasible domain via solution of (10).

Recall that, within each simplex Δk
i in the triangulation Δk , the local search function and

the local constraint search functions are defined as ski (x) = pk(x) − Keki (x) and s̃k�,i (x) =
gk� (x) − Keki (x), respectively. Define νki as follows:

νki = argminx∈Δk
i
ski (x) subject to s̃k�,i (x) ≤ 0 ∀ � ∈ {1, . . . ,m}. (11a)

The outcome xk of step 4 of Algorithm 2 is thus computed as follows:

νk = νkimin
where imin = argmini∈{1,...,Ek }

[
ski (ν

k
i )

]
, (11b)

where Ek is the number of simplices in the triangulation Δk . To find νk in each simplex,
we must solve Ek constrained optimization problems (11a), with the nonlinear constraints
s̃k�,i (x) ≤ 0 and the linear constraints x ∈ Δk

i . This computational task is simplified signifi-
cantly by Lemma 1.

Lemma 1 If the linear constraints x ∈ Δk
i in the optimization problems defined in (11a) are

relaxed to the entire search domain x ∈ Ωs , the resulting values of the optimal points remain
unchanged.

Proof Define ukj and u
k [cf. (11)] as

ukj = argminx∈Ωs
skj (x) subject to s̃k�, j (x) ≤ 0 ∀ � ∈ {1, . . . ,m}, ∀ j, (12a)

uk = ukjmin
where jmin = argmin j∈{1,...,Ek }

[
skj (u

k
j )

]
. (12b)

We now show that uk is also a solution of the optimization problem (10). By construction,
ukjmin

= uk . According to Property 3 of the uncertainty function, and the fact that K > 0,

sk(uk) ≤ skjmin
(uk), s̃k� (uk) ≤ s̃k�, jmin

(uk) ≤ 0 ∀� ∈ {1, . . . ,m}. (13)

Thus, uk is a feasible point for optimization problem (10). We now check its optimality;
that is, ∀y ∈ Ωs such that s̃k� (y) ≤ 0 ∀ �, that sk(uk) ≤ sk(y). Assuming that y ∈ Δk

q , by
(12) and Property 3 of the uncertainty function,

s̃k�,q(y) = s̃k� (y) ≤ 0. (14)

Thus, y is a feasible point for optimization problem (12a). By construction of uk , skjmin
(uk) ≤

skq (u
k
q), and thus

sk(uk) ≤ skjmin
(uk) ≤ skq (u

k
q) ≤ skq (y) = sk(y), (15)

and the optimality condition is established. 
�
Remark 4 Lemma 1 shows that the (possibly, multiple) global solutions of (11) and (12) are
identical. The process of solving these two problems might lead to different solutions. Note
that we just need to find a global solution of (11) [or, equivalently (12)] as the algorithm
proceeds, so this difference is inconsequential.
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Remark 5 If the approximation of the feasible domain at iteration k in problem (10) is empty,
then the feasible domain of the subproblem (12a) is empty for all j ∈ {1, . . . , Ek}. In this
case, using a derivative-based method like SQP, we can instead find a local minimum of the
following objective function:

̂̃sk(x) =
m∑

�=1

max
{
s̃k� (x), 0

}
. (16)

At all steps that the approximation of the feasible domain is empty, xk is taken as theminimizer
of the above function in order to search for a feasible point.

The solution of (10) can thus be obtained by solving the optimization problem (12a) for
each j ∈ {1, . . . , Ek} (and, by Lemma 1, for x ∈ Ωs). These optimization problems may
be solved efficiently using standard derivative-based NLP solvers. Filter SQP [17], SNOPT
[20], and IPOPT [57] are among the best derivative-based optimization algorithms available
today for such nonlinear programming problems. In our implementation of Algorithm 2,
both Filter SQP and SNOPT have been implemented. The initial point which is used when
solving (12a) for each j ∈ {1, . . . , Ek} is taken simply as the body center of simplex j . One
of the advantages of using such off-the-shelf SQP-based algorithms for this subproblem is
that they can verify, at least locally, whether or not the feasible domain of each subproblem
(12a) is empty. If it is, then these solvers find the x that minimizes

̂̃skj (x) =
m∑

�=1

max
{
s̃k�, j (x), 0

}
.

If all of the (12a) subproblems are found to be infeasible, then the resulting values of ̂̃skj (x)
are compared in order to find the x minimizing (16) in the search for a feasible point, as
desired, thereby ignoring the search function until a feasible region is identified.

2.5 Parallel implementation

The parallelization approach suggested in Algorithm 5 of [12] extends immediately to the
present optimization framework in order to solve (1) in parallel on n p processors. Note that
the three most expensive steps of Algorithm 2 of the present work are as follows:

1. Evaluating the objective and constraint functions. This is assumed to be themost expen-
sive part of the present problem; thus, a framework for simultaneously evaluating the
objective and constraint functions at n p different points of interest on a parallel com-
puter architecture is the focus of this section.

2. Solving the optimization problem (12a) at each simplex via an SQP method. This part
of the optimization algorithm is already “embarrassingly parallel”, as each subproblem
j ∈ {1, . . . , Ek} may be solved independently.

3. Partitioning the search domain into a Delaunay triangulation. An incremental method
is used to update the Delaunay triangulation at each iteration, thus reducing the com-
putational cost of this procedure somewhat. Regardless, the cost of this step increases
quickly as the dimension of the problem is increased.

In Algorithm 2, xk is derived by solving the optimization subproblem (10), then performing a
feasible constraint projection. Note, however, that the uncertainty function ek(x) is indepen-
dent of the interpolation function pk(x). Thus,we can calculate ek+i (x), for i = 1, . . . , n p−1,
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Algorithm3Modification ofAlgorithm2 such that, at each iteration k,n p points are identified
for parallel evaluation of the objective and constraint functions.

1: Set k = 0 and initialize S0 with all of the vertices of Ωs together with the user-defined initial points.
Evaluate (in parallel) f (x) and c�(x), ∀ � ∈ {1, 2, . . . ,m}, for all x ∈ S0.

2: Calculate (or, for k > 0, update) interpolating functions pk (x) and gk
�
(x) for the evaluations of f (x) and

c�(x), respectively, at all x ∈ Sk .
3: Calculate (or, for k > 0, update) a Delaunay triangulation Δk over all of the points in Sk .

4: Determine x̂k,0 as a global minimizer of sk (x) = pk (x)−Kek (x) subject to s̃k,0
�

(x) = gk
�
(x)−Kek (x) ≤

0, ∀ � ∈ {1, . . . ,m}, as in step 4 of Algorithm 2. Note that this calculation may be done in parallel for each
simplex.Define xk,0 as the feasible constraint projection of x̂k,0 (Algorithm1), and take Sk,1 = Sk∪{xk,0}.
Compute δk,0 = miny∈Sk ‖xk,0 − y‖.

5: For each substep i ∈ {1, 2, . . . , n p − 1}, do the following:
a. Update the Delaunay triangulation of the datapoints in Sk,i , thus defining the new uncertainty function

ek,i (x).
b. Determine x̂k,i as a global minimizer of sk,i (x) = pk (x) − Kek,i (x) subject to s̃k,i

�
(x) = gk

�
(x) −

Kek,i (x) ≤ 0, ∀ � ∈ {1, . . . ,m}. Compute δk,i = miny∈Sk,i ‖x̂k,i − y‖.
c. If δk,i ≤ c δk,0 for some c such that 0 < c ≤ 1, replace x̂k,i with a global minimizer of ek,i (x).
d. Define xk,i as the feasible constraint projection of x̂k,i , and take S

k,i+1(x) = Sk,i ∪ {xk,i }.
6: Take Sk+1 = Sk,n p , and evaluate the objective and constraint functions, f (x) and c�(x), at all of the

points {xk,0, xk,1, . . . , xk,n p−1} in parallel.

7: Increment k, and repeat from step 2 until δk,0 ≤ δdes .

before completing the objective and constraint function evaluations at xk . That is, steps k + i
of Algorithm 2, for i = 1, . . . , n p − 1, can be performed in parallel with step k under the
simplifying assumption that

pk+i (x) = pk(x), and gk+i
� (x) = gk� (x) for 1 ≤ � ≤ m. (17)

For the purpose of parallelization, we thus impose (17), for i = 1, . . . , n p − 1 additional
iterations, in order to determine, based on the information available at step k, the best (n p−1)
additional points to explore in parallel with xk .

Algorithm 3 illustrates how this idea for parallel implementation may be implemented.
Note that minimizing sk,i (x) for 0 < i ≤ n p is relatively easy, since sk,i (x) = sk,i−1(x) in
most of the simplices, and the incremental update of the Delaunay triangulation can be used
to flag the indices of those simplices that have been changed by adding xk,i to Sk,i−1(x) (see
[59]).

3 Convergence analysis

This section analyzes the convergence properties of Algorithm 2. The analysis presented
is analogous to, but somewhat different from, that which is presented in §4 of [12]. The
convergence analysis is based on the following assumptions.

Assumption 1 The objective and constraint functions f (x) and c�(x), as well as the inter-
polating functions pk(x) and gk� (x) for all k, are Lipschitz for the same Lipschitz constant
L̄ .

Assumption 2 There is a constant K̂ such that, for all x ∈ Ωs and k > 0,

∇2{pk(x) − f (x)} + 2 K̂ I ≥ 0, ∇2{gk� (x) − c�(x)} + 2 K̂ I ≥ 0,
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∇2 p(x) − 2 K̂ I ≤ 0, ∇2g�(x) − 2 K̂ I ≤ 0,

∇2 f (x) − 2 K̂ I ≤ 0, ∇2c�(x) − 2 K̂ I ≤ 0.

Above assumptions are valid for if above functions are twice continuous differentiable.

Assumption 3 The problem in (1) has a nonempty feasible domain,Ω �= ∅. Moreover, since
Ω is compact, there exists a minimizer of f (x) in Ω , which is denoted in this section as x∗.
(In §5, we relax this assumption to consider the case for which the feasible domain Ω may
be empty.)

Lemma 2 At each step of Algorithm 2, if K ≥ K̂ , then there is a point x̃ ∈ Ωs for which

sk(x̃) ≤ f (x∗) and s̃k� (x̃) ≤ 0 for 1 ≤ � ≤ m, (18)

where x∗ is a global minimizer of f (x) in Ω .

Proof Consider Δk
i as a simplex in Δk which includes x∗. Define the functions F(x) and

C�(x), ∀� ∈ {1, . . . ,m}, such that

F(x) = pk(x) − K eki (x) − f (x), C�(x) = gk� (x) − K eki (x) − c�(x), (19)

where eki (x) is the local uncertainty function in simplex Δk
i . Property 2 of the uncertainty

function states that ∇2eki (x) = − 2 I . Taking the Hessian of (19), we have

∇2F(x) = ∇2 pk(x) − ∇2 f (x) + 2 K I , ∇2C�(x) = ∇2gk� (x) − ∇2c�(x) + 2 K I .

By choosing K > K̂ , according toAssumption 2,∇2F(x) and∇2C�(x) are positive semidef-
inite; thus, F(x) and C�(x) are convex inside the closed simplex Δk

i , which includes x∗.
Thus, the maximum value of F(x) is located at one of the vertices of Δk

i (see, e.g. Theorem
1 of [24]). Moreover, by construction, the value of F(x) and C�(x) at the vertices Δk

i are
zero; consequently, F(x∗) ≤ 0 and C�(x∗) ≤ 0. On the other hand, sk(x∗) = ski (x

∗), and
s̃k� (x∗) = s̃k�,i (x

∗). Therefore, sk(x∗) ≤ f (x∗) and gk� (x
∗) − K ek(x∗) ≤ c�(x∗) ≤ 0. 
�

Remark 6 Lemma 2 shows that the constrained feasible domain is nonempty if K > K̂ .

Lemma 3 At each step of Algorithm 2, if K ≥ K̂ , then there is a point z ∈ Sk, such that

f (z) − f (x∗) ≤ (L̄ + K Le) ρ min
z∈Sk

‖z − xk‖, (20a)

c�(z) ≤ (L̄ + K Le) ρ min
z∈Sk

‖z − xk‖ ∀� ∈ {1, . . . ,m}, (20b)

where the parameter ρ is defined in Property 5, and is related to the feasible constraint
projection procedure.

Proof Choose a point y ∈ Sk whichminimizes δ = miny∈Sk ‖y − x̂k‖.According toProperty
1 of the uncertainty function and Assumption 1, the following inequalities hold, as in the
proof of Lemma 3 in [11]:

|pk(x̂k) − pk(y)| ≤ L̄δ, |gk� (x̂k) − gk� (y)| ≤ L̄δ ∀� ∈ {1, 2, . . . ,m}, (21a)

|ek(x̂k) − ek(y)| ≤ Leδ. (21b)

Recall that sk(x) = pk(x) − K ek(x) and s̃k� (x) = gk� (x) − K ek(x). Using (21),

|sk(y) − sk(x̂k)| ≤ (L̄ + K Le) δ, |s̃k� (y) − s̃k� (x̂k)| ≤ (L̄ + K Le) δ,
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sk(y) = pk(y) = f (y), s̃k� (y) = gk� (y) = c�(y),

f (y) ≤ sk(x̂k) + (L̄ + K Le) δ, c�(y) ≤ s̃k� (x̂k) + (L̄ + K Le) δ. (22)

Since x̂k is a global minimizer of sk(x) with respect to s̃k� (x) ≤ 0, it follows from Lemma 2
that sk(x̂k) ≤ f (x∗) and s̃k� (x̂k) ≤ 0, and thus

f (y) ≤ f (x∗) + (L̄ + K Le) δ, c�(y) ≤ (L̄ + K Le) δ. (23)

In addition, δ ≤ ρ miny∈Sk ‖y − xk‖ holds according to Property 5 of the feasible con-
straint projection. Hence, we have shown that (20) is true for z = y. 
�
Theorem 1 There is an ω-limit point of the series {xk} which is a global solution of the
optimization problem (1).

Proof Define T (x) = max{ f (x) − f (x∗), c�(x)}. Take zk as the value of x ∈ Sk that
minimizes T (x). By construction, T (x) ≥ 0; thus, T (zk) ≥ 0, and T (zk) is non-increasing
with k. Since the search domain is compact, by the Bolzano–Weierstrass theorem, the series
{xk} has an ω-limit point. Thus, for any ε > 0, for sufficiently large k, there are i and j such
that i < j ≤ k and ‖xi − x j‖ ≤ ε. Using Lemma 3 and considering that zk ∈ Sk , we have

0 ≤ T (zk) ≤ (2 L̄ + K Le)ρ ε

The above equation is true for all positive values of ε; additionally, since T (zk) is a non-
increasing series; then,

lim
k→∞ T (zk) = 0.

Now define z1 as an ω-limit point for the zk . By construction, T (x) is a continuous function
of x , which leads immediately to T (z1) = 0. Thus, z1 is a solution of (1). 
�

4 Adaptive K algorithm

The tuning parameter K in Algorithm 2 specifies the trade-off between global exploration
(for large K ) and local refinement (for small K ). In this section, we develop a method to
adjust this tuning parameter at each iteration to maximally accelerate local refinement while
still assuring convergence to the global solution of the constrained problem.

The method proposed builds on the fact that, if for each k there exists an x̃ such that
pk(x̃) − K ek(x̃) ≤ f (x∗) subject to gk� (x̃) − K ek(x̃) ≤ 0 for all � ∈ {1, 2, . . . ,m}, then
(18) is satisfied, which is sufficient to establish the convergence of Algorithm 2 in Theorem
1. It is not necessary to choose a constant value for K in Algorithm 2; instead, we may adapt
it at each iteration k, taking Kk as bounded and nonnegative with pk(x̃)−Kk ek(x̃) ≤ f (x∗)
subject to gk� (x̃) − Kk ek(x̃) ≤ 0 for all � ∈ {1, 2, . . . ,m} at each iteration k.

Assumption 4 The lower bound for the objective function (y0) over the feasible domain Ω

can be estimated.

Take y0 as a (known) lower bound for f (x) over the feasible domain Ω . By choosing Kk

adaptively at each iteration of Algorithm 2 such that

0 ≤ Kk ≤ Kmax, (24a)

∃ x̃ ∈ Ω pk(x̃) − Kk e(x̃) ≤ y0 and gk� (x̃) ≤ Kk ek(x̃), (24b)
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Algorithm 4 Scheme for solving (1) with adaptive K .
This algorithm is almost identical to Algorithm 2. Instead of solving the subproblem (10) at step 4, the
following search function is minimized instead:

ska (x) = max
{ pk (x) − y0

ek (x)
,
gk1(x)

ek (x)
,
gk2(x)

ek (x)
, . . . ,

gkm (x)

ek (x)

}
. (25)

Note that if ska (x) ≤ 0, then the following subproblem is solved, which is equivalent to (10) when K = 0:

min
x∈Ωs

pk (x) subject to gk� (x) ≤ 0 ∀� = {1, . . . ,m}. (26)

for all � ∈ {1, 2, . . . ,m}, this variant of Algorithm 2, with Kk adapted at each iteration k
as described above, preserves the guaranteed convergence of the original Algorithm 2 as
established in Theorem 1.

Remark 7 If such Kmax exists such that Kk satisfies (24a) then the convergence of 4 is
trivial. However, since such a Kmax does not necessarily exist.More complicated convergence
analysis is required which is presented in the rest of this section.

An adaptive K variant of Algorithm 2, for solving (1) when a lower bound y0 for the
objective function f (x) is available, is given in Algorithm 4. Note that reduced values of Kk

accelerate local convergence. Thus, at each iteration k of Algorithm 4, we seek the smallest
value of Kk which satisfies (24). The optimal Kk is thus taken as

Kk = min
x∈Ωs

ska (x), (27)

where ska (x) is defined in (25). It is straightforward to verify that the x thatminimizes (27) also
minimizes the corresponding search function pk(x)−Kk ek(x) subject to gk� (x) ≤ Kk ek(x)
∀ � ∈ {1, 2, . . . ,m}.

Note that if at some iteration k the solution of (27) is negative, we set Kk = 0, and thus
the search at iteration k reduces to (26).

Since ek(x) is defined in a piecewise fashion, to minimize ska (x) in Ωs , we must solve
several optimization problems with linear constraints. Using similar reasoning as in Lemma
1, we can relax these linear constraints.

Again, to minimize ska,i (x)within each simplexΔk
i , a good initial point is required.Within

Δk
i , a minimizer of ska,i (x) generally has a large value of eki (x); thus, the projection of the

circumcenter of Δk
i onto the simplex itself provides a reasonable initialization point for the

search for the minimum of ska,i (x).

The minimization of ska (x) is a minimax problem, akin to those studied in [30,45,47]. In
our implementation, we use the exponential fitting method to solve this minimax prob-
lem, as explained in detail in [45]. To apply this method, the gradient and Hessian of
(pk(x) − y0)/ek(x) and gk� (x)/e

k(x) are needed. Analytical expressions for these quanti-
ties are derived in Sect. 4 in [12].

We now analyze the convergence properties of Algorithm 4 under the same set of assump-
tions as used in Sect. 3.

Note that the formal proof of convergence of Algorithm 4, given below, is not trivial. The
main challenge is that the Kk derived by minimizing sa(x) is not necessarily bounded. In
fact, if y0 < f (x∗), the value of Kk will go to infinity as the algorithm proceeds. Regardless,
Algorithm 4 still converges to the global minimum, as established below.
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Theorem 2 Assuming y0 ≤ f (x∗), at each iteration k of Algorithm 4,

min
z∈Sk

max{ f (z) − f (x∗), c�(z)} ≤ C [ ρ δ′
k +

√
ρ δ′

k + 4
√

ρδ′
k], (28)

where δ′
k = minz∈Sk ‖z − x̂k‖, ρ is a parameter defined in Property 5 related to the

feasible boundary projection process, A = K̂ Le + L̄, B = ( f (x∗) − y0) Le L̄2, and
C = 2 max{A, B,

√
A,

√
B,

4
√
A,

4
√
B}.

Proof We first show that there is a z ∈ Sk such that

min
z∈Sk

max { f (z) − f (x∗), c�(z)} ≤ C [δk + √
δk + 4

√
δk], (29)

where δk = minx∈Sk ‖x − x̂k‖. By construction, there are two cases for x̂k .
In the first case, x̂k is found by solving (26). By construction, pk(x̂k) ≤ y0 and g�(x̂k) ≤ 0.

Now take y as a point in Sk that minimizes ‖x̂k − y‖; since y0 ≤ f (x∗) and y ∈ Sk , noting
Assumptions 1, 2, it follows that

f (y) − f (x∗) ≤ L̄ δk and c�(y) ≤ L̄ δk, (30)

which establishes that (29) is true in this case.
In the second case, x̂k is found by solving (25). As x̂k is the minimizer of ska (x), it follows

that ska (x̂k) ≤ ska (x
∗). There are now two possible situations for ska (x

∗). In the first situation,
ska (x

∗) = gk� (x
∗) / ek(x∗). Define y and z as the closest points in Sk to x̂k and x∗, respectively.

In Lemma 2, it is shown that gk� (x
∗)− K̂ ek(x∗)−c�(x∗) ≤ 0; thus, noting that x∗ is feasible,

we have

K̂ ≥ gk� (x
∗) / ek(x∗). (31)

Via Assumption 1 and the fact that y ∈ Sk ,

pk(y) = f (y), gk� (y) = c�(y),

pk(y) − pk(x̂k) ≤ L̄ δk, gk� (y) − gk� (x̂k) ≤ L̄ δk .

In Lemma 2, it is also shown that pk(x̂k) − K̂ ek(x̂k) − f (x∗) ≤ 0; thus, using the above
equations and gk� (x̂k) ≤ K̂ ek(x̂k), we have

f (y) − f (x∗) ≤ K̂ ek(x̂k) + L̄ δk, c�(y) ≤ K̂ ek(x̂k) + L̄ δk .

By Property 1 of the uncertainty function, and the fact that ek(y) = 0, it follows that ek(x̂k) ≤
Le δk , which establishes that (29) is true in this situation. In the situation which is left to
analyze, ska (x

∗) = (pk(x∗) − y0)/ ek(x∗). Recall that w is the closet point to x∗ in Sk . By
Assumptions 1, 2, and the fact that x∗ is a feasible point for problem (1), it follows that

pk(w) − pk(x̂k) ≤ L̄ ‖w − x̂k‖, gk� (y) − gk� (x̂k) ≤ L̄ ‖w − x̂k‖,
pk(w) = f (w), gk� (w) = c�(w),

f (w) − f (x∗) ≤ L̄ ‖w − x∗‖, ck�(w) ≤ L̄ ‖w − x∗‖. (32)

By Lemma 4 in [11], we have

‖w − x∗‖2 ≤ ek(x∗). (33)

Using (33) and the square of (32) leads to
(
f (w) − f (x∗)

)2 ≤ L̄2ek(x∗), c�(z)
2 ≤ L̄2 ek(x∗),
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max
{(

f (w) − f (x∗)
)2

, c�(w)2
}

≤ L̄2 ek(x∗). (34)

Since x̂k is a minimizer of ska (x̂k) ≤ ska (x
∗), and ska (x∗) = (pk(x∗) − y0)/ ek(x∗),

pk(x̂k) − y0
ek(x̂k)

≤ pk(x∗) − y0
ek(x∗)

,
gk� (x̂k)

ek(x̂k)
≤ pk(x∗) − y0

ek(x∗)
.

Thus,

pk(x̂k) − y0
ek(x̂k)

≤ pk(x∗) − f (x∗)
ek(x∗)

+ f (x∗) − y0
ek(x∗)

, (35)

gk� (x̂k)

ek(x̂k)
≤ pk(x∗) − f (x∗)

ek(x∗)
+ f (x∗) − y0

ek(x∗)
. (36)

As in (31), we can show that

K̂ ≥ pk(x∗) − f (x∗) / ek(x∗). (37)

Using (35), (36), and (37)

pk(x̂k) − y0
ek(x̂k)

≤ K̂ + f (x∗) − y0
ek(x∗)

,
gk� (x̂k)

ek(x̂k)
≤ K̂ + f (x∗) − y0

ek(x∗)
,

pk(x̂k) − f (x∗)
ek(x̂k)

≤ K̂ + f (x∗) − y0
ek(x∗)

,
gk� (x̂k)

ek(x̂k)
≤ K̂ + f (x∗) − y0

ek(x∗)
,

f (y) − L̄ δk ≤ pk(x̂k), c�(y) − L̄ δk ≤ gk� (x̂k),

f (y) − L̄ δk − f (x∗)
ek(x̂k)

≤ K̂ + f (x∗) − y0
ek(x∗)

,

c�(y) − L̄ δk

ek(x̂k)
≤ K̂ + f (x∗) − y0

ek(x∗)
.

We thus conclude that

max{ f (y) − f (x∗), c(y)} ≤
(
K̂ + f (x∗) − y0

ek(x∗)

)
ek(x̂k) + L̄ δk .

According to Property 1 and the fact that y ∈ Sk ,

max{ f (y) − f (x∗), c(y)} ≤
(
K̂ + f (x∗) − y0

ek(x∗)

)
Le δk + L̄ δk . (38)

Define the variables φw and φy as follows:

φw = max
{(

f (w) − f (x∗)
)2

, ck�(w)2
}
, φy = max

{
f (y) − f (x∗), c�(y)

}
.

Using (34) and (38),

φy φw ≤
(
K̂ Le + L̄

)
δk φw +

(
f (x∗) − y0

)
Le L̄

2 δk,

φy φw ≤ A δk φw + B δk .

Defining u = max{φy , φw} and v = min{φy , φw}, it follows that2

v ≤ 2 max{A δk,
√
B δk} ≤ 2 A δk + 2

√
B δk . (39)

2 If A, B,C > 0 and A2 ≤ A B + C then A ≤ B + √
C ≤ 2 max{B,

√
C}.

123



Journal of Global Optimization (2020) 77:743–776 759

If v = φy , then (29) is a direct outcome of (39); otherwise,

max
{(

f (w) − f (x∗)
)
, ck�(w)

}
≤ C [√δk + 4

√
δk], (40)

which establishes that (29) is true in this situation as well. Thus, (29) is valid for all cases.
By Property 5, δk ≤ ρ‖x − xk‖; thus, (28) is obtained from (29). 
�
Remark 8 By Theorem 2 above, as in Theorem 1, we can easily show that, if y0 ≤ f (x∗),
an ω-limit point of the datapoints determined by Algorithm 4 is a solution of (1).

4.1 Using an inaccurate estimate of y0

In the previous section, convergence of Algorithm 4 is proved when y0 ≤ f (x∗). It is
observed (see Sect. 6) that, if y0 is not a tight lower bound for the global minimum, the rate
of convergence is reduced. In this subsection, we study the behavior of Algorithm 4, when the
estimated value of y0 is somewhat larger than the actual minimum of the function of interest
within the feasible domain. It is shown that, upon convergence, Algorithm 4 determines a
feasible point z such that f (z) ≤ y0.

Theorem 3 Assuming y0 > f (x∗), at each step of Algorithm 2, there is a point z ∈ Sk such
that

max{ f (z) − y0, c�(z)} ≤ [L̄ + K̂ Le] ρ δk, δk = min
z∈Sk

‖xk − z‖. (41)

Proof As in Theorem 2, we first show that

max{ f (y) − y0, c�(y)} ≤ [L̄ + K̂ Le]‖y − x̂k‖, (42)

where y ∈ Sk minimizes δk = ‖z − x̂k‖. As before, during the iterations of Algorithm 4,
there are two possible cases for step k. In the first case, x̂k is found by solving (26). Similar
to the first case in Theorem 2,

pk(y) − pk(x̂k) ≤ L̄δk, f (y) − pk(x̂k) ≤ L̄δk,

gk� (y) − gk� (x̂k) ≤ L̄δk, c�(y) − gk� (x̂k) ≤ L̄ δk,

max{ f (y) − y0, c�(y)} ≤ L̄ δk,

which establishes that (42) is true in this case.
In the second case, x̂k is found by solving (25), and is a minimizer of sak (x). As in (31),

using the fact that y0 > f (x∗), it is easy to show that

max
{
pk(x∗) − f (x∗), gk� (x

∗)
}

≤ K̂ ek(x∗),

sa(x
∗) = max{pk(x∗) − y0, gk� (x

∗)}
ek(x∗)

≤ K̂ .

Since x̂k is a global minimizer of ska (x), it follows that

ska (x̂k) ≤ ska (x
∗) ≤ K̂ ,

max
{
pk(x̂k) − y0, g

k
� (x̂k)

}
≤ K̂ ek(x̂k) ≤ K̂ Le ‖y − x̂k‖, (43)

pk(y) − pk(x̂k) ≤ Le δk, gk� (y) − gk� (x̂k) ≤ Le δk, (44)

pk(y) = f (y), gk� (y) = c�(y). (45)
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Using (43), (44) and (45), then (42) is satisfied. Finally, using Lemma 2 as in Theorem 2,
(41) is obtained from (42). 
�
Remark 9 Analogous to Remark 8 for the case with y0 ≤ f (x∗), it follows easily from
Theorem 3 above, for the case with y0 > f (x∗), that an ω-limit point of the datapoints
determined by Algorithm 4 is a feasible point of (1) with objective function value less than
or equal to y0.

5 The case of an empty feasible domain

In the previous section, it was assumed that the feasible domainΩ of the problem considered,
(1), is nonempty. We now consider the behavior of Algorithm 2 when the feasible domain
of (1) might be empty (and, thus, Assumption 3 might not hold), though Assumptions 1, 2
remain in effect. We will show that Algorithm 2 can be used, in fact, to verify whether or not
the feasible domain is empty.

Lemma 4 If the feasible domain of (1) is empty, and K > K̂ ; then,

m∑
�=1

max
{
c�(y), 0

}
≤

m∑
�=1

max
{
c�(x f ), 0

}
+ m (L̄ + K Le) ρ min

z∈Sk
‖z − xk‖, (46)

where x f is the point x ∈ Ωs that globally minimizes
∑m

�=1 max{c�(x) , 0}, and y is the point
z ∈ Sk that minimizes ‖z − x̂k‖.
Proof Take Δk

i as a simplex in Δk which includes x f . In the proof of Lemma 2, it is shown

that C�(x f ) ≤ 0 if K ≥ K̂ , where C�(x) is defined in (19); thus,

g�(x f ) − K ek(x f ) ≤ c�(x f ),

m∑
l=1

max
{
g�(x f ) − K ek(x f ), 0

}
≤

m∑
�=1

max
{
c�(x f ), 0

}
.

(47)

By construction, either x̂k is a feasible point of (10), or it is aminimizer of
∑m

�=1 max{g�(x)−
K ek(x), 0}. In either case, we have:

m∑
�=1

max
{
g�(x̂k) − K ek(x̂k), 0

}
≤

m∑
�=1

max
{
g�(x f ) − K ek(x f ), 0

}
.

Using (47),

m∑
�=1

max
{
g�(x̂k), 0

}
≤ m K ek(x̂k) +

m∑
�=1

max
{
c�(x f ), 0

}
.

By construction, Le and L̄ are Lipschitz norms for ek(x) and g�(x), respectively. Moreover,
ρ δk ≤ ‖y − x̂k‖. Using Assumption (3), we have

m∑
�=1

max
{
gk� (y), 0

}
≤

m∑
�=1

max
{
c�(x f ), 0

}
+ m (L̄ + K Le) ρ δk .

Since y ∈ Sk , it follows that gk� (y) = c�(y), and thus (46) is satisfied. 
�
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Remark 10 By Lemma 4 above (cf. Theorem 1), if Algorithm 2 is not terminated at any step,
an ω-limit point of the datapoints determined is a global minimizer of

∑m
�=1 max{c�(x), 0}

in Ωs . If Algorithm 2 is terminated at step k, an approximation of this point is obtained; this
approximation is improved as k is increased.

6 Results

Several benchmark optimizations are now considered to study the behavior of the algorithms
developed in this work.

The test problems considered in this work considered, each defined such that f (x∗) = 0,
are:

(A) A simple linear objective function, defined over an n-dimensional space, subject to a
nonlinear equality constraint, generated using a Rastrigin function, defining an (n−1)-
dimensional nonconvex feasible domain:

min
x∈Ωs

f (x1, . . . , xn) = xn − 0.1, subject to c(x) = 0, (A.1)

c(x) = xn − 1

12

n−1∑
i=1

{
3.52 (xi − 0.7)2 − 2 cos

(
7π (xi − 0.7)

)}

− (n − 1)/6 − 0.1, (A.2)

0 ≤ x1, x2, . . . , xn ≤ 1. (A.3)

This problem has 4n−1 local minima, including the unique global minimum x∗ =
[0.7, . . . , 0.7, 0.1]T , with f (x∗) = 0.

(B) A quadratic objective function (given by the distance to the origin), defined over an n-
dimensional space, subject to a nonlinear inequality constraint, again generated using a
Rastrigin function, defining a disconnected feasible domain characterized by 2n distinct
“islands” within the search domain:

min
x∈Ωs

f (x) = xT x − 0.024 n, subject to c(x) ≤ 0, (B.1)

c(x) = n

12
+ 1

6

n∑
i=1

{
4 (xi − 0.7)2 − 2 cos

(
4π (xi − 0.7)

)}
, (B.2)

0 ≤ x1, x2, . . . , xn ≤ 1. (B.3)

This problem has 2n local minima, including the unique global minimum x∗ =
[0.154969, 0.154969, . . . , 0.154969]T , with f (x∗) = 0.

(C) A quadratic objective function (given by the distance to the origin), defined over a 2D
space, subject to two nonlinear inequality constraints defining a nonconvex feasible
domain with a “petal”-shaped hole (see Simionescu [53]):

min
x∈Ωs

f (x1, x2) = x21 + x22 − 0.64, subject to − 1 ≤ c(x) ≤ 0, (C.1)

c(x) =
{
rt + rs cos

[
ns tan−1

( x1
x2

)]}2 − x21 − x22 , (C.2)

− 1.25 ≤ x1, x2 ≤ 1.25, (C.3)

where rt = 1, rs = 0.2, and ns = 8. This problem has eight global minima, located at
x = [±0.306,±0.739]T and x = [±0.739,±0.306]T , each characterized by f (x∗)=0.
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(D) A linear objective function, defined over an 2-dimensional space, subject to a sinusoidal
andquadratic inequality constraints, defining an (n−1)-dimensional nonconvex feasible
domain, (see LSQ problem in [23]):

min
x∈Ωs

f (x1, x2) = x1 + x2 − 0.6, subject to c1(x) ≤ 0, c2 ≤ 0, (D.1)

c1(x) = 3

2
− x1 − 2 x2 − 1

2
sin

(
2π (x21 − 2x2)

)
(D.2)

c2(x) = x21 + x22 − 3

2
, (D.3)

0 ≤ x1, x2 ≤ 1. (D.4)

Unlike [23] we treat the f (x) in the LSQ problem as unknown. But similar to citegra-
macy2016modeling the search domain is defined by a simple bound domain, and the
constraint domain is define with sinusoidal and quadratic inequality functions (c1(x)
and c2(x)). This problem has a global minima, located at x = [0.195, 0.40]T and
characterized by f (x∗) ≈ 0.

In the following,we present application ofΔ-DOGS(Ω) on a test problemwhose objective
function is nonconvex.

(E) GSBP which is presented in [23] and can be formulated as follows:

min
x

f (x1, x2), subject to c1(x) ≤ 0, c2(x) = 0, c3(x) = 0. (E.1)

f (x1, x2) =
log

(
(1 + a) (30 + b)

)
− 8.69

2.43
+ 0.4897, with

a = (4 x1 + 4 x2 − 3)2 (75 − 56 (x1 + x2) + 3 (4 x1 − 2)2

+ 6 (4 x1 − 2) (4 x2 − 2) + 3 (4 x2 − 2)2),

b = (8 x1 − 12 x2 + 2)2
(

− 14 − 128 x1 + 12 (4 x1 − 2)2

+ 192 x2 − 36 (4 x1 − 2) (4 x2 − 2) + 27 (4 x2 − 2)2
)
, (E.2)

c1(x) = 3

2
− x1 − 2 x2 − 1

2
sin

(
2π (x21 − 2x2)

)
, (E.3)

c2(x) = 15 −
(
15 x2 − 5

4π2 (15 x1 − 5)2

+ 5

π
(15 x1 − 5) − 6

)2 − 10
(
1 − 1

8 π

)
cos(15 x1 − 5), (E.4)

c3(x) = 4 −
(
4 − 2.1 (2 x1 − 1)2 + (2 x1 − 1)4

3

)
(2 x1 − 1)2

− (2 x1 − 1)2 (2 x2 − 1)2 − 16 (x22 − x2) (2 x2 − 1)2

− 3 sin[12 (1 − x1)] − 3 sin[12 (1 − x2)], (E.5)

0 ≤ x1, x2 ≤ 1. (E.6)

Problem E is a 2D benchmark problem in which f (x) is the Goldstein-Price function
(rescaled and centered) [43], the search domain is a simple bound domain, the constraint
domain is mix of inequality and equality non-linear functions where c1(x) is sinusoidal,
c2(x) is the Branin function [25], and c3(x) is a nonlinear function defined in [44].
This problem has a global minima located at x = [0.95, 0.467]T characterized by
f (x∗) ≈ 0.
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(F) G3: Nonconvex objective function with nonlinear equality constraint.

min
x∈Ωs

f (x) = 1 − (
√
n)n Πn

i=1xi , subject to c(x) = 0, (F.1)

c(x) =
n∑

i=1

x2i − 1, (F.2)

0 ≤ xi ≤ 1, (F.3)

This problem has a global minima, located at x∗ = [1/n0.5, . . . , 1/n0.5]T and charac-
terized by f (x∗) = 0.

(G) G6: Nonconvex objective function with nonlinear inequality constraint functions.

min
x∈Ωs

f (x1, x2), subject to c1(x) ≤ 0, c2 ≤ 0, (G.1)

f (x1, x2) =
2∑

i=1

(ai + (100 − ai ) xi − ri )
3 + 6961.81388, (G.2)

c1(x) = −
2∑

i=1

(ai + (100 − ai ) xi − bi )
2 + 100, (G.3)

c2(x) =
2∑

i=1

(ai + (100 − ai ) xi − di )
2 − 82.81, (G.4)

0 ≤ xi ≤ 1. (G.5)

where r = [10, 20]T , b = [5, 5]T , d = [6, 5]T , and a = [13, 0]T . This problem has
a global minima, located at x∗ = [0.0126, 0.0084]T and characterized by f (x∗) ≈ 0.
This function has an interesting property inwhich the variation of the objective function,
f (x) close to the global minimizer is higher in x2 direction compared with x1 direction.
We developed a surrogate function in [4] named multivariant adaptive polyharmonic
spline (MAPS) for such problems. However, to have fair comparison for all methods
in this paper we use natural polyharmonic spline [58] as a surrogate function.

(H) G8: nonlinear objective function with nonlinear inequality constraint functions.

min
x∈Ωs

f (x1, x2) subject to c1(x) ≤ 0, c2 ≤ 0, (H.1)

f (x1, x2) = 0.095825 − sin3 (20πx1) sin (20πx2)

x31 (x1 + x2) × 104
, (H.2)

c1(x) = 100 x21 − 10 x2 + 1, (H.3)

c1(x) = 1 − 10 x1 + (10 x2 − 4)2, (H.4)

0 < xi ≤ 1. (H.5)

This problem has a global minima, located at x∗ = [0.122, 0.425]T and characterized
by f (x∗) ≈ 0. The objective function is nonsmooth close to zero; therefore, the lower
bound for the search domain is considered greater than zero. In the simulations, we
consider the lower bound as 10−2.

In Sect. 6.2, Algorithm 2 (constant K ) and the (typically, more practical) Algorithm 4
(adaptive K ) are applied to three test problems, and the roles of the tuning parameters K (on
Algorithm2) and y0 (onAlgorithm4) are studied. Finally, Sect. 6.3 compares the performance
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Table 1 Implementation of Algorithms 2 and 4 on Problems A, B, and C, denoting z as the best point found,
and f (z) and c(z) as the value of the objective and constraint functions at this point

Prob. Alg. Parameter Converged f (z) c(z) # of fn. evals.

A 2 K = 1 No 0.08 − 0.02 13

K = 2 Yes 0 − 0.002 16

K = 10 0.007 − 0.077 30

4 y0 = 0.9 No 0.287 0.005 11

y0 = 0 Yes 0.001 − 0.001 18

y0 = − 0.02 0.005 − 0.006 25

B 2 K = 5 No 0.347 0.006 11

K = 12 Yes 0.002 − 0.015 25

K = 15 0.002 − 0.015 42

4 y0 = 0.752 No 0.335 − 0.035 18

y0 = 0 Yes 0.002 − 0.0203 23

y0 = − 0.028 −0.003 0.032 45

C 2 K = 0 No 0.183 0.005 7

K = 5 Yes −0.01 − 0.034 16

K = 10 0.016 0.011 30

4 y0 = 0.16 No 0.152 0.133 15

y0 = 0 Yes 0.01 − 0.013 22

y0 = − 0.04 −0.01 − 0.034 40

Algorithm 2 is tested on each problem three times, once with K < K̂ , once with K ≈ K̂ , and once with
K > K̂ , where K̂ is the value of K required to achieve convergence. Algorithm 4 is also tested on each
problem three times, once with y0 > f (x∗), once with y0 = f (x∗), and once with y0 < f (x∗); note that all
three of these benchmark problems are constructed with f (x∗) = 0

of Algorithm 4 with other modern derivative-free optimization methods on a representative
test problem with nonconvex constraints, assuming accurate knowledge of y0.

In the test optimizations performed in this section, polyharmonic spline interpolation [58]
is used for interpolation of the known values of the objective and constraint functions. The
optimizations are stopped, at iteration k, when the new datapoint, xk , is within a δdesired
neighborhood of an existing datapoint (in Sk); the present simulations take δdesired = 0.01.

6.1 Test problems

To highlight the unique features of the algorithms developed, the three test optimization
problems chosen for this study, described below, have nonconvex equality and inequality
constraints, in certain cases even defining disconnected feasible domains. To compare the
performance of the optimization algorithms in finding a global minimum amongst several
local minima, the number of function evaluations required in order to achieve a desired level
of convergence is used as the evaluation criterion.

6.2 Illustrative test problems for Algorithms 2 and 4

The performance of Algorithms 2 and 4 on Problems A, B, and C, in n = 2 dimensions,
and the dependence of convergence on the the tuning parameters K and y0 are compared in
Table 1.
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It is observed in Table 1 that Algorithm 2 converges to the global minimum whenever
the parameter K is made sufficiently large, and that unnecessarily large values of K result
in additional global exploration over the search domain, consequently slowing convergence.
Similarly, it is observed that Algorithm 4 converges to the global minimum whenever the
parameter y0 ≤ f (x∗), and that unnecessarily small values of y0 result in additional global
exploration over the search domain, again slowing convergence. In cases for which y0 >

f (x∗), a feasible point is identified for which objective function at least as small as y0.
Figure 2 considers the extension of Algorithm 4 to Problems A and B in optimization

problems with n = 3, taking y0 = 0 in both cases. For Problem A, as in the n = 2 the
equality constraint (A.1) constrains the feasible domain to an n−1 = 2 dimensional surface.
For Problem B, the inequality constraint (B.1) results in a feasible domain with several
disconnected “islands” within the search domain. It is seen in Fig. 2 that convergence on
both problems, which exhibit complex nonconvex feasibility domains, is remarkably rapid.
As illustrated in the figure, upon solution, the best point found (using only 91 function
evaluations) in Problem A is z = {0.101, 0.704, 0.707}, with f (z) = 0.0012 and c(z) =
0.0017 (the global minimum is x∗ = {0.1, 0.7, 0.7}). The best point found (using only 87
function evaluations) in Problem B is z = {0.149, 0.165, 0.153}, with f (z) = 0.0006 and
c(z) = − 0.0065 (the global minimum is x∗ = {0.155, 0.155, 0.155}).

6.3 Comparison with other derivative-freemethods

We now briefly compare the new optimization algorithm developed here with some other
leading derivative-free optimization schemes on the difficult class of optimization problems
considered in this work. We compare the results on Problem B.

The first algorithm considered is the pattern search method called Mesh Adaptive Direct
Search (MADS), as proposed in [5]. We apply the efficient implementation of MADS in
the NOMAD software package [31]. The NOMAD solver (implementing MADS with 2n
neighbors) is a local derivative-free optimization algorithm that can solve difficult non-
differentiable optimization problems.

The second method considered is the Surrogate Management Framework (SMF) pro-
posed by [14]. SMF is one of the most popular derivative-free, globally-convergent,
computationally-efficient optimization algorithms available today. The SMF algorithm has
two main steps, “search” and “poll”. SMF is a hybrid method that combines a pattern search
with a surrogate-based optimization algorithm, and switches back and forth between (local)
polling and (global) searching steps. The surrogate used by SMF is usually developed using
a Kriging interpolation method. In practice, the optimization is usually initialized in the
SMF approach using an initial set of datapoints generated with a Latin Hypercube Sampling
(LHS) approach [14,37,39], which generally provides a well-distributed set of datapoints in
a parameter space with box constraints, with each input variable fairly well distributed over
its feasible range. The search step then uses (and updates) a Kriging-based surrogate to look
for reduced objective function values inside the feasible domain, which is discretized onto
a Cartesian grid that is successively refined as the iterations proceed. The search continues
until it fails to return a new point on the current grid with a reduced value of the objective
function, at which point a pattern search (e.g., such as the one in MADS) is used to poll the
neighborhood around the current best point. If the poll step succeeds in finding a point with
a reduced objective function value, then the surrogate model is updated and another search is
performed; if it does not, the grid is refined and the process repeated. The implementation of
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(a) Location of datapoints used in solution of Problem A (two different views). The objective
function is a distance from horizontal plane passing [0, 0]T . The yellow regions are the feasible
domain and the red dot is a global minimizer.

(b) Location of datapoints used in solution of Problem B (two different views). The objective
function is a distance from the origin [0, 0]T . The yellow regions are the feasible domain and the
red dot is a global minimizer.
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(c) f(xk) and c(xk) versus k in Problem A.
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(d) f(xk) and c(xk) versus k in Problem B.

Fig. 2 Algorithm 4 applied to the n = 3 cases of Problems A and B. (Color figure online)
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SMF that is utilized in the present work is the same method used in [49], and was developed
by our group in collaboration with Professor Alison Marsden.

The third method considered in this section, for comparison purposes, is the Δ-DOGS(C)
algorithm reported previously by our group (see [11]).Δ-DOGS(C) is a highly efficient, prov-
ably convergent, nonlinearly-constrained Delaunay-based optimization algorithm, which in
many cases compares favorably with SMF in terms of computational efficiency (see [11]).
Like the present algorithm, which is also in the Δ-DOGS family, Δ-DOGS(C) leverages a
synthetic uncertainty function built on the framework of a Delaunay triangulation of exist-
ing datapoints, together with an interpolation of all existing datapoints using any desired
well-behaved interpolation strategy (many of our numerical experiments thus far have used
polyharmonic spline interpolation).

The difficult class of problems considered in the present work is characterized by expen-
sive constraint functions c�(x), as well as expensive objective functions f (x); both c�(x) and
f (x) are probed on the fly as the iterations proceed, and the c�(x) together ultimately define
a nonconvex (possibly even disconnected) feasible domainΩ . The global optimization algo-
rithm developed in two different variants (Algorithm 2with constant K , andAlgorithm 4with
adaptive K ) in the present work, dubbed Δ-DOGS(Ω), is designed specifically for problems
of this class. In contrast, the three comparison methods described above [MADS, SMF, and
Δ-DOGS(C)] were each designed to minimize a single nonconvex function inside a known
(a priori) convex feasible domain. We thus define the following new objective function in
order to apply these three existing schemes to the difficult class of problems considered in
this work:

f̃ (x) = max
{
f (x) − y0, max

�=1,...,m
{c�(x), 0}

}
. (55)

6.3.1 Test problems with convex objective function with conconvex constraints

Problem B is well suited to characterize and compare the four different schemes considered
here [that is, to compare MADS, SMF, and Δ-DOGS(C), with the objective function as
defined in (55), withΔ-DOGS(Ω)] on this difficult class of problems. In all cases, a stopping
criterion of δdesired = 0.01 is applied [see Remark 3]. Note that many derivative-free opti-
mization methods, like MADS, in fact do not guarantee convergence to the global minimum
of the problem considered. Furthermore, if the solution of the problem considered is on the
boundary of feasibility, as in Problem B, the task of finding a global solution is especially
difficult.

Comparison of the five plots in Fig. 3, and the corresponding data summarized in Tables 2,
3, indicate that the number of function evaluations is minimized in this (typical) example
using Algorithm 4, which accurately locates the feasible global minimizer in this case with
only 23 in Problem B function evaluations.

The SMF method (Fig. 3c) explores the search domain globally and locates the global
minimizer (albeit with significantly reduced precision) with 48 function evaluations. Note
that more than half of the function evaluations are performed in the polling steps in order to
guarantee convergence. Also note that the datapoints tend to accumulate in the vicinity of the
feasible global minimizer as the iterations proceed, thereby causing the Kriging interpolation
model to become numerically ill-conditioned. Due to this ill-conditioning of the Kriging
method itself, achieving more accurate convergence using Kriging-based SMF proves to be
quite difficult.

The Δ-DOGS(C) algorithm (Fig. 3d) fails to converge to the global minimizer on this
problem; since the objective function (55) is non-differentiable, this method is in fact not
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(a) MADS with x0 = [1, 0]T .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) MADS with x0 = [0.4, 0.3]T .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) SMF.
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(d) Δ-DOGS(C).
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(e) Algorithm 4, also known as Δ-DOGS(Ω).

Fig. 3 Comparison, on Problem B, of MADS (via NOMAD), SMF, and Δ-DOGS(C) with the adaptive K
variant of the Δ-DOGS(Ω) algorithm developed and analyzed in this work, as presented in Algorithm 4
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Table 2 Performance comparison on Problem B with n = 2

Algorithm Initial point(s) Converged? f (z) c(z) # of fn. evals.

MADS {1, 0} No 0.328 − 0.011 50

MADS {0.4, 0.3} Yes − 0.003 0.031 31

SMF 3n + 3 LHS points Yes 0.01 − 0.074 48

Δ-DOGS(C) 3 points No 0.047 − 0.147 24

Algorithm 4 2n vertices Yes 0.002 − 0.020 23

Table 3 Performance comparison on ProblemsA-Dwith convex objective function and nonconvex constraints
with n = 2

Problem Algorithm Converged? f (z) c(z) # of fn. evals.

A-2D SMF Yes 0.006 0.009 33

Δ-DOGS(C) No 0.02 − 0.07 29

Algorithm 4 Yes 0.001 − 0.001 18

B-2D SMF Yes 0.01 − 0.074 48

Δ-DOGS(C) No 0.047 − 0.147 24

Algorithm 4 Yes 0.002 − 0.020 23

C-2D SMF Yes 0.007 0.009 32

Δ-DOGS(C) Yes 0.005 − 0.005 30

Algorithm 4 Yes 0.001 − 0.001 22

D-2D SMF Yes 0.007 − 0.006 33

Δ-DOGS(C) Yes 0.004 − 0.09 28

Algorithm 4 Yes 0.002 − 0.020 23

guaranteed to converge on this problem. Note, however, that this method does perform global
exploration during the search, and successfully locates a feasible point near the boundary of
feasibility, which is fairly close to the global minimizer, with only 24 function evaluations. By
relaxing the stopping criterion δdesired = 0.01 mentioned previously, it was found that this
method would eventually locate the global minimizer using about 40 function evaluations.

TheMADS algorithm (Fig. 3a, b) converges only locally. If a good initial guess is provided
(Fig. 3b), the global minimizer is located, to about the same level of accuracy as Algorithm
4, in 31 function evaluations. If a good initial guess is not provided (Fig. 3a), the global
minimizer is not located by the time the stopping criterion of δdesired = 0.01 is reached
(after 50 function evaluations).

6.3.2 Test problems with nonconvex objective function with nonconvex constraints

In this part we present application ofΔ-DOGS(Ω) on a test problemwhose objective function
is nonconvex.

Now we apply the presented algorithms (Δ-DOGS(Ω), Δ-DOGS, SMF, MADS) in the
Sect. 6.3 on the problem GSBP. Figure 4 illustrates the performance of Algorithm 4 on
the problem E, which was able to find the global solution, the blue star marker, after 27
evaluations.

Comparison of the five plots in Fig. 4, and the corresponding data summarized in Tables 4,
5 indicates that the number of function evaluations is minimized in this (typical) example

123



770 Journal of Global Optimization (2020) 77:743–776

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) MADS with x0 = [0.7, 1]T .
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(b) MADS with x0 = [0.9, 0.3]T .
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(c) SMF.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Δ-DOGS(C).
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(e) Algorithm 4, also known as Δ-DOGS(Ω) with y0 = 0.48.

Fig. 4 Comparison, on Problem E, of MADS (via NOMAD), SMF, and Δ-DOGS(C) with the adaptive K
variant of the Δ-DOGS(Ω) algorithm developed and analyzed in this work, as presented in Algorithm 4

using Algorithm 4, which accurately locates the feasible global minimizer in this case with
only 27 in the GSBP problem function evaluations.

The SMF method (Fig. 4c) explores the search domain globally, but converged to a local
solution.
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Table 4 Performance comparison on GBSP Problem

Algorithm Initial point(s) Converged? f (z) max c(z) # of fn. evals.

MADS {0.7, 1} No 0.335 0.039 33

MADS {0.9, 0.3} Yes − 0.483 0.006 28

SMF 9 LHS points No 0.352 0.411 36

Δ-DOGS(C) 3 points No − 0.219 0.593 40

Algorithm 4 4 vertices Yes − 0.492 0.057 27

Table 5 Performance comparisononproblemE-Hwith nonconvexobjective function andnonlinear constraints
with n = 2

Problem Algorithm Converged? f (z) c(z) # of fn. evals.

E-2D SMF No 0.352 0.411 33

Δ-DOGS(C) No −0.219 0.593 40

Algorithm 4 Yes −0.492 0.057 27

F-2D SMF Yes 0.0013 0.0093 37

Δ-DOGS(C) Yes 0.002 0.005 15

Algorithm 4 Yes −0.00 0.0001 9

G-2D SMF No −18 0.0082 65

Δ-DOGS(C) no −1011 11 14

Δ-DOGS w/ MAPS Yes −0.08 0.003 9

Algorithm 4 Yes −0.09 0.002 10

H-2D SMF Yes 0.035 0.00 27

Δ-DOGS(C) Yes 0.007 0.00 15

Algorithm 4 Yes 0.09 0.003 10

The Δ-DOGS(C) algorithm (Fig. 4d) fails to converge to the global minimizer on this
problem as well; since the objective function (55) is non-differentiable, this method is in fact
not guaranteed to converge on this problem.

TheMADS algorithm (Fig. 4a, b) converges only locally. If a good initial guess is provided
(Fig. 4b), the global minimizer is located, to about the same level of accuracy as Algorithm
4, in 28 function evaluations. If a good initial guess is not provided (Fig. 4a), the global
minimizer is not located by the time the stopping criterion of δdesired = 0.01 is reached
(after 33 function evaluations).

Furthermore, Fig. 5 compares the solution of Algorithm 4 with other schemes reported
in [23]. As we see our scheme outperforms the other state of the art methods for nonconvex
functions with nonconvex feasible domain.

6.4 Application of Algorithm 4 on the Lockwood problem

We also used the proposed algorithm to solve the Lockwood problem [23,40]. This problems
has six variables with a linear objective function and two nonconvex constraint blackbox
functions.
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(a) Performance of different methods as reported
in [23]; figure reprodcued from [23], with permis-
sion.
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Fig. 5 Results on the GBSP problem

Fig. 6 Lockwood convergence
result. The vertical axis shows
f̃ (x) as defined in (55) and the
horizontal axis shows the number
of evaluations. The dashed-line
shows the pareto front of the best
solution found thus far
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In this problem, the objective function is defined as the pumping rates that are proportional
to the cost of operating the system, which is minimized subject to the constraints on the
contaminant staying within the plume boundaries [23].

Let x j be the pumping rate for the j th well, the optimization problem is formulated as
[23,40]:

minimize f (x) =
6∑
j=1

x j subject to x ∈ Ω := Ωc ∩ Ωs ⊆ R
6 where (F)

Ωc = {x |c1(x) ≤ 0 , c2(x) ≤ 0}, Ωs = {x ∈ R
6| 0 ≤ x j ≤ 2 × 104},

Figure 6 shows the convergence of Δ-DOGS(Ω) to the vicinity of a minimizer of Lock-
wood problem with y0 = 24, 000.

The motivating Lockwood example does not hold the twice differentiality assumption on
constraint functions [46]. The feasible points of the search domain are projected on to the
boundary of feasibility {x ∈ R

6 : c(x) = 0} [46], which violates smoothness assumptions
(2). Although there is no guarantee of convergence in this problem, the Algorithm 4 still finds
a point with the given target value that minimizes the constraint violation.
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7 Conclusions

This paper presents a new Delaunay-based derivative-free optimization approach, dubbed
Δ-DOGS(Ω), of the same general family as introduced in [11,12]. The approach developed
here is designed specifically for the optimization of computationally expensive nonconvex
functions within a nonconvex (possibly lower-dimensional, or even disconnected) feasible
domain, which is itself defined by computationally expensive constraint functions which are
explored as the iterations proceed. Two main variants of Δ-DOGS(Ω) have been presented,
both of which are available from the authors upon request.

Algorithm 2 uses any well-behaved interpolation strategy, such as polyharmonic splines,
for both the objective function f (x) and the constraint functions c�(x), together with a
synthetic piecewise-quadratic uncertainty function built on the framework of a Delaunay
triangulation. A search function defined by comparing simple functions of the uncertainty
model and the interpolants (of both the objective and the constraint functions) is minimized
within the search domain at each iteration, and new objective and constraint function com-
putations are performed at the optimized point, thereby refining the surrogate models of the
objective and constraint functions at each iteration until convergence is achieved. Conver-
gence to the feasible global minimum is proved mathematically under reasonable technical
conditions on the smoothness of the objective and constraint functions.

Algorithm 4 modifies Algorithm 2 to use an estimate of the lower bound of the func-
tion to maximally accelerate local refinement while still ensuring convergence to the global
minimizer.

We have also proposed, in Algorithm 3, a framework to efficiently parallelize, on multiple
processors, the objective and constraint function evaluations required by Algorithm 2 at each
step in the optimization process; this parallelization approach extends in an obvious fashion
to the parallelization of Algorithm 4.

There is an inherent “curse of dimensionality” associated with derivative-free opti-
mization problems. High-dimensional derivative-free optimization problems are generally
computationally intractable with any method; for high-dimensional optimization problems,
derivative-based methods should always be preferred.

Themain limitation of the derivative-free optimization algorithms developed in the present
work, and the related optimization algorithms in [11,12], is the memory requirements of the
Delaunay triangulation algorithms upon which this body of work is based. The required
Delaunay triangulations makes the “curse of dimensionality” associated with this family of
optimization algorithms even more pronounced than it might be otherwise. Constructing
Delaunay triangulations in problems higher than about ten dimensions is generally compu-
tationally intractable. The focus in this body of work on the use of Delaunay triangulations,
which are generally the most “regular” triangulations possible for a given distribution of
datapoints, provides an essential ingredient in our proofs of convergence. Regardless, for
practical applications, the notion of using triangulations that are “nearly” Delaunay might be
helpful in future work for practically extending the algorithms developed here to somewhat
higher-dimensional problems.

Though the test problems considered in this paper illustratewell the key features of the new
optimization algorithms presented, in future work we will test these optimization algorithms
on additional benchmark and application-focused problems. We will also consider different
interpolation approaches as alternatives to the standard polyharmonic spline interpolation
approach used here.
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Problems inwhich the feasibility at point x is only computable in a binary fashion (feasible
or infeasible), rather than given by the union of inequalities based on computable (and,
smooth) constraint functions c�(x), will also be considered. Problems in which both the
objective and constraint function evaluations are inaccurate will also be considered.
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