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Abstract

It is known that the analysis to tackle with non-symmetric cone optimization is quite different
from the way to deal with symmetric cone optimization due to the discrepancy between these
types of cones. However, there are still common concepts for both optimization problems, for
example, the decomposition with respect to the given cone, smooth and nonsmooth analysis
for the associated conic function, conic-convexity, conic-monotonicity and etc. In this paper,
motivated by Chares’s thesis (Cones and interior-point algorithms for structured convex
optimization involving powers and exponentials, 2009), we consider the decomposition issue
of two core non-symmetric cones, in which two types of decomposition formulae will be
proposed, one is adapted from the well-known Moreau decomposition theorem and the other
follows from geometry properties of the given cones. As a byproduct, we also establish the
conic functions of these cones and generalize the power cone case to its high-dimensional
counterpart.
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1 Introduction

Consider the following two core non-symmetric cones

Ky = {(xl,i)e]Rsz

lxi] < x77'%3%, X1 =0, x> 0}, )

Kexp = cl{(xl,i) e R x R?

X Zizﬂm(%), %2> 0, 1 20}, 2)

where X := (§1, %2)7 € R, o0 := (o1, 0)” € R%, 0y, 0 € (0, 1), 1+ = 1 and cl(£2) is
the closure of £2. We call IC,, the power cone and Kexp the exponential cone!, whose graphs
are depicted in Fig. 1.

1.1 Motivations and literatures

Why do we pay attention to these two core non-symmetric cones? There are two main reasons.
In theory, Chares [5] proposes two important concepts (i.e., «-representable and extended a-
representable, see “Appendix 6.17) involving powers and exponentials and plenty of famous
cones can be generated from these two cones such as second-order cones [1,8,10,15,23,24],
p-order cones [2,27,44], geometric cones [4,16,17,26], L, cones [18] and etc., one can
refer to [5, chapter 4] for more examples. In applications, many practical problems can
be cast into optimization models involving the power cone constraints and the exponential
cone constraints, such as location problems [5,21] and geometric programming problems
[4,31,34]. Therefore, it becomes quite obvious that there is a great demand for providing
systematic studies for these cones.

Location problem [5,21]: The generalized location problem is to find a point x € R whose
sum of weight distances from a given set of locations Ly, ..., L, is minimized, which has
the following form

(P) mingerr 3L willx — Lillp,

where || - || 5, (pi = 1) denotes the p;-norm defined on R". If p; is equal to 2, then the above

problem reduces to the classical Weber-Point problem. Denote by x := (xi, ..., x,)! € R"
and a := (ay, ..., a,)T € R", Problem (P) can be rewritten as

. m

miny gy, D i Wid;

S.t. (yi,j,ai,xj —Li'j) eKi,i=1,...,m, j= 1,...,n,
Pi

n .
Yicvij=ai, i=1,....m,

where L; ; and y; ; stand for the j-th component of L; € R" and y; € R", respectively.

Geometric programming [4,31,34]: Let x := (x1, .. ., x) T € R” be a vector with real
positive components x; . A real valued function m, of the form m(x) := ¢ ]_[?:1 xf” ,1s called
a monomial function, where ¢ > 0 and «; are its coefficient and exponents, respectively. A
sum of one or more monomials, i.e., a function that looks like f(x) := Z}f: 1 mi(x),is called

1 The definition of Kexp used in (2) comes from [5, Section 4.1], which has a slight difference from another

form in [34, Definition 2.1.2] as
X1 zi2~exp<{—l), i2>0}.
X2

However, one can observe that these two definitions coincide with each other.

Kexp :=cl{(x1,)2)eR><R2
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Fig.1 The power cone Ky (left) and the exponential cone Kexp (right)

a posynomial function, where my(x) := ¢ [}, x?i’k. A geometric program is composed
of a posynomial objective with posynomial inequality constraints and monomial equality
constraints, which can be described as

miny fo(x)
(GP) st. fi(x)<l1, s=1,...,p,
g)=1, t=1,...,q,

where f = Y0 ey [Toy 7™, s € {0, 1, p) and g (x) = ¢ [T}_; %™, ¢
{1, ..., q}. Using the following change of variables as x; := exp(u;), ck,i := exp(dk.;), ¢; :
exp(d;) and adding some additional variables, Problem (GP) can be rewritten as

Il m

Ny, w & 0. W

st (0 + Y7—y i - i k.0- k.0 1) € Kexp: Yoty Ek0 = w,
(dk,s + Z?:l Ui - Qj ks> Nk,ss 1) e ’Cexp, Zle Nks =
i+ qui-ai; =0, t=1,...,q.

|
—
©
Il
—_
=

In the past three decades, a great deal of mathematical effort in conic programming has
been devoted to the study of symmetric cones and it has been made extensive progress
[9,14,29,30,33,38], particularly for the second-order cone (SOC) [1,8,10,15,23,24] and the
positive semidefinite cone [35,37,39—41]. For example, consider the second-order cone

L" = {1, 0) e Rx R xy = [I%]]).
For any given z = (z1,z) € R x R, its decomposition with respect to " has the form
z=0@) uld +10(2) - ul?, 3)
where 4;(2) := 21 + (=) [|Z]| and u” is equal to 1 (1, (—1)1'%), iz 0,4 (1, (=Diw),
otherwise, which is applicable for i = 1,2 with w € R"~! being any unit vector. For any
scalar function f : R — R, the associated conic function f$°¢(z) (called the SOC function)

is given by
@) = Fra@) - ul + ) - ul. )

In light of the decomposition formula and its conic function, one can further establish their
analytic properties (i.e., projection mapping, cone-convexity, conic-monotonicity) and design
numerical algorithms (i.e., proximal-like algorithms and interior-point algorithms), see Fig. 2
for their relations and refer to the monograph [11] for more details. Similar results have
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Fig.2 The relations between the decomposition with respect to SOC and other topics

also been established for the positive semidefinite cone [40,43] and symmetric cones [14,
38]. Therefore, the past experience [11,14,43] indicate that how to derive the associated
decomposition expression with respect to a given cone as the form (3) at a low cost becomes
an important issue in the whole picture of researches.

As a fundamental tool in optimization, Moreau decomposition theorem [25] characterizes
the key relationship between the decomposition with respect to a closed convex cone and its
projection mappings. More concretely, for any given z € R”, it can be uniquely decomposed
into

z = Ik (2) + ke (2) = Mk (z) — Hxx(—2), 5

where ITx:(z) is the projection mapping of z € R” onto K and K° is the polar cone of I, i.e.,
K°:={yeR"| xTy <0, Vx e K}.

In addition, IC* is the dual cone of K and satisfies the relation K* = —K°. It follows from
(5) that if these projection mappings have closed-form expressions, the decomposition issue
can be simply solved by this classical theorem. However, for most non-symmetric cones
(except for the circular cone [7,45], see “Appendix 6.27), their projection mappings are
usually not explicit, such as the power cone Ky, [21, section 2] and the exponential cone Kexp
[26, section 6]. Thus, one cannot employ the Moreau decomposition theorem directly and
continue subsequent studies on optimization problems involving with these non-symmetric
cones. This is a big hurdle for non-symmetric cone optimization problems.

In reality, there are plenty of non-symmetric cones in the literatures, such as homoge-
neous cones [6,20,42], matrix norm cones [12], p-order cones [2,18,27,44], hyperbolicity
cones [3,19,32], circular cones [7,45] and copositive cones [13], etc. Unlike the symmetric
cone optimization, there seems no systematic study due to the various features and very few
algorithms are proposed to solve optimization problems with these non-symmetric cones
constraints, except for some interior-point type methods [6,22,28,36,44]. For example, Xue
and Ye [44] study an optimization problem of minimizing a sum of p-norms, in which two
new barrier functions are introduced for p-order cones and a primal-dual potential reduction
algorithm is presented. Chua [6] combines the T-algebra with the primal-dual interior-point
algorithm to solve the homogeneous conic programming problems. Based on the concept of
self-concordant barriers and the efficient computational experience of the long path-following
steps, Nesterov [28] proposes a new predictor-corrector path-following method with an addi-
tional primal-dual lifting process (called Phase I). Skajaa and Ye [36] present a homogeneous
interior-point algorithm for non-symmetric convex conic optimization, in which no Phase
I method is needed. Recently, Karimi and Tuncel [22] present a primal-dual interior-point
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methods for convex optimization problems, in which a new concept called Domain-Driven
Setup plays a crucial role in their theoretical analysis.

In contrast to these interior-point type methods, we pay more attention to the decomposi-
tion issue of the given cones. It is worth noting that the decompositions with respect to the
second-order cone " and the circular cone Lg [see Egs. (3) and (51)] show that any given
point can be divided into two parts, one lies in the boundary of the given cone (i.e., ugl) e oL",
ﬁ;l) € 0Ly, where 952 is the boundary of £2) and the other comes from the boundary of the
given cone (i.e., uf) € dL™) orits polar (i.e., ﬁ?) € 0L3). One can easily verify these results
by the Moreau decomposition theorem in some cases (for example, the given point lies out
the union of the given cone and its polar), but it is amazing that these decompositions are
satisfied in all cases! These observations motivate us to study the boundary structures of the
given cones more carefully.

1.2 Contributions and contents

In this paper, we successfully explore two new types of decompositions with respect to the
power cone K, and the exponential cone Kexp, one is adapted from the well-known Moreau
decomposition theorem, which looks like

=Sy -Xx+s5,-y, xedk, yedK® (sx,sy)#(0,0) (6)
and the other follows from geometric structures of the given cone, i.e.,
Z=sx-X+sy-y, x €K, ye€dk, (sx,sy)#(0,0), (7)

where z € R", 55, 5y € R, x, y € R", Khas two choices, namely Cy, or Kexp, as defined in (1)
and (2). In the sequel, we call (6) the Type I decomposition and (7) the Type II decomposition,
respectively. To our best knowledge, no results about the decompositions with respect to these
two non-symmetric cones have been reported. Hence, the purpose of this paper aims to fill
this gap and the contributions of our research can be summarized as follows.

(a) We propose a more compact description of the boundary for these two cones.

(b) Two types of decompositions with respect to K¢, Kexp are presented, which are do-able
and computable.
As a byproduct, the decomposition expressions with respect to the high-dimensional
power cone are also derived.

(c) We establish the conic functions of the power cone K, and the exponential cone Kexp
based on their decomposition formulae.

The remainder of this paper is organized as follows. In Sects. 2 and 3, we present the
decomposition formulae with respect to the power cone C, and the exponential cone Kexp,
respectively. In Sect. 4, we discuss some applications of these decompositions. Finally, we
draw some concluding remarks in Sect. 5.

2 The decompositions with respect to the power cone IC,

In this section, we present two types of decompositions with respect to the power cone Iy .
Before that, we present some analytic properties of Ky in the following lemmas.

Lemma 1 K, is a closed convex cone.
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Proof Tt can be easily verified by definition, see “Appendix 6.3” for more details. O

Lemma 2 The dual cone C}; can be described as

= (3] = [2%)
X1 X2 _ _

X < |— — ) ,x1>20, x2>0¢,
o] (0%)

where ¥ = (%1, %2)T € R%, o := (a1, a2)T € R, a1, 00 € (0, 1), 1 + o2 = 1.

K= {(xl,i) € R x R?

Proof We refer the readers to [5, Theorem 4.3.1] for its verification. O

From the relation K, = —K% and Lemma 2, the polar cone K, has the following closed-
form expression.

Corollary 1 The polar cone IC;, is given by

s o) % a
xi] < | — — ] ,x1 =<0, x=<0;.
o] [2%]

We now proceed to identify the structures of the power cone Ky, its dual I} and its polar
K more clearly, particularly for their interiors and boundaries.

kS = {(xl,f) € R x R?

Lemma 3 The interior of the power cone Ky, its dual K}, and its polar K, , denoted by
int Ky, int IC}, and int KCg,, are respectively given by

intKg = {(x1,%) € R x R? | |x1] < 04(X), X1 > 0, ;22>0}, )
int K5 = {(x1,%) € R x R?| |x1]| < e (%), X1 > 0, xz>o}, )
int K = 1 (x1,%) € R x R? | |x1]| < n(—%), ¥1 <0, % < 0}, (10)
where e -
0 (¥) 1= FF2, 1 (F) = <X—1> <x—2> . (11)
aq (2%

Proof By definition, (x1, X) is an element of int /C, if and only if there exists an open neigh-
borhood of (x1, %) € R x R2 entirely included in /Cy. Let us take (x1,x) € K. For any
given strict positive scalars X1, x» € R, itis easy to see that (0, 0, 0), (0, X1, 0) and (0, 0, x»)
are all outside of int /Cy, due to the observation that every open neighborhood with respect
to each of these points contains a point with the negative x| or X, component. For a point
(x1,X1,x2) € R x R? such that 0y (X) = |x1| with x1, X > 0, where o, (x) is defined as
in (11). In this case, we can take a point (x], X1, x3) with 0 < x| < X1, 0 < X} < X2,
|xi| > |x1| in every open neighborhood of (xi, x1,x2) € R x R2, which implies that
lx{] > |x1] = 0(X) > 0q(X'), i.e., the point (x{, X], X5) can not belong to K, and hence
(x1, X1, X2) ¢ int Cy .

Next, we turn to show that all the remaining points that do not satisfy the above two cases,
i.e., the points in the right-hand side of (8), belong to the interior of K, . For sufficiently small
scalar € € (0, min{xy, x»}), let fol 0 be a neighborhood of (x1, x) with the form

B, 5 = {(Xi,i/) eRxR?|0 < |xi| —€ < [x]] < |x1] +¢,

- - - .
0<xi—€e=<x;<Xx+e, l=1,2}.
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Taking (x1, x) € R x R2 from the right-hand side of (8), i.e., o4 (X) > |x1|,x; > 0,i = 1,2.

For all elements (x{, x) € Bfm 1) We have

x| — 0o (X)) < X1 +€ — (XD (X)) < |X1] + € — (k] — €)* (Xp — €)%, (12)
In addition, letting ¢ — 0, we obtain
lim (|X;] +€ — (¥] — €)% (X2 — €)*?) = ||| — 0a(X) < 0.
e—>0
Therefore, there exists a scalar €* such that |x| + €* — (X] — €*)¥ (X — €*)*2 < 0. This
together with (12) imply that
|x1] — 0a (X)) <0, V(x],x) € fow?)’

which is sufficient to show that Ble B is entirely included in Ky, and hence (x1, x) € int K.

Applying a similar way to K, and K3, their interiors can also be verified as the right-hand
side of (9) and (10). O

From the proof of Lemma 3, we further define the following sets

Si={(x, %) eRxR*| x; =0, §; >0, ¥, =0},

Sp:={(x1.) eRxR?| x; =0, ¥; =0, & > 0},

S3:={(x1, %) e Rx R?| |x1| = 0 (%), &1 > 0, & > 0},

Sy ={(x1, %) e RxR?| |x1]| = ng(X), X1 > 0, )22>0}, (13)
Tp:={(x, %) e RxR?*| x; =0, | <0, X, =0} = -5,

T :={(x1.5) eRxR?| x; =0, §; =0, & <0} =—5,,

T3 := {(x1, Xx) ERXR2| [x1| = no(—x), X1 <0, X2 < 0} = —84.

Then, the boundary of K, K and K, can be stated in a more compact form.
Lemma4 The boundary of Ko and K, denoted by 0K, and 9K}, are respectively given by
I =81 USH US3 U0}, 9K; := S5 US»USsU{0}.
Similarly, the boundary of K, denoted by dK;,, can be formulated as
I, =T UT,UT;U{0}.
Remark 1 1t follows that the union set Iy, U IC5 can be divided into seven parts
Ko UKS =S US,UTi UT, U P U Py U {0},
where

Pri={(x, ¥) e RxR?| |x] < 04(X), ¥ >0, ¥ > 0},
Pyi={(x1. %) € Rx R?| |x1| < no(—%), X1 <0, X2 < 0}.

In addition, the boundary of K, and its polar KC;, are depicted in Fig. 3.
In order to make the classifications clear and neat, we adapt some notations as follows:

7:=(21,2) e R xR?, 7:= (Z1,22)T € R?, Zmin 1= min{Z1, 22}, Zmax := max{Zy, Z2}.
(14)
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2

ry-axis

3 0

Fig.3 The different parts of 9/Cy (left) and d/Cg, (right)

Consequently, we divide the space R x R? into the following four blocks

BlockI: By :={(z1.2) € R x R?| Zmin - Zmax > 0 0r (21 # 0 and Zmin = Zmax = 0)} .
Block I1: By := {(z1,2) € R x R? | Zmin - Zmax = 0 and Zmin + Zmax # 0} .

Block I : B3 := {(z1,2) € R x R?| Zmin - Zmax < 0}.

Block IV : By := {(z1,2) € R x R? |z = 0 and Zmin = Zmax = 0} .

15)
The subcases of these blocks with respect to /C,, can be found in Table 1.

2.1 The Type | decomposition with respect to the power cone IC,

In this subsection, we present the Type I decomposition with respect to the power cone
K«. To proceed, we discuss four cases, in which the sets S; C K (i = 1,2,3,4) and
T; C dK° (j = 1,2, 3) are defined as in (13).

Case 1: (z1,2) € B;.

() Zmin > 0. In this subcase, (z1,z) € Bi1,1i.e., 71 > 0,22 > 0, which implies 0,(z) > 0

and 74(Z) > 0. Then, we take x = x(B1-®_ y = yBra) gnd 5 = i)(cBl’“), sy = é)(,Bl’a),
where

- (B1,0) 1 - (B1.0) 1

x\ord) = z € Sz, y\oh = z e T;. (16)

04 (2) _nu(z)

.(Bj,a) .__ %l + 170(2) = «(Bra) ._ 1T 04(2) -

S = 04(2), § = 2). (17

. @t 1a@ e

00@) +1a@)

It is easy to show that the above setting satisfies the decomposition formula (6).
(b) Zmax < 0. Similar to the argument in Case 1 (a), (21, 7) € Bi2,1.e.,21 < 0,22 < 0, which
implies 0, (—2z) > 0 and n4(—2z) > 0. In this subcase, we set x = x(Brb) = 3(Br.D)

and s, = §810), sy = s‘ﬁB"b), where
L (B1.b) 1 - (B1.b) 1
X\ = _z € 83, y\o7 = z e T3. (18)
04(—2) Ne(—2)
. 21 — Na(=2 _
P = D p),

0 (=2) + 11a(=2)
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-(B1,b) .__ 71 +0g(=2)

¥ = m N (—2). (19)

(¢) z1 # 0 and Zmin = Zmax = 0. In this subcase, (z1,z) € Bi3, which implies 04(z) = 0

and 14 (Z) = 0. Therefore, we set x = xB19) y = y(B1.0) and 5, = = 5B, sy = j§,Bl’C),
where

. (B1.c) 1 (B1.0) . 1

X L = 1 S S3 y I = _ 1 € T3, (20)

oq (1) N (1)

<(Bl.c) ._ 2 5(B1O) <1

§ = - 0a(1), $y = 7e(1) (21)

* oa(1) + 1o (D) " ou() + ne()

with1:= (1, DT e R2.
Case 2: (z1,2) € Bs.

(@) Zmin = 0, Zmax > 0. In this subcase, (z1,2) € By or (z1,2) € Bpy. Therefore, we set
x = xB2a) = y(B2a) gpg g = 1, sy = 1, where xBra) — = (x, ¢ (B2.0) 3(B2, @Y and
y(32 a) (y(Bz .a) (Bz a)) with

lz1l “ . _
72 if (z1,2) € By,

(Bz LN (RO, - (22)

(@)@ if (z1,2) € Bao,

ar
> if (z1,2) € Bay,

. (B2, 11) 0 =(Ba, a) L

Y 3 (23)

B (M)E if (z1,2) € Boa.

It is easy to see that

(@ (z1,2) € Ba1,z1=0=>x € S, y=0; (b)(z1,2) € Bo1,21 #0=x € S3,y € T1;
(©) (z1,2) € Bn,z1=0=>x€ 8,y=0; (d)(z1,2) € Bn,z1 #0=>x € 83,y € I».

(b) Zmin < 0, Zmax = 0. In this subcase, (z1, Z) € Ba3 or (21, 2) € Bas. We set x = x(B2:0),
y = yB2D) and s, = —1, sy = —1, where xB2b) — ()clB2 h),x(32 b)) and yB20) =
G177, 3E20) with
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B s
( lz1l )Dtl . _
)™ if (z1,2) € Bas,
. —22
X{Bz’b) =z, kB2 L B (24)
—21
lz1] % if(Zl’ 5) S BZ47
L ((721)“1 )
B 1
_ ( |21 )“1 . -
)™ if (z1,2) € Boa,
0
. (By,b = L
S e T (25)
2] i if (z1,2) € Boa.
| ((*21)“‘1 )

Similar to the arguments in Case 2 (a), we obtain

(@) (z1,2) € B3, 21=0=>x € S,y =0;
(C)(Z172)6324,Zl:0:})(651’)):0;

(b) (z1,2) € Bz, 21 #0=>x € S3,y € Tt;
(d) (z1,2) € Bos,z1 #0=x € 83,y € T».

Case3: (z1, 7) € Bs.Inthissubcase, (z1,2) € B3jor (21, Z) € By. Wesetx = B3 e aKC,,
y =3B € 0ky and s, = 1,5, = 1, where i3 = (i{% (B and B = (517

yB9) with

)-6533) = Zl’)é(33) =
: (B3) . (B3) .
yi Y ':O’y( .

More concretely, we obtain

(@) (z1,2) € B31,z1=0=x € S,y € Ty;
© (z1,2) €Bx,21=0=>x€ 81,y Ty

0
Ll )\
7 if z € Bsy,
%)
_ - (26)
21
1 .
™ o | if z € Bag,
z!
0
7 — Ll
53‘2 ifz e B3q,
) (27)
0 -

_ el 2 if z € B3).
22 — |\ o7
2

(b) (z1,2) € B31, 21 #0=>x€ 83,y € T1;
(d) (z1,2) € By, 21 #0=>x € S3,y € T».

Case 4: (z1,2) € By. In this subcase, we setx = ¥(B9, y = yB) and s, = 1,5, = 1, where

0 0
B =1 ]es, yB) =] -1 |eT, (28)
_0_ ol 0 -
or _ _
0 0
B =10]€8 yB:=| 0 |eD. (29)
1 —1
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Table 2 The locations of the x-part and y-part in the Type I decomposition with respect to ICy

By By Bj By
By By Ba3 By B3 B3y
Xloc S3 SHU S3 S1US3 S> U 83 S1US3 Sy U S3 S1US3 NESRY)
Yioe T3 {oyum {0yu T {oyun {0}UT, T ) num

To sum up these discussions, we present the Type I decomposition with respect to the
power cone /Cy, in the following theorem.

Theorem 1 For any given z = (z1, Z) € R x R?, its Type I decomposition with respect to K,
is given by
(a) Ifz € By, then

R LIRS (N LEN P
2= 58D ;B o G BLD) 5BLb) e gy,
§B1O) | 1 (Bi.o) +j§Bl»C> CyBLOif € Bys,

where xB1-4) | y(B1.@) 5B, $§B"a) are defined as in (16)—(17), (B0 y(Br.b), s')EBl’b),
s'.i.Bl’b) are defined as in (18)~(19) and x(B1-9), y(Br.c) (B1.0) &;B"C) are defined as in
20)-(21).

(b) Ifz € By, then

1 (B2a) 4 j(B2.a) ifz € Byyorz € By,
1= < (B2.b) o (B2.b)
(=D -x +(=1-y , ifz € B3 or 7 € By,

where x(B2:4), )'1(32’“) are defined as in (22)—(23), xB2:b) )')(Bz*h) are defined as in (24)—
(25).

(c) Ifz € B3, then z = B3 4 y(B3) ywhere %B3), yB3) qre defined as in (26)-(27).

(d) Ifz € By, then z = xBY 4 3B phere 5B and yBY are defined as in (28) or (29).

In addition, the locations of the x-part and y-part in each case are shown in Table 2, where
Si, T; (i = 1,2,3,4) are defined as in (13) and xjo¢, Yioc denote the locations of x and y,
respectively.

2.2 The Type Il decomposition with respect to the power cone /C,

In this subsection, we present the Type II decomposition with respect to the power cone K.
Similarly, we consider the following four cases.
Case 1: (z1,7) € B;.

(@) Zmin > 0. In this subcase, (z1,7) € Bjy and 0,(Z) > 0. Then, we take x = ¥(B1.9),

y =B and 5, = 571, sy = 's')(vBl’a), where
1 —1
Bra = [ z } € S3, B = [ Z ] € Ss. (30)
0a(2) 0a(2)
§B w §(B = w 31)

Similarly, we can show that the above setting satisfies the decomposition formula (7).
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(b) Zmax < 0. Similar to the argument in Case 1 (a), (z1, z) € Biz and 04(—2) > 0. In this

subcase, we setx = ¥(B1:0), y = §B10) and 5, = 5510 5, = 'S}('Bl’b)’ where
. 1 . -1
5(BL.b) . [ = } €Sy, yBILD = [ _: ] € Ss. (32)
0a(—2) 0a(=2)
. 1 —0g(—2) .. —0a(=2) =2
) o 70D e Z0a(CD T 33)
2 Y 2

(¢) z1 # 0 and Zyin = Zmax = 0. In this subcase, (z1, Z) € B3 and 04 (Z) = 0. Thus, we set

X = )'C'(BI’C), y = j;(Bl,c) and s, = §§Bla0), 5y = E}()BI,L')’ where

‘ 1 (By.c -1
B [ ! ] e 55, 5510 ;:[ . } e 55, (34)
e oa (1)
w(Bre) _ 1 (Bl _ %L
5B _2,sy' =—5- (35)

Case 2: (z1,2) € B».
(2) Zmin = 0, Zmax > 0. In this subcase, (z1,Z) € Ba or (z1, Z) € B, we set x = £(529),

y = y(Bz,a) and sy = 1, sy = —1, where §Bra) _ (X';BZ'”),;(BL“)) and 55(32’“) =
(j;iBz,a)7 ;(Bz,a)) with

ST
2 if (z1,2) € Bay,
xfBz,a) =z, xBr0 . ) = = (36)

(Iml a | if (z1,2) € B,

TR
2 if (z1,2) € Bay,
- (37

<@>@ if (z1,2) € Bo.

551(32#) =0, )-/(Bzvtl) —

It is easy to see that

(@ (z1,2) € B2, 21 =0=x € 8,y=0; (b)(z1,2) € Ba1,z1 #0=x € 83,y € Si;
(©) (z1,2) €Bn,z21=0=xeS8,y=0; (d)(z1,.2) €Bn,21#Z0=>x€S3,y€ 5.

(b) Zmin < 0, Zmax = 0. In this subcase, (2, Z) € Bas or (z1,7) € Bos. We set x = i(B2:),
y = 382D and s, = —1, s, = 1, where 520 = (ffBz’b),f(Bz’b)) and j(62.0)

= (FBP, §B2D) with
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1

( |z1] )ﬂ ) _
)2 if (21, 2) € Bos,
. —22
# B0 g Bk )T = (38)

( 2| )@ if (z1,2) € Bog,

lzil Yer | . _
)@ if (z1,2) € B3,

(B2, =
G R = (39)

o

( lz1] )@ if (z1, 2) € Boa.

(=z)"1
Similar to the arguments in Case 2 (a), we obtain

(@ (z1,2) € B3, 21=0=>x€ 8,y=0; (b)(z1,2) € B3, 21 #0=x € S3,y € §y;
(©)(z1,2) € B4, z21=0=x€ 81,y=0; (d)(z1,2) € B, 21 #0=>x € 83,y € 5.

Case 3: (z1,2) € Bs. In this subcase, (z1,Z) € B3j or (z1,Z) € B3. We set x = (53,

y =3P and s, = 1,5, = —1, where B9 = (&% {8 and 5B = (5%, 5(89))
with
_ -
IR
g if z € B3y,
. 22
) =g i) = = T = (40)
21
1 .
(lZ”)@ if z € Bz,
;otil
21

z?) if z € B3y,

+(B3) | 0 ;(33) o L
Y :

o= 7 (41)

|]|>@ if z € B3.

More concretely, we obtain

(@ (z1,2) € B31,21=0=>x €8,y S;; (b)(z1,2) €B31,21 #0=>x € 53,y € Sy;
(©) (z1,2) € B3, 21=0=>x€ 81,y € S (d(z1,2) €Byn, 21 #0=>x€ 83,y € 5.

Case 4: (71, Z) € Ba.Inthis subcase, we setx = ¥B4) € 9K, y= 53(34) € Ky and sy = 1,
5y = —1, where $Ba) — (55;34), ;(34)) and j;(BA,) — (5)-§B4)7 ;(34)) with

0 0
¥BD =1 |es, yBD.=[1]es, (42)
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Table 3 The locations of the x-part and y-part in the Type II decomposition with respect to /Cy

B By B3 By
B2] BZZ B23 BZ4 B?}l B32
Xloc S3 SH U 83 S1US3 S> U S3 S1US3 Sy U S3 S1US3 S1U S
Yioc $3 {0} U Sy {0}U S, {0} U S {0}U S, S $2 S US,
or
0 0
¥BY = 10| €S, yB):=]|0]es. (43)
1 1

As mentioned above, the next theorem presents the Type II decomposition with respect
to the power cone /.

Theorem 2 For any given z = (z1,7) € R x R?, its Type Il decomposition with respect to
Ky is given by
(a) Ifz € By, then

e g Bra g BLO L 5B e e pyy,
z={ 5B 3B +§;Bl,b> S§BLY) | ifz € Bra,
5009 g Bro 4 PO 5Bz e By,

where X (B1:4), y(BW, E)(CBI’”), §§B"a) are defined as in (30)—(31), $B1b) y(Bl’b), E)EBl’b),
E}(,B"h) are defined as in (32)~(33) and i B9, §Br.0) B0 §§Bl’c) are defined as in
(34)—(35).

(b) Ifz € By, then

B2 4 (—1) - 5B29 ifz € Byj orz € By,
= ++(Ba,b) (Ba,b)
(=D -x +Yy , if7 € Bys orz € By, ,

where ¥B2:0 5B2.9) qre defined as (36)-(37), j(B2:b), $B2:) qre defined as in (38)—(39).
(c) Ifz € B3, then z = B3 4 (=1) - B3 where ¥B3), $B3) qre defined as in (40)-(41).
(d) If 7z € By, then z = FB) 4 (=1) - ji(B“), where ¥ and y<34) are defined as in (42) or
(43).

In addition, the locations of the x-part and y-part in each case are summarized in Table 3.

2.3 Manipulation of a real example

In this subsection, we elaborate more about how to implement the Type I and Type II decom-
position with respect to the power cone Ky, explicitly by manipulating an example. Without
loss of generality, we set the parameters o] = ay = 5.

Example 1 The power cone K ! and its polar cone K9 are respectively given by
2

11
(x1,%) e R x R? | x| < X%}, % >0, szO},

N'ﬁ
I

(x1,%) e R x R? | |x1] < (—2)?1)%(—29?2)%, X1 <0, X < 0}.
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According to the four blocks defined as in (15), we pick different points to figure out their
decompositions with respect to K 1 For example, we take z = (1, —1, —2)7 € By,. In this
case,z; = 1,7 = (=1, =27, o1(=2) = V2, n1(=3) = 2+/2. From the relations (18)—(19)
and (32)—(33), we obtain

! 1
1 | 1 1
i = =] 5 eS 3PP = : | =|"375|e,
o1(=2) 2 (=0 e
V2 NG
j(Bl’b) ;=w,al(_z) 1_2\/2 1_2\[’
X 0% (—2) + n%(_Z) 7 f 2[ 3
j(Bl’b) ;=w,nl(_z) 1+‘[ f_M
g o1(=2) +n1(=2) NEENA 3
! ~1
1 1 . :
X(Bl,b) = _72_ — ﬁ e S3, y‘(B],b) = _72_ _ ﬁ c S3’
a% (=2) 2 (r% a5 Y
V2 7
BB 21 =01 (=2) _ 1-42 B | 0%(—2)—& V2
A 2 2 Y 3 R
Therefore, the corresponding two types of decompositions with respect to K are respectively
given by
[ 1] 1 1
- L 2(14+/2 1
TypeL: | —1 :% 7|+ (Jgf) -5 .
-2 2 1
- - ﬁ ﬁ
[ 1] 1 ~1
- L —V2— 1
Typell: | —1 | = lTﬁ = |+ \/25 L
-2 2 2
- - ﬁ \/E

whose graphs are depicted in Figs. 4 and 5 , respectively. The other cases for testing the
decompositions with respect to K 1 can be seen in Table 4, in which x;o¢, Vioe, Z1oc denote

the locations of x, y, z, respectively.

Remark 2 As shown in Example 1, these two types of decompositions for any given nonzero
vectors with respect to the power cone K, are easy to implement, which is a new feature to the
progress of this core non-symmetric cone and plays a crucial role in continuing subsequent
study on this topic, for instance generating conic functions like the SOC-function [8] and
Lowner’s operator for the positive semidefinite cone [37,38] as mentioned above. Moreover,
through comparing the above two types of decompositions established in Theorem 1 and 2,
we rewrite them as follows:

Type I: z_s cx! +s -yl

TypeII.Z—s){I ”—l—s§1 y”.
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Fig.4 The Type I decomposition for Example 1

05

21-axis

Fig.5 The Type II decomposition for Example 1
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Table 4 Examples of two types of decompositions with respect to /C |
2

z Zoc  Typel Type II
Sx X Xloc Sy y Yioc Sx X Xloc Sy y Yloc
1 M1 1 (17 [—1
2 T N . e O R 1| s
2 1 _1 1 1
- - - L 2 - - -
M1 1] o 17 o
0 By 1 1 S3 1 —1 Ty 1 1 S3 —1 1 N
1} 1 0 } 1 0}
M1 1] o 17 o
1 B3 1 1 S3 1 0 T 1 1 S3 —1 0 S2
—1} 1 —2} 1 2}
0 0 0 0
) 1 1 s 1 —1 o1 1 s -1 1 Sy
0 0 0 0 0
0:| By
0 0 0 0 0
- 1 0 S> 1 0 T 1 0 S -1 0 RY)
1 -1 1 1

Itis easy to see that if 7, () = 04 (2), then x’ = x1, y! = —y! sl = 5" and s] = —s]/,
where 14, 0 are defined as in (11). On the other hand, we also find that the s, -part and s -part
of the Type I decomposition are more complicated than the Type II counterpart in general.
Therefore, we prefer the Type II decomposition with respect to &, for further studies, see

Sect. 4 for more details.

3 The decompositions with respect to the exponential cone /Cexp
In this section, we present two types of decompositions with respect to the exponential cone
Kexp. Again, we also present its analytic properties. Due to similar procedures as Sect. 2, we

omit their proofs and only list some results. For the dual of the exponential cone Kexp, We
refer the readers to [5, Theorem 4.3.3] for its verification.

Lemma5 Kexp is a closed convex cone.

Lemma 6 The dual cone K*,  can be described as

exp
ICZXP ::cl{(xl,f) eRxR?|x; > _a -exp({—z), x1 <0, x1 ZO}.
e X1

o

Correspondingly, the polar Kexp is given by

X1 X2 _
x1<——-exp\ =), x1 >0, x1 <0¢.
e

exp *

Ko = cz{(xl,)a cR x R?
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Similar to Lemma 4, we also define the following sets

Spo={(x1.5) e RxR*| x; >0, ¥ <0, ¥ =0},
S={(x.5) eRxR?| x; =0, ¥ <0, ¥ =0},
S3:={(x1. ) e RxR?| x; > 0, ¥ =0, ¥, =0},

Sy = {(x1, %) e Rx R?| x1 > 0, 0exp(¥) = x1, %2 > 0},
Ss:={(x1.8) e RxR?| x; > 0, ¥ =0, ¥, > 0},
Se:={(x1.8) e RxR?| x; =0, ¥ =0, ¥, > 0}, “4)
S7:={(x1,¥) e Rx R?| x; > 0, ¥ =0, & =0},

Sy :={(x1,5) e Rx R?| x1 2 0, 1 <0, —1exp(¥) =31},
Ty = {(x1,5) e RxR?| x; <0, ¥ =0, & <0},
D= {(x1,¥) e RxR?*| x; =0, ¥ =0, & <0},

{

T3 :={(x;, %) e RxR*| x| <0, X1 =0, X, =0},
Ty = {(x1, %) e RxR*| x1 <0, X > 0, —nexp(¥) = x1} .

Consequently, the boundary of Kexp and K¢, ) can be described in a more compact form.

Lemma7 The boundary of Kexp and IC;
given by

exp

denoted by dKexp and 0K}, are respectively

exp’ exp’

exp = 31 U 32 U .§3 U .§4 U {0}, BICZXP = .§5 U §6 U 3'7 U S'g u {0},

where
- _ X1 _ X1 X2
Oexp(X) = X2 - exp (T) , Nexp(X) := — - exp (_—) . (45)
X e X1

Similarly, the boundary of K¢, can be formulated as

exp

K2 —TIUTzUT3UT4U{O}

exp

Remark 3 Similar to Remark 1, the set Kexp U K¢
nine parts

oxp Can also be divided into the following

/Cepr/C —31U.§2U§3U'flUngngﬁ]UﬁgU{O},

exp
where

Pl —{(xl ¥)eRxR?| x; >0, Oexp(X) < x1, x2>0}
Pyi={(x1,¥) e RxR?| x; <0, &1 >0, —nexp(¥) = x1}.

In addition, the boundary of Kexp and its polar K¢, ) are depicted in Fig. 6.

exp

3.1 The Type | decomposition with respect to the power cone KCeyp

In this subsection, we present the Type I decomposition with respect to the exponential cone
Kexp» in which we divide the space R x IR? into the following four blocks:

BlockT: By :={(z1,2) e RxR*|Z;-Z3 > 0or(z1 #0and Z = 0)}.
Block I1: By :={(z1,2) e RxR?[(z; =0, 22 #0) or (Z; <0, Z > 0)}.
BlockIII: B3 := {(z1,2) e RxR?[(Z; #0, 22 =0) or (; > 0, 2, < 0)}.
Block IV : By :={(z1,2) e Rx R?|z; =0and Z = 0}.

(46)

Their subcases with respect to Kexp for the Type I decomposition can be found in Table 5.
Similar to Theorem 1, we now present the Type I decomposition with respect to Kexjp.
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Fig.6 The different parts of d/Cexp (left) and BIngp (right)

Theorem 3 For any given z = (z1,Z) € R x R?, its Type I decomposition with respect to
Kexp is given by

(a) Ifz € By, then

(z1 + Nexp(2)) - Oexp(2) . l
Gexp(z) + nexp(z) .

Oexp (2)

@@=z @ | o B ;
7= + Oexp (2)+1exp (2) ) E——— le € Bll orz e Blz,
’Iexp(Z)

- Oexp (1 1 - 1 -1 B
BT IO A P T CI S T T,
Oexp(1) + Nexp(1) Oexp(1) Fexp(1) + Mexp(1) Nexp(1)

where 1 := (1, )T € R? and Oexp(2), Nexp (2) are defined as in (45).
(b) Ifz € By, then

1 _ _ -
7= chp(z) . { z } + sgn(o'exp(i) _ Z]) . [ |Z1 OOCXP(Z)l] ,

Oexp (2)

where sgn(t) denotes the sign of the variable t € R.
(c) If z € B3, then

7 -1
z=WMw%Mm{m+?Wﬂ+wﬁy[z}.
Nexp (2)

(d) Ifz € By, then

. max{0, w} min{0, —w}
z=1- [ 0 } +1- [ 0 ] ,

where w is any scalar in R.

In addition, the locations of the x-part and y-part in each case are summarized in Table 6,
where S;, T; (i = 1,2,3,4) are defined as in (44).
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o==2o=1z'0=1z(")

0> Czp < lzoa1y 12 (£€g)
0= 72z > lzoam 12 (Ctg)
0=172z°0 < 201 Iz (Itg)

0 < 2> I2oay 12 (£2g)
0> 2= 1200y I2 (CCg)
0 <= 1200y 12 (I2g)

o=72z0o=12'0# 12(¢lg)
0> 2z > 201y 12 (Clg)
0 <2z < lz%any Iz (llg)

vg

&g

g

g
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Table 6 The locations of the ~ < = -

x-part and y-part in the Type I Bi By B3 By

decomposition with respect to A A A R

Koy P Xloe S 8 {0} U S5 {0} U 83
Yioc 1y (0}U T3 Ty {0}UT;

3.2 The Type Il decomposition with respect to the power cone /Ceyxp

In this subsection, we present the Type II decomposition of the power cone Kexp. By contrast
with the Type I case, we present a new space division for R x R? as follows:

BlockI: By :={(z1,2) e RxR?*|Z #0}.

BlockIl: By :={(z1,2) e RxR*[(z; £0,Z=0) or (z; <0, 22 =0)}.
Block I : B3 := {(z1,72) e R x R?*|Z; > 0, 7, =0}.

Block IV : By :={(z1,7) e R x R?|z; =0and Z = 0}.

47

Table 7 indicates their subcases of these blocks with respect to Kexp for the Type II decom-
position.

Similar to Theorem 2, the next theorem presents the Type II decomposition with respect
t0 Kexp-

Theorem 4 For any given z = (z1,7) € R x R?, its Type Il decomposition with respect to
Kexp is given by

(a) Ifz € By, then

1 _ _
7= 0exp(2) - |:~():| +5gn(z1 — Oexp(2)) - |:|Zl ‘()')exp(Z)|j| ,
Oexp(Z

where sgn(t) denotes the sign of the variable t € R.
(b) Ifz € By, then

_ . [max{0,z} —min{0, z}
o [0y [ 0]

(¢) Ifz € Bs, then

_ max{0, 71} —min{0, z1}
z_l-[ ‘ }+(—1>-[ nt ]

(d) Ifz € By, then
_ max{0, w} — min{0, —w}
z—l-[ 0 i|+(—1)'|: 0 }

where w is any scalar in R.

In addition, the locations of the x-part and y-part in each case are summarized in Table 8.

Remark 4 Similar to the power cone K, case discussed in Sect. 2.3, Theorems 3 and 4 also
show that our decompositions with respect to the exponential cone Kex), are easy to calculate.
Implementing a real example is routine, we do not repeat it again there. On the other hand,
different from the power cone case, the sy -part and s -part of the Type I decomposition with
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0> 20> 120y _NAEmV
0> 20 =120y 12 (S1g)
0> 2270 < Iz a1y 12 (Y1g)
0 <2z°0> 120y _im@

0=12z°0> Iz a1 12 (CCg) 0 < Cz°0 =1z oaqy 12 (Clg)
o= o="12'0=T12("g) 0 =72z < 121 Iz (£g) 0==2o="12'0# 2(lcg) 0 <2< T2y lz(llg)
vg tg g g
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Table 8 The locations of the = = - -

x-part and y-part in the Type II B lfz—_ Bs Ba

decomposition with respect to Boj By

’Cexp . R N N N N
Xloc Sy {0} U S3 S1U S {0} U S3 {0}U S3

Yioe {0)US3  $3U(0)  {0)uSs  SuS,  {0jUSs

respect to Kexp seems to be more regular than the Type II counterpart in general, due to the

appearance of the “wall” part in Fig. 6 (see S1U 8, U 83 U{0}). Therefore, we suggest to use
the Type I decomposition with respect to ICexp in the sequential studies.

4 Applications

In this section, we discuss some applications of these decompositions with respect to the
power cone K, and the exponential cone Kexp.

4.1 Conic functions

As mentioned before, an important application of the decomposition with respect to the given
cone is to establish its associated conic function. In this subsection, we focus on the conic
functions for the power cone K, and the exponential cone Kexp.

According to Theorem 2 and Remark 3, the conic function with respect to the power cone
K¢ is defined in the following form.

Definition 1 For any given z = (z1,2) € R x R2, let f be a scalar function defined in R and
fPo%¢" be the conic function with respect to the power cone Kq. Denote 1 := (1, DT e R?
and the space division of R x R? is defined as in (15). Then, we have

(a) If z € By, then

1 —1
() | | or (s | | e,
2 2
04(2) 04 (2)
- L
fP”U’W(Z) =1/ (W) ’ miz—li) +f (%) . g:le) if z € By,
—2 -2
L 0a(—2) 00 (2)
1] -1
1 _ 1 .
&) | am |+ (F) | mo if z € B3,
1 1
o (1) oa(D

where 0y (Z) is defined as in (11).
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(b) If z € By, then

1 T B 0 7
1 1
£y (l_zag T ren. (@)1 ifz € B,
Z, %
L 2 I
A B 0 7
71 0
Fa- 1|+ f(=D- 1 if 7 € Bao,
' ey
fpower(z) — L\z' . Lz |
B —21 1 7] B 0 1 7
—_1). |z1] af —1). lz1] af i
f(=1 <(722')a2) + f(=1 ((722')0(2) if z € By3,
L -z L 0 _
—21 B 0 7
FED| TR fD O | ifzeBu
lz1l ) |z1] a
L (ezfm) i L ((—zf)al)

(c) If z € B3, then

r oz ] B 0 7
1 1
7 (%‘)1 FrED | g <I%\>‘ ifz € By,
o S
L 22 L 0 |
fpower(z) =
Z1 7] B 0 7]
21 0 .
fa- 1+ f(=D- 1 if z € B3».
@' Loy
3”1 2 ZO(]
- 1 - - 1 -

(d) If z € By, then

o - o -
@ = fM | 1L+ f(=D-| =1] or
Fo- -
@ = fM- 0 [+ f(=D-| 0
1 -1

Similarly, according to Theorem 3 and Remark 4, the conic function with respect to the
exponential cone Kexp has the following explicit description.

Definition 2 For any given z = (z1,2) € R x R2, let f be a scalar function defined in R and
Sf¢*P be the conic function with respect to the exponential cone Kexp, the space division of
R x R2 is defined as in (46). Then, we have
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(a) If z € By, then

P (2)

(@1 Hexp () Oexp B) 1 (GexpE)—21) Nexp 3) -1 . = =

f(i_ = ) : +f<7.P AFE—c ) , if z € By U Bya,
Terp @) Hlonp (D =5 exp O loxp @) =
1 —1 .
Gexp(D) —21Nep (D) .

F(aimmln) | |+ ey ) | | if z € Bus,

Texp (1) +1exp (1) Fop @ Oexp (1) +1exp (1) m

where exp(2), exp(2) are defined as in (45).
(b) If z € By, then

| o
[P = f(oexp<z>>~[ z(_)}+f<sgn<aexp<x>—m>-[ '“ OU“P(Z)'],
Oexp

where sgn(?) denotes the sign of the variable r € R.
(c) If z € Bs, then

z -1
() = Flsn(zn + nep(E) - ['“ * 'Zf"p(z”] [ exp (D) - [ P } -
Nexp (2

(d) If z € By, then
FEPE) = f ) [ma"{o‘)’ '”}] + £ [mi“{% ‘W}] ,
where w is any scalar in R.

4.2 The generalization to the high-dimensional power cone

In this subsection, we extend the discussion for the power cone K to its high-dimensional
version

K = {(xl,)a eRxR"

n

il <[5 5 =0, i= 12n] (48)
i=1

where x = (X1, X2, ..., )E,,)T € R”. In order to make the classifications clear and neat, we

similarly adapt some notations as follows:

7:=(21,22,---, Zn)T € R", Zmin :==min{Zy, 22, ..., Zn}, Zmax := mMax{Z1,22, ..., Zn},
1™ .=a,1,...,DT eR”, 1, :=(©,...,1,---, 0T eR”, [n]:=({1,2,...,n},
I_:={ien]|z <0}, Ip:={i en]|z; =0}, I} := {iaé [n]|z; > 0},
@ =TT 2 @ =TT (2)"
(49
where 1; (k = 1,2, ..., n) is the kth column of the identity matrix I, € R"*". Now, the
space R x R”" can be divided into the following four blocks

BlockT: B :={(z1,2) € R x R" | Zmin - Zmax > 0 OF (Zmin = Zmax = 0 and 21 # 0)} .
Block I: BJ" :={(z1,2) € R x R" | Zmin * Zmax = 0 and Zmin + Zmax 7 0}
Block IL: BY" :={(z1,2) € R X R" | Zmin - Zmax < 0} .
Block IV : B" :={(z1,2) € R X R" | Zmin = Zmax = O and z; = 0}
(50)
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We now establish two types of decompositions with respect to IC((X") defined as in (48) in
the following theorems. The proofs are adapted from Theorem 1 and 2 , we omit their details
and only list the results.

Theorem 5 For any given z = (z1,2) € R x R”, its Type I decomposition with respect to
IC((,") is given by

(a) Ifz € B\", then

N PR (e 1 sy ) 2 1
@+ @)-0d 2) [ : }L G1—o @) @) [ . } il =n,

— — _ — _ 2z
o @+ @) o @ " @+l @) @)

)21y, 00 = 1 ), =y ), = 1

21— e (=2)):0a (=2) - @140y " (=2))ne ' (=2) - ;

= ), - ), - . — + z ,if |- = n,
o (=208 (=2) |: al)(,”)(z—i) i| o (~+nd" (=2) |: Oy :| if 11—

(n) 1(n) 1 1) (1(n) 1
1 1 21 1 :
(n)ZI(:)a ((n))(") : 1™ + 1(,?;1 ((m) oy 1™ , ifllol =n,
o A7) | s | el ameam) || = m o
o {*3

where 109 oo(,")(i), né")(f) are defined as in (49) and |I| denotes the cardinality of I.

(b) Ifz € By", then
1 Nt 0 .
. ;(35")»“) +1- yL(Bém,a) , if|I_] =0,

-2 0 .
(_1) . |:;C(B§"),b):| + (_1) : |:§(B§"),b):| ) lf|1+| = Os

. . . =cp =cpm op® ~p)
where k is the smallest index in Iy and xB2 - yBy"@) 5 (By7.b) 35(By7.b)

are respec-
tively defined as follows:
=(B",a) -(B,a)
(xj Yj
(z),0) ifjels,
(I, =1 ifjelyand j #k,
1 1
U Ok
a Jz1] j21) .
T\ 0 N\ ifj=k
]_[ (;(B2 .a)) l_[ <)LC(B2 ,a))
ik | Xi itk \ i
=B by - (BM b
(xj Y
(=z;,0) ifjel-,
(1, =1 ifjelyand j #k,
1 1
A A
B 21l 21l o
7 \9 s 7 \9 1 e k~
M (;.‘B%"“ﬂ) ‘ M (;.‘WM) ‘ fi
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1 <1 1 0 if [Ip] =0
pete [T gt | F10I=0

X 21 | 0 £ 0
. )?:(Bén)’b) +1- yL(Bén)»h) i lf| 0| # ’

(c) Ifz € B("), then

7=

. . op) 2opm N
where t is the smallest index in I_ and xB3 9 B30 qre respectively defined as

Sfollows:

BM,a) (B ,a)
Yj Y

(z),0) ifj €1y,
(=z;,2z)) ifjel_andj #t,
. o o
lz1] i 7, — lz1] - lf] =t
RSN P R
l'[,v# X } l'[m X }

£(B5".b) 5(B3.b)

Similarly, q is the smallest index in Iy and x y are respectively defined as
follows:
B ) =B b
oY
(z;, 0 ifjels,
(=2, 2%j) ifjel-,
(1, =1 ifjelpand j #q,
1 1
= aq @
lz1] lz1 v
S s T N % ifji=gq.
(n) i (n) i
l_[i#-q (jci(B3 )b)) ni#‘i (jci(B3 Yb)>

() Ifz € B{", then

0 0
z=1-" l(n)—lk +1- lk_l(”) ,

where 1 (k = 1,2, ..., n) is the kth column of the identity matrix I,,.

Theorem 6 For any given z = (z1,7) € R x R", its Type Il decomposition with respect to
IC((;') is given by
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(a) Ifz € Bf"), then

(n) = l (n) = _ —]
atey @ [ : }r”a g [ _i ] if 1] = n,
s @) o)
- 1 RGOy —1 )
= = Uaz 2 |: (n)—z :| + % éZ) L |: <">—Z i| s lf”_| =n,
s (=2) o (=3
1 - —1
S I TN e S (O I if llo| = n.
ag (1) ag (1)

(b) Ifz € BY", then
21 0 .
1- ;(Béﬂ) + ( 1) y B(”) .a) s l‘f|1—| = 07

—Z1 0 )
(=1 2B b) +1- s | ifll4] =0,

(n) (n)
where k is the smallest index in Iy and X2 @ y(B

tively defined as follows:

=B a) (B ,a)
(xj Vi

NS

7=

weop(n) o p(n)
a)7 x(BZ ’b), y(BZ b) are respec-

(zj,0) ifjely,
(I, 1) ifjelyand j #k,
1 1
B % %
|z1] lz1] e
(1;(”) o\ ’ (;(") @ fj=k
l_[17£k<x > Hl#k('x )
=(BY.b) (B .b)
(xj Y
(=2;,0) ifjel-,
1, -1 ifj €lyand j #k,
1 1
3 a ax
z1] |z s
O] 7 ) W\ ifj =k.
IT; i#k <X(B h>) 1—1,#( e )

(© Ifz € BY", then

T 1 0 if 1Io] = 0
: ,;E.(B;n)’a) +(_ ) ;(Bé")!a) ) lf' 0| — Y

1 <l 1 0 if |1 0
|z [TED- s | if o] # 0,

=

@ Springer



184 Journal of Global Optimization (2020) 76:155-188

b (n) . () .
where t is the smallest index in I_ and xB3 -9 B39 are respectively defined as
follows:
=(B{",a) =(B",a)
<x,- Y
), 0) ifj €L,
(=zj, —2z;) ifjel_andj #t,
1 1
_ o ar
lz1] = |z1] e
T\ | T T e ifj=1.
[Tz (fi > ) [Ties <)_‘i i )
seop(n) e p(n)
Similarly, q is the smallest index in Iy and x B3 b FBSD) gre respectively defined as
follows:
=(B".b) =(B" b)
Y Y
(2]7 O) lf] S I+,
(=2, —27)) ifjel,
(. 1) ifj €loand j #q,
1 1
= @ @
21l 21l e
:(Bg”),w 9 ’ :(Bgn))b) @ ifj=gq.
[Tizg | % [Tisg | X

() Ifz € B", then
0 0
i=1- [1<n> —lk] +(=1- [1<"> g lk] .

5 Concluding remarks

In this paper, we propose two types of decomposition approaches for the power cone /C,
and the exponential cone Kexp, which are the generators of many well-known nonsymmetric
cones. In particular, the corresponding explicit decomposition formulas are established based
on different classifications for the reference points with respect to the given cones and the
decomposition types. In contrast to the setting of Kexp, the power cone Ky, seems to be more
regular, because its two types of decompositions share the same space division. At the same
time, we also define their conic functions, namely f7°*¢" and f¢*¥ as Definition 1 and
2 . As a byproduct, we can extend the decomposition results of the power cone Ky to its
high-dimensional case IC&”) by slight modifications.

Although the results are not quite consummate due to the difficulty of handling non-
symmetric cones, they are very crucial to subsequent study towards nonsymmetric cone
optimization. Further investigations are definitely desirable. We summarize and list out some
future topics as below.
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1. Exploring more structures and properties for the power cone and the exponential cone,
such as their variational geometries including normal cones, tangent cones, second-order
tangent sets, critical cone and “sigma” terms.

2. Similar to the second order cone setting and its generalization like circular cone, can the
properties of continuity, strict continuity, Lipschitz continuity, directional differentiabil-
ity, differentiability, continuous differentiability, and semismoothness be each inherited
by fPo%e and f*P from f?

3. Designing new algorithms for these nonsymmetric cones based on the non-interior-point
framework, such as augmented Lagrangian method, proximal point method and their
variants.

On the other hand, there are so many non-symmetric cones in real world. Can we figure out
a way to clarify them? This is another important direction for our future study.
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The third author’s work is supported by Ministry of Science and Technology, Taiwan.

6 Appendix

6.1 The concepts of a-representable and extended a-representable sets

For a given convex set K, it is «-representable [5, p. 110] if there exist a finite integer M,
scalars; € [0, 1],i = 1,2, ..., M, vectors ¢y, ¢a, ..., cy € R3, matrices Ay, Az, ..., Ay

with three columns and an appropriate number of rows, a matrix Ay and a vector ¢y such
that

uek & c,-—A,.T[z] €Ky (i=12,.... M), A?[z] =cy
for some artificial variables or modelling variables v. Similarly, the set K is extended o-

representable [5, p. 122] if there exist finite integers My, M3, matrices Ay, Aexp, A r and
VECtors Cy, Cexp, € ¢ Of appropriate sizes such that

M M
u u u
uek & ca—Ag[v] Gl_[/Ca,-, cexp—Agp[v} el_[ICeXp, A?[U} =cy.
i=1 i=1

6.2 The decomposition with respect to the circular cone
Consider the circular cone
Lo = {(x1,%) e Rx R |x;tan 6 > [ %]}.

For any given z = (z1,7) € R x R"~!, the projection mappings ITz, (z), Iz (z) are respec-
tively given by

z, ifz € Ly, 0, if z € Ly,
MHp,(z) =40, ifz € Ly, MOps(z) = z, ifz € Lf,
u, otherwise, v, otherwise,

@ Springer



186 Journal of Global Optimization (2020) 76:155-188

where
z1 + llz2ll tan & z1 — |lz2]l cot &
1+ tan2 6 Y — 1 + cot? 6
71 + |lz2| tan 6 2 |’ - z1 — llz2ll cot & —22
S ——tanf | — ——————cotf | —-
1+ tan?6 llz2l 1 + cot? @ llz2l

Combining these results with the Moreau decomposition theorem, the decomposition with
respect to Lg is

2= - ad) + R (2) - a2, (51)
where
A1) =21 — ||Z]| cot, 72(2) :=z1 + ||Z] tan ),
PO N 0 I
&7 l4cot20 [0 cotf - Ly || —w |’
ﬂ(Q) o 1 1 0 1
2 T 1 +tan26 |0 tan@ - Ly || w
with w = ﬁ if ¥ # 0 and w is any unit vector in R lif ¥ = 0and I,_ is the identity

matrix of order n — 1. It is easy to see that
Mg, (z) = max{0, 21 (2)} - @' + max{0, i2(z)} - .

More properties of the circular cone can be found in [45, Section 3].

6.3 Proof of Lemma 1

By definition, Ky is closed, since the functions )Ef” )Eg 2 and | x| are continuous on Ri and R,

respectively. To proof that ICy, is a convex cone, we only need to verify that it is closed under
the addition and the nonnegative multiplication. For any given (x1, X) € Ky and 8 > 0, one
can obtain that

(BX)* (BX2)*? = BX{'%5% = Blxi| = |Bx1l, Bx1 =0, Bxy = 0,
where the first equation uses the fact o; + oy = 1. Therefore, we have (x;, xX) € Ky. For

any given (x1, X), (y1, y) € Ky, we know

lxi] < x7'%3%, %1 =0, i = 0,

Iyl < 31557 51 =0, 52 > 0.
Itis easy to see that X1 +y; > 0, %2+ y2 > Oand [x; 4+ y1| < |xi|+[y1] < 27557+ 371 5572
In order to finish our proof, it suffices to show that
X2V < G4 Y)Y (G + 32)*2, V(xg, %), (01, V) € Ko (52)

We divide it into the following two cases. Suppose that there exists an index i € {1, 2} such
that x; = 0 or y; = 0, it is trivial to show (52). Otherwise, we obtain x, y € Ri .. Consider
the function f : R}, — R:

- —ay -«
fx) =x; lxzza
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where ¥ := (%1, ¥2)T € R? and ¥y, %2 > 0. By calculation, we obtain

ay (o — 1))?‘11172 0
0 (- HEP 2

VIf(F) =

Since «; € (0, 1) and X; is strictly positive, the Hessian matrix V2 f(X) is negative definite,
which shows that f is concave defined on ]R?F .. Therefore, we have

X+ 1
f(x+y>z§(f(i)+f(&)),

2
which is equivalent to the above inequality (52). O
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