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Abstract
It is known that the analysis to tackle with non-symmetric cone optimization is quite different
from the way to deal with symmetric cone optimization due to the discrepancy between these
types of cones. However, there are still common concepts for both optimization problems, for
example, the decomposition with respect to the given cone, smooth and nonsmooth analysis
for the associated conic function, conic-convexity, conic-monotonicity and etc. In this paper,
motivated by Chares’s thesis (Cones and interior-point algorithms for structured convex
optimization involving powers and exponentials, 2009), we consider the decomposition issue
of two core non-symmetric cones, in which two types of decomposition formulae will be
proposed, one is adapted from the well-knownMoreau decomposition theorem and the other
follows from geometry properties of the given cones. As a byproduct, we also establish the
conic functions of these cones and generalize the power cone case to its high-dimensional
counterpart.
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1 Introduction

Consider the following two core non-symmetric cones

Kα :=
{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| ≤ x̄α1

1 x̄α2
2 , x̄1 ≥ 0, x̄2 ≥ 0

}
, (1)

Kexp := cl

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ x1 ≥ x̄2 · exp

(
x̄1
x̄2

)
, x̄2 > 0, x1 ≥ 0

}
, (2)

where x̄ := (x̄1, x̄2)T ∈ R
2, α := (α1, α2)

T ∈ R
2, α1, α2 ∈ (0, 1), α1+α2 = 1 and cl(Ω) is

the closure of Ω . We call Kα the power cone and Kexp the exponential cone1, whose graphs
are depicted in Fig. 1.

1.1 Motivations and literatures

Whydowe pay attention to these two core non-symmetric cones? There are twomain reasons.
In theory, Chares [5] proposes two important concepts (i.e., α-representable and extended α-
representable, see “Appendix 6.1”) involving powers and exponentials and plenty of famous
cones can be generated from these two cones such as second-order cones [1,8,10,15,23,24],
p-order cones [2,27,44], geometric cones [4,16,17,26], L p cones [18] and etc., one can
refer to [5, chapter 4] for more examples. In applications, many practical problems can
be cast into optimization models involving the power cone constraints and the exponential
cone constraints, such as location problems [5,21] and geometric programming problems
[4,31,34]. Therefore, it becomes quite obvious that there is a great demand for providing
systematic studies for these cones.
Location problem [5,21]: The generalized location problem is to find a point x ∈ R

n whose
sum of weight distances from a given set of locations L1, . . . , Lm is minimized, which has
the following form

(P) minx∈Rn
∑m

i=1 wi‖x − Li‖pi

where ‖ · ‖pi (pi ≥ 1) denotes the pi -norm defined on Rn . If pi is equal to 2, then the above
problem reduces to the classical Weber-Point problem. Denote by x := (x1, . . . , xn)T ∈ R

n

and a := (a1, . . . , an)T ∈ R
n , Problem (P) can be rewritten as

minx,a,yi
∑m

i=1 wi ai
s.t . (yi, j , ai , x j − Li, j ) ∈ K 1

pi
, i = 1, . . . ,m, j = 1, . . . , n,∑n

j=1 yi, j = ai , i = 1, . . . ,m,

where Li, j and yi, j stand for the j-th component of Li ∈ R
n and yi ∈ R

n , respectively.
Geometric programming [4,31,34]: Let x := (x1, . . . , xn)T ∈ R

n be a vector with real
positive components xi . A real valued functionm, of the formm(x) := c

∏n
i=1 x

αi
i , is called

a monomial function, where c > 0 and αi are its coefficient and exponents, respectively. A
sum of one or moremonomials, i.e., a function that looks like f (x) :=∑K

k=1 mk(x), is called

1 The definition of Kexp used in (2) comes from [5, Section 4.1], which has a slight difference from another
form in [34, Definition 2.1.2] as

Kexp := cl

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ x1 ≥ x̄2 · exp

(
x̄1
x̄2

)
, x̄2 > 0

}
.

However, one can observe that these two definitions coincide with each other.
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Fig. 1 The power cone Kα (left) and the exponential cone Kexp (right)

a posynomial function, where mk(x) := ck
∏n

i=1 x
αi,k
i . A geometric program is composed

of a posynomial objective with posynomial inequality constraints and monomial equality
constraints, which can be described as

(GP)

minx f0(x)
s.t . fs(x) ≤ 1, s = 1, . . . , p,

gt (x) = 1, t = 1, . . . , q,

where fs := ∑K
k=1 ck,s

∏n
i=1 x

αi,k,s
i , s ∈ {0, 1, . . . , p} and gt (x) := ct

∏n
i=1 x

αi,t
i , t ∈

{1, . . . , q}. Using the following change of variables as xi := exp(ui ), ck,i := exp(dk,i ), ct :=
exp(dt ) and adding some additional variables, Problem (GP) can be rewritten as

minui ,w,ξk,0,ηk,s w

s.t . (dk,0 +∑n
i=1 ui · αi,k,0, ξk,0, 1) ∈ Kexp,

∑K
k=1 ξk,0 = w,

(dk,s +∑n
i=1 ui · αi,k,s, ηk,s, 1) ∈ Kexp,

∑K
k=1 ηk,s = 1, s = 1, . . . , p,

dt +∑n
i=1 ui · αi,t = 0, t = 1, . . . , q.

In the past three decades, a great deal of mathematical effort in conic programming has
been devoted to the study of symmetric cones and it has been made extensive progress
[9,14,29,30,33,38], particularly for the second-order cone (SOC) [1,8,10,15,23,24] and the
positive semidefinite cone [35,37,39–41]. For example, consider the second-order cone

L
n := {(x1, x̄) ∈ R × R

n−1 | x1 ≥ ‖x̄‖}.
For any given z = (z1, z̄) ∈ R × R

n−1, its decomposition with respect to L
n has the form

z = λ1(z) · u(1)
z + λ2(z) · u(2)

z , (3)

where λi (z) := z1 + (−1)i‖z̄‖ and u(i)
z is equal to 1

2

(
1, (−1)i z̄

‖z̄‖
)
, if z̄ �= 0; 1

2

(
1, (−1)iw

)
,

otherwise, which is applicable for i = 1, 2 with w ∈ R
n−1 being any unit vector. For any

scalar function f : R → R, the associated conic function f soc(z) (called the SOC function)
is given by

f soc(z) = f (λ1(z)) · u(1)
z + f (λ2(z)) · u(2)

z . (4)

In light of the decomposition formula and its conic function, one can further establish their
analytic properties (i.e., projectionmapping, cone-convexity, conic-monotonicity) and design
numerical algorithms (i.e., proximal-like algorithms and interior-point algorithms), see Fig. 2
for their relations and refer to the monograph [11] for more details. Similar results have
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Fig. 2 The relations between the decomposition with respect to SOC and other topics

also been established for the positive semidefinite cone [40,43] and symmetric cones [14,
38]. Therefore, the past experience [11,14,43] indicate that how to derive the associated
decomposition expression with respect to a given cone as the form (3) at a low cost becomes
an important issue in the whole picture of researches.

As a fundamental tool in optimization, Moreau decomposition theorem [25] characterizes
the key relationship between the decomposition with respect to a closed convex cone and its
projection mappings. More concretely, for any given z ∈ R

n , it can be uniquely decomposed
into

z = ΠK(z) + ΠK◦(z) = ΠK(z) − ΠK∗(−z), (5)

where ΠK(z) is the projection mapping of z ∈ R
n ontoK andK◦ is the polar cone ofK, i.e.,

K◦ := {y ∈ R
n | xT y ≤ 0, ∀x ∈ K}.

In addition, K∗ is the dual cone of K and satisfies the relation K∗ = −K◦. It follows from
(5) that if these projection mappings have closed-form expressions, the decomposition issue
can be simply solved by this classical theorem. However, for most non-symmetric cones
(except for the circular cone [7,45], see “Appendix 6.2”), their projection mappings are
usually not explicit, such as the power coneKα [21, section 2] and the exponential coneKexp

[26, section 6]. Thus, one cannot employ the Moreau decomposition theorem directly and
continue subsequent studies on optimization problems involving with these non-symmetric
cones. This is a big hurdle for non-symmetric cone optimization problems.

In reality, there are plenty of non-symmetric cones in the literatures, such as homoge-
neous cones [6,20,42], matrix norm cones [12], p-order cones [2,18,27,44], hyperbolicity
cones [3,19,32], circular cones [7,45] and copositive cones [13], etc. Unlike the symmetric
cone optimization, there seems no systematic study due to the various features and very few
algorithms are proposed to solve optimization problems with these non-symmetric cones
constraints, except for some interior-point type methods [6,22,28,36,44]. For example, Xue
and Ye [44] study an optimization problem of minimizing a sum of p-norms, in which two
new barrier functions are introduced for p-order cones and a primal-dual potential reduction
algorithm is presented. Chua [6] combines the T-algebra with the primal-dual interior-point
algorithm to solve the homogeneous conic programming problems. Based on the concept of
self-concordant barriers and the efficient computational experience of the long path-following
steps, Nesterov [28] proposes a new predictor-corrector path-following method with an addi-
tional primal-dual lifting process (called Phase I). Skajaa and Ye [36] present a homogeneous
interior-point algorithm for non-symmetric convex conic optimization, in which no Phase
I method is needed. Recently, Karimi and Tuncel [22] present a primal-dual interior-point
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methods for convex optimization problems, in which a new concept called Domain-Driven
Setup plays a crucial role in their theoretical analysis.

In contrast to these interior-point type methods, we pay more attention to the decomposi-
tion issue of the given cones. It is worth noting that the decompositions with respect to the
second-order cone Ln and the circular cone Lθ [see Eqs. (3) and (51)] show that any given
point can be divided into two parts, one lies in the boundary of the given cone (i.e., u(1)

z ∈ ∂Ln ,
ũ(1)
z ∈ ∂Lθ , where ∂Ω is the boundary of Ω) and the other comes from the boundary of the

given cone (i.e., u(2)
z ∈ ∂Ln) or its polar (i.e., ũ(2)

z ∈ ∂L◦
θ ). One can easily verify these results

by the Moreau decomposition theorem in some cases (for example, the given point lies out
the union of the given cone and its polar), but it is amazing that these decompositions are
satisfied in all cases! These observations motivate us to study the boundary structures of the
given cones more carefully.

1.2 Contributions and contents

In this paper, we successfully explore two new types of decompositions with respect to the
power cone Kα and the exponential cone Kexp, one is adapted from the well-known Moreau
decomposition theorem, which looks like

z = sx · x + sy · y, x ∈ ∂K, y ∈ ∂K◦, (sx , sy) �= (0, 0) (6)

and the other follows from geometric structures of the given cone, i.e.,

z = sx · x + sy · y, x ∈ ∂K, y ∈ ∂K, (sx , sy) �= (0, 0), (7)

where z ∈ R
n , sx , sy ∈ R, x, y ∈ R

n ,K has two choices, namelyKα orKexp, as defined in (1)
and (2). In the sequel, we call (6) the Type I decomposition and (7) the Type II decomposition,
respectively. To our best knowledge, no results about the decompositionswith respect to these
two non-symmetric cones have been reported. Hence, the purpose of this paper aims to fill
this gap and the contributions of our research can be summarized as follows.

(a) We propose a more compact description of the boundary for these two cones.
(b) Two types of decompositions with respect to Kα,Kexp are presented, which are do-able

and computable.
As a byproduct, the decomposition expressions with respect to the high-dimensional
power cone are also derived.

(c) We establish the conic functions of the power cone Kα and the exponential cone Kexp

based on their decomposition formulae.

The remainder of this paper is organized as follows. In Sects. 2 and 3, we present the
decomposition formulae with respect to the power cone Kα and the exponential cone Kexp,
respectively. In Sect. 4, we discuss some applications of these decompositions. Finally, we
draw some concluding remarks in Sect. 5.

2 The decompositions with respect to the power coneK˛

In this section, we present two types of decompositions with respect to the power cone Kα .
Before that, we present some analytic properties of Kα in the following lemmas.

Lemma 1 Kα is a closed convex cone.
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Proof It can be easily verified by definition, see “Appendix 6.3” for more details. ��
Lemma 2 The dual cone K∗

α can be described as

K∗
α =

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| ≤

(
x̄1
α1

)α1
(
x̄2
α2

)α2

, x̄1 ≥ 0, x̄2 ≥ 0

}
,

where x̄ := (x̄1, x̄2)T ∈ R
2, α := (α1, α2)

T ∈ R
2, α1, α2 ∈ (0, 1), α1 + α2 = 1.

Proof We refer the readers to [5, Theorem 4.3.1] for its verification. ��
From the relation K◦

α = −K∗
α and Lemma 2, the polar cone K◦

α has the following closed-
form expression.

Corollary 1 The polar cone K◦
α is given by

K◦
α =

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| ≤

(−x̄1
α1

)α1
(−x̄2

α2

)α2

, x̄1 ≤ 0, x̄2 ≤ 0

}
.

We now proceed to identify the structures of the power cone Kα , its dual K∗
α and its polar

K◦
α more clearly, particularly for their interiors and boundaries.

Lemma 3 The interior of the power cone Kα , its dual K∗
α and its polar K◦

α , denoted by
intKα , intK∗

α and intK◦
α , are respectively given by

intKα =
{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| < σα(x̄), x̄1 > 0, x̄2 > 0

}
, (8)

intK∗
α =

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| < ηα(x̄), x̄1 > 0, x̄2 > 0

}
, (9)

intK◦
α =

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ |x1| < ηα(−x̄), x̄1 < 0, x̄2 < 0

}
, (10)

where

σα(x̄) := x̄α1
1 x̄α2

2 , ηα(x̄) :=
(
x̄1
α1

)α1
(
x̄2
α2

)α2

. (11)

Proof By definition, (x1, x̄) is an element of intKα if and only if there exists an open neigh-
borhood of (x1, x̄) ∈ R × R

2 entirely included in Kα . Let us take (x1, x̄) ∈ Kα . For any
given strict positive scalars x̄1, x̄2 ∈ R, it is easy to see that (0, 0, 0), (0, x̄1, 0) and (0, 0, x̄2)
are all outside of intKα , due to the observation that every open neighborhood with respect
to each of these points contains a point with the negative x̄1 or x̄2 component. For a point
(x1, x̄1, x̄2) ∈ R × R

2 such that σα(x̄) = |x1| with x̄1, x̄2 > 0, where σα(x̄) is defined as
in (11). In this case, we can take a point (x ′

1, x̄
′
1, x̄

′
2) with 0 < x̄ ′

1 < x̄1, 0 < x̄ ′
2 < x̄2,

|x ′
1| > |x1| in every open neighborhood of (x1, x̄1, x̄2) ∈ R × R

2, which implies that
|x ′

1| > |x1| = σα(x̄) > σα(x̄ ′), i.e., the point (x ′
1, x̄

′
1, x̄

′
2) can not belong to Kα and hence

(x1, x̄1, x̄2) /∈ intKα .
Next, we turn to show that all the remaining points that do not satisfy the above two cases,

i.e., the points in the right-hand side of (8), belong to the interior ofKα . For sufficiently small
scalar ε ∈ (0,min{x̄1, x̄2}), let Bε

(x1,x̄)
be a neighborhood of (x1, x̄) with the form

Bε
(x1,x̄)

:=
{
(x ′

1, x̄
′) ∈ R × R

2
∣∣∣∣ 0 ≤ |x1| − ε ≤ |x ′

1| ≤ |x1| + ε,

0 < x̄i − ε ≤ x̄ ′
i ≤ x̄i + ε, i = 1, 2

}
.
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Taking (x1, x̄) ∈ R×R
2 from the right-hand side of (8), i.e., σα(x̄) > |x1|, x̄i > 0, i = 1, 2.

For all elements (x ′
1, x̄

′) ∈ Bε
(x1,x̄)

, we have

|x ′
1| − σα(x̄ ′) ≤ |x̄1| + ε − (x̄ ′

1)
α1(x̄ ′

2)
α2 ≤ |x̄1| + ε − (x̄1 − ε)α1(x̄2 − ε)α2 . (12)

In addition, letting ε → 0, we obtain

lim
ε→0

(|x̄1| + ε − (x̄1 − ε)α1(x̄2 − ε)α2
) = |x̄1| − σα(x̄) < 0.

Therefore, there exists a scalar ε∗ such that |x̄1| + ε∗ − (x̄1 − ε∗)α1(x̄2 − ε∗)α2 < 0. This
together with (12) imply that

|x ′
1| − σα(x̄ ′) < 0, ∀(x ′

1, x̄
′) ∈ Bε

(x1,x̄)
,

which is sufficient to show that Bε
(x1,x̄)

is entirely included inKα and hence (x1, x̄) ∈ intKα .

Applying a similar way toK∗
α andK◦

α , their interiors can also be verified as the right-hand
side of (9) and (10). ��

From the proof of Lemma 3, we further define the following sets

S1 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 > 0, x̄2 = 0

}
,

S2 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 = 0, x̄2 > 0

}
,

S3 := {(x1, x̄) ∈ R × R
2 | |x1| = σα(x̄), x̄1 > 0, x̄2 > 0

}
,

S4 := {(x1, x̄) ∈ R × R
2 | |x1| = ηα(x̄), x̄1 > 0, x̄2 > 0

}
,

T1 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 < 0, x̄2 = 0

} = −S1,
T2 := {(x1, x̄) ∈ R × R

2 | x1 = 0, x̄1 = 0, x̄2 < 0
} = −S2,

T3 := {(x1, x̄) ∈ R × R
2 | |x1| = ηα(−x̄), x̄1 < 0, x̄2 < 0

} = −S4.

(13)

Then, the boundary of Kα,K∗
α and K◦

α can be stated in a more compact form.

Lemma 4 The boundary of Kα and K∗
α , denoted by ∂Kα and ∂K∗

α , are respectively given by

∂Kα := S1 ∪ S2 ∪ S3 ∪ {0}, ∂K∗
α := S1 ∪ S2 ∪ S4 ∪ {0}.

Similarly, the boundary of K◦
α , denoted by ∂K◦

α , can be formulated as

∂K◦
α := T1 ∪ T2 ∪ T3 ∪ {0}.

Remark 1 It follows that the union set Kα ∪ K◦
α can be divided into seven parts

Kα ∪ K◦
α = S1 ∪ S2 ∪ T1 ∪ T2 ∪ P1 ∪ P2 ∪ {0},

where

P1 := {(x1, x̄) ∈ R × R
2 | |x1| ≤ σα(x̄), x̄1 > 0, x̄2 > 0

}
,

P2 := {(x1, x̄) ∈ R × R
2 | |x1| ≤ ηα(−x̄), x̄1 < 0, x̄2 < 0

}
.

In addition, the boundary of Kα and its polar K◦
α are depicted in Fig. 3.

In order to make the classifications clear and neat, we adapt some notations as follows:

z := (z1, z̄) ∈ R × R
2, z̄ := (z̄1, z̄2)T ∈ R

2, z̄min := min{z̄1, z̄2}, z̄max := max{z̄1, z̄2}.
(14)
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Fig. 3 The different parts of ∂Kα (left) and ∂K◦
α (right)

Consequently, we divide the space R × R
2 into the following four blocks

Block I : B1 := {(z1, z̄) ∈ R × R
2 | z̄min · z̄max > 0 or (z1 �= 0 and z̄min = z̄max = 0)

}
.

Block II : B2 := {(z1, z̄) ∈ R × R
2 | z̄min · z̄max = 0 and z̄min + z̄max �= 0

}
.

Block III : B3 := {(z1, z̄) ∈ R × R
2 | z̄min · z̄max < 0

}
.

Block IV : B4 := {(z1, z̄) ∈ R × R
2 | z1 = 0 and z̄min = z̄max = 0

}
.

(15)
The subcases of these blocks with respect to Kα can be found in Table 1.

2.1 The Type I decomposition with respect to the power coneK˛

In this subsection, we present the Type I decomposition with respect to the power cone
Kα . To proceed, we discuss four cases, in which the sets Si ⊂ K (i = 1, 2, 3, 4) and
Tj ⊂ ∂K◦ ( j = 1, 2, 3) are defined as in (13).
Case 1: (z1, z̄) ∈ B1.

(a) z̄min > 0. In this subcase, (z1, z̄) ∈ B11, i.e., z̄1 > 0, z̄2 > 0, which implies σα(z̄) > 0
and ηα(z̄) > 0. Then, we take x = ẋ (B1,a), y = ẏ(B1,a) and sx = ṡ(B1,a)

x , sy = ṡ(B1,a)
y ,

where

ẋ (B1,a) :=
[

1
z̄

σα(z̄)

]
∈ S3, ẏ(B1,a) :=

[
1

− z̄
ηα(z̄)

]
∈ T3. (16)

ṡ(B1,a)
x := z1 + ηα(z̄)

σα(z̄) + ηα(z̄)
· σα(z̄), ṡ(B1,a)

y := z1 − σα(z̄)

σα(z̄) + ηα(z̄)
· ηα(z̄). (17)

It is easy to show that the above setting satisfies the decomposition formula (6).
(b) z̄max < 0. Similar to the argument in Case 1 (a), (z1, z̄) ∈ B12, i.e., z̄1 < 0, z̄2 < 0, which

implies σα(−z̄) > 0 and ηα(−z̄) > 0. In this subcase, we set x = ẋ (B1,b), y = ẏ(B1,b)

and sx = ṡ(B1,b)
x , sy = ṡ(B1,b)

y , where

ẋ (B1,b) :=
[

1
−z̄

σα(−z̄)

]
∈ S3, ẏ(B1,b) :=

[
1
z̄

ηα(−z̄)

]
∈ T3. (18)

ṡ(B1,b)
x := z1 − ηα(−z̄)

σα(−z̄) + ηα(−z̄)
· σα(−z̄),
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ṡ(B1,b)
y := z1 + σα(−z̄)

σα(−z̄) + ηα(−z̄)
· ηα(−z̄). (19)

(c) z1 �= 0 and z̄min = z̄max = 0. In this subcase, (z1, z̄) ∈ B13, which implies σα(z̄) = 0
and ηα(z̄) = 0. Therefore, we set x = ẋ (B1,c), y = ẏ(B1,c) and sx = ṡ(B1,c)

x , sy = ṡ(B1,c)
y ,

where

ẋ (B1,c) :=
[

1
1

σα(1)

]
∈ S3, ẏ(B1,c) :=

[
1

− 1
ηα(1)

]
∈ T3, (20)

ṡ(B1,c)
x := z1

σα(1) + ηα(1)
· σα(1), ṡ(B1,c)

y := z1
σα(1) + ηα(1)

· ηα(1) (21)

with 1 := (1, 1)T ∈ R
2.

Case 2: (z1, z̄) ∈ B2.

(a) z̄min = 0, z̄max > 0. In this subcase, (z1, z̄) ∈ B21 or (z1, z̄) ∈ B22. Therefore, we set
x = ẋ (B2,a), y = ẏ(B2,a) and sx = 1, sy = 1, where ẋ (B2,a) = (ẋ (B2,a)

1 , ˙̄x (B2,a)) and

ẏ(B2,a) = (ẏ(B2,a)
1 , ˙̄y(B2,a)) with

ẋ (B2,a)
1 := z1, ˙̄x (B2,a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
(

|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎦ if (z1, z̄) ∈ B21,

⎡
⎢⎣

z̄1(
|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if (z1, z̄) ∈ B22,

(22)

ẏ(B2,a)
1 := 0, ˙̄y(B2,a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣−

(
|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎦ if (z1, z̄) ∈ B21,

⎡
⎢⎣

0

−
(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if (z1, z̄) ∈ B22.

(23)

It is easy to see that

(a) (z1, z̄) ∈ B21, z1 = 0 ⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B21, z1 �= 0 ⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B22, z1 = 0 ⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B22, z1 �= 0 ⇒ x ∈ S3, y ∈ T2.

(b) z̄min < 0, z̄max = 0. In this subcase, (z1, z̄) ∈ B23 or (z1, z̄) ∈ B24. We set x = ẋ (B2,b),
y = ẏ(B2,b) and sx = −1, sy = −1, where ẋ (B2,b) = (ẋ (B2,b)

1 , ˙̄x (B2,b)) and ẏ(B2,b) =
(ẏ(B2,b)

1 , ˙̄y(B2,b)) with
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ẋ (B2,b)
1 := −z1, ˙̄x (B2,b) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
( |z1|

(−z̄2)α2

) 1
α1

−z̄2

⎤
⎦ if (z1, z̄) ∈ B23,

⎡
⎣ −z̄1( |z1|

(−z̄1)α1

) 1
α2

⎤
⎦ if (z1, z̄) ∈ B24,

(24)

ẏ(B2,b)
1 := 0, ˙̄y(B2,b) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣−

( |z1|
(−z̄2)α2

) 1
α1

0

⎤
⎦ if (z1, z̄) ∈ B23,

⎡
⎣ 0

−
( |z1|

(−z̄1)α1

) 1
α2

⎤
⎦ if (z1, z̄) ∈ B24.

(25)

Similar to the arguments in Case 2 (a), we obtain

(a) (z1, z̄) ∈ B23, z1 = 0 ⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B23, z1 �= 0 ⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B24, z1 = 0 ⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B24, z1 �= 0 ⇒ x ∈ S3, y ∈ T2.

Case 3: (z1, z̄) ∈ B3. In this subcase, (z1, z̄) ∈ B31 or (z1, z̄) ∈ B32.We set x = ẋ (B3) ∈ ∂Kα ,
y = ẏ(B3) ∈ ∂K◦

α and sx = 1, sy = 1, where ẋ (B3) = (ẋ (B3)
1 , ˙̄x (B3)) and ẏ(B3) = (ẏ(B3)

1 ,
˙̄y(B3)) with

ẋ (B3)
1 := z1, ˙̄x (B3) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
(

|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎦ if z ∈ B31,

⎡
⎢⎣

z̄1(
|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if z ∈ B32,

(26)

ẏ(B3)
1 := 0, ˙̄y(B3) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ z̄1 −

(
|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎦ if z ∈ B31,

⎡
⎢⎣

0

z̄2 −
(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if z ∈ B32.

(27)

More concretely, we obtain

(a) (z1, z̄) ∈ B31, z1 = 0 ⇒ x ∈ S2, y ∈ T1; (b) (z1, z̄) ∈ B31, z1 �= 0 ⇒ x ∈ S3, y ∈ T1;
(c) (z1, z̄) ∈ B32, z1 = 0 ⇒ x ∈ S1, y ∈ T2; (d) (z1, z̄) ∈ B32, z1 �= 0 ⇒ x ∈ S3, y ∈ T2.

Case 4: (z1, z̄) ∈ B4. In this subcase, we set x = ẋ (B4), y = ẏ(B4) and sx = 1, sy = 1, where

ẋ (B4) :=
⎡
⎣ 0
1
0

⎤
⎦ ∈ S1, ẏ(B4) :=

⎡
⎣ 0

−1
0

⎤
⎦ ∈ T1, (28)

or

ẋ (B4) :=
⎡
⎣ 0
0
1

⎤
⎦ ∈ S2, ẏ(B4) :=

⎡
⎣ 0

0
−1

⎤
⎦ ∈ T2. (29)
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Table 2 The locations of the x-part and y-part in the Type I decomposition with respect to Kα

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22 B̄23 B̄24 B̄31 B̄32

xloc S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S1 ∪ S2
yloc T3 {0} ∪ T1 {0} ∪ T2 {0} ∪ T1 {0} ∪ T2 T1 T2 T1 ∪ T2

To sum up these discussions, we present the Type I decomposition with respect to the
power cone Kα in the following theorem.

Theorem 1 For any given z = (z1, z̄) ∈ R×R
2, its Type I decomposition with respect toKα

is given by

(a) If z ∈ B1, then

z =

⎧⎪⎨
⎪⎩
ṡ(B1,a)
x · ẋ (B1,a) + ṡ(B1,a)

y · ẏ(B1,a), if z ∈ B11,

ṡ(B1,b)
x · ẋ (B1,b) + ṡ(B1,b)

y · ẏ(B1,b), if z ∈ B12,

ṡ(B1,c)
x · ẋ (B1,c) + ṡ(B1,c)

y · ẏ(B1,c), if z ∈ B13,

where ẋ (B1,a), ẏ(B1,a), ṡ(B1,a)
x , ṡ(B1,a)

y are defined as in (16)–(17), ẋ (B1,b), ẏ(B1,b), ṡ(B1,b)
x ,

ṡ(B1,b)
y are defined as in (18)–(19) and ẋ (B1,c), ẏ(B1,c), ṡ(B1,c)

x , ṡ(B1,c)
y are defined as in

(20)–(21).
(b) If z ∈ B2, then

z =
{
ẋ (B2,a) + ẏ(B2,a), if z ∈ B21 or z ∈ B22,

(−1) · ẋ (B2,b) + (−1) · ẏ(B2,b), if z ∈ B23 or z ∈ B24,

where ẋ (B2,a), ẏ(B2,a) are defined as in (22)–(23), ẋ (B2,b), ẏ(B2,b) are defined as in (24)–
(25).

(c) If z ∈ B3, then z = ẋ (B3) + ẏ(B3), where ẋ (B3), ẏ(B3) are defined as in (26)–(27).
(d) If z ∈ B4, then z = ẋ (B4) + ẏ(B4), where ẋ (B4) and ẏ(B4) are defined as in (28) or (29).

In addition, the locations of the x-part and y-part in each case are shown in Table 2, where
Si , Ti (i = 1, 2, 3, 4) are defined as in (13) and xloc, yloc denote the locations of x and y,
respectively.

2.2 The Type II decomposition with respect to the power coneK˛

In this subsection, we present the Type II decomposition with respect to the power cone Kα .
Similarly, we consider the following four cases.
Case 1: (z1, z̄) ∈ B1.

(a) z̄min > 0. In this subcase, (z1, z̄) ∈ B11 and σα(z̄) > 0. Then, we take x = ẍ (B1,a),

y = ÿ(B1,a) and sx = s̈(B1,a)
x , sy = s̈(B1,a)

y , where

ẍ (B1,a) :=
[

1
z̄

σα(z̄)

]
∈ S3, ÿ(B1,a) :=

[ −1
z̄

σα(z̄)

]
∈ S3. (30)

s̈(B1,a)
x := z1 + σα(z̄)

2
, s̈(B1,a)

y := σα(z̄) − z1
2

. (31)

Similarly, we can show that the above setting satisfies the decomposition formula (7).
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(b) z̄max < 0. Similar to the argument in Case 1 (a), (z1, z̄) ∈ B12 and σα(−z̄) > 0. In this
subcase, we set x = ẍ (B1,b), y = ÿ(B1,b) and sx = s̈(B1,b)

x , sy = s̈(B1,b)
y , where

ẍ (B1,b) :=
[

1
−z̄

σα(−z̄)

]
∈ S3, ÿ(B1,b) :=

[ −1
−z̄

σα(−z̄)

]
∈ S3. (32)

s̈(B1,b)
x := z1 − σα(−z̄)

2
, s̈(B1,b)

y := −σα(−z̄) − z1
2

. (33)

(c) z1 �= 0 and z̄min = z̄max = 0. In this subcase, (z1, z̄) ∈ B13 and σα(z̄) = 0. Thus, we set
x = ẍ (B1,c), y = ÿ(B1,c) and sx = s̈(B1,c)

x , sy = s̈(B1,c)
y , where

ẍ (B1,c) :=
[

1
1

σα(1)

]
∈ S3, ÿ(B1,c) :=

[ −1
1

σα(1)

]
∈ S3, (34)

s̈(B1,c)
x = z1

2
, s̈(B1,c)

y = − z1
2

. (35)

Case 2: (z1, z̄) ∈ B2.

(a) z̄min = 0, z̄max > 0. In this subcase, (z1, z̄) ∈ B21 or (z1, z̄) ∈ B22, we set x = ẍ (B2,a),
y = ÿ(B2,a) and sx = 1, sy = −1, where ẍ (B2,a) = (ẍ (B2,a)

1 , ¨̄x (B2,a)) and ÿ(B2,a) =
(ÿ(B2,a)

1 , ¨̄y(B2,a)) with

ẍ (B2,a)
1 := z1, ¨̄x (B2,a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
(

|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎦ if (z1, z̄) ∈ B21,

⎡
⎢⎣

z̄1(
|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if (z1, z̄) ∈ B22,

(36)

ÿ(B2,a)
1 := 0, ¨̄y(B2,a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
(

|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎦ if (z1, z̄) ∈ B21,

⎡
⎢⎣

0(
|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if (z1, z̄) ∈ B22.

(37)

It is easy to see that

(a) (z1, z̄) ∈ B21, z1 = 0 ⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B21, z1 �= 0 ⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B22, z1 = 0 ⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B22, z1 �= 0 ⇒ x ∈ S3, y ∈ S2.

(b) z̄min < 0, z̄max = 0. In this subcase, (z1, z̄) ∈ B23 or (z1, z̄) ∈ B24. We set x = ẍ (B2,b),
y = ÿ(B2,b) and sx = −1, sy = 1, where ẍ (B2,b) = (ẍ (B2,b)

1 , ¨̄x (B2,b)) and ÿ(B2,b)

= (ÿ(B2,b)
1 , ¨̄y(B2,b)) with
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ẍ (B2,b)
1 := −z1, ¨̄x (B2,b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
( |z1|

(−z̄2)α2

) 1
α1

−z̄2

⎤
⎦ if (z1, z̄) ∈ B23,

⎡
⎣ −z̄1( |z1|

(−z̄1)α1

) 1
α2

⎤
⎦ if (z1, z̄) ∈ B24,

(38)

ÿ(B2,b)
1 := 0, ¨̄y(B2,b) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
( |z1|

(−z̄2)α2

) 1
α1

0

⎤
⎦ if (z1, z̄) ∈ B23,

⎡
⎣ 0( |z1|

(−z̄1)α1

) 1
α2

⎤
⎦ if (z1, z̄) ∈ B24.

(39)

Similar to the arguments in Case 2 (a), we obtain

(a) (z1, z̄) ∈ B23, z1 = 0 ⇒ x ∈ S2, y = 0; (b) (z1, z̄) ∈ B23, z1 �= 0 ⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B24, z1 = 0 ⇒ x ∈ S1, y = 0; (d) (z1, z̄) ∈ B24, z1 �= 0 ⇒ x ∈ S3, y ∈ S2.

Case 3: (z1, z̄) ∈ B3. In this subcase, (z1, z̄) ∈ B31 or (z1, z̄) ∈ B32. We set x = ẍ (B3),

y = ÿ(B3) and sx = 1, sy = −1, where ẍ (B3) = (ẍ (B3)
1 , ¨̄x (B3)) and ÿ(B3) = (ÿ(B3)

1 , ¨̄y(B3))

with

ẍ (B3)
1 := z1, ¨̄x (B3) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
(

|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎦ if z ∈ B31,

⎡
⎢⎣

z̄1(
|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if z ∈ B32,

(40)

ÿ(B3)
1 := 0, ¨̄y(B3)

j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣−z̄1 +

(
|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎦ if z ∈ B31,

⎡
⎢⎣

0

−z̄2 +
(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎦ if z ∈ B32.

(41)

More concretely, we obtain

(a) (z1, z̄) ∈ B31, z1 = 0 ⇒ x ∈ S2, y ∈ S1; (b) (z1, z̄) ∈ B31, z1 �= 0 ⇒ x ∈ S3, y ∈ S1;
(c) (z1, z̄) ∈ B32, z1 = 0 ⇒ x ∈ S1, y ∈ S2; (d) (z1, z̄) ∈ B32, z1 �= 0 ⇒ x ∈ S3, y ∈ S2.

Case 4: (z1, z̄) ∈ B4. In this subcase, we set x = ẍ (B4) ∈ ∂Kα , y = ÿ(B4) ∈ ∂Kα and sx = 1,
sy = −1, where ẍ (B4) = (ẍ (B4)

1 , ¨̄x (B4)) and ÿ(B4) = (ÿ(B4)
1 , ¨̄y(B4)) with

ẍ (B4) :=
⎡
⎣ 0
1
0

⎤
⎦ ∈ S1, ÿ(B4) :=

⎡
⎣ 0
1
0

⎤
⎦ ∈ S1, (42)
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Table 3 The locations of the x-part and y-part in the Type II decomposition with respect to Kα

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22 B̄23 B̄24 B̄31 B̄32

xloc S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S2 ∪ S3 S1 ∪ S3 S1 ∪ S2
yloc S3 {0} ∪ S1 {0} ∪ S2 {0} ∪ S1 {0} ∪ S2 S1 S2 S1 ∪ S2

or

ẍ (B4) :=
⎡
⎣ 0
0
1

⎤
⎦ ∈ S2, ÿ(B4) :=

⎡
⎣ 0
0
1

⎤
⎦ ∈ S2. (43)

As mentioned above, the next theorem presents the Type II decomposition with respect
to the power cone Kα .

Theorem 2 For any given z = (z1, z̄) ∈ R × R
2, its Type II decomposition with respect to

Kα is given by

(a) If z ∈ B1, then

z =

⎧⎪⎨
⎪⎩
s̈(B1,a)
x · ẍ (B1,a) + s̈(B1,a)

y · ÿ(B1,a), if z ∈ B11,

s̈(B1,b)
x · ẍ (B1,b) + s̈(B1,b)

y · ÿ(B1,b), if z ∈ B12,

s̈(B1,c)
x · ẍ (B1,c) + s̈(B1,c)

y · ÿ(B1,c), if z ∈ B13,

where ẍ (B1,a), ÿ(B1,a), s̈(B1,a)
x , s̈(B1,a)

y are defined as in (30)–(31), ẍ (B1,b), ÿ(B1,b), s̈(B1,b)
x ,

s̈(B1,b)
y are defined as in (32)–(33) and ẍ (B1,c), ÿ(B1,c), s̈(B1,c)

x , s̈(B1,c)
y are defined as in

(34)–(35).
(b) If z ∈ B2, then

z =
{
ẍ (B2,a) + (−1) · ÿ(B2,a), if z ∈ B21 or z ∈ B22,

(−1) · ẍ (B2,b) + ÿ(B2,b), if z ∈ B23 or z ∈ B24, ,

where ẍ (B2,a), ÿ(B2,a) are defined as (36)–(37), ẍ (B2,b), ÿ(B2,b) are defined as in (38)–(39).
(c) If z ∈ B3, then z = ẍ (B3) + (−1) · ÿ(B3), where ẍ (B3), ÿ(B3) are defined as in (40)–(41).
(d) If z ∈ B4, then z = ẍ (B4) + (−1) · ÿ(B4), where ẍ (B4) and ÿ(B4) are defined as in (42) or

(43).

In addition, the locations of the x-part and y-part in each case are summarized in Table 3.

2.3 Manipulation of a real example

In this subsection, we elaborate more about how to implement the Type I and Type II decom-
position with respect to the power cone Kα explicitly by manipulating an example. Without
loss of generality, we set the parameters α1 = α2 = 1

2 .

Example 1 The power cone K 1
2
and its polar cone K◦

1
2
are respectively given by

K 1
2

=
{
(x1, x̄) ∈ R × R

2

∣∣∣∣ |x1| ≤ x̄
1
2
1 x̄

1
2
2 , x̄1 ≥ 0, x̄2 ≥ 0

}
,

K◦
1
2

=
{
(x1, x̄) ∈ R × R

2

∣∣∣∣ |x1| ≤ (−2x̄1)
1
2 (−2x̄2)

1
2 , x̄1 ≤ 0, x̄2 ≤ 0

}
.
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According to the four blocks defined as in (15), we pick different points to figure out their
decompositions with respect to K 1

2
. For example, we take z = (1,−1,−2)T ∈ B12. In this

case, z1 = 1, z̄ = (−1,−2)T , σ 1
2
(−z̄) = √

2, η 1
2
(−z̄) = 2

√
2. From the relations (18)–(19)

and (32)–(33), we obtain

ẋ (B1,b) :=
⎡
⎣ 1

−z̄
σ 1
2
(−z̄)

⎤
⎦ =

⎡
⎢⎢⎣

1
1√
2
2√
2

⎤
⎥⎥⎦ ∈ S3, ẏ(B1,b) :=

⎡
⎣ 1

z̄
η 1
2
(−z̄)

⎤
⎦ =

⎡
⎢⎢⎣

1

− 1
2
√
2

− 1√
2

⎤
⎥⎥⎦ ∈ T3,

ṡ(B1,b)
x :=

z1 − η 1
2
(−z̄)

σ 1
2
(−z̄) + η 1

2
(−z̄)

· σ 1
2
(−z̄) = 1 − 2

√
2√

2 + 2
√
2

· √
2 = 1 − 2

√
2

3
,

ṡ(B1,b)
y :=

z1 + σ 1
2
(−z̄)

σ 1
2
(−z̄) + η 1

2
(−z̄)

· η 1
2
(−z̄) = 1 + √

2√
2 + 2

√
2

· 2√2 = 2(1 + √
2)

3
.

ẍ (B1,b) :=
⎡
⎣ 1

−z̄
σ 1
2
(−z̄)

⎤
⎦ =

⎡
⎢⎢⎣

1
1√
2
2√
2

⎤
⎥⎥⎦ ∈ S3, ÿ(B1,b) :=

⎡
⎣ −1

−z̄
σ 1
2
(−z̄)

⎤
⎦ =

⎡
⎢⎢⎣

−1
1√
2
2√
2

⎤
⎥⎥⎦ ∈ S3,

s̈(B1,b)
x :=

z1 − σ 1
2
(−z̄)

2
= 1 − √

2

2
, s̈(B1,b)

y :=
−σ 1

2
(−z̄) − z1

2
= −√

2 − 1

2
.

Therefore, the corresponding two types of decompositionswith respect toK 1
2
are respectively

given by

Type I:

⎡
⎢⎣

1

−1

−2

⎤
⎥⎦ = 1−2

√
2

3

⎡
⎢⎢⎣

1
1√
2
2√
2

⎤
⎥⎥⎦+ 2(1+√

2)
3 ·

⎡
⎢⎢⎣

1

− 1
2
√
2

− 1√
2

⎤
⎥⎥⎦ ,

Type II:

⎡
⎢⎣

1

−1

−2

⎤
⎥⎦ = 1−√

2
2

⎡
⎢⎢⎣

1
1√
2
2√
2

⎤
⎥⎥⎦+ −√

2−1
2 ·

⎡
⎢⎢⎣

−1
1√
2
2√
2

⎤
⎥⎥⎦ ,

whose graphs are depicted in Figs. 4 and 5 , respectively. The other cases for testing the
decompositions with respect to K 1

2
can be seen in Table 4, in which xloc, yloc, zloc denote

the locations of x, y, z, respectively.

Remark 2 As shown in Example 1, these two types of decompositions for any given nonzero
vectors with respect to the power coneKα are easy to implement, which is a new feature to the
progress of this core non-symmetric cone and plays a crucial role in continuing subsequent
study on this topic, for instance generating conic functions like the SOC-function [8] and
Löwner’s operator for the positive semidefinite cone [37,38] as mentioned above. Moreover,
through comparing the above two types of decompositions established in Theorem 1 and 2 ,
we rewrite them as follows:

Type I: z = s Ix · x I + s Iy · y I .
Type II: z = s I Ix · x I I + s I Iy · y I I .
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Fig. 4 The Type I decomposition for Example 1

Fig. 5 The Type II decomposition for Example 1
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Table 4 Examples of two types of decompositions with respect to K 1
2

z zloc Type I Type II

sx x xloc sy y yloc sx x xloc sy y yloc

⎡
⎣ 1
2
2

⎤
⎦ B1

5
3

⎡
⎣ 1
1
1

⎤
⎦ S3 − 2

3

⎡
⎢⎣

1
− 1

2

− 1
2

⎤
⎥⎦ T3

3
2

⎡
⎣ 1
1
1

⎤
⎦ S3

1
2

⎡
⎣−1

1
1

⎤
⎦ S3

⎡
⎣ 1
0
1

⎤
⎦ B2 1

⎡
⎣ 1
1
1

⎤
⎦ S3 1

⎡
⎣ 0

−1
0

⎤
⎦ T1 1

⎡
⎣ 1
1
1

⎤
⎦ S3 −1

⎡
⎣ 0
1
0

⎤
⎦ S1

⎡
⎣ 1

1
−1

⎤
⎦ B3 1

⎡
⎣ 1
1
1

⎤
⎦ S3 1

⎡
⎣ 0

0
−2

⎤
⎦ T2 1

⎡
⎣ 1
1
1

⎤
⎦ S3 −1

⎡
⎣ 0
0
2

⎤
⎦ S2

⎡
⎣ 0
0
0

⎤
⎦ B4

1

1

⎡
⎣ 0
1
0

⎤
⎦

⎡
⎣ 0
0
1

⎤
⎦

S1

S2

1

1

⎡
⎣ 0

−1
0

⎤
⎦

⎡
⎣ 0

0
−1

⎤
⎦

T1

T2

1

1

⎡
⎣ 0
1
0

⎤
⎦

⎡
⎣ 0
0
1

⎤
⎦

S1

S2

−1

−1

⎡
⎣ 0
1
0

⎤
⎦

⎡
⎣ 0
0
1

⎤
⎦

S1

S2

It is easy to see that if ηα(z) = σα(z), then x I = x I I , y I = −y I I , s Ix = s I Ix and s Iy = −s I Iy ,
where ηα, σα are defined as in (11). On the other hand, we also find that the sx -part and sy-part
of the Type I decomposition are more complicated than the Type II counterpart in general.
Therefore, we prefer the Type II decomposition with respect to Kα for further studies, see
Sect. 4 for more details.

3 The decompositions with respect to the exponential coneKexp

In this section, we present two types of decompositions with respect to the exponential cone
Kexp. Again, we also present its analytic properties. Due to similar procedures as Sect. 2, we
omit their proofs and only list some results. For the dual of the exponential cone Kexp, we
refer the readers to [5, Theorem 4.3.3] for its verification.

Lemma 5 Kexp is a closed convex cone.

Lemma 6 The dual cone K∗
exp can be described as

K∗
exp := cl

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ x1 ≥ − x̄1

e
· exp

(
x̄2
x̄1

)
, x̄1 < 0, x1 ≥ 0

}
.

Correspondingly, the polar K◦
exp is given by

K◦
exp := cl

{
(x1, x̄) ∈ R × R

2
∣∣∣∣ x1 ≤ − x̄1

e
· exp

(
x̄2
x̄1

)
, x̄1 > 0, x1 ≤ 0

}
.
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Similar to Lemma 4, we also define the following sets

Ŝ1 := {(x1, x̄) ∈ R × R
2 | x1 > 0, x̄1 < 0, x̄2 = 0

}
,

Ŝ2 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 < 0, x̄2 = 0

}
,

Ŝ3 := {(x1, x̄) ∈ R × R
2 | x1 > 0, x̄1 = 0, x̄2 = 0

}
,

Ŝ4 := {(x1, x̄) ∈ R × R
2 | x1 ≥ 0, σexp(x̄) = x1, x̄2 > 0

}
,

Ŝ5 := {(x1, x̄) ∈ R × R
2 | x1 > 0, x̄1 = 0, x̄2 > 0

}
,

Ŝ6 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 = 0, x̄2 > 0

}
,

Ŝ7 := {(x1, x̄) ∈ R × R
2 | x1 > 0, x̄1 = 0, x̄2 = 0

}
,

Ŝ8 := {(x1, x̄) ∈ R × R
2 | x1 ≥ 0, x̄1 < 0, −ηexp(x̄) = x1

}
,

T̂1 := {(x1, x̄) ∈ R × R
2 | x1 < 0, x̄1 = 0, x̄2 < 0

}
,

T̂2 := {(x1, x̄) ∈ R × R
2 | x1 = 0, x̄1 = 0, x̄2 < 0

}
,

T̂3 := {(x1, x̄) ∈ R × R
2 | x1 < 0, x̄1 = 0, x̄2 = 0

}
,

T̂4 := {(x1, x̄) ∈ R × R
2 | x1 ≤ 0, x̄1 > 0, −ηexp(x̄) = x1

}
.

(44)

Consequently, the boundary of Kexp and K◦
exp can be described in a more compact form.

Lemma 7 The boundary of Kexp and K∗
exp, denoted by ∂Kexp and ∂K∗

exp, are respectively
given by

∂Kexp := Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ4 ∪ {0}, ∂K∗
exp := Ŝ5 ∪ Ŝ6 ∪ Ŝ7 ∪ Ŝ8 ∪ {0},

where

σexp(x̄) := x̄2 · exp
(
x̄1
x̄2

)
, ηexp(x̄) := x̄1

e
· exp

(
x̄2
x̄1

)
. (45)

Similarly, the boundary of K◦
exp can be formulated as

∂K◦
exp := T̂1 ∪ T̂2 ∪ T̂3 ∪ T̂4 ∪ {0}.

Remark 3 Similar to Remark 1, the set Kexp ∪ K◦
exp can also be divided into the following

nine parts

Kexp ∪ K◦
exp = Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ T̂1 ∪ T̂2 ∪ T̂3 ∪ P̂1 ∪ P̂2 ∪ {0},

where

P̂1 := {(x1, x̄) ∈ R × R
2 | x1 ≥ 0, σexp(x̄) ≤ x1, x̄2 > 0

}
,

P̂2 := {(x1, x̄) ∈ R × R
2 | x1 ≤ 0, x̄1 > 0, −ηexp(x̄) ≥ x1

}
.

In addition, the boundary of Kexp and its polar K◦
exp are depicted in Fig. 6.

3.1 The Type I decomposition with respect to the power coneKexp

In this subsection, we present the Type I decomposition with respect to the exponential cone
Kexp, in which we divide the space R × R

2 into the following four blocks:

Block I : B̃1 := {(z1, z̄) ∈ R × R
2 | z̄1 · z̄2 > 0 or (z1 �= 0 and z̄ = 0)

}
.

Block II : B̃2 := {(z1, z̄) ∈ R × R
2 | (z̄1 = 0, z̄2 �= 0) or (z̄1 < 0, z̄2 > 0)

}
.

Block III : B̃3 := {(z1, z̄) ∈ R × R
2 | (z̄1 �= 0, z̄2 = 0) or (z̄1 > 0, z̄2 < 0)

}
.

Block IV : B̃4 := {(z1, z̄) ∈ R × R
2 | z1 = 0 and z̄ = 0

}
.

(46)

Their subcases with respect to Kexp for the Type I decomposition can be found in Table 5.
Similar to Theorem 1, we now present the Type I decomposition with respect to Kexp.
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Fig. 6 The different parts of ∂Kexp (left) and ∂K◦
exp (right)

Theorem 3 For any given z = (z1, z̄) ∈ R × R
2, its Type I decomposition with respect to

Kexp is given by

(a) If z ∈ B̃1, then

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z1 + ηexp(z̄)) · σexp(z̄)

σexp(z̄) + ηexp(z̄)
·
[

1
z̄

σexp(z̄)

]

+ (σexp(z̄)−z1)·ηexp(z̄)
σexp(z̄)+ηexp(z̄)

·
[

−1
z̄

ηexp(z̄)

]
, if z ∈ B̃11 or z ∈ B̃12,

z1 · σexp(1)
σexp(1) + ηexp(1)

·
[

1
1

σexp(1)

]
+ −z1 · ηexp(1)

σexp(1) + ηexp(1)
·
[ −1

1
ηexp(1)

]
, if z ∈ B̃13,

where 1 := (1, 1)T ∈ R
2 and σexp(z̄), ηexp(z̄) are defined as in (45).

(b) If z ∈ B̃2, then

z = σexp(z̄) ·
[

1
z̄

σexp(z̄)

]
+ sgn(σexp(x̄) − z1) ·

[−|z1 − σexp(z̄)|
0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.
(c) If z ∈ B̃3, then

z = sgn(z1 + ηexp(z̄)) ·
[ |z1 + ηexp(z̄)|

0

]
+ ηexp(z̄) ·

[
−1
z̄

ηexp(z̄)

]
.

(d) If z ∈ B̃4, then

z = 1 ·
[
max{0, w}

0

]
+ 1 ·

[
min{0,−w}

0

]
,

where w is any scalar in R.

In addition, the locations of the x-part and y-part in each case are summarized in Table 6,
where S̃i , T̃i (i = 1, 2, 3, 4) are defined as in (44).
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Table 6 The locations of the
x-part and y-part in the Type I
decomposition with respect to
Kexp

B̃1 B̃2 B̃3 B̃4

xloc Ŝ4 Ŝ4 {0} ∪ Ŝ3 {0} ∪ Ŝ3

yloc T̂4 {0} ∪ T̂3 T̂4 {0} ∪ T̂3

3.2 The Type II decomposition with respect to the power coneKexp

In this subsection, we present the Type II decomposition of the power coneKexp. By contrast
with the Type I case, we present a new space division for R × R

2 as follows:

Block I : B̄1 := {(z1, z̄) ∈ R × R
2 | z̄2 �= 0

}
.

Block II : B̄2 := {(z1, z̄) ∈ R × R
2 | (z1 �= 0, z̄ = 0) or (z̄1 < 0, z̄2 = 0)

}
.

Block III : B̄3 := {(z1, z̄) ∈ R × R
2 | z̄1 > 0, z̄2 = 0

}
.

Block IV : B̄4 := {(z1, z̄) ∈ R × R
2 | z1 = 0 and z̄ = 0

}
.

(47)

Table 7 indicates their subcases of these blocks with respect to Kexp for the Type II decom-
position.

Similar to Theorem 2, the next theorem presents the Type II decomposition with respect
to Kexp.

Theorem 4 For any given z = (z1, z̄) ∈ R × R
2, its Type II decomposition with respect to

Kexp is given by

(a) If z ∈ B̄1, then

z = σexp(z̄) ·
[

1
z̄

σexp(z̄)

]
+ sgn(z1 − σexp(z̄)) ·

[ |z1 − σexp(z̄)|
0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.

(b) If z ∈ B̄2, then

z = 1 ·
[
max{0, z1}

z̄

]
+ (−1) ·

[−min{0, z1}
0

]
.

(c) If z ∈ B̄3, then

z = 1 ·
[
max{0, z1}

0

]
+ (−1) ·

[−min{0, z1}
−z̄

]
.

(d) If z ∈ B̄4, then

z = 1 ·
[
max{0, w}

0

]
+ (−1) ·

[−min{0,−w}
0

]
,

where w is any scalar in R.

In addition, the locations of the x-part and y-part in each case are summarized in Table 8.

Remark 4 Similar to the power cone Kα case discussed in Sect. 2.3, Theorems 3 and 4 also
show that our decompositions with respect to the exponential coneKexp are easy to calculate.
Implementing a real example is routine, we do not repeat it again there. On the other hand,
different from the power cone case, the sx -part and sy-part of the Type I decomposition with
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Table 8 The locations of the
x-part and y-part in the Type II
decomposition with respect to
Kexp

B̄1 B̄2 B̄3 B̄4

B̄21 B̄22

xloc Ŝ4 {0} ∪ Ŝ3 Ŝ1 ∪ Ŝ2 {0} ∪ Ŝ3 {0} ∪ Ŝ3

yloc {0} ∪ Ŝ3 Ŝ3 ∪ {0} {0} ∪ Ŝ3 Ŝ1 ∪ Ŝ2 {0} ∪ Ŝ3

respect to Kexp seems to be more regular than the Type II counterpart in general, due to the
appearance of the “wall” part in Fig. 6 (see Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ {0}). Therefore, we suggest to use
the Type I decomposition with respect to Kexp in the sequential studies.

4 Applications

In this section, we discuss some applications of these decompositions with respect to the
power cone Kα and the exponential cone Kexp.

4.1 Conic functions

Asmentioned before, an important application of the decomposition with respect to the given
cone is to establish its associated conic function. In this subsection, we focus on the conic
functions for the power cone Kα and the exponential cone Kexp.

According to Theorem 2 and Remark 3, the conic function with respect to the power cone
Kα is defined in the following form.

Definition 1 For any given z = (z1, z̄) ∈ R×R
2, let f be a scalar function defined in R and

f power be the conic function with respect to the power cone Kα . Denote 1 := (1, 1)T ∈ R
2

and the space division of R × R
2 is defined as in (15). Then, we have

(a) If z ∈ B1, then

f power (z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
z1+σα(z̄)

2

)
·
⎡
⎢⎣

1
z̄1

σα(z̄)
z̄2

σα(z̄)

⎤
⎥⎦+ f

(
σα(z̄)−z1

2

)
·
⎡
⎢⎣

−1
z̄1

σα(z̄)
z̄2

σα(z̄)

⎤
⎥⎦ if z ∈ B11,

f
(
z1−σα(−z̄)

2

)
·
⎡
⎢⎣

1
−z̄1

σα(−z̄)
−z̄2

σα(−z̄)

⎤
⎥⎦+ f

(−σα(z̄)−z1
2

)
·
⎡
⎢⎣

−1
−z̄1
σα(z̄)
−z̄2
σα(z̄)

⎤
⎥⎦ if z ∈ B12,

f
( z1
2

) ·
⎡
⎢⎣

1
1

σα(1)
1

σα(1)

⎤
⎥⎦+ f

(−z1
2

) ·
⎡
⎢⎣

−1
1

σα(1)
1

σα(1)

⎤
⎥⎦ if z ∈ B13,

where σα(z̄) is defined as in (11).
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(b) If z ∈ B2, then

f power (z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (1) ·

⎡
⎢⎢⎣

z1(
|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎥⎦+ f (−1) ·

⎡
⎢⎢⎣

0(
|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎥⎦ if z ∈ B21,

f (1) ·

⎡
⎢⎢⎣

z1
z̄1(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎥⎦+ f (−1) ·

⎡
⎢⎢⎣

0
0(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎥⎦ if z ∈ B22,

f (−1) ·
⎡
⎢⎣

−z1( |z1|
(−z̄2)α2

) 1
α1

−z̄2

⎤
⎥⎦+ f (−1) ·

⎡
⎢⎣

0( |z1|
(−z̄2)α2

) 1
α1

0

⎤
⎥⎦ if z ∈ B23,

f (−1) ·
⎡
⎢⎣

−z1
−z̄1( |z1|

(−z̄1)α1

) 1
α2

⎤
⎥⎦+ f (−1) ·

⎡
⎢⎣

0
0( |z1|

(−z̄1)α1

) 1
α2

⎤
⎥⎦ if z ∈ B24.

(c) If z ∈ B3, then

f power (z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (1) ·

⎡
⎢⎢⎣

z1(
|z1|
z̄
α2
2

) 1
α1

z̄2

⎤
⎥⎥⎦+ f (−1) ·

⎡
⎢⎢⎣

0

−z̄1 +
(

|z1|
z̄
α2
2

) 1
α1

0

⎤
⎥⎥⎦ if z ∈ B31,

f (1) ·

⎡
⎢⎢⎣

z1
z̄1(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎥⎦+ f (−1) ·

⎡
⎢⎢⎣

0
0

−z̄2 +
(

|z1|
z̄
α1
1

) 1
α2

⎤
⎥⎥⎦ if z ∈ B32.

(d) If z ∈ B4, then

f power (z) := f (1) ·
⎡
⎣ 0
1
0

⎤
⎦+ f (−1) ·

⎡
⎣ 0

−1
0

⎤
⎦ or

f power (z) := f (1) ·
⎡
⎣ 0
0
1

⎤
⎦+ f (−1) ·

⎡
⎣ 0

0
−1

⎤
⎦ .

Similarly, according to Theorem 3 and Remark 4, the conic function with respect to the
exponential cone Kexp has the following explicit description.

Definition 2 For any given z = (z1, z̄) ∈ R×R
2, let f be a scalar function defined in R and

f exp be the conic function with respect to the exponential cone Kexp, the space division of
R × R

2 is defined as in (46). Then, we have
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(a) If z ∈ B̃1, then

f exp(z)

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
(

(z1+ηexp(z̄))·σexp(z̄)
σexp(z̄)+ηexp(z̄)

)
·
[

1
z̄

σexp(z̄)

]
+ f

(
(σexp(z̄)−z1)·ηexp(z̄)

σexp(z̄)+ηexp(z̄)

)
·
[

−1
z̄

ηexp(z̄)

]
, if z ∈ B̃11 ∪ B̃12,

f
(

z1·σexp(1)
σexp(1)+ηexp(1)

)
·
[

1
1

σexp(1)

]
+ f

( −z1·ηexp(1)
σexp(1)+ηexp(1)

)
·
[

−1
1

ηexp(1)

]
, if z ∈ B̃13,

where σexp(z̄), ηexp(z̄) are defined as in (45).
(b) If z ∈ B̃2, then

f exp(z) := f (σexp(z̄)) ·
[

1
z̄

σexp(z̄)

]
+ f (sgn(σexp(x̄) − z1)) ·

[−|z1 − σexp(z̄)|
0

]
,

where sgn(t) denotes the sign of the variable t ∈ R.

(c) If z ∈ B̃3, then

f exp(z) := f (sgn(z1 + ηexp(z̄))) ·
[ |z1 + ηexp(z̄)|

0

]
+ f (ηexp(z̄)) ·

[
−1
z̄

ηexp(z̄)

]
.

(d) If z ∈ B̃4, then

f exp(z) := f (1) ·
[
max{0, w}

0

]
+ f (1) ·

[
min{0,−w}

0

]
,

where w is any scalar in R.

4.2 The generalization to the high-dimensional power cone

In this subsection, we extend the discussion for the power cone Kα to its high-dimensional
version

K(n)
α :=

{
(x1, x̄) ∈ R × R

n
∣∣∣∣ |x1| ≤

n∏
i=1

x̄αi
i , x̄i ≥ 0, i = 1, 2, . . . , n

}
, (48)

where x̄ := (x̄1, x̄2, . . . , x̄n)T ∈ R
n . In order to make the classifications clear and neat, we

similarly adapt some notations as follows:

z̄ := (z̄1, z̄2, . . . , z̄n)T ∈ R
n, z̄min := min{z̄1, z̄2, . . . , z̄n}, z̄max := max{z̄1, z̄2, . . . , z̄n},

1(n) := (1, 1, . . . , 1)T ∈ R
n, 1k := (0, . . . , 1, · · · , 0)T ∈ R

n, [n] := {1, 2, . . . , n},
I− := {i ∈ [n] | z̄i < 0}, I0 := {i ∈ [n] | z̄i = 0}, I+ := {i ∈ [n] | z̄i > 0},

σ
(n)
α (z̄) :=∏n

i=1 z̄
αi
i , η

(n)
α (z̄) :=∏n

i=1

(
z̄i
αi

)αi
,

(49)
where 1k (k = 1, 2, . . . , n) is the kth column of the identity matrix In ∈ R

n×n . Now, the
space R × R

n can be divided into the following four blocks

Block I : B(n)
1 := {(z1, z̄) ∈ R × R

n | z̄min · z̄max > 0 or (z̄min = z̄max = 0 and z1 �= 0)} .

Block II : B(n)
2 := {(z1, z̄) ∈ R × R

n | z̄min · z̄max = 0 and z̄min + z̄max �= 0} .

Block III : B(n)
3 := {(z1, z̄) ∈ R × R

n | z̄min · z̄max < 0} .

Block IV : B(n)
4 := {(z1, z̄) ∈ R × R

n | z̄min = z̄max = 0 and z1 = 0} .

(50)
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We now establish two types of decompositions with respect to K(n)
α defined as in (48) in

the following theorems. The proofs are adapted from Theorem 1 and 2 , we omit their details
and only list the results.

Theorem 5 For any given z = (z1, z̄) ∈ R × R
n, its Type I decomposition with respect to

K(n)
α is given by

(a) If z ∈ B(n)
1 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z1+η
(n)
α (z̄))·σ (n)

α (z̄)

σ
(n)
α (z̄)+η

(n)
α (z̄)

·
[

1
z̄

σ
(n)
α (z̄)

]
+ (z1−σ

(n)
α (z̄))·η(n)

α (z̄)

σ
(n)
α (z̄)+η

(n)
α (z̄)

·
[

1
− z̄

η
(n)
α (z̄)

]
, if |I+| = n,

(z1−η
(n)
α (−z̄))·σ (n)

α (−z̄)

σ
(n)
α (−z̄)+η

(n)
α (−z̄)

·
[

1
−z̄

σ
(n)
α (−z̄)

]
+ (z1+σ

(n)
α (−z̄))·η(n)

α (−z̄)

σ
(n)
α (−z̄)+η

(n)
α (−z̄)

·
[

1
z̄

η
(n)
α (−z̄)

]
, if |I−| = n,

z1·σ (n)
α (1(n))

σ
(n)
α (1(n))+η

(n)
α (1(n))

·
[

1
1(n)

σ
(n)
α (1(n))

]
+ z1·η(n)

α (1(n))

σ
(n)
α (1(n))+η

(n)
α (1(n))

·
[

1

− 1(n)

η
(n)
α (1(n))

]
, if |I0| = n,

where 1(n), σ
(n)
α (x̄), η(n)

α (x̄) are defined as in (49) and |I | denotes the cardinality of I .
(b) If z ∈ B(n)

2 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ·
[

z1
˙̄x (B(n)

2 ,a)

]
+ 1 ·

[
0

˙̄y(B(n)
2 ,a)

]
, if |I−| = 0,

(−1) ·
[

−z1
˙̄x (B(n)

2 ,b)

]
+ (−1) ·

[
0

˙̄y(B(n)
2 ,b)

]
, if |I+| = 0,

where k is the smallest index in I0 and ˙̄x (B(n)
2 ,a), ˙̄y(B(n)

2 ,a), ˙̄x (B(n)
2 ,b), ˙̄y(B(n)

2 ,b) are respec-
tively defined as follows:(

˙̄x (B(n)
2 ,a)

j , ˙̄y(B(n)
2 ,a)

j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(1,−1) if j ∈ I0 and j �= k,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
˙̄x (B(n)

2 ,a)

i

)αi

⎞
⎟⎟⎠

1
αk

,−

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
˙̄x (B(n)

2 ,a)

i

)αi

⎞
⎟⎟⎠

1
αk

⎞
⎟⎟⎟⎠ if j = k.

(
˙̄x (B(n)

2 ,b)
j , ˙̄y(B(n)

2 ,b)
j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−z̄ j , 0) if j ∈ I−,

(1,−1) if j ∈ I0 and j �= k,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
˙̄x (B(n)

2 ,b)

i

)αi

⎞
⎟⎟⎠

1
αk

,−

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
˙̄x (B(n)

2 ,b)

i

)αi

⎞
⎟⎟⎠

1
αk

⎞
⎟⎟⎟⎠ if j = k.
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(c) If z ∈ B(n)
3 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ·
[

z1
˙̄x (B(n)

3 ,a)

]
+ 1 ·

[
0

˙̄y(B(n)
3 ,a)

]
, if |I0| = 0,

1 ·
[

z1
˙̄x (B(n)

3 ,b)

]
+ 1 ·

[
0

˙̄y(B(n)
3 ,b)

]
, if |I0| �= 0,

where t is the smallest index in I− and ˙̄x (B(n)
3 ,a), ˙̄y(B(n)

3 ,a) are respectively defined as
follows:

(
˙̄x (B(n)

3 ,a)

j , ˙̄y(B(n)
3 ,a)

j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(−z̄ j , 2z̄ j ) if j ∈ I− and j �= t,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=t

(
˙̄x (B(n)

3 ,a)

i

)αi

⎞
⎟⎟⎠

1
αt

, z̄t −

⎛
⎜⎜⎝ |z1|
∏

i �=t

(
˙̄x (B(n)

3 ,a)

i

)αi

⎞
⎟⎟⎠

1
αt

⎞
⎟⎟⎟⎠ if j = t .

Similarly, q is the smallest index in I0 and ˙̄x (B(n)
3 ,b), ˙̄y(B(n)

3 ,b) are respectively defined as
follows:

(
˙̄x (B(n)

3 ,b)
j , ˙̄y(B(n)

3 ,b)
j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(−z̄ j , 2z̄ j ) if j ∈ I−,

(1,−1) if j ∈ I0 and j �= q,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=q

(
˙̄x (B(n)

3 ,b)

i

)αi

⎞
⎟⎟⎠

1
αq

,−

⎛
⎜⎜⎝ |z1|
∏

i �=q

(
˙̄x (B(n)

3 ,b)

i

)αi

⎞
⎟⎟⎠

1
αq

⎞
⎟⎟⎟⎠ if j = q.

(d) If z ∈ B(n)
4 , then

z = 1 ·
[

0
1(n) − 1k

]
+ 1 ·

[
0

1k − 1(n)

]
,

where 1k (k = 1, 2, . . . , n) is the kth column of the identity matrix In.

Theorem 6 For any given z = (z1, z̄) ∈ R × R
n, its Type II decomposition with respect to

K(n)
α is given by
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(a) If z ∈ B(n)
1 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1+σ
(n)
α (z̄)
2 ·

[
1
z̄

σ
(n)
α (z̄)

]
+ σ

(n)
α (z̄)−z1

2 ·
[ −1

z̄
σ

(n)
α (z̄)

]
, if |I+| = n,

z1−σ
(n)
α (−z̄)
2 ·

[
1
−z̄

σ
(n)
α (−z̄)

]
+ −σ

(n)
α (z̄)−z1

2 ·
[ −1

−z̄
σ

(n)
α (−z̄)

]
, if |I−| = n,

z1
2 ·
[

1
1(n)

σ
(n)
α (1(n))

]
+ −z1

2 ·
[ −1

1(n)

σ
(n)
α (1(n))

]
, if |I0| = n.

(b) If z ∈ B(n)
2 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ·
[

z1
¨̄x (B(n)

2 ,a)

]
+ (−1) ·

[
0

¨̄y(B(n)
2 ,a)

]
, if |I−| = 0,

(−1) ·
[

−z1
¨̄x (B(n)

2 ,b)

]
+ 1 ·

[
0

¨̄y(B(n)
2 ,b)

]
, if |I+| = 0,

where k is the smallest index in I0 and ¨̄x (B(n)
2 ,a), ¨̄y(B(n)

2 ,a), ¨̄x (B(n)
2 ,b), ¨̄y(B(n)

2 ,b) are respec-
tively defined as follows:(

¨̄x (B(n)
2 ,a)

j , ¨̄y(B(n)
2 ,a)

j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(1, 1) if j ∈ I0 and j �= k,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
¨̄x (B(n)

2 ,a)

i

)αi

⎞
⎟⎟⎠

1
αk

,

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
¨̄x (B(n)

2 ,a)

i

)αi

⎞
⎟⎟⎠

1
αk

⎞
⎟⎟⎟⎠ if j = k.

(
¨̄x (B(n)

2 ,b)
j , ¨̄y(B(n)

2 ,b)
j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−z̄ j , 0) if j ∈ I−,

(1,−1) if j ∈ I0 and j �= k,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
¨̄x (B(n)

2 ,b)

i

)αi

⎞
⎟⎟⎠

1
αk

,

⎛
⎜⎜⎝ |z1|
∏

i �=k

(
¨̄x (B(n)

2 ,b)

i

)αi

⎞
⎟⎟⎠

1
αk

⎞
⎟⎟⎟⎠ if j = k.

(c) If z ∈ B(n)
3 , then

z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 ·
[

z1
¨̄x (B(n)

3 ,a)

]
+ (−1) ·

[
0

¨̄y(B(n)
3 ,a)

]
, if |I0| = 0,

1 ·
[

z1
¨̄x (B(n)

3 ,b)

]
+ (−1) ·

[
0

¨̄y(B(n)
3 ,b)

]
, if |I0| �= 0,
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where t is the smallest index in I− and ¨̄x (B(n)
3 ,a), ¨̄y(B(n)

3 ,a) are respectively defined as
follows:

(
¨̄x (B(n)

3 ,a)

j , ¨̄y(B(n)
3 ,a)

j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(−z̄ j ,−2z̄ j ) if j ∈ I− and j �= t,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=t

(
¨̄x (B(n)

3 ,a)

i

)αi

⎞
⎟⎟⎠

1
αt

,−z̄t +

⎛
⎜⎜⎝ |z1|
∏

i �=t

(
¨̄x (B(n)

3 ,a)

i

)αi

⎞
⎟⎟⎠

1
αt

⎞
⎟⎟⎟⎠ if j = t .

Similarly, q is the smallest index in I0 and ¨̄x (B(n)
3 ,b), ¨̄y(B(n)

3 ,b) are respectively defined as
follows:

(
¨̄x (B(n)

3 ,b)
j , ¨̄y(B(n)

3 ,b)
j

)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z̄ j , 0) if j ∈ I+,

(−z̄ j ,−2z̄ j ) if j ∈ I−,

(1, 1) if j ∈ I0 and j �= q,⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝ |z1|
∏

i �=q

(
¨̄x (B(n)

3 ,b)

i

)αi

⎞
⎟⎟⎠

1
αq

,

⎛
⎜⎜⎝ |z1|
∏

i �=q

(
¨̄x (B(n)

3 ,b)

i

)αi

⎞
⎟⎟⎠

1
αq

⎞
⎟⎟⎟⎠ if j = q.

(d) If z ∈ B(n)
4 , then

z = 1 ·
[

0
1(n) − 1k

]
+ (−1) ·

[
0

1(n) − 1k

]
.

5 Concluding remarks

In this paper, we propose two types of decomposition approaches for the power cone Kα

and the exponential coneKexp, which are the generators of many well-known nonsymmetric
cones. In particular, the corresponding explicit decomposition formulas are established based
on different classifications for the reference points with respect to the given cones and the
decomposition types. In contrast to the setting of Kexp, the power cone Kα seems to be more
regular, because its two types of decompositions share the same space division. At the same
time, we also define their conic functions, namely f power and f exp as Definition 1 and
2 . As a byproduct, we can extend the decomposition results of the power cone Kα to its
high-dimensional case K(n)

α by slight modifications.
Although the results are not quite consummate due to the difficulty of handling non-

symmetric cones, they are very crucial to subsequent study towards nonsymmetric cone
optimization. Further investigations are definitely desirable. We summarize and list out some
future topics as below.
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1. Exploring more structures and properties for the power cone and the exponential cone,
such as their variational geometries including normal cones, tangent cones, second-order
tangent sets, critical cone and “sigma” terms.

2. Similar to the second order cone setting and its generalization like circular cone, can the
properties of continuity, strict continuity, Lipschitz continuity, directional differentiabil-
ity, differentiability, continuous differentiability, and semismoothness be each inherited
by f power and f exp from f ?

3. Designing new algorithms for these nonsymmetric cones based on the non-interior-point
framework, such as augmented Lagrangian method, proximal point method and their
variants.

On the other hand, there are so many non-symmetric cones in real world. Can we figure out
a way to clarify them? This is another important direction for our future study.

Acknowledgements The first author’s work is supported by National Natural Science Foundation of China
(GrantNumber 11601389) andDoctoral Foundation of TianjinNormalUniversity (GrantNumber 52XB1513).
The third author’s work is supported by Ministry of Science and Technology, Taiwan.

6 Appendix

6.1 The concepts of˛-representable and extended˛-representable sets

For a given convex set K, it is α-representable [5, p. 110] if there exist a finite integer M ,
scalars αi ∈ [0, 1], i = 1, 2, . . . , M , vectors c1, c2, . . . , cM ∈ R

3, matrices A1, A2, . . . , AM

with three columns and an appropriate number of rows, a matrix A f and a vector c f such
that

u ∈ K ⇔ ci − AT
i

[
u
v

]
∈ Kαi (i = 1, 2, . . . , M), AT

f

[
u
v

]
= c f

for some artificial variables or modelling variables v. Similarly, the set K is extended α-
representable [5, p. 122] if there exist finite integers M1, M2, matrices Aα, Aexp, A f and
vectors cα, cexp, c f of appropriate sizes such that

u ∈ K ⇔ cα − AT
α

[
u
v

]
∈

M1∏
i=1

Kαi , cexp − AT
exp

[
u
v

]
∈

M2∏
i=1

Kexp, AT
f

[
u
v

]
= c f .

6.2 The decomposition with respect to the circular cone

Consider the circular cone

Lθ := {(x1, x̄) ∈ R × R
n−1 | x1 tan θ ≥ ‖x̄‖}.

For any given z = (z1, z̄) ∈ R×R
n−1, the projection mappings ΠLθ (z),ΠL◦

θ
(z) are respec-

tively given by

ΠLθ (z) :=
⎧⎨
⎩
z, if z ∈ Lθ ,

0, if z ∈ L◦
θ ,

u, otherwise,
ΠL◦

θ
(z) :=

⎧⎨
⎩
0, if z ∈ Lθ ,

z, if z ∈ L◦
θ ,

v, otherwise,
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where

u =

⎡
⎢⎢⎣

z1 + ‖z2‖ tan θ

1 + tan2 θ(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎣

z1 − ‖z2‖ cot θ
1 + cot2 θ(

z1 − ‖z2‖ cot θ
1 + cot2 θ

cot θ

) −z2
‖z2‖

⎤
⎥⎥⎦ .

Combining these results with the Moreau decomposition theorem, the decomposition with
respect to Lθ is

z = λ̃1(z) · ũ(1)
z + λ̃2(z) · ũ(2)

z , (51)

where

λ̃1(z) := z1 − ‖z̄‖ cot θ, λ̃2(z) := z1 + ‖z̄‖ tan θ,

ũ(1)
z := 1

1 + cot2 θ

[
1 0
0 cot θ · In−1

] [
1

−w

]
,

ũ(2)
z := 1

1 + tan2 θ

[
1 0
0 tan θ · In−1

] [
1
w

]

with w = z̄
‖z̄‖ if x̄ �= 0 and w is any unit vector in R

n−1 if x̄ = 0 and In−1 is the identity

matrix of order n − 1. It is easy to see that

ΠLθ (z) = max{0, λ̃1(z)} · ũ(1)
z + max{0, λ̃2(z)} · ũ(2)

z .

More properties of the circular cone can be found in [45, Section 3].

6.3 Proof of Lemma 1

By definition,Kα is closed, since the functions x̄α1
1 x̄α2

2 and |x1| are continuous onR2+ andR,
respectively. To proof that Kα is a convex cone, we only need to verify that it is closed under
the addition and the nonnegative multiplication. For any given (x1, x̄) ∈ Kα and β ≥ 0, one
can obtain that

(β x̄1)
α1(β x̄2)

α2 = β x̄α1
1 x̄α2

2 ≥ β|x1| = |βx1|, β x̄1 ≥ 0, β x̄2 ≥ 0,

where the first equation uses the fact α1 + α2 = 1. Therefore, we have β(x1, x̄) ∈ Kα . For
any given (x1, x̄), (y1, ȳ) ∈ Kα , we know

|x1| ≤ x̄α1
1 x̄α2

2 , x̄1 ≥ 0, x̄2 ≥ 0,

|y1| ≤ ȳα1
1 ȳα2

2 , ȳ1 ≥ 0, ȳ2 ≥ 0.

It is easy to see that x̄1+ ȳ1 ≥ 0, x̄2 + ȳ2 ≥ 0 and |x1+ y1| ≤ |x1|+ |y1| ≤ x̄α1
1 x̄α2

2 + ȳα1
1 ȳα2

2 .
In order to finish our proof, it suffices to show that

x̄α1
1 x̄α2

2 + ȳα1
1 ȳα2

2 ≤ (x̄1 + ȳ1)
α1(x̄2 + ȳ2)

α2 , ∀(x1, x̄), (y1, ȳ) ∈ Kα. (52)

We divide it into the following two cases. Suppose that there exists an index i ∈ {1, 2} such
that x̄i = 0 or ȳi = 0, it is trivial to show (52). Otherwise, we obtain x̄, ȳ ∈ R

2++. Consider
the function f : R2++ → R:

f (x̄) = x̄α1
1 x̄α2

2 ,
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where x̄ := (x̄1, x̄2)T ∈ R
2 and x̄1, x̄2 > 0. By calculation, we obtain

∇2 f (x̄) =
[

α1(α1 − 1)x̄α1−2
1 0

0 α2(α2 − 1)x̄α2−2
2

]

Since αi ∈ (0, 1) and x̄i is strictly positive, the Hessian matrix ∇2 f (x̄) is negative definite,
which shows that f is concave defined on R2++. Therefore, we have

f

(
x̄ + ȳ

2

)
≥ 1

2
( f (x̄) + f (ȳ)) ,

which is equivalent to the above inequality (52). ��
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25. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires.
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