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Abstract
In this paper, we study the strong duality for an optimization problem to minimize a homo-
geneous quadratic function subject to two homogeneous quadratic constraints over the unit
sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we
show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set
of conditions, called “Property J”, on an SDP relaxation of (P) and its conical dual. We show
that (P) has the strong duality if and only if there exists at least one optimal solution to the
SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions
of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and
Zhang. Many nontrivial examples are constructed to help understand the mechanism.

Keywords Quadratically constrained quadratic programming · CDT problem · S-lemma ·
Slater condition · Joint numerical range

Mathematics Subject Classification 90C20 · 90C22 · 90C26 · 90C46 · 49M20

1 Introduction

An important class of optimization problems, known as (QCQP), is to minimize an n-variate
quadratic function subject to m quadratic constraints as follows

(Pm)
min q0(x) = xT Q0x + 2qT0 x

qi (x) = xT Qi x + 2qTi x + αi ≤ (=) 0, i = 1, 2, . . . ,m,

where Qi ∈ R
n×n are symmetric matrices, qi ∈ R

n, αi ∈ R, and the constraints can be
either equalities or inequalities. It consists of many practical applications such as chance-
constrained programming, location allocation problems, problem of production planning and
many others. See [13]. On the other hand, (Pm) is often used to develop approximate methods
for solving general nonlinear optimization problems, including the trust region methods [7,
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12,17,18,24], the sequential quadratic methods [4,27], and the CDT problem [6]. For more
special cases and applications of (QCQP), please refer to [8,20,21] and the references therein.

In this paper, we aim to study the homogeneous (QCQP) with m = 3, q0 = q1 = q2 =
q3 = 0, and Q3 = I . Specifically, the target problem takes the following form:

(P)

v(P) = min xT Q0x
s.t. xT Q1x ≤ δ1,

xT Q2x ≤ δ2,

‖x‖ = 1.

Due to the unit sphere constraint ‖x‖ = 1, (P) can be written as

v(P) = min xT Q0x
s.t. xT (Q1 − δ1 I )x ≤ 0,

xT (Q2 − δ2 I )x ≤ 0,
‖x‖ = 1.

Therefore, we may assume that δ1 = δ2 = 0 and denote the constraint set of (P) by

C = {x ∈ R
n |xT Q1x ≤ 0, xT Q2x ≤ 0}.

The problem (P) first appeared in [9] where Fallahi and Salahi showed that an indefinite
quadratic fractional problem can be transformed into the form of (P) by the generalized
Charnes-Cooper transformation. The solution method of (P), however, has not been well
studied in [9].

In fact, our interest in (P) goes alongwith a string of efforts for solving the general (QCQP),
i.e. (Pm), in which only some important special cases have been solved by now. To name just
a few, they include

– the trust region subproblem (TRS), e.g., [7,33]: m = 1, Q1 = I , q1 = 0, α1 < 0;
– the general QP1QC (quadratic problem with one quadratic constraint), e.g., [7,14,28]:

m = 1;
– the CDT (Celis–Dennis–Tapia) problem, e.g., [1]: m = 2, Q1 = I , q1 = 0, α1 = −1.

In general, for m ≥ 2, the problem (Pm) becomes very difficult. One can find some recent
results in [15,16,26]. Our paper deals with (P) which hasm = 3, and as such it is not expected
to be straightforward.

The difficulty of (P) lies in its intrinsic nature of non-convexity. However, in a similar
situation occurring to other (Pm) problems, it is still possible to dig out some hidden convexity
for a few special cases. For example, whenm = 1 and the Slater condition is satisfied, Sturm
and Zhang [28] showed that (P1) admits a tight SDP relaxation and its optimal solutions
can be recovered from the optimal solutions of its SDP relaxation by using the matrix rank-
one decomposition procedure. The same strong duality result can be also obtained by the
celebrated S-Lemma [31]. See, e.g., [7,25,32]. For m = 2, one can use an extension of S-
Lemma obtained from Brickman’s result [22, Theorem 5.17] to show that the strong duality
of the following special case of (P2) holds for n ≥ 3:

min q0(x) = xT Q0x

q1(x) = xT Q1x ≤ 1,

‖x‖ = 1. (1)
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When ‖x‖ = 1 in (1) is replaced by xT Q2x ≤ 1, Polyak [23] showed that the strong duality
holds for

min q0(x) = xT Q0x

q1(x) = xT Q1x ≤ 1,

q2(x) = xT Q2x ≤ 1. (2)

provided n ≥ 3 and there exist μ1, μ2 ∈ R such that the dual Slater condition μ1Q1 +
μ2Q2 � 0 is satisfied. Under the same assumptions, Ye and Zhang [32] utilized the matrix
rank-one decomposition procedure to show that (2) has a tight SDP relaxation and the optimal
solutions of (2) can be obtained from the optimal solutions of its SDP relaxation.

Notice that (P) confines the feasible domain of (2) to a closed subset on the unit sphere.
Then, (P) is always bounded and attainable whereas (2) may not. In this sense, (P) might be
easier than (2). However, the participation of the unit sphere losses the important convexity
of the joint numerical range under the condition μ1Q1 + μ2Q2 � 0. It is known that,
under the dual Slater condition μ1Q1 + μ2Q2 � 0, the following joint numerical range of
Q0, Q1, Q2 :

P = {(xT Q0x, x
T Q1x, x

T Q2x)|x ∈ R
n} ⊂ R

3

is convex in R
3, which was the key property for Polyak [23] and Ye and Zhang [32] to show

their results. Unfortunately, our Example 1 in Sect. 3 shows that, even if P is convex, its
restriction on the unit sphere

Ω = {(xT Q0x, x
T Q1x, x

T Q2x)|x ∈ R
n : ‖x‖ = 1} ⊂ R

3

may not be convex again. As a consequence, μ1Q1 + μ2Q2 � 0 cannot be a valid suffi-
cient condition for (P) to adopt the strong duality. Even worse, the non-convex nature of Ω

implies that the construction of a suitable S-lemma for solving (P) is doomed to failure. On
the other hand, Ferreira et al. [10] showed that if both q0(x) and the constraint set C are
spherically convex, then (P) has a unique optimal solution, which is also the critical point
of the Lagrangian function. Since (P) is in general not spherically convex without further
assumptions on the matrices Q0, Q1, Q2, the results in [2,10,11] do not help to solve (P).

Luckily, we observe that the SDP relaxations between (P) and the (CDT) problem [6] are
similar to each other although (P) and the (CDT) problem look differently. Recall first that
the CDT problem takes the following format

(CDT)

min q0(x) = xT Q0x − 2bT0 x
s.t. q1(x) = xT x − 1 ≤ 0,

q2(x) = xT Q2x − 2bT2 x + c2 ≤ 0,

where Q2 � 0. The SDP relaxation of (CDT) is

(SCDT)

min M(q0) • X
s.t. M(q1) • X ≤ 0,

M(q2) • X ≤ 0,
I00 • X = 1,

X � 0,

where M(q0) =
[
0 −bT0−b0 Q0

]
, M(q1) =

[−1 0T

0 I

]
, M(q2) =

[
c2 −bT2−b2 Q2

]
, I00 =[

1 0T

0 O

]
and I is the identity matrix, O is the zero matrix both are of size n.
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For problem (P), its SDP relaxation can be written as

(SP)

min Q0 • X
s.t. Q1 • X ≤ 0,

Q2 • X ≤ 0,
I • X = 1,

X � 0.

Then, one can easily see that (SCDT) and (SP) are very similar in structure. They only differ
on the coefficient matrices. The resemblance enables us to use Ai and Zhang’s rank-one
decomposition technique in [1] to prove a necessary and sufficient condition for (P) to have
the strong duality, under the assumtion that (P) holds the Slater condition. The detail is
provided in Sect. 3. When (P) does not have a Slater point, a direct analysis in Sect. 2 shows
that (P) always admits the strong duality.

2 (P) with no Slater point

Recall that (P) is said to satisfy the Slater condition if there exists a point x̄ ∈ R
n such

that ‖x̄‖ = 1 and x̄ T Q1 x̄ < 0, x̄ T Q2 x̄ < 0. Throughout this section, we assume that
n ≥ 3. Under this assumption, we show that (P) with no Slater point can be reduced to have
one less constraint and then solved in polynomial time by the following extension of the
S-Lemma [22]:

Lemma 1 [22, Theorem 5.17] Let n ≥ 3, α ∈ R and Q0, Q1 ∈ R
n×n be real symmetric

matrices. Assume further that there exists a Slater point x̄ ∈ R
n such that ‖x̄‖ = 1 and

x̄T Q1 x̄ < 0. The following two statements are equivalent:

(i) The system xT Q0x < α, xT Q1x ≤ 0, ‖x‖ = 1 is not solvable.
(ii) There is a nonnegative multiplier μ such that

Q0 − α I + μQ1 � 0.

To begin our analysis, we divide (P) into four cases:

(a) at least one of the two matrices Q1 and Q2 is positive semi-definite;
(b) both Q1 and Q2 are indefinite;
(c) both matrices Q1 and Q2 are negative definite;
(d) one of Q1 and Q2 is negative definite and the other is indefinite.

Clearly, case (a) implies that (P) has no Slater point, while cases (c) and (d) imply the contrary.
For case (b), it is possible to have no Slater point, so cases (a) and (b) are discussed below,
while (c) and (d) are left for the next section.

(a) Either Q1 � 0 or Q2 � 0. We may assume that Q1 � 0 and Q2 � 0. Otherwise,
(P) is infeasible. Suppose that Q1 � 0. Then, the constraint xT Q1x ≤ 0 becomes
xT Q1x = 0, which implies that Q1x = 0 due to Q1 � 0. Let N be an orthonormal
basis matrix of the null space of Q1, y ∈ R

n−r with r = rank(Q1). Substitute x = Ny
into (P) to eliminate the constraint xT Q1x ≤ 0 and obtain

v(P) = min yT (NT Q0N )y
s.t. yT (NT Q2N )y ≤ 0,

‖y‖ = 1,
(3)

which becomes a problem type of format (1).
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– If (3) has no Slater point, i.e., yT (NT Q2N )y ≥ 0 for all ‖y‖ = 1, then (3), and thus
(P), is infeasible if yT (NT Q2N )y > 0 for all ‖y‖ = 1. Otherwise, NT (Q2)Ny = 0
due to semidefiniteness of NT Q2N . Solving this linear equation and substituting the
solutions to (3), we have obtained an unconstrained quadratic problem, which can be
solved easily.

– On the other hand, if (3) has a Slater point, we can apply Lemma 1 to convert it to
an SDP problem as follows.

v(P) = min
y∈Rn−r

{
yT (NT Q0N )y : yT (NT Q2N )y ≤ 0, ‖y‖ = 1

}

= max
{
ν : {y ∈ R

n−r |yT (NT Q0N )y < ν, yT (NT Q2N )y ≤ 0, ‖y‖ = 1} = ∅
}

= max
{
ν : NT (Q0 − ν I )N + μNT (Q2)N � 0, μ ≥ 0

}

= max
{
ν : NT (Q0 − ν I + μQ2)N � 0, μ ≥ 0

}
.

The optimal value v(P) of (3) is thus computed by solving the SDP problem

min (NT Q0N ) • Y
s.t. (NT Q2N ) • Y ≤ 0,

I(n−r) • Y = 1,

whereas the optimal solution to (3) can be found by a matrix rank-one decomposition
procedure developed in [19, Theorem 3].

The case Q2 � 0 is analyzed similarly.
(b) Both Q1 and Q2 are indefinite. We first solve the following two problems, both of which

are in the form of (1) with a Slater point:

β1 = min xT Q1x
s.t. xT Q2x ≤ 0,

‖x‖ = 1
(4)

and
β2 = min xT Q2x

s.t. xT Q1x ≤ 0,
‖x‖ = 1.

(5)

By Lemma 1, β1 can be calculated by solving the following SDP:

β1 = min
x∈Rn

{
xT Q1x | xT Q2x ≤ 0, ‖x‖ = 1

}

= max {β| Q1 − β I + μQ2 � 0, μ ≥ 0} . (6)

Since (4) satisfies the Slater condition and (6) is the Lagrangian dual problem of (4) [30],
β1 is attained at some dual optimal solution, say, (β1, μ̄) ∈ R × R+ so that Q1 − β1 I +
μ̄Q2 � 0. By the saddle point theorem (for example, [3, Theorem 6.2.5]), the optimal
solution of (4) can be completely characterized by the KKT conditions of (4) at the dual
optimal solution (β1, μ̄) as follows:

(Q1 − β1 I + μ̄Q2)x = 0;
μ̄xT Q2x = 0;
xT Q2x ≤ 0;
‖x‖ = 1.

(7)
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Notice that, (5) can be similarly treated. Now, after computing β1 and β2, we consider
the following possibilities:

(i) either β1 > 0 or β2 > 0;
(ii) β1 = 0 and β2 = 0;
(iii) at least one of the inequalities β1 < 0 and β2 < 0 holds.

When case (b)(i) happens, (P) is infeasible. When case (b)(iii) happens, the Slater condi-
tion holds for (P). Indeed, since Q1 and Q2 are both indefinite, S1 := int{x : xT Q1x ≤
0} 
= ∅ and S2 := int{x : xT Q2x ≤ 0} 
= ∅. Suppose β1 < 0.Then there exists ‖x̄‖ = 1
such that x̄ T Q2 x̄ ≤ 0 and x̄ T Q1 x̄ < 0, so x̄ ∈ S1. If x̄ T Q2 x̄ < 0, then x̄ ∈ S1 ∩ S2 so
that it is a Slater point of (P). If x̄ T Q2 x̄ = 0, since x̄ ∈ S1, an open set, there exists a
full-dimensional ball B(x̄, ε) centered at x̄ with radius ε > 0 such that B(x̄, ε) ⊂ S1.
On the other hand, x̄ T Q2 x̄ = 0 means that x̄ is a boundary point of S2. So B(x̄, ε) is
an open ball centered on the boundary of S2. It guarantees that B(x̄, ε) ∩ S2 
= ∅. Then

there exists y ∈ B(x̄, ε) ∩ S2 such that yT Q2y < 0 so y ∈ S1 ∩ S2 and x = y

‖y‖ is a

Slater point of (P). A similar analysis is valid for the case β2 < 0 or both β1 < 0 and
β2 < 0. The case (P) with Slater point will be discussed in next section. Therefore, we
only have to deal (b)(ii) here.
Due to β1 = 0 and β2 = 0, the constraints of (P) become equalities xT Q1x =
0, xT Q2x = 0. Therefore, the feasible set of (P) can be written as the optimal solution
set of (4) satisfying xT Q2x = 0, which by (7), is

(Q1 + μ̄Q2)x = 0;
xT Q2x = 0;
‖x‖ = 1.

Then, problem (P) becomes

v(P) = min xT Q0x
s.t. (Q1 + μ̄Q2)x = 0,

xT Q2x = 0,
‖x‖ = 1.

(8)

By replacing (Q1 + μ̄Q2)x = 0 in (8) with x = Wy where W is an orthonormal basis
matrix of the null space of the matrix Q1 + μ̄Q2, problem (P) becomes a homogeneous
QCQP with m = 2 and the two constraints are of the equality form. Specifically,

v(P) = min yT Q̄0y
s.t. yT Q̄2y = 0,

‖y‖ = 1,
(9)

where Q̄0 = WT Q0W , Q̄2 = WT Q2W . To solve (9), we first need the following
version of S-lemma for a system of two homogeneous quadratic equalities. Its proof
can be obtained either by Brickman’s result [5] together with the convexity of the set
D = {(u, v)|u < 0, v = 0} ⊂ R

2; or by modifying the proof of Theorem 4.1 in [17].

Lemma 2 Let A0 and A1 be two n × n symmetric matrices. Suppose that n ≥ 3 and there
exist unit vectors x̄, x ′ such that x̄T A1 x̄ < α1 and x ′T A1x ′ > α1. Then the following two
statements are equivalent.

123



Journal of Global Optimization (2020) 76:121–135 127

(i) the system

⎧⎪⎨
⎪⎩
xT A0x < α0

xT A1x = α1,

‖x‖ = 1

is unsolvable,

(ii) there exists μ ∈ R such that A0 − α0 I + μ(A1 − α1 I ) � 0.

We now try to solve (9). Suppose Q̄2 � 0 or Q̄2 
 0, the quadratic constraint yT Q̄2y = 0
becomes a linear system Q̄2y = 0. Solving it and substituting the solution into (9), we can
reduce (9) to a trust region subproblem, which, as we have mentioned in Introduction, can
be solved.
Otherwise, Q̄2 is indefinite and there will be some ‖ȳ‖ = 1 and ‖y′‖ = 1 satisfying
ȳT Q̄2 ȳ < 0 and y′T Q̄2y′ > 0. Applying Lemma 2, we get

v(P) = min
{
yT Q̄0y|yT Q̄2y = 0, ‖y‖ = 1

}

= max
{
ν : {y|yT Q̄0y − ν < 0, yT Q̄2y = 0, ‖y‖ = 1} = ∅

}

= max{ν : Q̄0 − ν I + μQ̄2 � 0, μ ∈ R}.
Problem (P) under case (b)(ii) is therefore solved.

3 (P) with the Slater condition

In this section we assume that problem (P) satisfies the Slater condition. Before proceeding,
we first show an example that the joint numerical range of Q0, Q1, Q2 :

P = {(xT Q0x, x
T Q1x, x

T Q2x)|x ∈ R
n} ⊂ R

3

is convex, whereas

Ω = {(xT Q0x, x
T Q1x, x

T Q2x)|x ∈ R
n : ‖x‖ = 1} ⊂ R

3

is not. This example explains that Ye and Zhang’s approach [32] cannot be adopted to solve
(P).

Example 1 Let n = 3, Q0 =
⎛
⎝ 1 1 0
1 −2 0
0 0 1

⎞
⎠ , Q1 =

⎛
⎝ 1 0 0
0 1 0
0 0 0

⎞
⎠ and Q2 =

⎛
⎝ 0 1 0
1 0 0
0 0 0

⎞
⎠ .

Observe that Q0 + 4Q1 + Q2 =
⎛
⎝ 5 2 0
2 2 0
0 0 1

⎞
⎠ � 0. Applying Polyak’s result [23] we see that

the set

P =
{
(xT Q0x, x

T Q1x, x
T Q2x)|x ∈ R

3
}

= {
(x21 − 2x22 + x23 + 2x1x2, x

2
1 + x22 , 2x1x2)|x ∈ R

3} ⊂ R
3 (11)

is convex. However, the projection image of

Ω = {
(u, v, ω) = (x21 − 2x22 + x23 + 2x1x2, x

2
1 + x22 , 2x1x2)| ‖x‖ = 1

} ⊂ R
3

on the hyperplane ω = 0 is the union of two line segments: u = −3v + 1, 0 ≤ v ≤ 1 and
u = 1, 0 ≤ v ≤ 1. Such a union is not convex. The set Ω is therefore not convex.
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Recall that the SDP relaxation of (P) adopts the following form

(SP)

γ ∗ = min Q0 • X
s.t. Q1 • X ≤ 0,

Q2 • X ≤ 0,
I • X = 1,

X � 0,

and its conic dual is

(SD)

ν∗ = max ν

s.t. Z = Q0 − ν I + μ1Q1 + μ2Q2,

Z � 0,
μ1 ≥ 0, μ2 ≥ 0.

We now prove that (SP) also satisfies the Slater condition.

Lemma 3 If (P) satisfies the Slater condition so does its SDP relaxation (SP).

Proof Suppose x̄ ∈ R
n satisfies ‖x̄‖ = 1 and x̄ T Q1 x̄ < 0, x̄ T Q2 x̄ < 0. Then for ε > 0 we

define X̄ = 1

1 + nε

(
x̄ x̄ T + ε I

)
. Since x̄ x̄ T � 0, ε I � 0 and

1

1 + nε
> 0, we have X̄ � 0

and

I • X̄ = 1

1 + nε

(
I • x̄ x̄ T + ε I • I

)
= 1 + nε

1 + nε
= 1.

On the other hand,

Qi • X̄ = 1

1 + nε
• x̄ T Qi x̄ + ε

1 + nε
Qi • I , i = 1, 2.

Observe that limε→0 Qi • X̄ = x̄ T Qi x̄ < 0, i = 1, 2. We can thus choose ε small enough
to have Qi • X̄ < 0, i = 1, 2. Then X̄ is a Slater point of (SP). ��

The dual (SD) is said to satisfy the Slater condition if there exists Z � 0 for some ν

and μ1 ≥ 0, μ2 ≥ 0. By choosing −ν large enough number, it is easily seen that (SD)
satisfies the Slater condition. When both (SP) and (SD) satisfy the Slater condition, they
have attainable optimal solutions [29], say X∗ and (Z∗, ν∗, μ∗

1, μ
∗
2), respectively, such that

the complementary conditions hold

Z∗X∗ = 0, μ∗
1Q1 • X∗ = 0, μ∗

2Q2 • X∗ = 0. (12)

Any optimal pair of X∗ and (Z∗, ν∗, μ∗
1, μ

∗
2) satisfying (12) is called an optimal comple-

mentary pair. Let us denote the feasible set of (SP) and (SD), respectively, by

W = {X � 0 | Q1 • X ≤ 0, Q2 • X ≤ 0, I • X = 1}
and

V = {(Z , ν, μ1, μ2) | Z � 0, μ1, μ2 ≥ 0}.
Below we define a very special property, which we call Property J, for any optimal comple-
mentary pair of (SP) and (SD).

Definition 1 An optimal complementary pair X∗ ∈ W and (Z∗, ν∗, μ∗
1, μ

∗
2) ∈ V is said to

have Property J if the following conditions are simultaneously satisfied:
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1. μ∗
1μ

∗
2 > 0,

2. rank(Z∗) = n − 2,
3. rank(X∗) = 2, and there is a rank-one decomposition of X∗ as X∗ = x1x1

T + x2x2
T
,

such that

3.1. Q1 • x1x1
T = Q1 • x2x2

T = 0, [Q2 • x1x1
T ][Q2 • x2x2

T ] < 0,
3.2. x1

T
Q1x2 
= 0. That is, x1 and x2 are not Q1−orthogonal.

To check whether an optimal complementary pair X∗ and (Z∗, ν∗, μ∗
1, μ

∗
2) satisfy Prop-

erty J, we note that conditions 1 and 2 can be easily verified. As for condition 3, we suppose
that rank(X∗) = 2 and, by the matrix rank-one decomposition procedure [[28], Procedure

1], decompose X∗ as X∗ = x1x1
T + x2x2

T
. If x1 and x2 satisfy conditions 3.1 and 3.2,

then Property J holds for the pair X∗ and (Z∗, ν∗, μ∗
1, μ

∗
2). Otherwise, we can find other

decompositions of X∗ by the following result.

Proposition 1 [1] Suppose X ∈ R
n×n, X � 0 with rank(X) = r and X = x1x1

T + x2x2
T +

. . . + xr xr T . Let Xr = [x1, x2, . . . , xr ] be the matrix with columns x1, x2, . . . , xr . Then
X is rank-one decomposable at y ∈ R

n if and only if there is u ∈ R
r with ‖u‖ = 1 and

y = Xru.

From Proposition 1, every rank one decomposition of X∗ = y1y1
T + y2y2

T
decomposable

at y1 ∈ R
n can be written as y1 = X2u where u ∈ R

2 with ‖u‖ = 1. Since u is on a

2-dimensional circle, it takes the form either u =
[
t√
1 − t2

]
or u =

[
t
−√

1 − t2

]
for

−1 ≤ t ≤ 1 so that y1 = X2u can be expresed in terms of parameter t ∈ [−1, 1]. Similarly,

from y2y2
T = X∗ − y1y1

T
, y2 can be easily found as a function of t . Conditions 3.1 and

3.2 are now checked by solving quadratic (in)equalities of one parameter t ∈ [−1, 1]. Please
see Example 3 for illustration.

Definition 2 Under the Slater condition, (P) is said to satisfy Property J if every optimal
complementary pair of X∗ ∈ W and (Z∗, ν∗, μ∗

1, μ
∗
2) ∈ V has Property J.

As the main theorem of this paper, we give a necessary and sufficient condition for (P) to
have the strong duality.

Theorem 1 Under the Slater condition, the SDP relaxation (SP) of (P) is tight if and only
if (P) fails Property J. Then, an optimal solution x∗x∗T of (P) can be obtained in the null
space of Z∗.

In other words, (P) has the strong duality if and only if there exists an optimal comple-
mentary pair of X∗ ∈ W and (Z∗, ν∗, μ∗

1, μ
∗
2) ∈ V that has “no Property J.” Or equivalently,

there exists an optimal complementary pair that violates any of the conditions in Definition 1.
As we have mentioned in Introduction, our work has been motivated by Ai and Zhang’s

“no Property I” condition for the CDT problem to adopt the strong duality. The key difference
lies in Condition 3.2 of Definition 1. By removing Condition 3.2 of Definition 1, Property
J becomes Property I. It is interesting to point out, for the CDT problem, Condition 3.2
becomes redundant when joined with Property I so it reasonably disappears from Property

I. That is, for the CDT problem, any optimal complementary pair X∗ = x1x1
T + x2x2

T

and (Z∗, μ∗
1, μ

∗
2) satisfying Property I must automatically have x1

T
M(q1)x2 
= 0. This,

however, is not the case for (P) as can be seen in Example 2 later.
In the next subsection, we deliver a complete proof for our main theorem. We need to

borrow the rank-one decomposition from Ai and Zhang [1].
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Lemma 4 [1] Let A1, A2 ∈ Sn×n and δ1, δ2 ∈ R. Suppose that X = x1x1
T + x2x2

T + . . .+
xr xr T , with r ≥ 3. If

A1 • x1x1
T = A1 • x2x2

T = δ1,

(A2 • x1x1
T − δ2)(A2 • x2x2

T − δ2) < 0,

then one can find in polynomial-time a vector y ∈ R
n such that X is rank-one decomposable

at y and

A1 • yyT = δ1,

A2 • yyT = δ2.

Here, the matrix X of rank r is called rank-one decomposable at y if there exist other r − 1

vectors y2, y3, . . . , yr such that X = yyT + y2y2
T + . . . + yr yr T .

3.1 The proof of Theorem 1

We first prove that if there exists an optimal complementary pair X∗ and (Z∗, ν∗, μ∗
1, μ

∗
2)

having noProperty J, then (SP) is tight. In this case,we can find a rank-onematrix x∗x∗T ∈ W
such that x∗x∗T is optimal to (SP). Let r = rank(X∗). If r = 1, the result is automatically
true. We therefore proceed by considering all possible cases with r > 1 as follows.

Case 1 Either Q1 • X∗ < 0 or Q2 • X∗ < 0.
Suppose that Q2 • X∗ < 0. Then μ∗

2 = 0 by the complementarity condition (12). If
μ∗
1 = 0, by the matrix rank-one decomposition procedure [28], we decompose X∗

as

X∗ =
r∑

i=1

xi xi
T

(13)

such that Q1 • xi xi
T ≤ 0 for i = 1, 2, . . . , r . We have

r∑
i=1

Q2 • xi xi
T = Q2 • X∗ < 0,

so there must be some 1 ≤ k ≤ r such that

Q2 • xkxk
T ≤ 0.

Then we define x∗ = xk

‖xk‖ and have I • x∗x∗T = 1, Q1 • x∗x∗T ≤ 0 and Q2 •
x∗x∗T ≤ 0. It indicates that x∗x∗T ∈ W . Moreover, since Z∗ � 0, we have

0 ≤ ‖xk‖2Z∗ • x∗x∗T = Z∗ • xkxk
T ≤ Z∗ • X∗ = 0,

so Z∗ • x∗x∗T = 0. The other two complementarities

μ∗
1Q1 • x∗x∗T = 0, μ∗

2Q2 • x∗x∗T = 0 (14)

are trivially satisfied. The rank one matrix x∗x∗T is therefore optimal to (SP) so
that the SDP relaxation is tight. If μ∗

1 > 0, then Q1 • X∗ = 0. Decompose X∗ =∑r
i=1 x

i xi
T
such that Q1 • xi xi

T = 0 for i = 1, 2, . . . , r . By the same argument,
there is 1 ≤ k ≤ r such that

Q2 • xkxk
T ≤ 0.

123



Journal of Global Optimization (2020) 76:121–135 131

Define again x∗ = xk

‖xk‖ and one can verify that x∗x∗T is optimal to (SP).

The same analysis can be applied for the case Q1 • X∗ < 0.
Case 2 Q1 • X∗ = 0 and Q2 • X∗ = 0.

Suppose at least one of μ∗
1 and μ∗

2 is zero, say μ∗
1 = 0. We then decompose X∗ =∑r

i=1 x
i xi

T
such that Q2 • xi xi

T = 0 for i = 1, 2, . . . , r . If there is some index

1 ≤ k ≤ r such that Q1 • xkxk
T = 0, with x∗ = xk

‖xk‖ we can verify that x∗x∗T is

optimal to (SP). Otherwise, since
∑r

i=1 Q1 • xi xi T = 0, there must be 1 ≤ k, j ≤ r

such that Q1 • xk xk
T

> 0 and Q1 • x j x j T < 0. By choosing x∗ = x j

‖x j‖ , it can be

seen that x∗x∗T is optimal to (SP).
If both μ∗

1 and μ∗
2 are positive (i.e. Condition 1 of Property J is satisfied), we

decompose

X∗ =
r∑

i=1

xi xi
T

such that Q1 • xi xi
T = 0 for i = 1, 2, . . . , r , and

∑r
i=1 Q2 • xi xi

T = 0.

If there exists 1 ≤ k ≤ r such that Q2 • xkxk
T = 0, we then choose x∗ = xk

‖xk‖ and

x∗x∗T is an optimal solution of (SP). Otherwise, there must be indexes 1 ≤ k, j ≤ r
such that

Q2 • xkxk
T

> 0, Q2 • x j x j T < 0.

We now consider the following subcases.

• r ≥ 3.
We notice that Q1 • xkxk

T = Q1 • x j x j T = 0. By Lemma 4, X∗ is decomposable
at y ∈ R

n such that Q1 • yyT = 0, Q2 • yyT = 0. Let x∗ = y
‖y‖ , by the same

argument as above, x∗x∗T is an optimal solution of (SP).
• r = 2.

Then X∗ = x1x1
T +x2x2

T
such that Q1•xi xi T = 0 for i = 1, 2, and Q2•x1x1T >

0, Q2 • x2x2T < 0 so that Property J 3.1 holds. In this case, the following equation
of variable λ

(x1 + λx2)T Q2(x
1 + λx2) = λ2x2

T
Q2x

2 + 2λx2
T
Q2x

1 + x1
T
Q2x

1 = 0

has two distinguish roots, say λ1, λ2, and we let ui = x1 + λi x2, i = 1, 2.

Suppose Property J 3.2 is violated that x1
T
Q1x2 = 0. Then, ui

T
Q1ui = 0 for

i = 1, 2. Moreover, Z∗xi xi T = 0 and Z∗ � 0 imply Z∗xi = 0 so that Z∗uiui T =
0, i = 1, 2. We now set x∗ = u1

‖u1‖ and easily see that x∗x∗T is a rank-one optimal

solution of (SP).
Otherwise, x1

T
Q1x2 
= 0. Namely, Property J 3.1 and 3.2 are both satisfied. In

this case, since we already assume μ∗
1 > 0, μ∗

2 > 0, no Property J implies that
rank(Z∗) 
= n − 2. On the other hand, x1, x2 are linearly independent vectors and
they are in the null space of Z∗ because Z∗x1 = 0 and Z∗x2 = 0. So rank(Z∗) <

n − 2 and

Range(X∗) � Null(Z∗).
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It means that Null(X∗) ∩ Null(Z∗) 
= {0} so we can choose 0 
= x̂ ∈ Null(X∗) ∩
Null(Z∗) and define

X̂ = X∗ + x̂ x̂ T = x1x1
T + x2x2

T + x̂ x̂ T .

Then rank(X̂) = 3 and Z∗ X̂ = 0. We already have

Q1 • x1x1
T = Q1 • x2x2

T = 0

and

[Q2 • x1x1
T ][Q2 • x2x2

T ] < 0.

Applying Lemma 4 we can find y ∈ R
n such that X is decomposable at y and

Q1 • yyT = 0, Q2 • yyT = 0.

Note that Z∗ � 0 and Z∗ X̂ = 0 imply Z∗ • yyT = 0. Let x∗ = y
‖y‖ , by the same

argument as above, x∗x∗T is then an optimal solution of (SP). This last case also
completes the first part of the proof.

To prove the necessary part, we assume contrarily that (SP) has a rank-one optimal solution
x∗x∗T and there exists an optimal complementary pair X∗ and (Z∗, ν∗, μ∗

1, μ
∗
2) having

Property J. We note that Z∗X∗ = 0, rank(Z∗) = n − 2, rank(X∗) = 2, Z∗ � 0 and
X∗ = x1x1

T + x2x2
T
all together imply that {x1, x2} is a basis of Null(Z∗). Moreover,

since x∗x∗T and Z∗ are primal anddual optimal solutions, respectively, their complementarity
Z∗x∗x∗T = 0 implies that x∗ ∈ Null(Z∗) so that x∗ = γ1x1 + γ2x2 for some γ1, γ2 ∈ R.

By the assumption that μ∗
i > 0, i = 1, 2, we have x∗T Qi x∗ = 0, i = 1, 2. Especially,

x∗T Q1x
∗ = γ 2

1 x
1T Q1x

1 + 2γ1γ2x
1T Q1x

2 + γ 2
2 x

2T Q1x
2 = 0. (15)

By assumption Property J 3.1 that x1
T
Q1x1 = 0, x2

T
Q1x2 = 0, there must be

γ1γ2x
1T Q1x

2 = 0. (16)

If γ1 = 0, then x∗ = γ2x2 and x∗T Q2x∗ = γ 2
2 x

2T Q2x2 = 0. Again by Property J 3.1,

x2
T
Q2x2 
= 0, so γ2 = 0 and thus x∗ = 0, which contradicts to ‖x∗‖ = 1. The same

arguments imply that γ2 
= 0. Then, from (16), we have x1
T
Q1x2 = 0. This contradicts to

our assumption that the pair X∗ and (Z∗, μ∗
1, μ

∗
2) have Property J.

4 Examples

Example 2 below confirms that Property J implies a positive duality gap.

Example 2 Let n = 3, Q0 =
⎛
⎝ 2.5 1 0
1 1 0
0 0 3

⎞
⎠ , Q1 =

⎛
⎝ 0 −1 0

−1 0 0
0 0 0

⎞
⎠ , Q2 =

⎛
⎝−1 0 0
0 1 0
0 0 0

⎞
⎠ ,

α1 = α2 = 0. Then, problem (P) with this data becomes

(P)

v(P) = min 2.5x21 + 2x1x2 + x22 + 3x23
s.t. −2x1x2 ≤ 0,

−x21 + x22 ≤ 0,
x21 + x22 + x23 = 1.
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Observe that x̄ =
(

2√
5
, 1√

5
, 0

)T
is a Slater point of (P). By Lemma 3, the SDP relaxation

(SP) also satisfies the Slater condition.
Solving the SDP relaxation (SP) and its conic dual (SD), we find that (SP) has a unique

optimal solution X∗ =
⎛
⎝

1
2 0 0
0 1

2 0
0 0 0

⎞
⎠ with the optimal value v(SP) = 1.75, while the unique

optimal solution of (SD) is

ν∗ = 1.75, μ∗
1 = 0.75, μ∗

2 = 1, Z∗ =
⎛
⎝ 0 0 0
0 0 0
0 0 1.25

⎞
⎠ . (17)

First of all, the rank condition in Property J: rank(X∗) = 2, rank(Z∗) = 1 = n − 2
(since n = 3) is easily seen to satisfied. Moreover, condition 1: μ∗

1μ
∗
2 = 0.75 > 0 is also

valid. Finally, let us take X∗ = x1x1
T + x2x2

T
with x1 =

(
1√
2
, 0, 0

)T
, x2 =

(
0, 1√

2
, 0

)T

satisfying

Q1 • x1x1
T = Q1 • x2x2

T = 0; (Q2 • x1x1
T
)(Q2 • x2x2

T
) = −1

4
< 0

and

x1
T
Q1x

2 = −1

2

= 0.

So, the pair X∗ and (Z∗, ν∗, μ∗
1, μ

∗
2) satisfy Property J. Theorem 1 thus asserts that the

SDP relaxation (SP) is not tight. In fact, we can solve (P) directly as follows: First,
we substitute x23 = 1 − x21 − x22 into the objective and reduce the example to a 2-
dimensional nonlinear programming problem. By considering case by case that none of
the constraints is active; one of the constraints is active; and both constraints are active,

we obtain the optimal solutions of (P) are (1, 0, 0)T , (−1, 0, 0)T ,
(

1√
5
,− 1√

5
,

√
3√
5

)T
,(

1√
5
,− 1√

5
,−

√
3√
5

)T
,
(
− 1√

5
, 1√

5
,

√
3√
5

)T
, and

(
− 1√

5
, 1√

5
,−

√
3√
5

)T
with the optimal value

v(P) = 2.5. It is obvious that v(P) = 2.5 > 1.75 = v(SP).

Example 3 Let Q0 =
⎛
⎝ 0 0 0
0 2 −1
0 −1 20

⎞
⎠ , Q1 =

⎛
⎝ 0 0 0
0 0 1
0 1 1

⎞
⎠ , Q2 =

⎛
⎝ 1 0 0
0 −1 0
0 0 0

⎞
⎠ and α1 = α2 =

0.

Problem (P) is then

(P)

v(P) = min 2x22 − 2x2x3 + 20x23
s.t. 2x2x3 + x23 ≤ 0,

x21 − x22 ≤ 0,

x21 + x22 + x23 = 1.

Note that x̄ =
(
0,− 2√

5
, 1√

5

)T
is a Slater point of (P). By direct computation, we obtain an

optimal complementary pair X∗ =
⎛
⎝

1
2 0 0
0 1

2 0
0 0 0

⎞
⎠ and Z∗ =

⎛
⎝ 0 0 0
0 0 0
0 0 20

⎞
⎠ , μ∗

1 = μ∗
2 = 1, and
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γ ∗ = ν∗ = 1. Again, the rank condition for this pair: rank(X∗) = 2 and rank(Z∗) = 1 =
n− 2 (since n = 3) is easily satisfied. Next, we pick up an arbitrary rank-one decomposition

X∗ = x1x1
T + x2x2

T
with x1 =

(
1√
2
, 0, 0

)T
, x2 =

(
0, 1√

2
, 0

)T
and check that

Q1 • x1x1
T = Q1 • x2x2

T = 0; (Q2 • x1x1
T
)(Q2 • x2x2

T
) = −1

4
< 0

and x1
T
(Q1 − α1 I )x2 = 0. That is, condition 3.1 is satisfied while condition 3.2 is not. To

verify all other rank-one decompositions of X∗, say X∗ = y1y1
T + y2y2

T
, by Proposition 1,

we can write y1 = X2u where X2 =
⎛
⎜⎝

1√
2
0

0 1√
2

0 0

⎞
⎟⎠ and u =

(
t
±√

1 − t2

)
,−1 ≤ t ≤ 1.

Then, y1 =
(

t√
2
,±

√
1−t2√
2

, 0
)T

and

y2y2
T = X∗ − y1y1

T =
⎛
⎜⎝

1−t2
2

1∓t
√
1−t2
2 0

1∓t
√
1−t2
2

t2
2 0

0 0 0

⎞
⎟⎠

so that y2 =
(√

1−t2√
2

, t√
2
, 0

)T
. It can be check easily that y1

T
Q1y2 = 0, ∀t ∈ [−1, 1]

which implies that condition 3.2 can never be satisfied by any rank-one decomposition of X∗
so the pair X∗ and (Z∗, μ∗

1, μ
∗
2) have no Property J. Solving the equation

(x1 + λx2)T (Q2 − α2 I )(x
1 + λx2) = 0,

we have λ = 1 and return x∗ = x1 + x2 = ( 1√
2
, 1√

2
, 0)T as an optimal solution of (P). In

this example, λ∗ = γ ∗ = ν∗ = 1 and it adopts the strong duality.

5 Concluding remarks

By observing the structural similarity between the SDP relaxations (P) and (CDT), in this
paper we have successfully extended “Property I” of Ai and Zhang to become “Property
J” which can be used to give a necessary and sufficient condition for (P) to have the strong
duality if the Slater condition holds. On the other hand, when a feasible (P) fails to satisfy
the Slater condition, our analysis shows that (P) can be always solved in polynomial time.
Nevertheless, when (P) under the Slater condition happens to satisfy Property J, we only
know that there is a positive duality gap but are unable to either solve (P) directly or give an
estimation for the gap. It appears to be an interesting future research topic.
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