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Abstract
The classical approaches to optimal portfolio selection call for finding a feasible portfolio that
optimizes a risk measure, or a gain measure, or a combination thereof by means of a utility
function or of a performance measure. However, the optimization approach tends to amplify
the estimation errors on the parameters required by the model, such as expected returns and
covariances. For this reason, the Risk Parity model, a novel risk diversification approach to
portfolio selection, has been recently theoretically developed and used in practice, mainly
for the case of the volatility risk measure. Here we first provide new theoretical results for
the Risk Parity approach for general risk measures. Then we propose a novel framework for
portfolio selection that combines the diversification and the optimization approaches through
the global solution of a hard nonlinear mixed integer or pseudo Boolean problem. For the
latter problem we propose an efficient and accurate Multi-Greedy heuristic that extends
the classical single-threaded greedy approach to a multiple-threaded setting. Finally, we
provide empirical results on real-world data showing that the diversified optimal portfolios
are only slightly suboptimal in-sample with respect to optimal portfolios, and generally
show improved out-of-sample performance with respect to their purely diversified or purely
optimized counterparts.
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1 Introduction

The classical approaches to optimal portfolio selection call for finding a feasible portfolio
that optimizes a risk measure, or a gain measure, or a combination thereof by means of a
utility function or of a performance measure. However, the optimization approach might be
misleading due to the difficulty of obtaining good estimates for the parameters involved in
the function to be optimized and to the high sensitivity of the optimal solutions to the input
data. Therefore, several authors have proposed alternative approaches where they look for
the best way of diversifying the risk of the portfolio.

A straightforward approach to diversify the risk of a portfolio seems to be that of using
an Equally Weighted (EW) portfolio. Pflug et al. [39] prove that the EW portfolio is the
asymptotical best choice when uncertainty increases, whereas DeMiguel et al. [25] show that
it can hardly be beaten by an optimized portfolio in practice. However, if the market contains
securities with very different intrinsic risks, then the EW approach leads to a portfolio that
is not balanced in terms of risk allocation to each security [34].

Another naive strategy, frequently used in practice to achieve approximately equal risk
contribution of all securities, is to take weights proportional to 1/σi , where σi is the volatility
of security i . The term “Risk Parity” was first introduced by Qian [40]. He developed the
idea of Risk Parity Portfolios, where an equal amount of risk is allocated to stocks and bonds.
Risk Parity (RP) has been later formalized in a model which aims at making the total risk
contributions of all securities equal among them [34]. This naturally leads to solving a system
of nonlinear equations and inequalities [34,50], but the RP model can also be equivalently
formulated as a nonlinear convex optimization problem. The risk measure commonly used
in the RP approach is volatility. However alternative risk measures can be considered (see,
e.g., [9,12] and the comprehensive recent monograph by Roncalli [46] on Risk Parity and
Risk Budgeting).

After the global financial crisis of 2008, the interest for the defensive strategy of the RP
approach has continuously grown over the years, both among academics and among prac-
titioners [2,3,5,6,9,12,18,19,22–24,32–34,40,41,46,49,50], thus becoming a popular asset
allocation strategy,1. Furthermore, several alternative approaches to diversify risk have been
recently proposed in the literature (see, e.g., [17,21,37]).

Due to its formulation, all securities are selected in a RP portfolio, since, by construction,
each security gives a positive (equal) contribution to total risk and must hence have a positive
weight. It has been recently observed [15] that the Risk Parity approach is much more stable
than the optimization approaches w.r.t. input data perturbation.

In this paper, we propose a new approach that tries to reduce the impact of data estimation
errors (as discussed in Sect. 6.3), and to join the benefits of the optimization and of the
diversification approaches by choosing the portfolio that is best diversified (w.r.t. Risk Parity)
on a subset of assets of the market, and that globally optimizes an appropriate risk, or utility,
or performance measure among all portfolios of this type. The portfolio obtained with this
approach is generally small w.r.t. the size of the market. This seems to lead to a better out-of-
sample performance, a phenomenon already observed in [14] and described here in Sect. 6.2.
Our approach is based on a novel framework that allows to combine the diversification and
optimization approaches to the portfolio selection problem through the global solution of a
hard nonlinear mixed integer or pseudo Boolean problem. For this problem we propose an
efficient and accurate heuristic that extends the classical single-threaded greedy approach
to a multiple threaded setting. We show that this approach yields portfolios that are only

1 See also http://www.thierry-roncalli.com/riskparity.html and references therein.
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slightly suboptimal in-sample, and generally show improved out-of-sample performance
with respect to their purely diversified or purely optimized counterparts.We present empirical
results on real-world data showing the better performance of the diversified optimal portfolios
obtained with our new method with respect to the ones obtained with standard optimization
or diversification techniques.

In this paper we also provide several new theoretical results for the Risk Parity approach
for general risk measures, most of which have been presented at various conferences and
workshops.2

The paper is organized as follows. In Sect. 2, we show our new theoretical results. Then,
after recalling the main optimization models for portfolio selection, we propose, in Sect. 4,
our novel framework to the portfolio selection problem. In Sect. 5, we present our new
multiple threaded greedy heuristic approach. Finally, in Sect. 6 we provide empirical results
on real-world data along with the performance obtained with our new approach.

2 Diversification with Risk Parity for general risk measures

We consider a setting where n securities are available with rates of return described by
random variables S1, . . . , Sn . The aim of an investor is to select a portfolio composed with
such securities that achieves some specified goal. In this section we recall the classical
uniform diversification method for portfolio selection and we propose a general framework
for the Risk Parity diversification approach where we establish new existence and uniqueness
results.

A portfolio is identified with a vector x ∈ R
n+ = {x ∈ R

n : xi ≥ 0, i = 1, . . . , n}, where
xi represents the weight of the i th security in the portfolio. Thus, the random rate of return
of the portfolio is given by P(x) = ∑n

i=1 xi Si . Note that P(x) belongs to the convex cone
P = {∑n

i=1 xi Si : x ∈ R
n+}. To each random variable P in P we associate a real value

ψ(P) which may interpreted as a risk (or gain, or utility) measure associated with P such as
Var(P) or E[P]. Thus we obtain the mapping ρ : Rn+ → R given by ρ(x) = ψ(P(x)) that
can also be viewed as a risk measure for the portfolio represented by x . The risk measure ρ

is called:

positive iff ρ(x) > 0 ∀x ∈ R
n+\{0};

convex iff ρ(ηx + (1 − η)y)) ≤ ηρ(x) + (1 − η)ρ(y), ∀x, y ∈ R
n+, ∀η ∈ [0, 1];

positively homogeneous of degree τ iff ρ(λx) = λτρ(x), ∀x ∈ R
n+ ∀λ ∈ R+.

The oldest and most intuitive way to obtain a diversified portfolio, going back to the
Talmudian wisdom [53], is to equally distribute the capital among all stocks available in the
market (capital diversification approach). In terms of normalized weights we have x EWi =
1/n. This is known as the Equally Weighted (also called naïve or uniform) portfolio. Clearly
the choice of the EquallyWeighted portfolio does not use any past or prospective information,
nor involves any optimization approach. However, some authors claim that its practical out-
of-sample performance is hard to beat on real-world data sets [25]. Furthermore, from the
theoretical viewpoint, Pflug et al. [39] show that when increasing the amount of portfolio

2 Second Sevilla Workshop on Mixed Integer NonLinear Programming, 2015 ; EURO 2015—27th Euro-
pean Conference on Operational Research in Glasgow; Conference Innovations in Insurance, Risk- and Asset
Management inMunich, 2017; 41stAnnualMeeting ofAMASES inCagliari, 2017;XVIIIWorkshop onQuan-
titative Finance in Milan, 2017; ICMFII 2018—7th International Conference in Multidimensional Finance,
Insurance and Investment in Chania, 2018.
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model uncertainty, i.e., the degree of ambiguity on the distribution of the securities returns,
the optimal portfolio converges to the EW portfolio.

A more thorough approach to risk diversification requires to take into account and to
formalize the concept of risk contribution of each security to the portfolio, and then to
manage it by a model (risk diversification approach). This was done in the original Risk
Parity approach of Maillard et al. [34] in the case where ρ(x) is the volatility of the portfolio
P(x), and was applied to other risk measures in [9,12].

We now describe a general framework for Risk Parity that can be applied under very mild
conditions on the risk measure ρ. For this we first recall Euler’s Homegeneous Function
Theorem.

Theorem 1 (Euler’s homogeneous function theorem) Let f : Rn → R be a continuously
differentiable positively homogeneous function of degree τ . Then

f (x) = 1

τ

n∑

i=1

xi
∂ f (x)

∂xi
.

For a positively homogeneous risk measure of degree τ , a reasonable, although possibly
not unique, measure of the risk contribution of each security to the total risk of the portfolio
is provided by

TRCρ
i (x) = 1

τ
xi

∂ρ(x)

∂xi
,

whereTRCρ
i (x) is called the total risk contribution of security i . Indeed, Euler’s homogeneous

function theorem guarantees that

ρ(x) =
n∑

i=1

TRCρ
i (x).

The Risk Parity (also called Equal Risk Contribution) portfolio is characterized by the
requirement of having equal total risk contribution from each security:

TRCρ
i (x) = T RCρ

j (x) ∀i, j . (1)

Thus, the RP portfolio can be found by solving the following system of equations and inequal-
ities: ⎧

⎪⎪⎨

⎪⎪⎩

TRCρ
i (x) = α i = 1, . . . , n

x ∈ Δ = {x ∈ R
n+ :

n∑

i=1
xi = 1}

α ∈ R

(2)

We now show that system (2) has a unique solution (x RP , αRP ), when ρ is positive, convex
and positively homogeneous. For this we need to establish a correspondence between the
solutions of (2) and those of an auxiliary unconstrained optimization problem similar to the
one considered in [34] for the case of the volatility risk measure. LetRn++ = {x ∈ R

n : xi >

0, i = 1, . . . , n} and, for α > 0, set

gα(x) = ρ(x) − α

n∑

i=1

ln xi .

Proposition 1 For α > 0 and for any differentiable function ρ, if x∗ ∈ argminx∈Rn++ gα(x),

then TRCρ
i (x∗) = T RCρ

j (x
∗) for all i, j = 1, . . . , n. If, in addition, ρ is convex, then the

converse implication also holds.
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Proof The first implication easily follows from the observation that the first order conditions
for the unconstrained minimization of gα are equivalent to (1). Indeed, for every i we have

∂gα(x)

∂xi
= ∂ρ(x)

∂xi
− α

xi
= 0 ⇔ xi

∂ρ(x)

∂xi
= α. (3)

The converse implication is a straightforward consequence of the above equivalence and of
the global optimality of stationary points for convex minimization problems. 	

We now show that any scalar multiple of a global minimizer for gα is a global minimizer for
gβ for an appropriate β.

Proposition 2 If ρ is a positively homogeneous function of degree τ , then

x∗ ∈ arg min
x∈Rn++

gα(x) ⇔ λx∗ ∈ arg min
x∈Rn++

gαλτ (x). (4)

Proof We observe that gαλτ (λx) = λτ gα(x) − αλτn ln λ. Thus,

arg min
x∈Rn++

gαλτ (λx) = arg min
x∈Rn++

gα(x),

which is equivalent to (4). 	

From Propositions 1 and 2 we immediately derive the following corollary, which implies
that an RP portfolio can always be obtained by minimizing a function gα for any α and then
normalizing the solution found.

Corollary 1 If x∗ ∈ argminx∈Rn++ gα(x), then 1∑n
i=1 x

∗
i
x∗ is a solution to (2), i.e., it is an RP

portfolio.

Theorem 2 For a continuously differentiable risk measure ρ : Rn+ → R we have that

(a) if ρ is positive and positively homogeneous of degree τ > 0, then there exists a Risk
Parity portfolio;

(b) if ρ is convex, then there exist at most one Risk Parity portfolio.

Proof In view of Propositions 1 and 2 and of Corollary 1, to prove that (2) has at least one
solution it is sufficient to show that argminx∈Rn++ gα(x) �= ∅ for some α > 0. For this we
first show that for any α > 0 there exists K > 0 such that

inf
x∈Rn++

gα(x) = inf
x∈BK

gα(x). (5)

where BK = {x ∈ R
n++ : ‖x‖ ≤ K }. Indeed, this is a straightforward consequence of the

coercivity of gα , that we will now prove. Note that, by Weierstrass Theorem, the function
ρ attains a minimum value M on the compact set {x ∈ R

n+ : ‖x‖ = 1}, and M > 0 by the
positivity assumption. Furthermore, for every x ∈ R

n++ we have

gα(x) = ρ(x) − α

n∑

i=1

ln xi = ‖x‖τ ρ

(
x

‖x‖
)

− α

n∑

i=1

ln
xi

‖x‖ − αn ln ‖x‖

≥ ‖x‖τ ρ

(
x

‖x‖
)

− αn ln ‖x‖ ≥ M‖x‖τ − αn ln ‖x‖. (6)

Thus

lim‖x‖→+∞ gα(x) ≥ lim‖x‖→+∞(M‖x‖τ − αn ln ‖x‖) = +∞.
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Hence, gα is coercive and thus (5) holds for some K > 0. Observe now that for all x ∈ BK

and for all i = 1, . . . , n we have

gα(x) ≥ −α ln xi − α(n − 1) ln K .

Hence,

lim
x∈BK
xi→0+

gα(x) = +∞.

Thus, there exists ε > 0 such that

inf
x∈BK

gα(x) = inf
x∈Bε,K

gα(x),

where Bε,K = {x ∈ BK : xi ≥ ε, i = 1, . . . , n}. Since Bε,K is compact, the function gα(x)
attains its minimum on BK at a point of Bε,K . Such point then yields a Risk Parity portfolio
through normalization by Corollary 1. To prove (b) it is sufficient to observe that when ρ

is convex, the function gα is strictly convex due to the strict convexity of
∑n

i=1 ln xi . The
conclusion then follows from the uniqueness of minimizers of strictly convex functions. 	

Remark 1 We point out that strict convexity of the risk measure ρ is not required for the
uniqueness of aRisk Parity portfolio. This is useful since several riskmeasures (e.g. volatility)
are convex but not strictly convex, unless additional assumptions are made. Furthermore, the
uniqueness result of Theorem 2 could be extended with the same proof also to nonconvex
risk measures provided that gα is strictly convex for some α.

Corollary 2 If ρ is continuously differentiable, positive, convex, and positively homogeneous,
then (2) has exactly one solution.

The unique vector of weights x RP which solves (2) is called the Risk Parity portfolio and
the corresponding value αRP is the equal total risk contribution from each security in the RP
portfolio. Note that nαRP coincides with the risk of the RP portfolio or, equivalently,

αRP = ρ(x RP )

n
.

3 Portfolio optimizationmodels

Portfolio optimization consists in selecting the portfolio weights, among all those that are
feasible, with the aim of maximizing or minimizing one or more objective functions typically
representing gain, risk, utility or performance measures. We briefly recall here two of the
main optimization approaches to portfolio selection (see, e.g., [38,44]): the biobjective Gain-
Risk analysis, which yields an efficient frontier of Pareto optimal solutions, and the related
Gain-Risk ratio that provides a single optimal portfolio.

3.1 Gain-risk efficient portfolios

Following the seminal works by Markowitz [35,36], the general portfolio selection problem
based on the Gain-Risk approach can be formulated as follows

max (1 − η)γ (x) − ηρ(x)
s.t .

x ∈ Δ

(7)
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where γ : Rn → R is a measure of gain, generally represented by the expected linear return
of the portfolio, and ρ : Rn → R is a risk measure. This approach aims at determining the
fractions xi of a given capital to be invested in each security i belonging to an investment
universe in order to maximize a generic utility function such as the convex combination of
the portfolio risk and gain. The parameter η ∈ [0, 1] is related to the risk aversion of the
investor. When η varies from 0 to 1, the optimal solutions to (7) form the whole efficient
frontier of the biobjective problem.

Often in practical applications some additional constraints are added to Model (7) for
incorporating real-world features (see, e.g., [1,16] and references therein).

3.2 Portfolios withmaximum gain-risk ratio

Another approach based on a trade-off between gain and risk is the one that consists in
maximizing the Gain-Risk ratio, i.e., in maximizing the amount of gain per unit of risk.

max
γ (x)

ρ(x)
s.t .

x ∈ Δ

(8)

The resulting optimal portfolio belongs to the efficient frontier and is often called themarket
or tangent portfolio. Several works are devoted to empirically compare the performance of
such portfolios for different Gain-Risk ratios [42,43], while other works are mainly focused
on optimization issues related to the maximization of Gain-Risk ratios (see [26,31,51] and
references therein).

4 Diversified optimal portfolios

We recall that any optimization approach to portfolio selection might be misleading due to
the difficulty of obtaining good estimates for the parameters involved in the function to be
optimized (particularly due to errors in the estimates of the means of the securities returns,
see, e.g., [7,8,20]) and to the high sensitivity of the optimal solutions to the input data [30].

In this section we propose a new approach to portfolio selection that tries to combine
the advantages of the diversification and of the optimization strategies, described in Sects. 2
and 3, respectively.

4.1 Optimization + Risk Parity diversification: a mixed-integer formulation

For a given universe of securities, we showed that, under mild assumptions, the Risk Parity
portfolio is unique.However, it obviously includes all the securities of the investment universe
and this might not be a desirable feature if the exclusion of a subset of securities could lead to
better theoretical and practical results. For example, Cesarone and Tardella [17] have shown
that one can find RP portfolios on subsets of securities of the investment universe that have
a smaller risk than the global RP portfolio and also smaller total risk contribution from each
security. Thus we consider the problem of finding a subset of securities for which the risk
(or utility) of the associated RP portfolio is optimal. This can be formulated as an MINLP as
follows.
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max u(x) (9)

s.t .

xi
∂ρ(x)

∂xi
= αyi i = 1, . . . , n (10)

xi ≤ yi i = 1, . . . , n (11)

y ∈ {0, 1}n
x ∈ Δ

α ∈ R (12)

where for instance, the objective function (9) could be u(x) = (1 − η)γ (x) − ηρ(x), or
u(x) = γ (x)

ρ(x) . Note that the unique RP portfolio on a subset S of securities x
RP (S) is obtained

imposing constraints (10), (11), and (12).
This model is a hard nonconvex mixed-integer optimization problem whose precise struc-

ture depends on the choice of the risk measure ρ(x) and of the utility function u(x), since the
gain measure is generally represented by the expected linear return of the portfolio which is
a linear function of the portfolio weights x .

4.2 Optimization + Risk Parity diversification: a pseudo-boolean formulation

We present here a unified alternative method for finding diversified optimal portfolios by
solving general nonlinear pseudoBoolean optimization problems.

Let N = {1, . . . , n} be the set of indices of all the securities in the investment universe, and
“Div” any (capital or risk) diversification approach as described in Sect. 2. For each subset
S ⊆ N , we denote by xDiv(S) the (unique) diversified portfolio that uses only securities with
indices in S. Thus, we have xDiv(S) ≡ x RP (S) in the case of the Risk Parity portfolio, or
xDiv(S) ≡ x EW (S) for the Equally Weighted portfolio.

In the optimization approach to portfolio selection (Sect. 3) we use an objective function
u : Rn → R that associates to every feasible portfolio x a (risk, performance, etc.) value
that we seek to optimize. The convex combination of risk and gain and the gain-risk ratio are
relevant examples of objective functions u and we will use them in our empirical analysis
below. However, the method that we propose here can be straightforwardly applied to any
pair of diversification approach and objective function.

A diversified optimal portfolio, for a diversification approach “Div” and an objective func-
tion u (to be maximized), is a portfolio that solves the following pseudoBoolean optimization
problem:

max
S⊆N

u(xDiv(S)). (13)

5 TheMulti-Greedy heuristic

In alternative to solving the specialized mixed-integer models described in Sect. 4.1, all
diversified optimal portfolios can be obtained as solutions of the general pseudoBoolean
problem (13). However, no satisfactory general purpose method for this problem seems to
be available in the literature. Hence, we propose here a new heuristic procedure, that we call
Multi-Greedy heuristic, for solving a general pseudoBoolean problem. The computational
results in the following Sect.s suggest that our Multi-Greedy heuristic is very accurate and
efficient, at least for the class of problems that we consider here.
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Wefirst need to introduce some notation. For any S ⊆ N = {1, 2, · · · , n}, we let Ad(S) =
{T ⊆ N |T = S ∪ h for h /∈ S, or T = S\h for h ∈ S} denote the 1-neighborhood of
S. We let V0 = {S10 , . . . , Sd0 } denote a set of d good candidate initial solutions (possibly
V0 = ∅). The basic idea of the Multi-Greedy heuristic is to keep improving a set of candidate
solutions with local search until no more improvements are possible. An important issue in
this heuristic is the use of a bounding functionm : N → N for the size of the sets of candidate
solutions at each step to control the accuracy and the efficiency of the heuristic.

The main steps of the Multi-Greedy heuristic are the following:

Multi-Greedy heuristic
1 set i := 0 and V0 = {S10 , . . . , Sd0 }
2 find Ui+1 = {T ⊆ N |T ∈ Ad(R), R ∈ Vi }
3 let Vi+1 ⊂ Ui+1, with |Vi+1| = m(i), be the elements of Ui+1

with best values of u(R)

4 if max{u(R)|R ∈ Vi+1} ≤ max{u(R)|R ∈ Vi }
5 S∗

i = argmax{u(R)|R ∈ Vi }
6 STOP
7 else
8 set i := i + 1 and goto step 2
9 end

We observe that we may associate to any given set S ⊆ N its characteristic vector x(S) ∈
R

|N |, where x Sj = 1 if and only if j ∈ S.
A straightforward way to construct the set of candidate solutions Vi+1 from the current

set Vi is by trying to increase or decrease every element of R ∈ Vi by one in all possible
ways. Therefore, the greatest computational burden for the Multi-Greedy heuristic consists
in the construction of the set Ui+1 in Step 2.

We point out that the elements of the current set Vi can be processed in parallel to obtain
Vi+1, so that, each element of Vi can be increased or decreased independently from each
other using a thread for each element of Vi . In this way, our Multi-Greedy heuristic extends
the classical single-threaded greedy approach to a, possiblymore effective, multiple-threaded
setting. In fact, a single-threaded strategy starts from one candidate solution at a time and then
iterativelymoves to one neighbor solution. This approach is clearly less time consuming than a
multiple-threaded approach. However, it will likely stop at a low quality local optimum,while
a multiple-threaded strategy explores a larger number of candidate solutions and typically
finds better solutions. A comparison of the efficiency and effectiveness of the two greedy
approaches is shown in Tables 1, 2 and 3.

The efficiency of our Multi-Greedy method can also be improved with the use of an
appropriate function m(·) that limits the cardinality of the set Vi+1 at each step. In order to
widen or limit the search, the number of candidate solutions m(·) may be a function of the
specific iteration i . At the end of the procedure, a post optimization phase could be further
applied in order to escape from local optima. In fact, on the set V ∗ that yields S∗ in Step 5,
one can perform a larger neighborhood search by transforming each solution R ∈ V ∗ into a
different one by substituting a subset of indices in R with indices not in R. In this way, we
obtain a new set of current solutions V from which one could restart with the basic steps of
the Multi-Greedy heuristic. Clearly, the efficiency of the neighborhood search depends on
the number of changes performed in the current solution R. In practice, limiting the search
to a small number of changes, we have observed considerable reduction in the execution
time without losing optimality in all real-world instances that have been solved both with our
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heuristic and with the state-of-the-art global optimization solver BARON (version 15.9.22,
see [52]).

6 Computational and empirical results

For the practical implementation and experimentation of our approach, we consider the port-
folio expected return and volatility as gain and risk measures, respectively. More precisely,
γ (x) = μT x and ρ(x) = σ(x) = √

xTΣx , where μ is the vector whose components μi

are the expected returns of the n securities, and Σ is their covariance matrix, i.e., its generic
element σi j is the covariance of the returns of security i and security j . Then, the Risk Parity

conditions (2) are expressed by the nonlinear constraints
xi (Σx)i√
xTΣx

= α for all i = 1, . . . , n.

We test our approach on the following three real-world datasets belonging to major stock
markets across the world.

1. NASDAQ100 (NASDAQ 100, USA), containing 82 securities and 596 observations
(November 2004–April 2016);

2. FTSE100 (FTSE 100, UK), containing 83 securities and 717 observations (July 2002–
April 2016);

3. SP500 (S&P 500, USA), containing 442 securities and 595 observations (November
2004–April 2016).

These datasets consist of weekly linear returns computed on daily prices data, adjusted for
dividends and stock splits, obtained from Thomson Reuters Datastream. We included stocks
with at least ten years of observations. These weekly returns time series for securities and
indexes are publicly available in [10], and have been used in other empirical studies on
portfolio selection [11,13].

Our analysis is twofold. In Sect. 6.1, we solve Problem (13) with the utility function
u(x) = (1 − η)μT x − ηxTΣx for several values of η ∈ [0, 1]. We thus obtain the mean–
variance Risk Parity efficient frontier for each dataset and we compare it with the efficient
frontier of the corresponding classical mean–variance Markowitz model [Problem (7)]. Our
experiments show that the additional Risk Parity constraints, while guaranteeing equal risk
contribution from all securities, do not cause a significant worsening of the quality of the
selected portfolios w.r.t. the classical Markowitz approach. Furthermore, in Sect. 6.1 we
evaluate the efficiency and the accuracy of our heuristic procedure by comparing its results
with those obtained by the global optimization solver BARON. In Sect. 6.2 we compare
the out-of-sample performance of the market portfolios (i.e., those that maximize u(x) =

μT x√
xT Σx

) with the diversified optimal portfolios [the solution of (13] with the same utility
function) and with those obtained with the pure Risk Parity approach [Model (2)]. We adopt
aRollingTimeWindow(RTW) scheme, namelyweallow for the possibility of rebalancing the
portfolio composition during the holding period at fixed intervals. We chose to adopt a period
of 80 weeks for the in-sample window and of 12 weeks for the out-of-sample window, with
rebalancing allowed every 12weeks. All the procedures have been implemented inMATLAB
11.0 and executed on a workstation with Intel Core i7-4810MQ processor with 2.28 GhZ
clock rate and 16GB RAM under Windows 10. The quadratic programming problems have
been solved using the TOMLAB/CPLEX toolbox [27].
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6.1 In-sample analysis

We compare here the classical Markowitz efficient frontier with the one obtained by adding
the Risk Parity constraints. More precisely, we first compute the Markowitz portfolios x∗

η by
solving Problem (7) for 21 values of η in the interval [0, 1]. Note that for η = 0 the resulting
portfolio only contains the security with maximum expected return, while for η = 1 we
obtain the global minimum variance portfolio. For the same 21 values of η ∈ [0, 1], we then
compute the diversified optimal portfolios x RPη (S∗) by solving Problem (13) with u(x) =
(1 − η)μT x − ηxTΣx . Finally, in the mean-variance plane we report the optimal solutions
x∗
η (red line) and x RPη (S∗) (blue dashed line). For all the datasets considered, Figs. 1a, 2a, b

show that the efficient frontiers obtained combining the optimization and the diversification
strategies are, in fact, very close to those generatedwith the pure optimization approach. Thus
the diversified optimal portfolios, while only slightly worse in terms of optimality, provide
a significant gain in terms of balance of the risk contributions of the selected stocks. We

graphically illustrate the values αi = xi (Σx)i√
xTΣx

of the total risk contributions of all assets

included in the Markowitz optimal portfolios in Fig. 1b, and the equal values α of the total
risk contributions of the assets included in the optimal Risk Parity portfolios in Fig. 1c.

To conclude this section, we evaluate the efficiency and accuracy of our more effective
Multi-Greedy heuristic procedure by comparing the values found for the diversified optimal
portfolios with those obtained by BARON. Furthermore, we also compute the (exact) values
of the minimum variance portfolios that trivially constitute lower bounds on the values of
the diversified optimal portfolios. This allows us to obtain an estimate for the accuracy
of the Multi-Greedy heuristic in the cases where no global optimal solution is available
for comparison. The efficiency and accuracy of the Multi-Greedy heuristic emerges from
Tables 1, 2 and 3. Here we report the values of the solutions found for the diversified optimal
portfolios by the Multi-Greedy heuristic [(applied to Problem (13) with u(x) = σ 2(x) =
xTΣx] and by BARON [applied to the MINLP described in Sect. 4.1 with u(x) = σ 2(x)],
and the corresponding exact values of the minimum variance portfolios obtained by solving
simple convex quadratic optimization problems. For each investment universe we solve these
problems for several subsets of securities with cardinalities ranging from 10 to the size of the
universe. Since BARONwas unable to certify optimality within several hours of computation
for all but the smallest sizes, we set a time limit of 10,000s so that the values reported for
BARON when the limit is achieved should be regarded as heuristic solutions. We point out
that in Tables 1, 2 and 3 (column 3) the values of the solutions found by the Multi-Greedy
heuristic are typeset in italic when we are able to certify optimality by means of a complete
enumeration (only for n = 10, 20). In the last column, we also provide the following Relative
Accuracy Bound (RAB) on the quality of the solutions found by the Multi-Greedy heuristic

RAB = σ 2(xMinV−RP ) − σ 2(xMinV )

σ 2(xMinV )
.

Here xMinV denotes minimum variance portfolio and xMinV−RP denotes minimum variance
portfolio with RP constraints. For the cases where an exact diversified optimal portfolio could
be found, the Multi-Greedy heuristic always found the same solution. In the other cases the
quality of the solutions found by the Multi-Greedy heuristic is certified by the small values
of the RAB and through the comparison with BARON.
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Fig. 1 NASDAQ100
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Fig. 2 Efficient frontiers
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6.2 Out-of-sample performance analysis

For the out-of-sample analysis we choose the following four performance measures often
adopted in the literature (see, e.g., [4,45]). We denote by Rout the out-of-sample portfolio
return, by Rout

I the return of the Market Index in the out-of-sample period, and by r f a
constant risk free rate of return that we set equal to 0.
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Table 4 Out-of-sample performances

Sharpe Jensen’ alpha Av. returns Omega MRD% # Securities

NASDAQ100

Max Sharpe + Risk Parity 0.1202 0.0021 0.0043 1.1571 3.58 7

Max Sharpe 0.1064 0.0015 0.0037 1.1036 – 11

Risk Parity 0.1177 0.0011 0.0034 1.0936 70.09 82

FTSE100

Max Sharpe + Risk Parity 0.1345 0.0033 0.0039 1.3475 3.89 6

Max Sharpe 0.1342 0.0029 0.0036 1.3240 – 11

Risk Parity 0.0936 0.0014 0.0022 1.1750 70.07 83

SP500

Max Sharpe + Risk Parity 0.0931 0.0016 0.0026 1.1405 3.52 10

Max Sharpe 0.0791 0.0012 0.0023 1.0966 – 16

Risk Parity 0.0792 0.0009 0.0022 1.0944 80.57 442

Best values are indicated in bold

– Sharpe ratio [47,48] is defined as the ratio between the average of Rout − r f and its
standard deviation, namely:

E[Rout − r f ]
σ(Rout )

.

The larger its value, the better is the portfolio performance.
– Jensen’s alpha [28], defined as the intercept from the regression of portfolios out-of-

sample excess returns on the out-of-sample returns of the benchmark, namely:

α = (E[Rout ] − r f ) − β(E[Rout
I ] − r f ),

where β = Cov(Rout , Rout
I )/σ 2(Rout

I ) is the regression coefficient representing the
systematic risk measure of the market.

– Average return, defined as the average E[Rout ] of the out-of-sample returns of a portfolio.
– Omega ratio (introduced by Keating and Shadwick [29] and recently used, e.g., in [26])

can be written as

�η(x) = E[max(0, Rout − E[Rout
I ])]

E[min(0, Rout − E[Rout
I ])] .

For each dataset, in Table 4 we report the out-of-sample performance results of the diver-
sified optimal portfolios (i.e., the Risk Parity portfolios that maximize the Sharpe ratio), of
the portfolios that maximize the Sharpe ratio only (i.e., the pure optimization strategy), and
of the Risk Parity portfolios (i.e., the pure diversification strategy). For each performance
measure, the best values are in bold. We also report the Mean Relative Difference (MRD,
expressed in percentage) between the maximum Sharpe ratio achieved by the diversified
optimal and by the RP portfolios and that of the corresponding pure optimization approach.
The mean is evaluated w.r.t. all the in-sample windows considered in the Rolling Time Win-
dow scheme. Furthermore, in the last column of Table 4 we also provide the average number
of securities selected by each strategy. The empirical results show a clear superiority of the
combined diversification-optimization approach with respect to pure diversification or opti-
mization. Furthermore, the number of securities included in a diversified optimal portfolio
is generally smaller than those of the securities included in the portfolios provided by the
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Fig. 3 Average dispersion of perturbed optimal portfolios for a multivariate normal market

other approaches, and this might be an interesting feature for small investors or to reduce the
impact of the estimation errors on the parameters required by the model.

6.3 Stability analysis

In this section, we provide an empirical stability analysis to compare the impact of data
estimation errors on our diversified optimal portfolios w.r.t. the purely optimized or purely
diversified ones. To this aim, we use here the same approach described in [30], which was
also used in [15] for the analysis of several portfolio selection models including Risk Parity.
The idea behind the study of the stability of portfolio selection models is to perturb their
input parameters aiming at statistically representing the same random market returns. In the
space of the portfolio weights, the perturbed data generate a cloud of optimal portfolios
around the “true” optimal solution. We then evaluate a dispersion measure for the cloud of
generated optimal portfolios, consisting in the average distance of these “perturbed” optimal
portfolios from a single portfolio regarded as the true optimal solution. Similar to [30], we
assume a multivariate normal market where all assets have expected return equal to 0.1 and
the identity matrix as covariance matrix. In this case, all the models considered have the true
(Equally-Weighted) optimal portfolio x0k = 1/n. For fixed n/T (where n is the number of
assets in the investment universe, and T is the number of scenarios), we then generate M
statistically equivalent samples via the Monte Carlo method. Correspondingly, we find M
perturbed optimal portfolios x j with j = 1, . . . , M . In our experiments we observed that
the results were relatively stable for values of M greater than 50. Hence, for computational
reasons we decided to set M = 50. We evaluate the effect of the estimation errors of the
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input data using a dispersion measure in the space of the decision variables. More precisely,
we use the average of the Euclidean norms of the differences between the true optimal
portfolio x0 and the perturbed optimal portfolios x j with j = 1, . . . , M . In Fig. 3 we show
the boxplots of the average dispersion of the perturbed optimal portfolios around the true
(Equally-Weighted) optimal portfolio for n/T = 0.05, 0.1, 0.2, 0.4. Note that the value of
n/T can be interpreted as the intensity of the perturbation of the input data. We observe
that the stability of the diversified optimal portfolio model is always better than that of the
pure optimization models. However, as expected and as already found in [15], the Risk Parity
diversification model is always the best. Furthermore, we also observe that the stability of our
diversified optimal portfoliomodel approaches that of theminimum variancemodel when the
intensity of the perturbation increases. This is compatible with the proximity of the efficient
frontiers of the Mean-Variance and that of the Mean-Variance-Risk Parity models.

7 Conclusions

We have proposed a new framework that tries to join the benefits of the optimization and
of the diversification strategies for portfolio selection and we have provided a more general
formulation and new theoretical results for the Risk Parity diversification strategy. Since our
approach requires the global solution of hard integer ormixed-integer optimization problems,
we have also devised a new Multi-Greedy heuristic procedure for general pseudoBoolean
problems that shows very promising results in terms of accuracy and efficiency.

Preliminary empirical analysis clearly shows encouraging out-of-sample performances of
optimal diversified portfolios with respect to the pure diversification and optimization coun-
terparts in the case of the volatility risk measure objective and of Risk Parity diversification.
Future research will be directed to applications of the optimal diversified portfolio selection
framework to other diversification-objective pairs.
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