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Abstract
The 2-sets convex feasibility problem aims at finding a point in the intersection of two
closed convex sets A and B in a normed space X . More generally, we can consider the
problem of finding (if possible) two points in A and B, respectively, which minimize the
distance between the sets. In the present paper, we study some stability properties for the
convex feasibility problem: we consider two sequences of sets, each of them converging, with
respect to a suitable notion of set convergence, respectively, to A and B. Under appropriate
assumptions on the original problem, we ensure that the solutions of the perturbed problems
converge to a solution of the original problem. We consider both the finite-dimensional and
the infinite-dimensional case. Moreover, we provide several examples that point out the role
of our assumptions in the obtained results.
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1 Introduction

The convex feasibility problem is the classical problem of finding a point in the intersection
of a finite collection of closed and convex sets (see [5, Sect. 4.5] for the main results on this
subject). Many concrete problems in applications can be formulated as a convex feasibility
problem. As typical examples, wemention solution of convex inequalities, partial differential
equations, minimization of convex nonsmooth functions, medical imaging, computerized
tomography and image reconstruction. For some details and other applications see, e.g. [2,7]
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and the references therein.Moreover, it is worth to mention the recent annotated bibliography
[6], about projectionmethods, containing several references to the convex feasibility problem
and its applications.

Many efforts have been devoted to the study of algorithmic procedures to solve convex
feasibility problems, both from a theoretical and from a computational point of view (see,
e.g. [2–4,9] and the references therein).

Often in concrete applications data are affected by some uncertainties. Hence stability
of solutions with respect to data perturbations is a desirable property, also in view of the
development of a computational approach to solve the convex feasibility problem. Our paper
is devoted to investigate some stability properties of the 2-sets convex feasibility problem by
using set convergence notions. We will also consider the case of a pair of closed and convex
sets with empty intersection: in this case a solution of the problem is a pair of minimal
distance elements of the two sets.

In this paper, we investigate a sequence of perturbed convex feasibility problems whose
data are obtained by considering two sequences of closed and convex sets {An} and {Bn}
converging respectively to the sets A and B. If the intersection of An and Bn is empty, we
consider, as a solution of the n-th perturbed problem, the pair of elements an ∈ An and
bn ∈ Bn such that the distance between An and Bn is ‖an − bn‖.

Our aim is to find some conditions that guarantee the convergence of the solutions of the
perturbed convex feasibility problems to a solution of the original convex feasibility problem.

We obtain some stability results both in the finite-dimensional and in the infinite-
dimensional framework, using the Kuratowski–Painlevé convergence notion in the finite-
dimensional case and the Attouch–Wets convergence in the infinite-dimensional setting.
Moreover, we give some examples showing that the assumptions that we use to guarantee the
stability features of a given convex feasibility problem cannot be avoided, both in the finite
and in the infinite-dimensional case.

The paper is organized as follows. Section 2 is devoted to definitions and preliminary
results, mainly concerning the various notions of set-convergence. Section 3 presents a
stability result for the convex feasibility problem when A and B are contained in a finite-
dimensional normed vector space and the sequences of closed and convex sets {An} and {Bn}
converge in the Kuratowski–Painlevé sense respectively to A and B. Section 4 is devoted
to study the stability properties of a convex feasibility problem in an infinite-dimensional
setting. Here, we use the Attouch–Wets convergence, that is stronger than the Kuratowski–
Painlevé convergence, even if they coincide in the finite-dimensional setting. Moreover, it is
worth to be noticed that we obtain results concerning both weak and norm convergence of
the solutions of perturbed problems to a solution of the original problem. In order to obtain
the norm convergence of a sequence of solutions of perturbed problems, we strengthen the
convexity assumptions by assuming that A has nonempty interior and it is locally uniformly
rotund (LUR) at a given solution a. Finally, in Sect. 5, we provide some rather involved
examples in �2 that point out the role of our assumptions even in a Hilbert space framework.

2 Notations and preliminaries

Throughout all this paper, X denotes a real normed space with the topological dual X∗. We
denote by BX and SX the closed unit ball and the unit sphere of X , respectively. For x, y ∈ X ,
[x, y] denotes the closed segment in X with endpoints x and y, and (x, y) = [x, y]\{x, y} is
the corresponding “open” segment. For a subset K of X , α > 0, and a functional x∗ ∈ SX∗
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bounded on K , let

S(x∗, α, K ) = {x ∈ K ; x∗(x) ≥ sup x∗(K ) − α}
be the closed slice of K given by α and x∗.

For a subset A of X , we denote by int (A), conv (A) and conv (A) the interior, the convex
hull and the closed convex hull of A, respectively. Moreover,

cone(A) = conv
([0,∞) · A

)

is the closed convex cone generated by the set A. We denote by

diam(A) = supx,y∈A ‖x − y‖,
the (possibly infinite) diameter of A. For x ∈ X , let

dist(x, A) = inf
a∈A

‖a − x‖.
Moreover, given A, B nonempty subsets of X , we denote by dist(A, B) the usual “distance”
between A and B, that is,

dist(A, B) = inf
a∈A

dist(a, B).

2.1 Convergence of sets

By c(X) we denote the family of all nonempty closed subsets of X . Let {An} be a sequence
in c(X) and let us consider the following sets:

Li An = {x ∈ X; x = limn xn, xn ∈ An}
and

Ls An = {x = limk xk ∈ X; xk ∈ Ank , {nk} is a subsequence of the integers}.
Definition 2.1 Let {An} be a sequence in c(X) and A ∈ c(X).

(i) {An} converges to A for the lower Kuratowski–Painlevé convergence if A ⊂ LiAn .
(ii) {An} converges to A for the upper Kuratowski–Painlevé convergence if A ⊃ LsAn .

Moreover, we say that {An} converges to A for the Kuratowski–Painlevé convergence (An
K→

A) if {An} converges to A for the upper and the lower Kuratowski–Painlevé convergence.

Now, let us introduce the (extended) Hausdorff metric h on c(X). For A, B ∈ c(X), we
define the excess of A over B as

e(A, B) = sup
a∈A

d(a, B).

Moreover, if A 
= ∅ and B = ∅ we put e(A, B) = ∞, if A = ∅ we put e(A, B) = 0. We
define

h(A, B) = max
{
e(A, B), e(B, A)

}
.

Definition 2.2 A sequence {A j } in c(X) is said to Hausdorff converge to A ∈ c(X) if

lim j h(A j , A) = 0.
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Finally, we introduce the so called Attouch–Wets convergence (see, e.g. [11, Defini-
tion 8.2.13]), which can be seen as a localization of the Hausdorff convergence. If N ∈ N

and A, B ∈ c(X), define

eN (A, B) = e(A ∩ N BX , B) ∈ [0,∞),

hN (A, B) = max{eN (A, B), eN (B, A)}.
Definition 2.3 A sequence {A j } in c(X) is said to Attouch–Wets converge to A ∈ c(X) if, for
each N ∈ N,

lim j hN (A j , A) = 0.

Several times without mentioning it, we shall use the following theorem in proving the
results contained in Sects. 3 and 4.

Theorem 2.4 (See, e.g. [11, Theorem 8.2.14]) The sequence of sets {An} Attouch–Wets con-
verges to A iff

sup‖x‖≤N |d(x, An) − d(x, A)| → 0 (n → ∞),

whenever N ∈ N.

We recall that in the finite-dimensional case the Attouch–Wets convergence and the
Kuratowski–Painlevé convergence coincide (see, e.g. [11, Sect. 8.2]).

In the sequel, we shall use the following easy-to-prove fact. For the convenience of the
reader we provide a proof.

Fact 2.5 Let A and B be two closed and convex subsets of a normed space X. Let {An} and
{Bn} be two sequences of closed convex sets such that An → A and Bn → B for the lower
Kuratowski–Painlevé convergence. Then

lim supn dist(An, Bn) ≤ dist(A, B).

In particular, if A ∩ B 
= ∅ we have limn dist(An, Bn) = 0.

Proof Let ε > 0, then there exist x ∈ A and y ∈ B such that ‖x − y‖ ≤ dist(A, B) + ε.
Since An → A and Bn → B for the lower Kuratowski–Painlevé convergence, there exist
two sequences {xn} and {yn} such that xn → x , yn → y and, for each n ∈ N, xn ∈ An ,
yn ∈ Bn . In particular, it eventually holds ‖xn − x‖ ≤ ε and ‖yn − y‖ ≤ ε. Hence, the
following inequalities eventually hold:

dist(An, Bn) ≤ ‖xn − yn‖ ≤ dist(A, B) + 3ε.

By the arbitrariness of ε > 0, we have the thesis. ��

3 Convergence of minimal distance points of a pair of convex sets: the
finite-dimensional case

In this section, we denote by X a finite-dimensional normed space.

Definition 3.1 Let A, B be nonempty closed convex set in X . Let

m(A, B) = {a ∈ A; dist(a, B) = dist(A, B)}.

123



Journal of Global Optimization (2019) 75:1061–1077 1065

It is easy to see that m(A, B) is a closed convex set.

Definition 3.2 Let C be a non empty closed convex subset of X and x ∈ C . Let us define

D(x) = {d ∈ X; x + td ∈ C, ∀t > 0}.
Remark 3.3 By [1, Proposition 2.1.5], if x, y ∈ C then D(x) = D(y). That is, the set D(x)

does not depend on x ∈ C . We denote this set, called the asymptotic cone of C , by C∞.

We prove the following lemma that will be useful in the sequel (it can be seen as a slight
generalization of [1, Proposition 2.1.9]).

Lemma 3.4 Let A and B be nonempty closed convex sets in X such thatm(A, B) is nonempty.
Then

A∞ ∩ B∞ = [m(A, B)]∞.

Proof Let a ∈ A and b ∈ B be such that ‖b − a‖ = dist(A, B).
Let us prove that A∞ ∩ B∞ ⊂ [m(A, B)]∞. Let d ∈ A∞ ∩ B∞ = D(a) ∩ D(b). Since,

for each t > 0,

‖a − b‖ = ‖a + td − (b + td)‖ = dist(A, B),

we have that a + td ∈ m(A, B), whenever t > 0. Hence d ∈ [m(A, B)]∞.
For the reverse inclusion, suppose that a + td ∈ m(A, B), whenever t > 0. Clearly,

d ∈ A∞. Now, we prove that d ∈ B∞. Let us fix t > 0 and n ∈ N, and let us observe that

‖b + ntd − (a + ntd)‖ = ‖b − a‖ = dist(A, B).

Hence, there exists dn ∈ B such that

‖b + ntd − dn‖ ≤ 2 dist(A, B).

Then,

‖b + td − (b + dn−b
n )‖ ≤ 2

n dist(A, B).

By the arbitrariness of n ∈ N, since b + dn−b
n ∈ B, and since B is closed, it holds that

b + td ∈ B. By the arbitrariness of t > 0, the thesis is proved. ��
The following theorem is the main result of this section. It proves that, under mild assump-

tion, the 2-sets convex feasibility problem has a considerable degree of stability.

Theorem 3.5 Let {An} and {Bn} be two sequences of nonempty closed convex sets in X, A
and B two nonempty closed convex subsets of X such that

An → A and Bn → B,

for the Kuratowski–Painlevé convergence. Suppose that m(A, B) is a nonempty bounded set.
Let {an} and {bn} be sequences such that an ∈ An, bn ∈ Bn (n ∈ N) and

dist(An, Bn) = ‖an − bn‖ .

Then there exists a subsequence
{
ank

}
such that

lim
k→∞ ank = c ∈ m(A , B).

Moreover, if m(A, B) = {a} then an → a.
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Proof Let us prove the first part of the theorem. By Fact 2.5, it holds

lim sup
n

‖an − bn‖ ≤ dist(A, B). (1)

We claim that {an} and {bn} are bounded.
Suppose that this is not the case and let a ∈ A and b ∈ B be such that ‖a−b‖ = dist(A, B).

Without loss of generality, we can suppose that ‖an‖, ‖bn‖ → ∞. By the lower part of the
convergence of {An} there exists a sequence {

a′
n

}
such that a′

n ∈ An and a′
n → a. Since An

is a convex set, for any α ∈ [0, 1] it holds:

αan + (1 − α)a′
n = a′

n + α(an − a′
n) ∈ An .

The sequence
{

an − a′
n∥

∥an − a′
n

∥
∥

}

has a subsequence converging to d 
= 0. There is no loss of generality in assuming

lim
n→+∞

an − a′
n∥∥an − a′
n

∥∥ = d.

Therefore, it holds

a + βd = lim
n→+∞

(

a′
n + β

∥∥an − a′
n

∥∥ (an − a′
n)

)

.

Since for every β > 0 there exists n2(β) ∈ N such that β

‖an−a′
n‖ ∈ [0, 1] , whenever

n > n2(β), it holds

a + βd ∈ A,

for every β > 0. Hence, d ∈ A∞.

Analogously, we may prove that

lim
n→+∞

bn − b′
n∥∥bn − b′
n

∥∥ = d ′ ∈ B∞,

where
{
b′

n

}
is a sequence such that b′

n ∈ Bn and b′
n → b.

Let us observe that {a′
n}, {b′

n} and {an − bn} are bounded sequences in X . Since
‖an‖, ‖bn‖ → ∞, we have ‖an − a′

n‖ ∼ ‖bn − b′
n‖ and hence

d = lim
n→+∞

an − a′
n∥∥an − a′
n

∥∥ = lim
n→+∞

bn − b′
n∥∥bn − b′
n

∥∥ = d ′,

Therefore we have

0 
= d ∈ A∞ ∩ B∞.

By Lemma 3.4, we have

A∞ ∩ B∞ = [m(A, B)]∞.

Then m(A, B) is not a bounded set, a contradiction.
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By the claim and compactness, there exist two subsequences
{
ank

}
and

{
bnk

}
, respectively

of {an} and of {bn}, such that
lim

k→+∞ ank = u, lim
k→+∞ bnk = v,

where u ∈ A and v ∈ B. By Fact 2.5, ‖u − v‖ = dist(A, B) and the thesis is proved.
The second part of the theorem follows easily by the first part. ��

Remark 3.6 (i) The above theorem can be proved in an alternative way, by using known
results concerning stability theory for convex optimization problem. However, we pre-
ferred to present a direct and more geometrical proof. We give a sketch of the alternative
proof below. (See, e.g. [11] for definitions and main results about convergence of func-
tions and well-posed problems).
Let f , fn : X × X → (∞,∞] (n ∈ N) be the convex lower semicontinuous functions
defined as follows. For each (x1, x2) ∈ X × X and n ∈ N, put

f (x1, x2) =
{

‖x1 − x2‖ if x1 ∈ A and x2 ∈ B;
∞ otherwise;

and

fn(x1, x2) =
{

‖x1 − x2‖ if x1 ∈ An and x2 ∈ Bn;
∞ otherwise.

Since An → A and Bn → B for the Kuratowski–Painlevé convergence (equivalently,
for the Attouch–Wets convergence), we have that fn → f for the Kuratowski–Painlevé
convergence. Moreover, proceeding as in the proof of Theorem 3.5, we may prove
that f is Tykhonov well-posed in the generalized sense. Hence, we can apply [11,
Theorem 10.2.24] to obtain the thesis.

(ii) It is interesting to observe that, under the hypothesis of the above theorem, we have
‖an − bn‖ → dist(A, B) (n → ∞). Indeed, if {nk} is a subsequence of the integers, by
the proof of Theorem3.5 there exists {nkh }, a subsequence of {nk}, such that limh ankh

=
u ∈ A, limh bnkh

= v ∈ B, and ‖u − v‖ = dist(A, B). Then limh ‖ankh
− bnkh

‖ =
dist(A, B) and the proof is complete.

Whenever the two limit sets are such that A ∩ B 
= ∅, we have the following corollary.

Corollary 3.7 Let {An} and {Bn} be two sequences of nonempty closed convex sets in X, A
and B two nonempty closed convex subsets of X such that

An → A and Bn → B,

for the Kuratowski–Painlevé convergence. Suppose that A ∩ B is a nonempty bounded set.
Let {an} and {bn} be sequences such that an ∈ An, bn ∈ Bn (n ∈ N) and

dist(An, Bn) = ‖an − bn‖ .

Then there exist two subsequences
{
ank

}
and

{
bnk

}
such that

lim
k→∞ ank = lim

k→∞ bnk = c ∈ A ∩ B.

Moreover, if A ∩ B = {c} then an, bn → c.
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The following examples show that both the assumptions in Theorem 3.5 play an indepen-
dent role and each of them cannot be deleted. The first one focuses on the role of convexity
assumptions.

Example 3.8 Let us consider the sets (n ≥ 2):

An =
{
(x1, x2) ∈ R

2 : −1 ≤ x1 ≤ −1

n
, n

x1 + 1

n − 1
≤ x2 ≤ 2 + n

x1 + 1

1 − n

}

∪
{
(x1, x2) ∈ R

2 : −1 ≤ x1 ≤ − 1
2n , 2

x21
≤ x2 ≤ 8n2

}

and

Bn =
{
(x1, x2) ∈ R

2 : 1
n

≤ x1 ≤ 1, n
x1 − 1

1 − n
≤ x2 ≤ 2 + n

x1 − 1

n − 1

}

∪
{

(x1, x2) ∈ R
2 : 1

2n
≤ x1 ≤ 1,

2

x21
≤ x2 ≤ 8n2

}

.

The sequences {An} and {Bn} converge respectively to

A = {
(x1, x2) ∈ R

2 : −1 ≤ x1 ≤ 0, x1 + 1 ≤ x2 ≤ 1 − x1
}

∪
{

(x1, x2) ∈ R
2 : −1 ≤ x1 < 0, x2 ≥ 2

x21

}

and

B = {
(x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 1, 1 − x1 ≤ x2 ≤ 1 + x1
}

∪
{

(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1, x2 ≥ 2

x21

}

.

It is easy to see that A ∩ B = {(0, 1)} and

An
K→ A, Bn

K→ B.

All the assumptions of Theorem 3.5 are satisfied except for the convexity of An and Bn .
The minimal distance between the sets An and Bn is achieved only at the pair of points

an =
(

− 1

2n
, 8n2

)
∈ An and bn =

(
1

2n
, 8n2

)
∈ Bn .

It is clear that the sequences {an} and {bn} are not bounded. Hence, the thesis of Theorem 3.5
does not hold.

The second example proves that the boundedness assumption on the set m(A, B) cannot
be dropped.

Example 3.9 Let An and Bn be defined as in Example 3.8. Let us consider the sets

Cn = conv(An) and Dn = conv(Bn).

It is easy to see that

Cn
K→ C, Dn

K→ D,

123



Journal of Global Optimization (2019) 75:1061–1077 1069

where

C = {
(x1, x2) ∈ R

2 : −1 ≤ x1 ≤ 0, x1 + 1 ≤ x2
}

and

D = {
(x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 1, 1 − x1 ≤ x2
}
.

Moreover, we have C ∩ D = {
(x1, x2) ∈ R

2 : x1 = 0, x2 ≥ 1
}
.

All the assumptions of Theorem 3.5 are satisfied except for the boundedness of the set
C ∩ D. The minimal distance between the sets Cn and Dn is achieved only at the same pair
of points an ∈ Cn and bn ∈ Dn as in Example 3.8. Of course, as in the previous example
both the sequences {an} and {bn} have no convergent subsequences. Therefore the thesis of
Theorem 3.5 does not hold.

4 Convergence of minimal distance points of a pair of convex sets: the
infinite-dimensional case

In an infinite-dimensional setting, we need some strengthenings of the assumptions to obtain
stability results for our problems. Indeed, Example 5.2, in Sect. 5, shows that an analogue
of Theorem 3.5 does not hold, even if we assume that the sequences of sets converge for the
Hausdorff convergence and that the space X is aHilbert space. In this section,we prove that an
additional geometric condition on the limit sets ensures the stability result (see Theorem 4.5
below). Moreover, we use the Attouch–Wets convergence of sets instead of the Kuratowski–
Painlevé convergence (cf. Example 5.6).

We start with some definitions and preliminary results. Let us recall that a body in X is a
closed convex set in X with nonempty interior.

Definition 4.1 (See, e.g. [8, Definition 7.10]) Let A be a nonempty subset of a normed space
X . A point a ∈ A is called a strongly exposed point of A if there exists a support functional
f ∈ X∗\{0} for A in a (i.e., f (a) = sup f (A)), such that xn → a for all sequences {xn} in
A such that lim f (xn) = sup f (A). In this case, we say that f strongly exposes A at a.

Let us observe that f ∈ SX∗ strongly exposes A at a iff f (a) = sup f (A) and

diam
(
S( f , α, A)

) → 0 as α → 0.

Definition 4.2 (See, e.g. [10, Definition 1.3]) Let A ⊂ X be a body. We say that x ∈ ∂ A is
an LUR (locally uniformly rotund) point of A if for each ε > 0 there exists δ > 0 such that
if y ∈ A and dist(∂ A, (x + y)/2) < δ then ‖x − y‖ < ε.

If A = BX , the previous definition coincides with the standard definition of local uniform
rotundity of the norm at x . We say that A is an LUR body if each point in ∂ A is an LUR point
of A.

Lemma 4.3 Let A be a body in X and suppose that a ∈ ∂ A is an LUR point of A. Then, if
f ∈ SX∗ is a support functional for A in a, f strongly exposes A at a. Moreover, every slice
S of the form S = S( f , α, A) is a bounded set.

The first part of the lemma is well-known in the case the body is a ball (see, e.g. [8,
Exercise 8.27]) and in the general case the proof is similar. However, for the convenience of
the reader we include a proof.
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Proof Without loss of generality, we can suppose that a = 0. Fix w ∈ int A and observe that
f (w) < 0.
Let us prove the first part of the lemma. Let α > 0, z ∈ S = S( f , α, A) and

z′ = z − f (z)
f (w)

w.

Since z
2 ∈ A and f (z′) = 0, we have that [ z

2 ,
z′
2 ] ∩ ∂ A 
= ∅. Hence

dist(∂ A, z
2 ) ≤ 1

2‖z′ − z‖ ≤ 1
2

‖w‖
| f (w)|α.

Since a = 0 is an LUR point of A, if α → 0 then diam(S) → 0 and the proof is concluded.
Now, the second part of the lemma follows easily. Suppose on the contrary that there exists

α > 0 such that S = S( f , α, A) is unbounded. Then there exists a sequence {yn} in S\{0}
such that ‖yn‖ → ∞. Put zn = yn

‖yn‖ and observe that ‖zn‖ = 1 and zn ∈ S( f , α/‖yn‖, A),
a contradiction by the first part of the lemma. ��
Lemma 4.4 Let X be a normed space. There exists a constant � > 0 such that if R > 1, if
x, y, a, b ∈ X are such that ‖x‖, ‖y‖ < R and ‖a‖, ‖b‖ > 2R, then, if [x, a] ∩ RSX = {a′}
and [y, b] ∩ RSX = {b′}, it holds

‖b′ − a′‖ ≤ �max{‖x‖, ‖y‖, ‖a − b‖}.
Proof Let λ,μ ∈ (0, 1) be such that a′ = λa + (1 − λ)x and b′ = μb + (1 − μ)y. By the
triangle inequality, it follows easily that

R−‖y‖
‖b‖−‖y‖ ≤ μ.

Moreover, since

R = ‖λa + (1 − λ)x‖ ≥ λ‖a‖ − (1 − λ)‖x‖,
we have

λ ≤ R+‖x‖
‖a‖+‖x‖ .

Without loss of generality, we can assume that λ ≥ μ. If we denote

d = max{‖x‖, ‖y‖, ‖a − b‖},
we have

‖b′ − a′‖ ≤ λ‖a − b‖ + (1 − λ)‖x − y‖ + |λ − μ|(‖y‖ + ‖b‖)
≤ 3d + ( R+‖x‖

‖a‖+‖x‖ − R−‖y‖
‖b‖−‖y‖

)
(‖y‖ + ‖b‖)

≤ 3d + R(‖b‖−‖a‖−‖y‖−‖x‖)+‖a‖ ‖y‖+‖b‖ ‖x‖
(‖a‖+‖x‖)(‖b‖−‖y‖) (‖y‖ + ‖b‖)

≤ 3d + R(‖b‖−‖a‖−‖y‖−‖x‖)+‖a‖ ‖y‖+‖b‖ ‖x‖
(‖a‖+‖x‖)(‖b‖/2) (2‖b‖)

≤ 3d + 4 R(‖b‖−‖a‖−‖y‖−‖x‖)
2R + 4 ‖a‖ ‖y‖+‖b‖ ‖x‖

‖a‖+‖x‖
≤ 3d + 2

(∣∣‖b‖ − ‖a‖∣∣) + 4‖a‖ ‖y‖
‖a‖+‖x‖ + 4‖b‖ ‖x‖

‖a‖+‖x‖
≤ 5d + 4‖a‖

‖a‖+‖x‖ d + 4‖b−a+a‖ ‖x‖
‖a‖+‖x‖

≤ 5d + 4d + 4‖x‖
‖a‖+‖x‖‖b − a‖ + 4‖a‖

‖a‖+‖x‖‖x‖ ≤ 17d

The proof is concluded if we set � = 17 ��
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The following theorem is the main result of this section.

Theorem 4.5 Let X be a normed space, B a nonempty closed convex subset of X, A a body
in X and a ∈ ∂ A an LUR point of A. Let {An} and {Bn} be two sequences of closed convex
sets such that An → A and Bn → B for the Attouch–Wets convergence. Suppose that {an}
and {bn} are sequences in X such that an ∈ An, bn ∈ Bn (n ∈ N) and

dist(An, Bn) = ‖an − bn‖.
Suppose that at least one of the following conditions holds.

1. A ∩ B = {a}.
2. A ∩ B = ∅ and there exists b ∈ B such that dist(A, B) = ‖a − b‖.

Then an → a in the ‖·‖-topology.

Proof There is no loss of generality in assuming a = 0. Let us assume that (1) holds.
Since int (A) ∩ B = ∅, by the Hahn–Banach theorem there exists f ∈ SX∗ such that

sup f (A) = 0 = inf f (B).

In particular, f is a support functional for A in 0. Let α > 0 and observe that, by Lemma 4.3,
there exists r > 1 such that S = S( f , 3α, A) ⊂ r BX . Put R = r + α.

We claim that {an} and {bn} are eventually contained in 2RBX . Suppose that this is not
the case and let {ank } and {bnk } be two subsequences such that ‖ank ‖ > 2R and ‖bnk ‖ > 2R
whenever k ∈ N. Now, let xnk ∈ Ank and ynk ∈ Bnk be such that ‖xnk ‖ → 0 and ‖ynk ‖ → 0
as k → ∞. Let [xnk , ank ] ∩ RSX = {a′

nk
} and [ynk , bnk ] ∩ RSX = {b′

nk
}, and observe that,

by Lemma 4.4, it holds ‖b′
nk

− a′
nk

‖ → 0 as n → ∞.
Since An → A for the Attouch–Wets convergence, a′

nk
∈ Ank ∩ RSX and

A = S( f , 3α, A) ∪ [A ∩ {x ∈ X; f (x) ≤ −3α}] ⊂ r BX ∪ {x ∈ X; f (x) ≤ −3α},
it eventually holds a′

nk
∈ {x ∈ X; f (x) ≤ −2α}.

Analogously, since Bn → B for the Attouch–Wets convergence, b′
nk

∈ Bnk ∩ RSX and

B ⊂ {x ∈ X; f (x) ≥ 0},
it eventually holds b′

nk
∈ {x ∈ X; f (x) ≥ −α}.

In particular, it eventually holds ‖b′
nk

− a′
nk

‖ ≥ f (b′
nk

− a′
nk

) ≥ α, a contradiction.
Therefore our claim is proved.

Now, since {an} and {bn} are bounded, there exist sequences {wn} ⊂ A and {zn} ⊂ B
such that ‖wn − an‖ → 0 and ‖zn − bn‖ → 0. Since clearly limn ‖zn − wn‖ = 0, it holds

0 ≤ lim inf
n

[ f (zn) − ‖wn − zn‖] ≤ lim inf
n

f (wn) ≤ lim sup
n

f (wn) ≤ 0,

and hence that f (wn) → 0 as n → ∞. Since, by Lemma 4.3, f strongly exposes 0, we have
that wn → 0 and hence that an → 0 in the ‖·‖-topology. This concludes the proof in case
(1).

If assumption (2) holds, the proof is similar, but some additional efforts are needed. Let
d = dist(A, B) and observe that:

(i) int (A) ∩ (B + d BX ) = ∅;
(ii) 0 ∈ B + d BX ;
(iii) lim supn ‖an − bn‖ ≤ d
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Then there exists f ∈ SX∗ such that

sup f (A) = 0 = inf f (B + d BX ).

In particular, f is a support functional for A in 0 and inf f (B) = d . Let� be the constant given
by Lemma 4.4 and let us consider S = S( f , (� + 2)d, A) and observe that, by Lemma 4.3,
there exists r > 1 such that S ⊂ r BX . Let R = r + d .

We claim that {an} and {bn} are eventually contained in 2RBX . Suppose that this is not
the case and let {ank } and {bnk } be two subsequences such that ‖ank ‖ > 2R and ‖bnk ‖ > 2R
whenever k ∈ N. Now, let xnk ∈ Ank ynk ∈ Bnk be such that xnk → a and ynk → b as
k → ∞. Let [xnk , ank ] ∩ RSX = {a′

nk
} and [ynk , bnk ] ∩ RSX = {b′

nk
}, and observe that, by

Lemma 4.4, it eventually holds ‖b′
nk

− a′
nk

‖ < (� + 1)d .
Since An → A for the Attouch–Wets convergence, a′

nk
∈ An ∩ RSX and

A = S( f , (� + 2)d, A) ∪ [A ∩ {x ∈ X; f (x) ≤ −(� + 2)d}]
⊂ r BX ∪ {x ∈ X; f (x) ≤ −(� + 2)d},

it eventually holds a′
nk

∈ {x ∈ X; f (x) ≤ −(� + 1)d}.
Analogously, since Bn → B for the Attouch–Wets convergence, b′

nk
∈ Bn ∩ RSX and

B ⊂ {x ∈ X; f (x) ≥ d},
it eventually holds b′

nk
∈ {x ∈ X; f (x) ≥ 0}.

In particular, it eventually holds ‖b′
nk

− a′
nk

‖ ≥ f (b′
nk

− a′
nk

) ≥ (� + 1)d , a contradiction
and our claim is proved.

Now, since {an} and {bn} are bounded, there exist sequences {wn} ⊂ A and {zn} ⊂ B
such that ‖wn − an‖ → 0 and ‖zn − bn‖ → 0. Let us observe that, by Fact 2.5,

d ≤ lim inf ‖zn − wn‖ ≤ lim sup
n

‖zn − wn‖ = lim sup
n

‖an − bn‖ ≤ d

and

0 ≤ lim inf
n

[ f (zn) − ‖wn − zn‖] ≤ lim inf
n

f (wn) ≤ lim sup
n

f (wn) ≤ 0.

Hence, we obtain f (wn) → 0 as n → ∞. Since, by Lemma 4.3, f strongly exposes 0, we
have that wn → 0 and hence that an → 0 in the ‖·‖-topology. ��
Remark 4.6 (i) As in the finite-dimensional case (see Remark 3.6), the theorem above can

be proved in an alternative way, by using known results concerning stability theory for
convex optimization problem. However, the well-posedness of the involved problems
requires a proof with techniques similar to those used in Theorem 4.5. As in the finite-
dimensional case, we preferred to present a direct and more geometrical proof.

(ii) Similarly to the finite-dimensional case, under the hypothesis of the above theorem,
we have ‖an − bn‖ → dist(A, B). Indeed, by the proof of Theorem 4.5, {an} and
{bn} are bounded, and hence there exist sequences {wn} ⊂ A and {zn} ⊂ B such that
‖wn −an‖ → 0 and ‖zn −bn‖ → 0. In particular, lim infn ‖an −bn‖ = lim infn ‖wn −
zn‖ ≥ dist(A, B). Since, by Fact 2.5, dist(A, B) ≥ lim supn ‖an − bn‖, the proof is
complete.

(iii) It is not difficult to see that, in general, condition (2) in Theorem 4.5 does not ensure
that the sequence {bn} is convergent. However, under the additional requirement that

b−a
‖b−a‖ is an LUR point of the unit ball of X , it is easy to prove (proceeding as in the
proof of the above theorem) that bn → b.
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If the limit sets A and B satisfy a strong condition about non-separation, we obtain a result
similar to Corollary 3.7.

Proposition 4.7 Let A and B be two closed convex subsets of a reflexive Banach space X such
that A ∩ B is bounded and such that (int A) ∩ B 
= ∅. Let {An} and {Bn} be two sequences
of closed convex sets such that An → A and Bn → B for the Attouch–Wets convergence.
Suppose that {an} and {bn} are sequences in X such that an ∈ An, bn ∈ Bn (n ∈ N) and

dist(An, Bn) = ‖an − bn‖.
Then there exist two subsequences {ank } and {bnk } that weakly converge to a point of A ∩ B.

Proof By [11, Corollary 9.2.8], the sequence {An ∩ Bn} converges to A ∩ B for the Attouch–
Wets convergence. In particular, the sets An ∩ Bn (n ∈ N) are eventually nonempty and hence
an and bn eventually coincide. Since A ∩ B is bounded and X is reflexive, the thesis holds. ��

By combining the above proposition with Theorem 4.5, we obtain the following corollary.

Corollary 4.8 Let X be a reflexive Banach space. Let A be an LUR body of X and B a closed
convex subset of X such that A ∩ B is nonempty and bounded. Let {An} and {Bn} be two
sequences of closed convex sets such that An → A and Bn → B for the Attouch–Wets
convergence. Suppose that {an} and {bn} are sequences in X such that an ∈ An, bn ∈ Bn

(n ∈ N) and

dist(An, Bn) = ‖an − bn‖.
Then there exist subsequences {ank } and {bnk } that weakly converge to a point c ∈ A ∩ B.
Moreover, if (int A) ∩ B = ∅ then an, bn → c with respect to the norm convergence.

5 Examples and final remarks

In this section we provide three examples to illustrate the role of the assumptions in the
infinite-dimensional case. We point out that all of them are in �2, therefore the assumptions
used in Sect. 4 cannot be avoided even in the “simplest” infinite-dimensional space.

The following example shows that an analogous of Theorem 3.5 does not hold in the
infinite-dimensional setting.

Example 5.1 Let X = �2 and let {en}n be its standard basis. We denote by {e∗
n}n the dual

basis. Let A, B, An, Bn ⊂ X (n ∈ N, n ≥ 2) be defined as follows:

A = cone ({ek + 1
k e1; k ∈ N});

B = {x ∈ X; e∗
1(x) = 0};

An = conv
({ln n en + 1

n e1} ∪ ( 1n e1 + A)
);

Bn = B.

Let an = ln n en + 1
n e1 ∈ An and bn = ln n en ∈ Bn . Then:

(i) A ∩ B = {0};
(ii) An → A and Bn → B for theHausdorff convergence (and, hence, for theAttouch–Wets

convergence);
(iii) dist(An, Bn) = ‖an − bn‖;
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(iv) ‖an‖, ‖bn‖ → ∞.

Proof We just have to prove (i) and (ii), since the proofs of (iii) and (iv) are straightforward.

(i) For n ∈ N\{1}, let fn = ne∗
1 − e∗

n and gn = e∗
n and observe that

{ek + 1
k e1; k ∈ N} ⊂ {x ∈ X; fn(x) ≥ 0, gn(x) ≥ 0}.

Then A ⊂ ⋂∞
n=1{x ∈ X; fn(x) ≥ 0, gn(x) ≥ 0}. Now, if x ∈ A ∩ B, it holds

e∗
1(x) = 0, fn(x) = −e∗

n(x) ≥ 0 and gn(x) = e∗
n(x) ≥ 0. Then x = 0.

(ii) We just have to prove that An → A for the Hausdorff convergence. Let us observe that

dist(an, 1
n e1 + A) ≤ ‖ 1

n e1 + ln n(en + 1
n e1) − an‖ = ln n

n .

Hence, it holds

h(An, A) ≤ h(An, 1
n e1 + A) + h( 1n e1 + A, A) ≤ ln n

n + 1
n ,

and the proof is concluded.

��
Given two sets A, B ⊂ X , we say that A and B are separated iff there exists x∗ ∈ X∗\{0}

such that

sup x∗(A) ≤ inf x∗(B).

The following example shows that, in Proposition 4.7, the condition

(int A) ∩ B 
= ∅
cannot be replaced with the weaker condition “A and B are not separated”.

Example 5.2 Let X = �2 and for n ∈ N let us consider the following subsets of X :

Cn = cone
({e2n−1, e2n + 1

n e2n−1}
) − 1

n e2n−1;
Dn = cone

({−e2n−1, e2n − 1
n e2n−1}

) + 1
n e2n−1;

C ′
n = Cn − 1

ln n e2n−1;
D′

n = Dn − 1
ln n e2n−1;

A = conv
(⋃

n∈N Cn
);

B = conv
(⋃

n∈N Dn
);

An = conv
(⋃

k∈N\{n} Ck ∪ C ′
n

);
Bn = conv

(⋃
k∈N\{n} Dk ∪ D′

n

)
.

Then:

(i) A and B are not separated;
(ii) A ∩ B is bounded;
(iii) An → A and Bn → B for theHausdorff convergence (and, hence, for theAttouch–Wets

convergence);
(iv) let an = bn = (1 + n

ln n )e2n ∈ An ∩ Bn then dist(An, Bn) = ‖an − bn‖ = 0 and
‖an‖ = ‖bn‖ = 1 + n

ln n → ∞.
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In order to prove Example 5.2 we need some preliminary work. Let us define Xn =
span {e2n−1, e2n}, BXn = BX ∩ Xn and YN = span (

⋃N
n=1 Xn). Observe that

YN = X1 ⊕2 · · · ⊕2 X N ,

where we denote by X1 ⊕2 · · ·⊕2 X N the direct sum X1 ⊕· · ·⊕ X N endowed with the norm

‖(x1, . . . , xN )‖ = (‖x1‖2 + · · · + ‖xN ‖2) 1
2 .

The easy proof of the following lemma is left to the reader.

Lemma 5.3 Let Cn, Dn ⊂ Xn be defined as above, then the following inclusion holds:

(Cn + 1√
n2+1

BXn ) ∩ (Dn + 1√
n2+1

BXn ) ⊂ 2BXn .

Lemma 5.4 Let Wn be convex subsets of Xn containing the origin (n = 1, . . . , N) and let
ε > 0, then the following inclusion holds:

conv
(⋃N

n=1 Wn + εBYN

)
⊂ 2 conv

(⋃N
n=1[Wn + √

NεBXn ]
)

.

Proof Since YN = X1 ⊕2 · · · ⊕2 X N , it is not difficult to prove that

BYN ⊂ √
Nconv

(
N⋃

n=1

BXn

)

,

hence the following inclusions hold:

conv
(⋃N

n=1 Wn + εBYN

)
⊂ conv

(⋃N
n=1 Wn + ε

√
Nconv

(⋃N
n=1 BXn

))

⊂ 2 conv

(
N⋃

n=1

[Wn + √
NεBXn ]

)

.

��
Lemma 5.5 For n = 1, . . . , N, let Wn and Zn be convex subsets of Xn containing the origin.
Then the following inclusion holds:

conv
(⋃N

n=1 Wn
) ∩ conv

(⋃N
n=1 Zn

) ⊂ 2conv
(⋃N

n=1 Wn ∩ Zn
)

Proof Let x ∈ conv
(⋃N

n=1 Wn
)∩conv

(⋃N
n=1 Zn

)
, then there existαn, βn ∈ [0, 1],wn ∈ Wn

and zn ∈ Zn (n = 1, . . . , N ) such that

x = ∑N
i=1 αnwn = ∑N

i=1 βnzn .

Since YN = X1 ⊕ · · · ⊕ X N , it holds αnwn = βnzn (n = 1, . . . , N ). Now suppose that
αn ≥ βn > 0, thenwn = βn

αn
zn ∈ Wn ∩ Zn . Analogously, if 0 < αn ≤ βn , then zn = αn

βn
wn ∈

Wn ∩ Zn . Hence

x ∈ (α1 + β1)(W1 ∩ Z1) + · · · + (αN + βN )(WN ∩ Z N ) ⊂ 2conv
[ N⋃

n=1

(Wn ∩ Zn)
]
.

��
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Proof of Example 5.2 Let us prove assertions (i), (ii) and (iii); the proof of (iv) is obvious.

(i) Let us observe that, for each n ∈ N, the segments [− 1
n e2n−1,

1
n e2n−1] and [0, e2n] are

contained in A ∩ B. Now, suppose that there exists f ∈ X∗ such that sup f (A) ≤
inf f (B), then f is constant on A ∩ B and, by the above remark, it holds f (en) = 0
whenever n ∈ N. Hence f = 0.

(ii) Let us prove that A ∩ B is bounded. For k ∈ N, let us denote by Pk the canonical
projection on the first k coordinates. Let x ∈ A ∩ B and let N ∈ N be such that
‖x − P2N x‖ ≤ 1. To conclude the proof it suffices to show that ‖P2N x‖ ≤ 8
We claim that P2N x ∈ conv

(⋃N
n=1 Cn

)
. Indeed, since x ∈ A, there exists a sequence

{yk}, converging in norm to x , such that yk ∈ conv
(⋃k

n=1 Cn
)
. Then the sequence

{P2N yk} ⊂ conv
(⋃N

n=1 Cn
)
converges in norm to P2N x and the claim is proved.

Analogously, it holds P2N x ∈ conv
(⋃N

n=1 Dn
)
and hence,

P2N x ∈ [conv (⋃N
n=1 Cn

) + 1√
N3+N

BYN ] ∩ [conv (⋃N
n=1 Dn

) + 1√
N3+N )

BYN ]
⊂ 2 conv

(⋃N
n=1[Cn + 1√

N2+1
BXn ]

) ∩ 2 conv
(⋃N

n=1[Dn + 1√
N2+1

BXn ]
)

⊂ 4 conv
(⋃N

n=1[Cn + 1√
N2+1

BXn ] ∩ [Dn + 1√
N2+1

BXn ]
)

⊂ 4 conv
(⋃N

n=1 2BXn

) ⊂ 8BX ,

where the above inclusions hold by Lemmas 5.3, 5.4 and 5.5, respectively.
(iii) Let us prove that An → A for the Hausdorff convergence, the proof that Bn → B for

the Hausdorff convergence is similar. Let us observe that h(Cn, C ′
n) = 1

ln n , hence we
have:

h(A, An) = h(conv
(⋃

k∈N\{n} Ck ∪ C ′
n

)
, conv

(⋃
k∈N\{n} Ck ∪ Cn

)
) ≤ 1

ln n ,

and the proof is concluded.

��
The following example shows that in Theorem 4.5 it is not possible to replace theAttouch–

Wets convergence with the Kuratowski–Painlevé convergence.

Example 5.6 Let X = �2 and for n ∈ N let us consider the following closed convex subsets
of X :

A = e1 + BX ;
B = {x ∈ X; e∗

1(x) = 0};
An = conv

(
A ∪ {en});

Bn = B.

Then:

(i) A ∩ B = {0} and 0 is an LUR point of A;
(ii) An → A and Bn → B for the Kuratowski–Painlevé convergence;
(iii) en ∈ An ∩ Bn ;
(iv) {en} does not converge in norm.

Proof (iii) and (iv) are trivial. (i) follows by the well-known fact that the unit ball of �2 is
uniformly rotund and hence LUR. It remains to prove that An → A for the Kuratowski–
Painlevé convergence. Since A ⊂ An (n ∈ N), it is clear that A ⊂ LiAn . On the other hand,

123



Journal of Global Optimization (2019) 75:1061–1077 1077

if {nk} is a subsequence of the integers and x = limk xk ∈ X with xk ∈ Ank , it is easy to see
that x ∈ A (observe that xk = λkak + (1 − λk)enk for some λk ∈ [−1, 1] and ak ∈ A, since
enk → 0 in the weak topology and A is weakly closed we have x ∈ A). Then A ⊃ LsAn and
the proof is concluded. ��
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