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Abstract

Tight convex and concave relaxations are of high importance in deterministic global opti-
mization. We present a method to tighten relaxations obtained by the McCormick technique.
We use the McCormick subgradient propagation (Mitsos et al. in STAM J Optim 20(2):573—
601, 2009) to construct simple affine under- and overestimators of each factor of the original
factorable function. Then, we minimize and maximize these affine relaxations in order to
obtain possibly improved range bounds for every factor resulting in possibly tighter final
McCormick relaxations. We discuss the method and its limitations, in particular the lack of
guarantee for improvement. Subsequently, we provide numerical results for benchmark cases
found in the MINLPLib2 library and case studies presented in previous works, where the
McCormick technique appears to be advantageous, and discuss computational efficiency. We
see that the presented algorithm provides a significant improvement in tightness and decrease
in computational time, especially in the case studies using the reduced space formulation pre-
sented in (Bongartz and Mitsos in J Glob Optim 69:761-796, 2017).
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1 Introduction

Methods based on branch-and-bound (B&B) [34] are the state-of-the art algorithms in deter-
ministic global optimization. In general, B&B methods rely on favorable convergence order
of the underlying convex and concave relaxations of all functions involved in a given global
optimization problem in order to avoid the so-called cluster effect [16,22-24,56]. Domain
and range reduction techniques are employed within B&B algorithms in order to further
increase the quality of the underlying relaxations. These techniques are not necessary to
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guarantee convergence of the B&B algorithm, however, they are often able to drastically
speed up convergence.

Relaxation techniques based on interval arithmetic [33,41] describe a general way to obtain
valid over- and underestimations of a multivariate function f : Z — R. Itis well-known that
the simplest interval-based method, called natural interval extensions, often provides very
loose estimators. Thus, efforts have been made to improve tightness by introducing improved
rigorous arithmetic extensions such as affine reformulations [12,15,38] and Taylor models
[6,44].

The method of constructing valid convex and concave relaxations of a continuous fac-
torable function, given by a finite recursion of addition, multiplication and composition via
propagation of valid factors, e.g., F1 o f1 4+ F> o f> - F3 o f3, was presented by McCormick
[29,30] and extended to multivariate outer functions F; in [52]. McCormick’s idea was used
in the development of the well-known auxiliary variable method (AVM) [49-51] used in
state-of-the-art global optimization solvers such as BARON [51], ANTIGONE [31], SCIP
[53], COUENNE [2] and LINDO [26].

In order to further improve the tightness of the relaxations constructed with the AVM,
many bound-tightening procedures are used such as Optimality-Based Bound Tightening
[27], where additional optimization problems are solved in order to tighten variable bounds;
bound propagation techniques [10], where information on a constraint is used to possibly
tighten the bounds of a different constraint and finally the variables involved in both con-
straints; probing [50], where valid constraints are derived from non-active constraints and
more. The recent article by Puranik and Sahinidis [40] provides a thorough overview of the
field of tightening techniques for AVM. Most of the techniques applicable to the AVM are
(at least theoretically) directly applicable to the relaxations obtained via the McCormick
technique. Still, there are almost no algorithms developed directly for the improvement
of relaxations obtained by the McCormick method. Wechsung et al. [57] present an algo-
rithm for constraint propagation using McCormick relaxations resulting in a reduced variable
domain and tighter final McCormick relaxations. They reverse the operations starting with
pre-computed McCormick relaxations of a given factorable function g and traverse the fac-
tors of g backwards in order to tighten the set of feasible points. Herein, we present a different
idea with the same goal of improving the final resulting McCormick relaxations. The pre-
sented algorithm uses subgradient propagation [32] in order to possibly improve interval
range bounds in each factor of g resulting in a tighter final relaxation. The idea was first
shortly discussed in the PhD thesis of Wechsung [55] but has been not elaborated further.

The remainder of the manuscript is structured as follows. In Sect. 2, we provide basic
definitions and notation used throughout the article. We present the algorithm in Sect. 3
supported by an example and discuss similarities and differences to methods used in AVM
and the limitations of the presented method. Subsequently, we present numerical results in
Sect. 4 and examine different adjustments of the presented algorithm. Section 5 concludes
the work.

2 Basic definitions

In the following, if not stated otherwise, we consider a continuous function f : Z — R with

Z € IR", where IR denotes the set of closed bounded intervals of R. Z € IR", also called
box, is defined as Z = [zL,2Y] = [z, 2V] x -+ x [k, 2Y] with zF, 2V € R" where the

superscripts L and U always denote a lower and upper bound, respectively. We denote the
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image of f over Z by f(Z) € IR. We denote the estimation of the range bounds of f on
Z with the use of natural interval extensions by /¢ ,,; O f(Z) and the exact bounds by
1 f.e = f(2).

We call a convex function [’ : Z — R aconvex relaxation (or convex underestimator) of
fonZif f(z) < f(z) forevery z € Z. Similarly, we call a concave function f“ : Z — R
a concave relaxation (or concave overestimator) of f on Z if f“(z) > f(z) for every
z € Z. We call the tightest convex and concave relaxations of f the convex and concave
envelopes f:, f5¢ of f on Z, respectively, i.e., it holds f(z) < fS'(z) < f(z) and
f@) < ff(z) < f(z)forallz € Z and all convex relaxations f“” and concave relaxations
fe¢ of f on Z, respectively.

For a convex and concave function ¢V, f“ : Z — R, we call sV(z),s°“(z) € R" a
convex and a concave subgradient of f¢V, f°“ atz € Z, respectively, if

@)= @D+ 6@ @—17), VzeZ, (AD)
@) < @)+ “@) 2-2), VzeZ. (A2)

We denote the affine functions on the right-hand side of inequalities (A1), (A2) constructed
with the convex and concave subgradient sV (z), s°“(z) by f cv.sub(z gy and fesub(z, z),
respectively. Note that f€V5%? and f¢540 are valid under- and overestimators of f on Z,
respectively.

2.1 McCormick relaxations and subgradient propagation

We will make use of McCormick propagation rules originally developed by McCormick [29]
and extended to multivariate compositions of functions by Tsoukalas and Mitsos [52].

2.2 Computational graph

We assume that a directed acyclic graph (DAG) representation G = (F, E), described in,
e.g., Sects. 2 and 3 in [45], of a (multivariate) factorable function g : Z — R with Z € IR"
is given. [F is the set of vertices, which we call factors herein, consisting of operations and
independent variables, and E the set of edges connecting the factors. For non-commutative
operations, e.g., subtraction, the correct order of the previous factors is saved and shown
in Fig. 1 from left to right, i.e., the left child of the ’—’ operation is on the left side of
the minus sign and the right child is on the right side of it. We assume that for each factor
fi el je{l,...,|F|} convex ff”(i) and concave fj“(i) relaxations, the corresponding
convex sjﬁ” (z) and concave sj.c (z) subgradients at a pointZ € Z and valid upper f jU and lower
f jL bounds on the range of f over Z are calculated, see Example 4.2 and Fig. 4.2 in [32].
The relaxations and subgradients are calculated by the McCormick rules. The upper f jU and
lower f jL bounds on the range of f over Z are obtained via natural interval extension [33,41]

throughout this article, i.e., I; yor = [ f jL, f jU]. In order to evaluate g, its relaxations and its
subgradients at a point Z € Z through G, we assume that the corresponding DAG is traversed
in a reversed-level-order, i.e., starting at the independent variables z;, i € {l,...,n} and
working through all factors up to the root given as g(z).

Example 1 Consider the function g(z) = (z — ) - exp(z)) on Z = [— 0.5, 1]. It consists
of 7 factors, namely the independent variable z and the 6 operations, 2,3, exp, —, — and x.
The corresponding computational graph is shown in Fig. 1.

@ Springer



568 Journal of Global Optimization (2019) 75:565-593

g(@)

fi(@) = (@z—2%) (2> —exp(2))
JF 155"

A

f6(2) = 2> —exp(2)
L U CV
f()[ f5v 8¢

~U "CC LCC
S 656

Ja(2) = exp(2)
f‘%,’ f;{‘v" 521'
f4L , fi('wy:;t

©

4
L 1he=:
TE, e s
1Y, g se

Fig. 1 Computational graph for g(z) = (z — zz) . (z3 —exp(z))on Z =[—0.5,1]

3 Algorithm for tighter McCormick relaxations
3.1 Basicidea

For a nonlinear factorable function given by a finite recursion of addition, multiplication
and composition, g = fj o fo + f3 0 fa - f5 o fe, there are several bound and domain
tightening techniques and ideas, found in, e.g., [10,13,19,20,39,40]. Many tightening methods
use information on constraints within a given problem in order to tighten variable bounds,
e.g., [10,19,48], while other methods use optimality conditions, reduced costs of variables,
and dual multipliers of constraints of the given problem to obtain a tighter relaxation, e.g.,
[39,43,50]. We present an algorithm which uses information on McCormick relaxations and
subgradients of each factor of a particular function g within a given optimization problem
to possibly improve the resulting final McCormick relaxations of g. In Sect. 2.3 of [37], we
have presented that using tighter range bounds for each factor of a McCormick relaxation
results in tighter relaxations. Herein, we present an idea for obtaining tighter McCormick
relaxations with the use of subgradients for McCormick relaxations, [32] (implemented
within MC++(v2.0) [11]). The presented algorithm is not guaranteed to improve the final
McCormick relaxations making it a heuristic. We first give the basic idea followed by an
example and then formalize the algorithm.

When calculating McCormick relaxations, itis possible to use different interval extensions,
e.g., natural interval extensions, the standard centered form or Taylor forms (Sects. 2.2 and
3.7 in [41]). We show that the presented algorithm can still improve the final McCormick
relaxations for more sophisticated interval arithmetic and briefly discuss results in Sect. 3.2.2.
By solving mingez f/.c”(z) and max,ez f{°(z) for each factor f;, j € {I,...,|F|} of a
factorable function g, where f{, f¢¢ are McCormick relaxations of f;, we can obtain valid
and possibly tighter range bounds for each factor f;. We can achieve even tighter bounds by
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solving mingez f;(z) and max,ecz f;(z) resulting in a possible improvement of McCormick
relaxations of g (see Examples 2 and 5 in [37]). However, the number of factors in a factorable
function can be very large leading to a high computational time. Thus, we want to find a good
trade-off between tightness of range bounds of each factor and computational time needed.
We could approximately solve min,ez f;(z) and max,cz f;(z) using linear or higher order
approximations of f; in order to simplify the optimization problem but this does not guarantee
valid bounds. We could as well approximately solve mingcz fj"” (z) and maxzcz f ]“ (z) by
the use of a solution method for convex (nonsmooth) problems, e.g., bundle-methods [4,5],
and allow only a small number of iteration steps providing valid but possibly extremely loose
bounds. In this article, we use range, convex and concave relaxations and subgradients in
order to solve mingcz f]?'” (z) and maxzcz fjcc (z) approximately by solving the simple linear

box-constrained problems ming¢z f;'v’”‘b(i, z) and maxyecz fj"c’”b

fi.j €{l,...,|F|} resulting in possibly improved range bounds f Lof ].U and finally tighter
convex and concave McCormick relaxations of g.

In Example 4.4 of [32], simple affine relaxations are constructed by using the propagated
subgradient at a point Z € Z to construct the affine relaxations gcvvs“b(i, 7), g“'”b (z,z2)
of the original function g. The lower bound obtained by evaluating the affine functions at
their minimum and maximum, respectively, can result in tighter bounds than the underlying
(natural) interval extensions, see Fig. 4.4 in [32]. We can exploit this property of the affine
estimators when constructing McCormick relaxations by computing the subgradients at a
point in the domain, e.g., the middle-point, in each factor f; of the factorable function g
and checking if we can improve the corresponding range bounds for the current factor, i.e.,
we approximately solve mingez /¥ (2) and max,ez £ (z) by solving minzez f ;U’S”b(i, z)

(z, z) for every factor

sub
and maxzcz fj“’w

L U : L L U U : :
fj,alg’ fj,alg and check if fj,alg > fj ,ijalg < fj , 1.e., if we can improve the bounds

on the range of f; for each j € {1, ..., |IF|}. Note that it is not guaranteed that the bounds

(z,z) for every j € {1,...,|F|}. We obtain the corresponding values

f jL algr S jU alg are better than the bounds f J.L, f /’U obtained through natural interval extensions.

Subsequently, we can compute a next linearization point and repeat the computations if
fiesired. Note that since we c:imnot. provide any g.uarantee.: on the new bounds f /.Lm o /'l,]al o
it can take many re-computations in order to achieve an improvement for the range bounds

f jL f jU of a factor f; and thus, a maximal number of iterations should be predefined.

3.1.1 Connection to existing ideas

The idea can be intuitively described as a specific application of subgradient bundle meth-
ods [4,5]. We use subgradients to approximate the possibly non-smooth convex/concave
relaxations of a given factor f; of the original function g representing our bundle. We then
construct a linear approximation of f; and check if the linearization provides a better range
bound than the natural interval extension. If a maximum number of iterations is not reached,
we use the subgradient information in order to determine a new point. In contrast to a bun-
dle method, we always work with only one subgradient, i.e., bundle of size 1, making the
application easier. We discuss an alternative of the presented method in Sect. 3.6. It is also
possible to describe this idea as a modified Sandwich algorithm (4.2 in [50]) where polyhe-
dral approximations are constructed for convex functions. However, the Sandwich algorithm
does not work with propagated subgradients and range intervals but rather with the differen-
tials of particular convex functions and its exact range bounds differing from the presented
method. Moreover, we try to avoid computing subgradients at all corners, in contrast to what
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is done in Figs. 4.1-4.8 in [50], since the dimension of z can be too large to make this
algorithm applicable in each factor of g. The idea of the method is presented in the next
example.

3.2 lllustrative examples
3.2.1 Natural interval extensions

Example 2 Consider again the function g(z) = (z — 2 — exp(—z)) on Z = [—0.5, 1],
Fig. 3, and consider the particular three factors f5(z) = z — 2, for) =22 — exp(z) and
f1(z) = f5(2) - fe(z). For factors f1, fa2, f3, fa, envelopes are known and natural interval
extension provide exact range bounds. The convex and concave McCormick relaxations
provide envelopes for f5 on Z given as

fs9(2) =05z—-05 and fi(z) =z — 22

The natural interval extensions are not exact for the range of fs providing /s ,,, = [— 1.5, 1]
while the exactrangeis givenas Is . = [— 0.75, 0.25]. The convex and concave subgradient of
S5V and f5¢, respectively, at the middle point 0.25 of Z are s5¥(0.25) = 0.5 and 55°(0.25) =
0.5, respectively. We construct the corresponding affine functions

FE1P(0.25, 2) = ££0(0.25) + s£°(0.25)(z — 0.25) and
FEEP(0.25, 2) = ££9(0.25) + 5£6(0.25)(z — 0.25).

Next, we evaluate the affine functions at their respective minimum and maximum in order to

obtain

min FE0.25, 2) = f£0(0.25, —0.5) = —0.75 and
zZE

max FE50(0.25, 2) = ££95P(0.25, 1) = 0.5625.
ze[— 0.

ey

With (1) we can improve the natural interval extensions range bounds /s 4; from [— 1.5, 1]
to I5 41 = [—0.75, 0.5625] for factor f5. The factor f5 together with its convex and concave
McCormick relaxations (constructed with natural interval bounds), natural interval bounds
fSL, f5U and the affine functions can be seen in Fig. 2a. This procedure can be rerun for a
different point in order to possibly improve the interval bounds even further but to keep this
example simple, we do only one iteration. It is possible to rerun the procedure for the same
point if we improve a factor before, since the relaxations and the corresponding subgradients
change.

Next, we compute improved range bounds for the factor f(z) = z° —exp(z). The convex
and concave McCormick relaxations of fg on Z (using the supplementary material of [47])
are given as

. —0.125 = exp(~ 0.5) + (0.1875 - “REGI=PPD) (2 140.5),  for z <025
f6 @ = 3 exp(—0.5)—exp(1)

z7 —exp(—0.5) - ==—g5=—1 (2 +0.5), else
f6€(z) =0.25+0.75z — exp(2).

The natural interval extensions provide I¢ ,qo; = [— exp(1) — 0.125, 1 — exp(—0.5)]
~ [—2.843,0.393], while the exact range is given as Is , ~ [— 1.73, — 0.728]. The convex
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Fig. 2 Example 2. a Factor f5(z) = z — z2 with its convex and concave McCormick relaxations, natural
interval extension estimators f5L fSU for the range of f5 on Z = [— 0.5, 1] and affine under- and overestima-
tors constructed with the use of subgradients at the middle point 0.25. The affine underestimator equals the
convex envelope of f5. b Factor fg(z) = 23— exp(z) with its convex and concave McCormick relaxations,
natural interval extension estimators fﬁL, f6U for the range of fg on Z = [—0.5, 1] and affine under- and
overestimators constructed with the use of subgradients at the middle point 0.25

and concave subgradients of f¢¥ and f¢€, respectively, at the middle point 0.25 of Z are

5€¥(0.25) = 0.1875 — 220D apq ¢¢(0.25) = 0.75 — exp(0.25). We construct the
corresponding affine functions

fcv 91417(0_257 7) = f Y(0.25) + S Y(0.25)(z — 0.25) and
£47(0.25, 2) = ££°(0.25) + 56°(0.25)(z — 0.25).

Then, we evaluate the affine functions at their respective minimum and maximum in order
to obtain

min FE0.25, 2) = f£"P(0.25, 1) ~ —2.562 and
zZ€E
2)
max FEE1P0.25, 2) = £EP(0.25, —0.5) & —0.446.
ze[— 0.,

With (2) we can improve the natural interval extensions range bounds I, from =
[—2.843,0.393] to I a1y ~ [—2.562, —0.446] for factor fg. Factor fq together with its
convex and concave McCormick relaxations (constructed with natural interval bounds), nat-
ural interval bounds féL, f6U and the affine functions can be seen in Fig. 2b. Once again, this
procedure can be rerun for a different point in order to possibly improve the interval bounds
even further but to keep this example simple, we do only one iteration.

We can now construct the envelope for the bilinear product f7 = f5 fs on the improved
intervals I5 q;g X Ig a1g and finally the convex and concave McCormick relaxations for g.
Figure 3 shows function g together with its convex and concave McCormick relaxations
constructed with the simple intervals /5 n4/, I6 nar denoted as g5u,, g5, and two improved
McCormick relaxations constructed with the new intervals s 414, 16,41 denoted as g, l . . 857 o
The proposed algorithm drastically improves the relaxations.

The procedure for obtaining improved lower and upper bounds for a factor of g is formally
given in Sect. 3.3 and discussed afterwards.
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Fig. 3 Example 2. Function g(z) = (z — zz)(z3 —exp(z)) on Z = [—0.5, 1] together with its convex and

concave McCormick relaxations g, , g55, constructed with natural interval extensions and the convex and
concave McCormick relaxations gc}’g, gglfg constructed using the range bounds computed Algorithm 1 with

a
only one iteration at each factor

3.2.2 Advanced interval extensions

Although natural interval extensions have the advantage of simplicity, robustness and
extremely low computational times, the usage of more sophisticated interval arithmetic is
often advisable. If better interval extensions are used for the construction of McCormick
relaxations, the resulting under- and overestimators may be much tighter than relaxations
constructed with natural interval extensions, cf. Example 5 in [37]. Still, even the more
sophisticated interval extensions do not guarantee that the resulting range bounds are exact.
This leaves room for improvement of the range bounds by the presented method.

Example 3 Consider g(z) = (log(z+1) — zz)(log(z +1)—exp(z—0.5))on Z =[—-0.5, 1],
Fig. 5, and consider the particular three factors fo(z) = log(z + 1) — 22, fio(z) = log(z +
1) —exp(z — 0.5) and f11(z) = fo(z) - fi0(2). For the other factors z,1,0.5,z + 1,z —
0.3, z2, log(z+1), exp(z —0.5), envelopes are known and simple interval arithmetic provides
exact range bounds. In this example, we use the second order Taylor form interval extensions
(Sect. 3.7 in [41]) instead of natural interval extension to show that the presented algorithm
can provide tighter McCormick relaxations even if more advanced interval arithmetic are
used for the construction of McCormick relaxations. In particular, we compute the range
bounds for a twice differentiable function & : Z — R by calculating I, = [hL, h‘T/] =
h(c) +h(c)(Z —c) + @(Z — ¢)?, where ¢ is the middle point of Z, &', b are the first
and second derivatives of i and 4”(Z) is an interval overestimating the range of 4” which
we calculated through natural interval extensions in this example.

The McCormick relaxations of f9 on Z (using the supplementary material of [47]) are
given as

Jo(=0.5) — fo(D)

J5'2) = fo(=0.5) + e

f5€(z) =log(z+ 1) — 2.

(z+0.5)

Interval extensions obtained by the Taylor form provide Iy r ~ [—1.751, 0.385] while the
exact range is given as Iy . &~ [—0.943, 0.177]. The convex and concave subgradients of f§"
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Fig. 4 Example 3. a Factor fy(z) = log(z + 1) — 22 with its convex and concave McCormick relaxations,

Taylor form interval extension estimators fQL,T, f9[,]T for the range of f9 on Z = [—0.5, 1] and affine under-
and overestimators constructed with the use of subgradients at the middle point 0.25. The affine underestimator
equals the convex relaxation of fg. b Factor f19(z) = log(z — 1) —exp(z — 0.5) with its convex and concave
McCormick relaxations, Taylor form interval extension estimators flLOAT’ fll(]),T for the range of f19 on
Z = [—0.5, 1] and affine under- and overestimators constructed with the use of subgradients at the middle
point 0.25. The affine underestimator equals the convex relaxation of f1¢

and fg°, respectively, at the middle point 0.25 of Z are 55"(0.25) = W and

55(0.25) = 0.3, respectively. We construct the affine functions
F50500.25, 2) = ££9(0.25) + 5§Y(0.25)(z — 0.25) and
fgcc’”b(OQS, 2) = f5(0.25) 4+ 55°(0.25)(z — 0.25).

Subsequently, we compute the respective minimum and maximum of the affine functions

min f700.25, 2) = ££70(0.25, —0.5) &~ —0.943 and
z€[—0.5,1]

cc,sub cc,sub
7170.25, 7)) = 17(0.25, 1) ~ 0.385.
L fo D =fy )

3

With (3) we can improve the interval bounds obtained by the Taylor form from Iy r =
[—1.751,0.385] to Iy 4 = [—0.943, 0.385] for factor f9. Factor f9 together with its con-
vex and concave relaxations (constructed with Taylor form bounds), Taylor form bounds
f&T, fgl{T and the affine functions can be seen in Fig. 4a. Similar to Example 2, this proce-
dure can be rerun but to keep this example simple, we do only one iteration.

Next, we calculate improved range bounds for factor f1p. The convex and concave
McCormick relaxations of fjgp on Z (using the supplementary material of [47]) are

—-0.5) — 1
FU@D = fio(—0.5) + J1o( _0;_{10( )

f{§ () =log(z + 1) — exp(z — 0.5).

(z4+0.5)

The Taylor form interval extensions provide [19.7 =~ [—2.16, —0.539], while the exact
range is given as I19 . ~ [~ 1.061, —0.555]. The convex and concave subgradients of f

and f|5, respectively, at the middle point 0.25 of Z are s{;(0.25) = W and
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Fig.5 Example 3. Function g(z) = (log(z + 1) — zz)(log(z + 1) —exp(z — 0.5)) on Z = [— 0.5, 1] together
with its convex and concave McCormick relaxations gT gT constructed with Taylor form interval extensions

and the convex and concave McCormick relaxation g€ p l o , 8¢ a l o constructed using the range bounds computed
via Algorithm 1 with only one iteration at each factor

576(0.25) = 0.8 — exp(—0.25). We construct the corresponding affine functions

fcv sub 0.25,7) = f V(0.25) + S (0.25)(Z —0.25) and
fee 4b0.25, 2) = £55(0.25) + 555(0.25) (z — 0.25)

and compute the respective minimum and maximum

min fwsub(o 25,2) = fig**"(0.25, —0.5) ~ —1.061 and
z€

max F570.25,2) = £ (0.25, 1) & —0.539.
zel— 0.

“

With (4) we can improve the interval bounds obtained by the Taylor form from /jo,7 &
[—2.16, —0.539] to 110,a1g = [— 1.061, — 0.539] for factor f1¢. Factor f1o together with its
convex and concave McCormick relaxations (constructed with Taylor form bounds), Taylor
form bounds f; I%’T, fllé,T and the affine functions can be seen in Fig. 4b. Just as before, these
steps can be recalculated but to keep this example simple, we do only one iteration.

Now, we are able to construct the envelope of f11 = fo fio on Iy qi¢ X I10,a1g and sub-
sequently the McCormick relaxations of g on Z. Figure 5 shows function g together with
its convex and concave McCormick relaxations constructed with the intervals Iy 7, 110,17
obtained with the Taylor form interval extensions denoted as g5’, g5 and two improved
McCormick relaxations constructed with the intervals Io 4/¢, 110,41, denoted as gg}’g, gfjg.

We see that even for the more sophisticated interval extensions, the proposed method is able
to significantly improve the final resulting McCormick relaxations.

Example 3 shows that the algorithm is able to improve the McCormick relaxations of a
given function g even if more advanced interval arithmetic are used for the computation of
range bounds of each factor. Obviously, it holds that the weaker the underlying estimated
bounds for each factor, the larger is the potential of the presented heuristic.
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3.2.3 Bivariate example

Since univariate functions can often be handled more efficiently, we present a bivariate
example to better illustrate the merit of the method.

Example 4 Consider the two dimensional function g : [—0.25,1] x [0.5,1.5] —

R, (x,y) > (x? - (log(y) +exp(— y)) — x - (log(y) + exp(— y)))3. First, examine the fac-
tor f5(y) = log(y) + exp(— y) with its convex and concave McCormick relaxations given
as

log(1.5) —log(0.5)
5-05 W03 +exp(=y)

exp(—1.5) —exp(—0.5)
1.5-0.5

and the (non-exact) natural interval extensions g o ~ [—0.47, 1.011]. The convex and
concave subgradient of fg¥ and f¢€, respectively, at the middle point 1 of ¥ are s¢'(1) =~
0.7307 and s¢€(1) ~ 0.6165, respectively. We construct the affine functions

TP AL y) = 1) + 58 () (y — 1) and
FEMP A y) = fE9D) + sE (D (y = ).

Now, we evaluate the affine functions at their respective minimum and maximum and obtain

f6"(y) =10g(0.5) +

16 (y) =log(y) +exp(—0.5) + (y=0.5)

: cv,sub cv,sub
(1L y) = fE°(1,0.5) ~ —0.1413 and
ye[%gfll.S] f6 ( y) f6 ( ) an

cc,sub cc,sub
’ 1,y)= ’ 1,1.5) ~ 0.7231

o fo 7Ly =fg )
With (5) we canimprove the interval bounds /g 4; from [—0.47, 1.011]to [— 0.1413, 0.7231]
for factor fg. Factor fe together with its convex and concave McCormick relaxations (con-
structed with natural interval bounds), natural interval bounds féL s f6U and the affine functions
are shown in Fig. 6a.

(&)

H—
1 B § fcc,sh%
—_— e —m—f ) el 10f1c6 —_—
v _g g a1
- ;64’.‘4’.‘ f6 . S0
.- - %
c6u,sub -
0.5 /e (€3}

—_ _fé'c,sub(l)

-0.5 - 05
0.5 y1 1.5

(a) (b)

Fig.6 Example 4. a Factor fg(y) = log(y) + exp(— y) with its convex and concave McCormick relaxations,

natural interval extension estimators f6L, f6U for the range of fg on Z = [0.5, 1.5] and affine under- and
overestimators constructed with the use of subgradients at the middle point 1. b Factor fio(x,y) = xZ-

(log(y)+exp(—y))—x-(log(y)+exp(— y)) with its concave McCormick relaxation ff(f ,concave subgradient

flcg SUb-at the middle point (0.375, 1) and the upper bound obtained by natural interval extensions using the
improved bounds of factor fg
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0.5

05 0
Fig. 7 Example 4. Function g(x, y) = (xZ. (log(y) + exp(—y)) — x - (log(y) + exp( y)))3 onX xY =
[—0.25, 1] x [0.5, 1.5] together with its convex and concave McCormick relaxations g,m,, g,m, constructed

with natural interval extensions and the convex and concave McCormick relaxations g€ | g¢ al o constructed

alg
using the range bounds computed via Algorithm 1 with only one iteration at each factor

The next factor where an improvement of the interval bounds occurs is fio(x, y) =
x2 - (log(y) +exp(— y)) — x - (log(y) + exp(— y)). The concave subgradient of the concave
McCormick relaxation f[ is given by

FE5(0.375, DT, (xr, )7) = 0.5452 +0.5107 - (x — 0.375).

The concave relaxation of fj¢ was calculated using formulas (5) and (6) in [35] and is not
listed herein due to the very large formulas. Natural interval extensions provide 119 nqr ~
[— 0.8644, 0.9039], where the improved bounds for factor fs were used for the computation.
The maximum of f;’ Sub0.375, DT, (x, y)T) is given as

ce,sub T T
m sub0.375, D)7, (x,
rel=025.11yel0.5,1.5] Jig (€ )Gt ©

= £ 0375, DT, (1, 7T ~ 0.8644.

With (6), we are able to improve 19 4 from [—0.8644, 0.9039] to [— 0.8644, 0.8644], see
Fig. 6b.

Last, we construct the envelopes of fi; = f13O on the improved interval /19 4, and the
convex and concave McCormick relaxation of g. Figure 7 shows the two dimensional function
g together with its convex and concave McCormick relaxation constructed with the use of
simple intervals denoted as g5, , gos, and the improved McCormick relaxations constructed
with the use of the presented method denoted as gg}’g, g;fg.

3.3 Formal statement of the algorithm

For a given factorable function g : Z — R, Z € IR", we traverse the corresponding DAG of
g starting at the independent variables z;, i € {1, ..., n} and working through all factors up to
the root given as g (reverse-level-order in Graph Theory terminology). In each factor f;, j €
{1, ..., |FF|}, we execute Algorithm 1 in order to obtain bounds /; 4/, = [fjl:alg’ fj alg] on the
range of f; and save these. We use /; 4, then directly when computing fi, k > j. Note that
the computed range bounds for every f; are valid on whole Z. Thus, after the DAG of g has
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been completely traversed, we can calculate McCormick relaxations of g and its subgradients
atany point Z € Z with the use of the range bounds /; 4, for each factor f;, j € {1, ..., |F[}

instead of using natural interval extensions for the range bounds estimation.

3.4 Algorithm discussion

We now discuss Algorithm 1. First, we check if the factor f; we currently consider, is a
constant function by simply comparing the lower and upper bound (line 4), since if it is the

Algorithm 1: Method for obtaining tighter interval range bounds with the use of prop-

agated subgradients for one factor f; of g.

1 Given a DAG representation G = (F, E) of a factorable function g : Z — R, Z € IR".

24

25

26
27
28
29
30
31
32

ZL, U

Ccv s cc (s CU (5 CC (5 R L U
U@, f @) 5T @5 @, 1 = 1Y)
k=1;
while k < N do
if ij < f]V then
= f@);
€ = @),
for i=1,...,ndo
if 57¥(z) > 0 then
V=tV (Z) (L — Z):

% =z7;

else

= @) Y - 20
U.

c _
;=27
end
if 57°(z) > 0 then
1=t +s7¢ () (le —-Z);

Cc __ .

7 =2z

else

= s @) ] — )
L.

i

c _
Z; =2
end
end

L — cv gLy
fj,alg = max{t’, f] 35

U —_ minficc £Uy.
fj!alg—mln{t af]' b

Ij = [fjl:alg’ f]{,]alg];
Save I g1 = 13
if Kk + 1 < N then
\ z = mid([z, z¢);
end
end
k=k+1;
end

- lower and upper, finite, bounds for all independent variables z;, i € {1, ..., n}
Z - initial point for computation of relaxations and subgradients

z¢ - corner point used to compute a new point for a next iteration

N - maximal number of iterations for given factor

Initialize factor f; € IF obtained by traversing G in reversed-level-order to obtain
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case, we cannot improve any bounds on its range and thus, the algorithm is unnecessary.
Obviously this check is only sufficient and not necessary, since it is possible to have different
bounds for a constant function due to overestimation. In the for loop (line 7), we solve
mingez f;”’”'b(i, z) and maxgcz fjcc’”b(i, z) by simple subgradient comparisons as both
problems are box-constrained and linear. The correct corner z¢ of Z is determined by exam-
ination of the sign of the subgradient in the particular variable (lines 8—21). Then, we check
if we can improve the bounds of factor f; (lines 23 and 24 ). We update the range bounds /;
of factor f; (line 25) such that they can be directly used for the computation of relaxations,
subgradients and bounds for factors fi, k > j. Then, we save the improved bounds (line 26).
If needed, we compute a new point Z (line 28). There are many ways to compute a new point.
In our computational studies in Sect. 4, we use the simple bisection in order to obtain a new
z = mid([z, z°]), i.e., the next point is given by the middle point of the interval [z, z°], where
z¢ is determined before in lines 8—15. Note that the simple bisection method converges to
mingec 7 fj“’ (z) for N — oo. A more sophisticated method for the computation of z,,,, may
provide better results and represents potential future work. Note that it may also make sense
to compute two new separate points in order to independently improve the upper and lower
bound within the algorithm but the numerical results for one common new point are very
weak (Table 6) and thus, we omit this idea.

We are also interested in the computational complexity of the presented method. The
computation of the possibly improved bounds /; 4/ = [ f /L alg® f }{al g] (lines 5-26) is linear
in the dimension of the optimization variables z, i.e., we have a complexity of &'(n) for the
computation of /; 4,. This is comparable to the computation of McCormick relaxations and
propagation of subgradients which have to be computed for each dimension in each factor.
If only one iteration is allowed (N = 1), we can directly use the propagated relaxation
and subgradient values at the desired point Z and are not forced to re-evaluate McCormick
relaxations, subgradients and interval bounds for all the factors on which f; depends for
subsequent points. Therefore, if a function g consists of |F| factors and we allow only one
iteration of the algorithm, the computational complexity amounts to '(|F|-n). Regarding the
computational time for N = 1, we can expect that even in cases where the algorithm does not
yield any improvement, the additional computational effort is negligible. This observation is
also confirmed in the numerical studies in Sect. 4. In contrast, if we allow for more than one
iteration (N > 1) within a factor f;, we have to propagate all required information through
all previous factors at the new point. Indeed, if a factor f; depends on ¢ other factors and
we allow N iterations, we need todo ¢ N computations, which is large for more complicated
functions (_# > 1) and N > 1. Moreover, let us assume that each factor depends on all
the previous factors, then the complexity for N computations of f; equals Zi:] kN, which
is a polynomial complexity but still extremely large if a function consists of many factors
and N > 1. The impact of the number of factors for N > 1 matches the numerical results
presented in Sect. 4.

In order to avoid the complexity explosion, it is possible to traverse the DAG at a given
point and save the improved intervals I} ¢, of each factor f;. Then, traverse the DAG again
at a different point and improve the lastly computed intervals I ., until a predefined number
of iterations N is reached. Moreover, we could heuristically decide whether it is worth to
evaluate a factor again, e.g., by the type of the factor (variable, univariate, known) or if the
difference between the McCormick relaxation f j“’ and the natural interval bounds f jL is
very large. In the computational case studies we use both improvements presented in this
paragraph when using the heuristic for N > 1.
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Fig.8 Example 5. Factor f(z) = exp(z)—z3 on Z = [— 1, 1]. The heuristic does not provide any improvement
if the initial point is chosen as z = 1 and only 1 iteration (N = 1) is allowed

3.5 Algorithm properties and limitations

The algorithm cannot deteriorate the bounds, since new bounds /; 4, are given by the maxi-
mum and minimum of the originally computed bounds f jL, f jU and 1Y, ¢ (lines 23 and 24).
The best bounds obtained by Algorithm 1 cannot be better than the minimum and maximum
of the convex and concave McCormick relaxations of a factor f;, i.e., it holds that

L : cv U cc
. < h >
fj,alg < Izrélgf (z) and f]’alg > anEafo (z).

Algorithm 1 is able to improve the range bounds of a factor, see Example 2 but is not
guaranteed to improve the bounds of a factor f;, e.g., if the underlying interval extensions
for the bounds %, fU are already exact or if the point Z is chosen badly as we show in the
next example making the method a heuristic.

Example 5 Consider f(z) = exp(z) — z> on Z = [— 1, 1]. Let us apply Algorithm 1 to f at
point 7 = 1. The heuristic does not improve the interval bounds of f, see Fig. 8.

Example 5 shows that the outcome of the method depends on the chosen initial point Z and
also on the maximum number of iterations. Choosing a corner point z¢ € Z as initial point for
Algorithm 1 is only a good choice if we have some monotonicity information of the convex
relaxation. In general, choosing the initial point for the algorithm from the interior of Z seems
more intuitive and promising due to the positive curvature of convex underestimators. It was
recently shown that if the midpoint is used as initial point, the resulting intervals /; 4, are
guaranteed to have quadratic convergence order [25] confirming the intuition. Note that the
bounds of f in Example 5 are improved if additional iterations of the heuristic are performed.
If we allow for an additional iteration in Example 5, we obtain the middle point Z;0, = 0
by applying simple bisection of Z for the re-computation of z and the heuristic indeed does
improve the range bounds of f, which can be seen in Fig. 9.

3.6 Algorithm alternatives and initial point determination

cc,sub

Instead of solving mingcz f;v’sub(i, z) and maxez f] (z,z) for only one point in

each factor as described in Sect. 3.4, we could consider multiple points simultane-
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Fig.9 Factor f(z) = exp(z) — BonzZ= [— 1, 1]. The heuristic provides clear improvement if an additional
iteration is allowed or if the initial point is directly set to z = 0 in Example 5

ously in each factor f;. For each point, we compute the subgradient and use it to
construct linearizations in each factor f; resulting in a linear program (LP) for the
lower and the upper interval bound each. The resulting LPs would be of the form:

min max
zeZ 1 zeZ K
st f{" @z <nVk=1...P st fi @) = pVk=1...P,

where P is the number of points considered. Note that in general every factor (except for
the original variables and trivial cases) has to be inspected, since natural interval extensions
do not guarantee exact bounds as soon as a variable occurs more than once or a multivariate
operation, e.g., subtraction, is performed. This would result in the solution of twice as many
LPs as there are factors for the determination of improved intervals of the whole function g
for only one node in the B&B tree. To avoid solving too many LPs, we filter for trivial factors
or factors which are not promising such as, e.g., simple univariate operations. Moreover, we
track the improvement provided by the heuristic during the B&B and reduce the number of
points to 1 in factors where an improvement of at least 1% was not possible in the previous
B&B iteration.

Additionally, in order to achieve a worthy improvement through the solution of the high
number of linear programs, the multiple points considered simultaneously in each factor f;
have to be chosen properly. In AVM the choice of linearization points for each factor is very
simple since each factor has its own auxiliary variables and corresponding bounds. In the
McCormick propagation technique, the choice of linearization points is far from simple. Thus,
we present an alternative to an optimal choice of linearization points where we determine
(P —1) random points for linearization plus the middle point. To not lose any information, we
also use the resulting additional linearizations in the final lower bounding problem to further
tighten the relaxation of a given node. A comparison of this approach with Algorithm 1 is
presented in the next section.

4 Numerical results

In order to test the presented algorithm, we use our in-house deterministic global optimization
solver MAINGO [9]. In particular we use CPLEX v12.8 [14] for linear optimization, the
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IPOPT v3.12.0 [54] and NLOPT solver 2.5.0 [21] for local nonlinear optimization, the
FADBAD++ package for automatic differentiation [3] and the MC++ package v2.0 [11] for
McCormick relaxations. All calculations are conducted on an Intel® Core™i3-3240 with
3.4GHz and 8 GB RAM on Windows 7. We solve 7 small problems of varying sizes with
up to 14 variables chosen from the MINLPLib2 library; 3 case studies of a combined-cycle
power plant presented in Sect. 5 of [7] where we minimize the levelized cost of electricity
in the first 2 case studies and maximize the net power output in the third case study, 6 case
studies of deep artificial neural networks (ANN) used to learn the well-known peak function
with 2-7 hidden layers where i in ANN_i denotes the number of hidden layers in the ANN
[46], and 4 case studies of chemical processes presented in Sects. 3.2, 3.3, 3.4 and 4.2.2 of
[8]. The McCormick technique was already shown to be advantageous for the case studies
from [7,32,46] in the respective article, while the case studies from the MINLPLib2 library
were not solved with a McCormick based solver before.

We have mainly chosen case studies from our own work, since they are written in the
reduced space formulation described in [7]. This is motivated by two reasons. First, the
aforementioned applications work particularly well using McCormick relaxations and the
reduced space formulation. Second, the presented heuristic is mostly promising for compli-
cated functions, consisting of many complex factors, as is the case in a problem in reduced
space formulation. This is because natural interval extensions loose quickly on quality if a
function consists of many factors. But the number of factors is not the only key aspect respon-
sible for the success of the heuristic. The factors’ complexity also plays an important role,
e.g., for a seemingly complex sum of many univariate factors f(x) = >_ g;(X) where g; are
univariate functions, the heuristic would most likely provide only little to no improvement.
This is due to the fact, that for most univariate functions, natural intervals extensions already
provide tight bounds. For f the sum is simultaneously the final and complicating factor w.r.t.
to interval extensions and McCormick relaxations, leaving no space for improvement by the
presented method.

We solve the nonlinear optimization problems as explained in the following. The upper
bounding problems are solved locally with IPOPT in pre-processing and with the SLSQP
algorithm provided by the NLOPT package within the B&B in order to obtain a valid upper
bound. For the lower bound, we relax the problems using McCormick relaxations and then
construct linearizations g"*?(z, z) at a single point Z € Z with the use of subgradient
propagation. The considered problems consist of constrained and box-constrained problems.
In both cases we linearize the convex relaxation of the objective function and all constraints
(excluding the variable bounds) at a predefined single point to construct a linear program,
which is then solved with CPLEX. In the case of box-constraints only, we obtain an extremely
simple linear program whose solution can be obtained by simple coefficient analysis. Still,
even in this simple case we automatically call CPLEX for the solution. We always use only one
linearization point, namely the middle point of the current node in the first and third numerical
comparisons (Table 4) and the current incumbent in the second comparison (Table 5). If any
of the coordinates of the incumbent is not within a given node, we simply replace it by the
corresponding middle point coordinate. For the case of multiple points P > 1 presented in
Table 6, we use P linearization points for the underlying affine relaxation.

Additionally, in some problems, there are no bounds given for the optimization variables.
McCormick relaxations need valid bounds and we provide such ensuring containing the global
minimum in all problems, see Table 3 in Appendix A for the number of variables, inequalities,
equalities and bounds we used. If the bounds are provided in the given optimization problem,
we mark it with the keyword given. We use the envelope of the logarithmic mean temperature
difference function, presented in [36] for the 3 case studies from [7] explaining the improved
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computational times for N = 0, i.e., without the use of Algorithm 1, in this article in
comparison to [7].

In the following, we discuss the numerical impact of the method within a B&B framework
using McCormick relaxations. The presented algorithm is not applicable to the « BB method
[1,28], since the «BB method does not depend on tight bounds of intermediate factors of
a function g but rather on bounds on the eigenvalues of g. Algorithm 1 is not applicable
directly to the AVM, where an auxiliary variable and an auxiliary equation are introduced
for each factor, but it can be made applicable with a few modifications. It may be applied to
the AVM by computing the subgradient at each factor introduced by an auxiliary equation
e;, improving the bounds for the corresponding auxiliary variable a; and providing this
information to all auxiliary equations e; depending on g;. In ¢; the improved bounds on g;
may then provide tighter bounds for further variables a; which again can be propagated to
further auxiliary equations etc. We present a comparison with the state-of-the-art deterministic
global optimization solver BARON v18.7.20 [51] which uses the AVM. We are not aware of
BARON v18.7.20 implementing such a heuristic. It is worth mentioning that the advantages
of the described B&B procedure in the sense of computational time compared to state-of-the-
art deterministic global optimization solvers has already been shown in [7,8,46] for numerical
experiments ANN_i7, i € {2,...,7} [46], Case Studies Henry, NRTL, OME, and Proc [§]
and Case studies LII, and III [7].

In all numerical experiments we set the absolute and relative optimality tolerances to
€ = 107* and absolute and relative feasibility tolerances to € = 10~°. First, we compare
the impact of the algorithm with only one iteration. We allow for a maximum of 3600 s.
We consider the computational performance of B&B for four cases: with and without the
heuristic, as well as with and without range reduction (RR). Range reduction is performed
using Optimization Based Bound Tightening improved by the filtering bounds technique
with factor 0.01 described in [17] and also employing bound tightening based on the dual
multipliers returned by CPLEX [42]. In the figures the case of no RR and no heuristic is
referred to as (MC only), the case of no RR and heuristic used as (MC heur), the case of
RR used and no heuristic as (MC RR) and the case of using RR and the heuristic as (MC
heur RR).

Table 4 in Appendix A summarizes results for only one allowed iteration within Algo-
rithm 1. The heuristic provides an average speed-up of ~7.94 if only McCormick relaxations
are used (first row, first column of Table 1). It provides an average speed-up of ~8.18 (first
row, second column of Table 1) even if additional range reduction is performed. In addition to
performance plots showing all algorithms at once, to ensure reliability, we also present perfor-
mance plots comparing only two algorithms [18]. Figure 10a—f show performance plots for
the heuristic applied at the midpoint. We observe that the algorithm has the potential to dras-
tically decrease the number of iterations and the computational time needed, especially for
problems written in the reduced space formulation presented in [8,46]. In these problems, the
objective function and the constraints are composed of many factors and the propagated inter-
val bounds of each factor lose on quality quickly. For the benchmark problems, the maximal
number of factors over all participating functions is not very high although the functions itself
are complex, see Table 6. Thus, the heuristic does not provide a big improvement compared
to the application case studies. Moreover, in the cases where the heuristic did not improve
the relaxations, the number of iterations remained almost the same and the computational
time only increased, if at all, by a very marginal amount. This is explained by the fact that if
only one iteration of the heuristic is allowed, we can directly integrate the heuristic into the
computation of McCormick relaxations and the heuristic only has a constant computational
complexity in each propagation step. It is worth noting that the cases where the heuristic did

@ Springer



Journal of Global Optimization (2019) 75:565-593 583

100 100
RS
S
™
= = s
§ % 5 * “\\\\\\\\\“\\\\\\\\u\\\\\““
e
S 60 S 60 e
2 2
« «
& £
o o
5 40 S 40
o I=}
I e
& o
20 20
MC only  m— MC&heuristic
N MC&heuristic 0 MC&range reduction
1 10 100 1 10 100
Time Factor Time Factor
(@) (b)
100 | 100
3 m\“\“\\\\"""""uuuuu.......... \-‘-\_\._\-w-\-"\'
= 80 o 80
o W —_
= u\“\\\\\\\\m\\\\\m\\ X \III\IYI\‘\-“\‘
] o = s
S 60 & 2 60
@ \\\\ o
S W § o ——
2 $ 3 e
S et
& $ £
20 f o 20
S
range reduction “&heuristic&range reduction =
MC& d MC&heuristic& d
0 MC&heuristic&range reduction = 0 BARON 1
1 10 100 1 10 100
Time Factor Time Factor
(c) )
100 I T 100 L
l\-'-‘-\-‘-\ | -\-\‘\-\ -
i I o o
= $
o \ -
X " S = S
% i 4\“\\\“\\\\\m\\\" =
u & =]
S 60t & § 2 60
> L S >
) N S
2 S 2
2 \\\\\:\::“-\\;\-u-u-u-u T e
E 10 Sanm =
o - S o
—_ o -"-\\I N —_
g fanmn® o S
& oW MC only  se— £ MC only  s—
2 — MC&heuristic 20 # MC&heuristic
AT MC&range reduction MC&range reduction 1 1
MC&heuristic&range reduction - MC&heuristic&range reduction =
BARON 1= " BARON 1
0 0
1 10 100 1 10 100 1000

Time Factor CPU [s]
(e) ®

Fig. 10 Performance plots with time factors and CPU time needed in seconds. The algorithm was always
applied at the midpoint with N = 1. We are comparing the in-house solver MAINGO [9] with and without
additional range reduction and the presented method with the state-of-the-art solver BARON v18.7.20 [51]
with default settings

not provide much improvement consist of only a few complicated factors and are solvable
within a few seconds with additional range reduction. Still, these case studies present the
improvement by the heuristic compared to simple McCormick relaxations, supporting the
claims and results of this article. Additionally, we compare the results to the state-of-the-art
solver BARON v18.7.20 [51], where we used default settings, see Fig. 10d—f. We also observe
that the McCormick-based B&B solver outperforms BARON with and without additional
range reduction and the presented heuristic for the hard case studies from [7,8,46]. For the
application problems NRTL and Proc, we were able to detect spurious behavior of BARON.
While BARON converges in only one iteration with default settings, it declares the problem
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Fig. 11 Performance plots with time factors and CPU time needed in seconds. The algorithm was always
applied at the incumbent with N = 1. We are comparing the in-house solver MAINGO [9] with and without
additional range reduction and the presented method with the state-of-the-art solver BARON v18.7.20 [51]
with default settings

as infeasible if no local searches are allowed (NumLoc O,

DoLocal 0). We still report

the result obtained with default settings. For most benchmark problems which are solved
within few seconds, the state-of-the-art solver slightly outperforms the methods used herein.

Next, we compare the impact of the heuristic with only one iteration but a different
initial point. Here the heuristic provides an average speed-up of ~7.65 if only McCormick
relaxations are used (second row, first column of Table 1). It provides an average speed-up
of &8 if additional range reduction is performed (second row, second column of Table 1).
Figure 11d-f show performance plots for the heuristic applied at the incumbent. Again, we
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Fig. 12 Performance plot comparing the heuristic for N = P = 1, N = 3 and N = 5 applied at midpoint
and solving LP with P = 3 and P = 5 linearization points in each factor without additional range reduction

Table 1 The average speed-up factor provided by the presented heuristic for N = P = 1 with midpoint and
incumbent as initial point over the 20 problems considered herein

MC only — MC heur MC RR — MC RR heur
Midpoint ~7.94 ~8.18
Incumbent ~7.65 ~8
Table 2 The average slowdown N=P=1
factor provided by the presented
heuristic for N, P > 1 compared n _3 p — ~0.57%
to N = P = 1 with midpoint as ’ N
initial point over the 20 problems N=5P=1 ~0.49x
considered herein =1,P=3 ~0.69 x

N=1,P=5 ~0.83x

allowed for a maximum of 3600 s. This time, instead of the middle point of the node, we use
the incumbent found by the local solver in the upper bounding procedure as the initial point
and as the only linearization point in order to construct the linear lower bounding problem. If
any coordinate of the incumbent is not within the current node, we simply use the appropriate
coordinate of the middle point of this node instead. Table 5 in Appendix A summarizes the
results for only one allowed iteration within Algorithm 1 with the current incumbent as
initial point. Again, especially in the application and ANN case studies from [7,8,46], the
heuristic improves the solution times drastically. We see again that the computational time
only increased, if at all, by a very marginal amount. We observe that the choice of the initial
point may have a significant impact on the advantage provided by the heuristic. Again, we
compare the results to the state-of-the-art solver BARON v18.7.20 [51], where we used
default settings.

Last, we compare the impact of the number of iterations within the heuristic and the
solution of LPs in each factor. Table 6 summarizes the numerical results and Fig. 12 shows
the performance plot comparing the heuristic for N = P = 1, N = 3 and N = 5 applied at
midpoint and solving LPs with multiple linearization points (Sect. 3.6) for P =3 and P =5
without any additional range reduction. We allow for a maximum of 3600 s. We see that
the number of iterations in the B&B does not increase if we allow more iterations or more
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points for the LPs within the heuristic but the computational time needed explodes in most
cases, especially for problems with many factors. This is the behavior that we already shortly
discuss in Sects. 3.4 and 3.6 . Table 2 summerizes the average slowdown if more iterations
(N > 1) or more points (P > 1) are used. On average increasing the number of iterations
slows down the optimization by a factor of ~2 while increasing the number of points only
slows down the optimization by a factor of & 1.2. Still, increasing the number of points P
may have a positive effect which is explained by the fact that additional linearizations are
added to the lower bounding problems for P > 1. Even if the number of factors within the
optimization problems is not very high, the additional time needed for further iterations within
each factor or the time needed for the solution of LPs adds up quickly and is clearly visible if
many iterations are needed in order to solve a given optimization problem, even after filtering
trivial factors and heuristically skipping factors which may have a low improvement. Note
that in this work we used a very simple way to compute additional iterations or to choose the
linearization points for LPs, so an improved method for computing further iterations could
improve the computational times.

5 Conclusion

We present a new heuristic for tightening of the univariate McCormick relaxations [29,30] and
its extension to multivariate outer functions [52] of a factorable function g based on the idea
of using tighter interval bounds for the range of each factor of g and obtaining these through
subgradients, presented in Sect. 2.3 in [37] and Example 4.4 in [32]. The algorithm possibly
improves the range bounds of the factors of g. It uses subgradient propagation for McCormick
relaxations [32] in order to construct simple valid affine under- and overestimators of each
factor. Then, the affine relaxations are solved with simple function evaluations resulting in
improved range bounds for each factor. This results in tighter McCormick relaxations of the
original function g.

Subsequently, we provide numerical results confirming the potential of the presented
heuristic. We observe that allowing for only one iteration within the heuristic results in the
best computational times. Although more iterations give potentially better bounds, this leads
to recalculation of a possibly high number of factors of a factorable function g. Moreover, we
see that selecting a good initial point may significantly improve the outcome of the algorithm,
which remains a potential future work regarding the presented algorithm. Algorithm 1 is
especially effective if the underlying interval bounds of the factors are very loose. This is
often the case when the well-known dependency problem applies [33,41]. A combination
of the presented method with the reverse propagation of McCormick relaxations presented
in [57] appears to be promising, since it works with range bounds of g and could result
in an even greater improvement of McCormick relaxations overall, representing a further
potential future development for the McCormick technique. As an extension, an automatic
reformulation algorithm for variable elimination should make the presented heuristic very
viable even for problems consisting of many simple functions, since this would lead to only
a few complex functions. This is one of the future works of the authors. One could also think
of a combination of the auxiliary variable method [50] and the McCormick technique to
isolate problematic factors by introduction of auxiliary variables and then directly applying
the presented heuristic to these.
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A Appendix

See Tables 3, 4, 5 and 6.

Table 3 The problems for the numerical studies for different numbers of iterations within the heuristic

Name #var #ineq #eq Domain [F(F;)I || IFyrl
Alkyl 14 0 7 given 20 85 11
Alkylation 10 8 3 given 21 108 7
ANN_2 [46] 2 0 0 given 1485 1485 40
ANN_3 [46] 2 0 0 given 2725 2725 60
ANN_4 [46] 2 0 0 given 3965 3695 80
ANN_5 [46] 2 0 0 given 5205 5205 100
ANN_6 [46] 2 0 0 given 6445 6445 120
ANN_7 [46] 2 0 0 given 7685 7685 140
CS Henry [8] 8 1 6 given 142 195 56
CS NRTL [8] 9 1 7 given 304 440 166
CS OME [8] 11 1 10 given 311 396 93
CS Proc [8] 48 6 46 given 488 1017 219
CSI[7] 2 8 1 given 241 252 53
CSII [7] 5 12 1 given 310 333 75
CSIII [7] 8 14 1 given 192 264 50
ex6_1_1 8 0 6 [1077,0.51* x [0, 101* 41 64 18
ex7_2.3 8 6 0 given 18 68 15
ex7_2 4 8 4 0 given 21 67 20
ex8_1_3 2 0 0 [—9,91? 53 53 9
Process 10 0 7 given 21 76 7

#var represents the number of variables, #ineq stands for the number of inequalities and #eq for the number
of equalities. The domain denotes the domain we used for the variables, if it was not already given. The 7
benchmark problems can be found in the MINLPLib2 benchmark library. max ; |F(F ;)| denotes the maximal
number of factors of all functions in the given problem (shortened to |F(F)| in this table), |F| denotes the
number of all factors in the given optimization problem, and |F | denotes the number of nonlinear factors
in the problem. All factors except for constants, variables, 4, ’—’ and the multiplication with a constant are
defined as nonlinear
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