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Abstract
This paper proposes a joint decomposition method that combines Lagrangian decomposi-
tion and generalized Benders decomposition, to efficiently solve multiscenario nonconvex
mixed-integer nonlinear programming (MINLP) problems to global optimality, without the
need for explicit branch and bound search. In this approach, we view the variables coupling
the scenario dependent variables and those causing nonconvexity as complicating variables.
We systematically solve the Lagrangian decomposition subproblems and the generalized
Benders decomposition subproblems in a unified framework. The method requires the solu-
tion of a difficult relaxed master problem, but the problem is only solved when necessary.
Enhancements to the method are made to reduce the number of the relaxed master problems
to be solved and ease the solution of each relaxed master problem.We consider two scenario-
based, two-stage stochastic nonconvexMINLPproblems that arise from integrated design and
operation of process networks in the case study, and we show that the proposed method can
solve the two problems significantly faster than state-of-the-art global optimization solvers.

Keywords Generalized Benders decomposition · Dantzig–Wolfe decomposition ·
Lagrangian decomposition · Joint decomposition · Mixed-integer nonlinear programming ·
Global optimization · Stochastic programming

1 Introduction

Global optimization is a field of mathematical programming devoted to obtaining global
optimal solutions; and it has over the years found enormous applications in Process Systems
Engineering (PSE). Mixed-integer nonlinear programs are global optimization problems
where some decision variables are integer while others are continuous. Discrete decisions and
nonconvex nonlinearities introduce combinatorial behavior for such problems [1,2]. Various
applications of mixed-integer nonlinear programming for PSE systems include natural gas
network design and operation [3], gasoline blending and scheduling problems [4], expansion
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of chemical processes [5], reliable design of software [6,7], pump network problem [8,9],
chemical process design synthesis [10], planning of facility investments for electric power
generation [11], etc.

As adopted for mixed-integer linear programing (MILP), branch-and-bound has been
employed for global optimization of nonconvex mixed-integer nonlinear programs (MINLP)
[2,12,13]. The method entails systematically generating lower and upper bounds of the opti-
mal objective function value over subdomains of the search space. The lower bounds can
be generated via convex relaxations (such as McCommick relaxations [14]) or Lagrangian
relaxation (or called Lagrangian decomposition) [15–17].Ways of generating multipliers for
the Lagrangian subproblem exist, including subgradient methods [18], cutting planemethods
[15], and the Dantzig–Wolfe master problem (also known the restricted Lagrangian master
problem) [19,20].

Branch-and-bound based strategies can be improved by incorporation of domain reduction
techniques. Domain reduction entails eliminating portions of the feasible domain based on
feasibility and optimality. Bound tightening or contraction [21], range reduction [22] and
generation of cutting planes [23] are different domain reduction strategies that have been
successful in solving nonconvex problems [7]. In bound contraction, the variable bounds are
shrunk at every iteration by solving bound contraction subproblems [21]. In range reduction,
the bounds on the variables are shrunk based on simple calculations usingLagrangemultiplier
information [22]. For cutting planes generation, Lagrangian relaxation information provides
cuts that is used to cut-off portion of the feasible domain that does not contain the global
optimum [24]. Current state-of-the-art commercial deterministic global optimization solvers
embody branch-and-bound and enhancements such as tighter convex relaxations and domain
reduction techniques, such as the Branch-And-Reduce Optimization Navigator (BARON)
[2] and Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations
(ANTIGONE) [25]. They do provide rigorous frameworks for global optimization of Problem
(P0).

Branch-and-boundbasedmethods have been successful for global optimization,mostly for
small to medium sized problems. However, when the size of the problem becomes large, the
branch-and-bound steps needed for convergence can be prohibitively large.A typical example
of large-scale nonconvex MINLP is the following multiscenario optimization problem:

min
x0

v1,...,vs

s∑

ω=1

[ f0,ω(x0) + fω(vω)]

s.t. g0,ω(x0) + gω(vω) ≤ 0, ∀ω ∈ {1, . . . , s},
vω ∈ Vω, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

(P0)

where x0 links s subparts of the model that are indexed by ω, and it is called linking variable
in the paper. We assume that at least one of the functions f0,ω : X0 → R, fω : Vω → R,
g0,ω : X0 → R

m , gω : Vω → R
m or one of the sets X0 and Vω is nonconvex, so Problem

(P0) is a nonconvexMINLP, or a nonconvex nonlinear program (NLP) if no integer variables
are involved. Clearly, (P0) is a large-scale problemwhen s is large. Problem (P0) has attracted
more and more attention over the last 20 years in the field of PSE [26]. It usually arises from
scenario-based two-stage stochastic programming [27,28], for which x0 represents the first
stage decisions that aremade before the uncertainty is realized and vω represents second-stage
decisions that are made after the uncertainty is revealed in scenario ω. Functions f0,ω and
fω represent probability times costs associated with x0 and vω for every scenario ω. Problem
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(P0) can also arise from integrated system design and operation problems which consider
system operation over multiple time periods (but without uncertainties), such as for energy
polygeneration plants [29] and electrical power distribution networks [30]). In this case, x0
represents system design decisions and xω represents system operational decisions for time
period (or scenario) ω, and f0,ω and fω represent frequency of occurrence of time period ω

times investment cost and operational cost, respectively. In this paper, we focus on how to
efficiently solve Problem (P0) to global optimality, rather than how to generate scenarios and
probabilities for stochastic programming or the time periods and their occurrence frequencies
for multiperiod optimization.

It is well-known that Problem (P0) has a decomposable structure that could be exploited
for efficient solution. Benders decomposition (BD) [31] (known as L-shaped method in the
stochastic programming literature [27,28]) is one class of decomposition methods applied
for MILPs. Geoffrion [32] generalized BD intoGeneralized Benders Decomposition (GBD),
for solving convex MINLPs. Li et al. developed a further extension, called Nonconvex Gen-
eralized Benders Decomposition [4], for solving nonconvex MINLPs, but this method can
guarantee global optimality only if the linking variable is fully integer. Karuppiah and Gross-
mann applied a Lagrangian decomposition-based scheme to solve Problem (P0) [33]; in
order to guarantee convergence to a global optimum, explicit branch-and-bound of link-
ing variables is needed. They also presented bound contraction as an optional scheme in
their Lagrangian-based branch-and-bound strategy. Shim et al. [34] proposed a method that
combines Lagrangian decomposition and BD together with branch-and-bound (to ensure
convergence), in order to solve a class of bilevel programs with an integer program in the
upper-level and a complementarity problem in the lower-level. Amore recent algorithm com-
bining NGBD and Lagrangian decomposition was proposed by Kannan and Barton [35], and
this algorithm also requires explicit branch-and-bound for convergence.

Efforts have been taken to achieve better computational efficiency by combining clas-
sical decomposition methods. In 1983, Van Roy proposed a cross decomposition method
that combines Lagrangian decomposition and Benders decomposition [19] to solve MILP
problems which do not have non-linking integer variables. Since then, a number of exten-
sions and variants of cross decomposition have been developed [20,36–40]. All of these
methods require that no nonconvexity comes from non-linking variables as otherwise finite
convergence cannot be guaranteed.

The performance of branch-and-bound based solution methods depends heavily on the
branching and node selection strategies, but what the best strategies are for a particular
problem are usually unknown. In addition, branching and node selection strategies are not
able to fully exploit the problem structure. Therefore, the goal of this paper is to develop a
new decomposition method for global optimization of Problem (P0), which does not require
explicit branch-and-bound. The new decomposition method was inspired by cross decompo-
sition, and it follows a similar algorithm design philosophy, combining primarily generalized
Benders decomposition and Lagrangian decomposition. However, its decomposition proce-
dure is rather different in many details due to the nonconvexity it has to deal with, so we
do not call it cross decomposition, but a new name joint decomposition. To the best of our
knowledge, this is the first decomposition method that can solve Problem (P0) to global
optimality without explicitly performing branch-and-bound (but the solution of nonconvex
subproblems requires branch-and-bound based solvers).

The remaining part of the article is organized as follows. In Sect. 2, we give a brief
introduction to generalized Benders decomposition and Lagrangian decomposition, using a
reformulation of Problem (P0). Then in Sect. 3, we present the basic joint decomposition
algorithm and the convergence proof. Section 4 discusses enhancements to the basic joint
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decomposition algorithm, including domain reduction and use of extra convex relaxation
subproblems. The joint decomposition methods are tested with two case study problems
adapted from the literature, and the simulation results demonstrate the effectiveness and
the computational advantages of the methods. The article ends with concluding remarks in
Sect. 6.

2 Problem reformulation and classical decompositionmethods

In order to bring up the joint decomposition idea, we reformulate Problem (P0) and briefly
discuss how the reformulated problem can be solved via classical GBD and LDmethods. The
reformulation starts by separating the convex part and the nonconvex part of the problem,
and it ends up in the following form:

min
x0,x1,...,xs
y1,...,ys

s∑

ω=1

cTω xω

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bωyω ≤ 0, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, . . . , s},

(P)

where set Xω ⊂ R
nx is convex, set Yω ⊂ R

ny is nonconvex, and set x0 ⊂ R
n0 can be either

convex or nonconvex. The first group of equations in (P) are nonanticipativity constraints
(NACs) [17,24,41], where matrix Hω ∈ R

n0 × R
nx selects from xω the duplicated x0 for

scenario ω. The details of transforming (P0) to (P) are provided in “Appendix A”.
x0 and yω are the two reasons why Problem (P) is difficult to solve. Linking variables x0

couple different subparts of the model and they cause nonconvexity if set X0 is nonconvex.
Variables yω cause nonconvexity due to the nonconvexity of set Yω. If the values of x0
and yω are fixed, the problem will be much easier to solve. Therefore, in this paper we
call x0 and yω complicating variables. In order to distinguish the two sets of variables, we
also call x0 linking variables, and yω non-linking complicating variables. We also call xω

non-complicating variables.
The classical GBD method can be used to solve Problem (P) by treating x0 and yω as

complicating variables, while the LD method can be used to solve Problem (P) by dualizing
NACs so that x0 no long links different scenarios. In the next two subsections we briefly
introduce GBD and LD for Problem (P), andwemake the following assumptions for Problem
(P) for convenience of discussion.

Assumption 1 X0, Xω and Yω for all ω ∈ {1, . . . , s} are non-empty and compact.

Assumption 2 After fixing (x0, y1, · · · , ys) to any point in X0 × Y1 × · · · × Ys , if Problem
(P) is feasible, it satisfies Slater condition.

Assumption 1 is a mild assumption, as for most real-world applications, the variables are
naturally bounded and the functions involved are continuous. If a discontinuous function is
involved, it can usually be expressed with continuous functions and extra integer variables.
Assumption 2 ensures strong duality of convex subproblems that is required for GBD. If this
assumption is not satisfied for a problem, we can treat the non-complicating variables that
fail the Slater condition to be complicating variables, so that after fixing all complicating
variables the Slater condition is satisfied.
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2.1 Generalized Benders decomposition

At each GBD iteration l, fixing the complicating variables x0 = x (l)
0 , yω = y(l)

ω (∀ω ∈
{1, . . . , s}) results in an upper bounding problem that can be decomposed into the following
Benders primal subproblem for each scenario ω:

obj
BPP(l)

ω
=min

xω
cTω xω

s.t. x (l)
0 = Hωxω,

Aωxω + Bωy
(l)
ω ≤ 0,

xω ∈ Xω,

(BPP(l)
ω )

objBPPlω is the optimal objective value of (BPP(l)
ω ). For convenience, we indicate the opti-

mal objective value of a problem in the above way for all subproblems discussed in this
paper. Obviously,

∑s
ω=1 objBPP(l)

ω
represents an upper bound for Problem (P). If (BPP(l)

ω ) is
infeasible for one scenario, then solve the following Benders feasibility subproblem for each
scenario ω:

obj
BFP(l)

ω
= min

xω,z+1,ω,z−1,ω,z2,ω
||z+1,ω|| + ||z−1,ω|| + ||z2,ω||

s.t. x (l)
0 = Hωxω + z+1,ω − z−1,ω,

Aωxω + Bωy
(l)
ω ≤ z2,ω,

xω ∈ Xω, z+1,ω, z−1,ω, z2,ω ≥ 0,

(BFP(l)
ω )

where z+1,ω, z
−
1,ω, and z2,ω are slack variables. Note that (BFP(l)

ω ) is always feasible according

to Assumption 1. Solution of (BFP(l)
ω ) provides a feasibility cut (that is described below),

which prevents the generation of the same infeasible xl0 and y(l)
ω [42].

At the same iteration, the following Benders relaxed master problem is solved to yield a
lower bound for Problem (P):

min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω

ηω ≥ obj
BPP( j)

ω
+ (λω

( j))TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ T (l),

0 ≥ obj
BFP( j)

ω
+ (λω

( j))TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ S(l),

x0 ∈ X0,

yω ∈ Yω, ∀ω ∈ {1, . . . , s},

(BRMP(l))

whereμ
(l)
ω includes Lagrangemultipliers for the first group of constraints in Problem (BPP(l)

ω )
or (BFP(l)

ω ), and λ
(l)
ω includes Lagrange multipliers for the second group of constraints in

Problem (BPP(l)
ω ) or (BFP(l)

ω ). Set T (l) includes indices of Benders iterations at which only
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(BPP(l)
ω ) is solved, and set S(l) includes indices of Benders iterations at which (BFP(l)

ω ) is
solved. Note that Problem (BRMP(l))) is used in the multicut BD or GBD, which is different
from the one used in the classical single cut BD or GBD. The multicut version of the Benders
master problem is known to be tighter than the single cut version [43,44], so it is considered
in this paper.

Remark 1 The finite convergence property of GBD is stated and proved in [32]. In Sect. 3,
we will provide more details in the context of our new decomposition method.

Remark 2 For (P), the relaxed master problem (BRMP(l)) can still be very difficult as its size
grows with the number of scenarios. However, if most variables in (P) are non-complicating
variables, the size of (BRMP(l)) is much smaller than that of (P), and then (BRMP(l)) is much
easier to solve than (P).

2.2 Lagrangian decomposition

We start discussing LD from the Lagrangian dual of Problem (P) that is constructed by
dualizing the NACs of the problem:

objDP = max
π1,··· ,πs≥0

objLS(π1, · · · , πs), (DP)

where objLS(π1, · · · , πs) is the optimal objective value of the following Lagrangian sub-
problem with given (π1, · · · , πs):

min
x0,x1,...,xs
y1,...,ys

s∑

ω=1

[cTω xω + πT
ω (x0 − Hωxω)]

s.t. Aωxω + Bωyω ≤ 0, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, . . . , s}.

(LS(π1, · · · , πs))

Due to weak duality, Problem (DP) or any Lagrangian subproblem is a lower bounding
problem for Problem (P). Typically, the LD method is incorporated in a branch-and-bound
framework that only needs to branch on linking variables x0 to guarantee convergence to
an ε-optimal solution. At each branch-and-bound node or LD iteration k, a set of multi-
pliers (πk

1 , · · · , πk
s ) are selected to construct a Lagrangian subproblem for (DP), and this

subproblem can be naturally decomposed into s + 1 subproblems, i.e.,

objLSk0
=min

x0

s∑

ω=1

(πk
ω)T x0

s.t x0 ∈ X0,

(LSk0)

and

min
xω,yω

cTω xω − (πk
ω)T Hωxω

s.t. Aωxω + Bωyω ≤ 0,

xω ∈ Xω, yω ∈ Yω,

(LSkω)

for all ω ∈ {1, · · · , s}. Let objLSk be the optimal objective value of the Lagrangian sub-
problem, then objLSk = ∑s

ω=1 objLSkω + objLS0k . Clearly, objLSk ≤ objDP always holds. If

(πk
1 , · · · , πk

s ) happens to be an optimal solution of (DP), then objLSk = objDP.
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The upper bounds in the LDmethods are typically generated by fixing x0 to certain values.
At each iteration k, an upper bounding problem, or called primal problem, is constructed via
fixing x0 = xk0 (which may be the solution of (LSk0)), and this problem can be separated into
s primal subproblem in the following form:

objPPkω = min
xω,yω

cTω xω

s.t. xk0 = Hωxω,

Aωxω + Bωyω ≤ 0,

xω ∈ Xω, yω ∈ Yω,

(PPkω)

Let objPPk be the optimal objective value of the primal problem, then objPPk =∑s
ω=1 objPPkω .
For generation of multipliers, we take the idea fromDantzig–Wolfe decomposition, which

is essentially a special LD method. Consider the convex hull of nonconvex set Yω:

Ỹω =
{
yω ∈ R

ny : yω =
∑

i∈I
θ [i]
ω y[i]

ω ,
∑

i∈I
θ [i]
ω = 1, θ [i]

ω ≥ 0,∀i ∈ I

}
,

where y[i]
ω denotes a point in Yω that is indexed by i . The index set I may need to be an

infinite set for Ỹω being the convex hull. Replace Yω with its convex hull for all ω in (P),
then we get the following Dantzig–Wolfe master problem, or called primal master problem
in this paper:

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑

ω=1

cTω xω

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bω

∑

i∈I
θ [i]
ω y[i]

ω ≤ 0, ∀ω ∈ {1, . . . , s},
∑

i∈I
θ [i]
ω = 1, θ [i]

ω ≥ 0, ∀i ∈ I , ∀ω ∈ {1, . . . , s},

x0 ∈ X0,

xω ∈ Xω, ∀ω ∈ {1, . . . , s}

(PMP)

Clearly, Problem (PMP) is a relaxation of Problem (P), and it is either fully convex or partially
convex (as set X0 can still be nonconvex). At LD iteration k, the following restriction of
(PMP) can be solved:

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑

ω=1

cTω xω

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bω

∑

i∈I k
θ [i]
ω y[i]

ω ≤ 0, ∀ω ∈ {1, . . . , s},
∑

i∈I k
θ [i]
ω = 1, θ [i]

ω ≥ 0, ∀i ∈ I k, ∀ω ∈ {1, . . . , s},

x0 ∈ X0,

xω ∈ Xω, ∀ω ∈ {1, . . . , s},

(RPMPk)
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where index set I k ⊂ I is finite. I k may consist of indices of yω that are generated in the
previously solved primal problems and Lagrangian subproblems. Replacing set I with set I k

is a restriction operation, so (RPMPk) is a restriction of (PMP). Since (PMP) is a relaxation
of (P), (RPMPk) is neither a relaxation nor a restriction of (P), so it does not yield an upper or
a lower bound of (P). The role of (RPMPk) in joint decomposition is to generate multipliers
for NACs to construct a Lagrangian subproblem, and to generate xk+1

0 to construct (PPk+1
ω ).

Problem (RPMPk) can be solved by an optimization solver or by GBD.
Actually, we can construct a different Lagrangian dual of Problem (P) by dualizing both

the NACs and the second group of constraints in the problem, as what we do for GBD in the
last subsection. However, this Lagrangian dual is not as tight as Problem (DP) (as stated by
the following proposition), so it is not preferred for a LD method. The following proposition
follows from Theorem 3.1 of [17] and its proof is omitted here.

Proposition 1 Consider the following Lagrangian dual of Problem (P):

objDP2 = max
μ1,··· ,μs≥0
λ1,··· ,λs≥0

objLS2(μ1, · · · , μs, λ1, · · · , λs), (DP2)

where

objLS2 = min
x0,x1,...,xs
y1,...,ys

s∑

ω=1

[cTω xω + μT
ω(x0 − Hωxω) + λT

ω(Aωxω + Bωyω)]

s.t. x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, . . . , s}.
The duality gap of (DP) is no larger than the duality gap of (DP2).

3 The joint decompositionmethod

3.1 Synergizing LD and GBD

In the LD method described in the last section, at each iteration the subproblems to be
solved are much easier than the original problem (P), as either the size of the subproblem is
independent of number of scenarios, such as (PPkω), (LS

k
0), and (LSkω), or the subproblem is

a MILP or convex MINLP that can be solved by existing optimization solvers or by GBD
relatively easily, such as (RPMPk). However, without branching on the linking variables x0,
LD cannot guarantee finding a global solution, and we do not always know how to exploit
the problem structure to efficiently branch on x0 and whether the branching can be efficient
enough.

On the other hand, GBD can find a global solution, but it requires solving the nonconvex
relaxed master problem (BRMP(l)) at each iteration. The size of (BRMP(l)) may be much
smaller than the size of (P) if most variables in (P) are non-complicating variables, but
(BRMP(l)) can still be difficult to solve, especially considering that it needs to be solved at
each iteration and its size grows with the number of iterations.

Therefore, there may be a way to combine LD and GBD, such that we solve as many
LD subproblems and Benders primal subproblems as possible (as they are relatively easy
to solve), but avoid solving many difficult Benders relaxed master problems (BRMP(l)).
This idea is similar to the one that motivates cross decomposition [19], but it leads to very
different subproblems and a very different algorithmic procedure. The subproblems are very
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Initialize

PPk BPP(l)

RMP(l)LSk

BPPk

RPMPk

RPMPk: Restricted Primal Master Problem
LSk: Lagrangian subproblem, decomposed into (LSk

0) and (LSk
ω) (ω = 1, · · · , s).

RMP(l): Relaxed Master Problem, with extra cuts from LSk and BPPk.
BPP(l): Benders Primal Problem, decomposed into (BPP(l)

ω ) (ω = 1, · · · , s).
PPk: Primal Problem, decomposed into (PPk

ω) (ω = 1, · · · , s).
BPPk: Benders Primal Problem, solved after PPk is solved.

Fig. 1 The basic joint decomposition framework

different, because for problem (P), we prefer dualizing only NACs in LD in order to achieve
the smallest possible dual gap (according to Proposition 1), but we have to dualize both
the NACs and the second group of constraints in GBD. In addition, due to the different
nature of the subproblems, the order in which the subproblems are solved and how often the
problems are solved are different. Therefore, we do not name the proposed method cross
decomposition, but call it joint decomposition (JD).

Figure 1 shows the basic framework of JD. Each JD iteration includes one LD iteration
part, as indicated by the solid lines, and possibly oneGBD iteration, as indicated by the dashed
lines. In a JD iteration, the GBD iteration is performed only when the LD iteration improves
over the previous LD iteration substantially. The GBD iteration is same to the one described
in the last section, except that the relaxedmaster problem (BRMP(l)) includes more valid cuts
(which will be described later). The LD iteration is slightly different from the one described
in the last section. One difference is that, after solving (PPkω) at LD iteration k, a Benders
primal problem (BPPk) is constructed using xk0 (which is used for constructing (PPkω)) and
(y1, · · · , ys) (which is from the optimal solution of (PPkω)). The (BPP

k) is solved to generate
a Benders cut that can be added to (BRMP(l)). The other difference is that (RPMPk), (LSk0),
(LSkω) (decomposed from (LSk)) slightly differ from the ones described in the last section,
and they will be described later.

Remark 3 The JD method requires that all subproblems can be solved using an existing
optimization solver within reasonable time. If this requirement is not met, then JD does
not work, or we have to further decompose the difficult subproblems into smaller, solvable
subproblems.
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3.2 Feasibility issues

According to Assumption 1, a subproblem in JD either has a solution or is infeasible. Here
we explain how JD handles infeasibility of a subproblem.

First, if a lower bounding problem (LSk) or (BRMP(l)) is infeasible, then the original
problem (P) is infeasible and JD can terminate.

Second, if (BPPk) or (BPP(l)) is infeasible, then JD will solve the corresponding Benders
feasibility problem (BFPk) or (BFP(l)) to yield a feasibility cut. If (BFPk) or (BFP(l)) is
infeasible, then (P) is infeasible and JD can terminate.

Third, if (PPkω) is infeasible, then JD will solve a feasibility problem that “softens” the
second group of constraints: and this problem can be separated into s subproblems as fol-
lows:

min
xω,yω,zω

||zω||
s.t. xk0 = Hωxω,

Aωxω + Bωyω ≤ zω,

xω ∈ Xω, yω ∈ Yω, zω ≥ 0.

(FPkω)

If (FPkω) is infeasible for one scenario ω, then (P) is infeasible and JD can terminate. If (FPkω)
is feasible for all scenarios, then JD can construct and solve a feasible Benders feasibility
problem (BFPk) to yield a Benders feasibility cut for (BRMP(l)).

Finally, problem (RPMPk) can actually be infeasible if none of the (y[i]
1 , · · · , y[i]

s ) in
the problem is feasible for the original problem (P). To prevent this infeasibility, we can
generate a point (ŷ1, · · · , ŷs) that is feasible for (P), by solving the following initial feasibility
problem:

min
x0,x1,··· ,xs
y1,··· ,ys
z1,··· ,zω

s∑

ω=1

||zω||

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bωyω ≤ zω, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, zω ≥ 0, ∀ω ∈ {1, . . . , s}.

(IFP)

Problem (IFP) is not naturally decomposable over the scenarios, but it can be solved by JD.
When solving (IFP) using JD, the restricted primal master problem (RPMPk) must have a
solution (according to Assumption 1).

3.3 The tightened subproblems

The relaxed master problem described in Sect. 2 can be tightened with the solutions of
previously solved subproblems in JD. The tightened problem, called joint decomposition
relaxed master problem, can be written as:
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min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω,

ηω ≥ obj
BPP( j)

ω
+ (λ( j)

ω )TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ T (l),

0 ≥ obj
BFP( j)

ω
+ (λ( j)

ω )TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ S(l),

ηω ≥ obj
BPP j

ω
+ (λ j

ω)TBω(yω − y j
ω) + (μ j

ω)T
(
x0 − x j

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ T k,

0 ≥ obj
BFP j

ω
+ (λ j

ω)TBω(yω − y j
ω) + (μ j

ω)T
(
x0 − x j

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ Sk,

η0 ≤ UBD,

η0 ≥ LBD,

ηω ≥ objLSiω + (π i
ω)Tx0, ∀ω ∈ {1, . . . , s}, ∀i ∈ Rk,

x0 ∈ X0, yω ∈ Yω, ∀ω ∈ {1, . . . , s},

(JRMP(l))

where the index set Rk = {1, · · · , k}, UBD is the current best upper bound for (P), and
LBD is the current best lower bound for (P).

Proposition 2 Problem (JRMP(l)) is a valid lower bounding problem for Problem (P).

Proof Since it is already known that Problem (BRMP(l)) is a valid lower bounding problem
and UBD and LBD are valid upper and lower bounds, we only need to prove that the cuts
from Lagrangian subproblems together with the Benders optimality cuts do not exclude an
optimal solution. Let objP be the optimal objective value of (P), then

objP =
s∑

ω=1

objPPω (x0),

where

objPPω (x0) = min{cTω xω : x0 = Hωxω, Aωxω + Bωyω ≤ 0, xω ∈ Xω, yω ∈ Yω}.
On the one hand, ∀π i

ω, i ∈ Rk ,

objPPω (x0)

≥ min{cTω xω + (π i
ω)T (x0 − Hωxω) : Aωxω + Bωyω ≤ zω, xω ∈ Xω, yω ∈ Yω}

= objLSiω + (π i
ω)Tx0.

(1)

On the other hand,

objPPω (x0) = min
yω∈Yω

vω(x0, yω),
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where vω(x0, yω) = min{cTω xω : x0 = Hωxω, Aωxω + Bωyω ≤ 0}. From weak duality,
∀ j ∈ T (l),

vω(x0, yω)

≥ min{cTω xω + (λ( j)
ω )T(Aωxω + Bωyω) + (μ( j)

ω )T(x0 − Hωxω) : xω ∈ Xω}
= obj

BPP( j)
ω

+ (λ( j)
ω )TBω(yω − y( j)

ω ) + (μ( j)
ω )T

(
x0 − x ( j)

0

)
.

Therefore, ∀yω ∈ Yω,

objPPω (x0) ≥ obj
BPP( j)

ω
+ (λ( j)

ω )TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
. (2)

Equations (1)–(2) indicate that the cuts from Lagrangian subproblems together with the
Benders optimality cuts do not exclude an optimal solution of (P). �	

For convenience, we call the cuts from the Lagrangian subproblems, Lagrangian cuts. The
Benders cuts and the Lagrangian cuts in (JRMP(l)) imply that, ∀i ∈ Rk ,

UBD ≥ η0 ≥
s∑

ω=1

ηω ≥
s∑

ω=1

objLSiω +
s∑

ω=1

(π i
ω)Tx0.

Therefore, from each iteration i we can construct the following valid cut

UBD ≥
s∑

ω=1

objLSiω +
s∑

ω=1

(π i
ω)Tx0, (*)

Since x0 = xω in the original problem, the above cut is also valid if x0 is replaced with
xω. Consequently, problems (LSk0), (LS

k
ω), (RPMPk) can be enhanced with the constraint

as:

min
xω,yω

cTω xω − (πk
ω)T Hωxω

s.t. Aωxω + Bωyω ≤ 0,

UBD ≥
s∑

ω̂=1

objLSi
ω̂

+
s∑

ω̂=1

(π i
ω̂
)Txω, ∀i ∈ Rk−1,

xω ∈ Xω, yω ∈ Yω.

(LSkω)

min
x0

s∑

ω=1

(πk
ω)T x0

s.t. UBD ≥
s∑

ω̂=1

objLSi
ω̂

+
s∑

ω̂=1

(π i
ω̂
)Tx0, ∀i ∈ Rk−1,

x0 ∈ X0.

(LSk0)

123



Journal of Global Optimization (2019) 75:595–629 607

min
x0,θ

[i]
1 ,...,θ

[i]
s

x1,...,xs

s∑

ω=1

cTω xω

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bω

∑

i∈I k
θ [i]
ω y[i]

ω ≤ 0, ∀ω ∈ {1, . . . , s},
∑

i∈I k
θ [i]
ω = 1, θ [i]

ω ≥ 0, ∀i ∈ I k, ∀ω ∈ {1, . . . , s},

UBD ≥
s∑

ω̂=1

objLSi
ω̂

+
s∑

ω̂=1

(π i
ω̂
)Txω, ∀i ∈ Rk−1,

x0 ∈ X0, xω ∈ Xω, ∀ω ∈ {1, . . . , s},

(RPMPk)

Note that the index set I k includes indices for all constant points y[i]
ω in Problem (RPMPk),

and the constant points y[i]
ω come from all previously solved PP, FP, LS and JRMP.

3.4 The basic joint decomposition algorithm

Table 1 shows the basic JD algorithm. As described in Sect. 3.1, a JD iteration always include
a LD iteration and sometimes a GBD iteration as well. We index JD and LD iterations using k
and GBD iterations using l. Whether a GBD iteration is performed at JD iteration k depends
on whether LD iteration k improves over LD iteration k − 1 substantially, i.e., whether
objLSk ≥ objLSk−1 + ε. In the first JD iteration, subproblem (PPω) is constructed by fixing
x0 to its initial value, and in any subsequent JD iteration, (PPω) is constructed by fixing x0
to the optimal value of x0 for (RPMP) in the previous JD iteration. Note that the solution of
(LS0) is only used for constructing a valid lower bound, and the x0 value in the solution of
(LS0) is not used for constructing (PPω). The JD algorithm has the following property.

Proposition 3 The JD algorithm shown in Table 1 cannot perform an infinite number of LD
iterations between two GBD iterations.

Proof The initial point (x10 , y
[1]
1 , · · · , y[1]

s ) that are feasible for Problem (P) can lead to a finite
upper boundUBD. According toAssumption 1, all Lagrangian subproblems are bounded, so
between two GBD iterations, the first LD iteration leads to a finite objLS , and the subsequent
LD iterations increase objLS by at least ε > 0 (because otherwise a GBD iteration has to be
performed). Therefore, in a finite number LD iterations either objLS exceeds UBD − ε and
the algorithm terminates with an ε-optimal solution, or a GBD iteration is performed. This
completes the proof. �	
Remark 4 If an initial feasible point for Problem (P) is not known, the initial feasibility
problem (IFP) can be solved to get a feasible point for (P) or verify that Problem (P) is
infeasible (when the optimal objective value of Problem (IFP) is positive). Note that it is easy
to find a feasible point of Problem (IFP).

In the JD algorithm, we use k to index both a JD iteration and a LD iteration, as every JD
iteration includes one LD iteration.We use l (together with ’()’) to index a GBD iteration, and
usually l < k because not every JD iteration includes one GBD iteration. We use i (together
with ’[]’) to index the columns generated for constructing Problem (RPMPk). Next, we
establish the finite convergence property of the JD algorithm.
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Table 1 The basic joint decomposition algorithm

Initialization

(I.a) Select x10 , y[1]
1 , · · · , y[1]

s that are feasible for Problem (P).

(I.b) Give termination tolerance ε > 0. Let index sets T 1 = S1 = R1 = ∅, I 1 = {1}, iteration counter k = 1,
i = 1, l = 1, bounds UBD = +∞, LBD = −∞.

LD Iteration

(1.a)Solve Problem (PPkω). If Problem (PPkω) is infeasible, solve Problem (FPkω). Let the solution obtained be

(xkω, ykω), and update i = i + 1, I k=I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (yk1 , · · · , yks ).

(1.b)Solve Problem (BPPkω) by fixing (x0, y1, . . . , ys ) = (xk0 , yk1 , . . . , yks ). If (BPPkω) is feasible for all ω,

generate Benders optimality cuts with the obtained dual solution μk
ω and λkω , and update

T k+1 = T k ∪ {k}. If ∑s
ω=1 objPPk

ω
< UBD, update UBD = ∑s

ω=1 objPPk
ω
, and incumbent

solution (x∗
0 , x∗

1 , · · · , x∗
s , y∗

1 , · · · , y∗
s ) = (xk0 , xk1 , · · · , xks , yk1 , · · · , yks ). If Problem (BPPkω) is

infeasible for at least one ω, solve Problem (BFPkω). Generate Benders feasibility cuts with the
obtained dual solution μk

ω and λkω , and update S
k+1 = Sk ∪ {k}.

(1.c)Solve Problem (RPMPk ). Let xk+1
0 , {θ [i,k]

ω }i∈I k ,ω∈{1,...,s} be the optimal solution obtained, and

πk
1 , . . . , πk

s be Lagrange multipliers for the NACs.

(1.d)Solve Problems (LSkω) and (LSk0). If objLSk = ∑s
ω=1 objLS1kω

+ objLS0k
> LBD, update

LBD = objLSk . Generate a Lagrangian cut and update Rk+1 = Rk ∪ {k}. Update i = i + 1,

I k+1 = I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (yk1 , · · · , yks ).

(1.e)If UBD ≤ LBD + ε, terminate and return the incumbent solution as an ε-optimal solution. If
objLSk ≥ objLSk−1 + ε, k = k + 1, go to step (1.a); otherwise k = k + 1 and go to step (2.a);

GBD Iteration

(2.a)Solve Problem (JRMP(l)), and let the obtained solution be (x(l)
0 , y(l)

1 , . . . , y(1)
s ). Update i = i + 1,

I k = I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (y(l)
1 , · · · , y(l)

s ). If objRMP(l) > LBD, update
LBD = objJ RMP(l) .

(2.b)Solve Problem (BPP(l)
ω ) by fixing (x0, y1, · · · , ys ) = (x(l)

0 , y(l)
1 , · · · , y(l)

s ). If (BPP(l)
ω ) is feasible for

all ω, generate Benders optimality cuts with the dual solution μk
ω and λkω , and update

T (l+1) = T (l) ∪ {l}. If ∑s
ω=1 objBPP(l)

ω
< UBD, update UBD = objBPP(l) and the incumbent

solution (x∗
0 , x∗

1 , · · · , x∗
s , y∗

1 , · · · , y∗
s ) = (x(l)

0 , x(l)
1 , · · · , x(l)

s , y(l)
1 ), · · · , y(l)

s ). If Problem

(BPP(l)
ω ) is infeasible for at least one ω, solve Problem (BFP(l)

ω ). Generate Benders feasibility cuts
with the obtained dual solution μl

ω and λlω , and update S
(l+1) = S(l) ∪ {l}.

(2.c)If UBD ≤ LBD + ε, terminate and return the incumbent solution as an ε-optimal solution; otherwise
l = l + 1 and go to step (1.a).

Proposition 4 If set Xω is polyhedral ∀ω ∈ {1, · · · , s}, the JD algorithm shown in Table 1
cannot perform an infinite number of GBD iterations.

Proof In this case, the GBD part of the algorithm reduces to BD, and BD is known to have
finite termination property [31,42]. The finite termination property results from:

(a) The Benders master problem (BRMP(l)) (and therefore JRMP(l) as well) requires only a
finite number of Benders cuts to equal Problem (P), due to linear duality theory;

(b) A same Benders cut cannot be generated twice before the optimality gap is closed.

�	
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Proposition 5 If X0 ×Y1×· · ·×Ys is a finite discrete set, the JD algorithm shown in Table 1
cannot perform an infinite number of GBD iterations.

Proof This result comes from the fact that a point in X0 ×Y1 ×· · ·×Ys cannot be generated
twice before the optimality gap is closed. For more details readers can see Theorem 2.4 of
[32]. �	
Proposition 6 The JD algorithm shown in Table 1 cannot include an infinite number of GBD
iterations at which the Benders primal problem BPP is feasible.

Proof A similar proposition has been proved in the context of GBD in [32] (as Theorem 2.5).
The central idea of the proof can be used here for JD.

Suppose the JD algorithm includes an infinite number of GBD iterations at which
the Benders primal problem BPP is feasible. Let superscript (n) index these GBD iter-
ations, {(η(n)

0 , x (n)
0 , y(n)

1 , . . . , y(n)
s )} be the sequence of optimal solutions of JRMP and

{(μ(n)
ω , λ

(n)
ω )} be the sequence of dual solutions of BPP. Since {η(n)

0 } is nondecreasing
and is bounded from above, so a subsequence of it converges to a finite value, say η∗

0.

Due to the compactness of X0, Y1, · · · , Ys , a subsequence of {(x (n)
0 , y(n)

1 , . . . , y(n)
s )}, say,

{(x (ni )
0 , y(ni )

1 , . . . , y(ni )
s )}, converges to (x∗

0 , y
∗
1 , . . . , y

∗
s ) ∈ X0 × Y1 × · · · × Ys . Solving

BPP in this subsequence of GBD iterations can be viewed as point-to-set mappings from
points in X0 × Y1 × · · · × Ys to the relevant Lagrange multiplier sets. From Lemma 2.1
of [32] and Assumption 2, such a mapping is uniformly bounded in some open neigh-
borhood of the point it maps from. Let such open neighborhood of (x∗

0 , y
∗
1 , . . . , y

∗
s ) be

N (x∗
0 , y

∗
1 , . . . , y

∗
s ), then ∃t such that ∀ni > t , (x (ni )

0 , y(ni )
1 , . . . , y(ni )

s ) ∈ N (x∗
0 , y

∗
1 , . . . , y

∗
s ),

and then the relevant subsequence of Lagrange multipliers is bounded, which must
contain a subsequence converging to {μ�

ω, λ�
ω}. Therefore, there exists a subsequence

of {(η(n)
0 , x (n)

0 , y(n)
1 , . . . , y(n)

s , μ
(n)
ω , λ

(n)
ω )}, say, {(η(m)

0 , x (m)
0 , y(m)

1 , . . . , y(m)
s , μ

(m)
ω , λ

(m)
ω )},

which converges to {(η∗
0, x

∗
0 , y

∗
1 , . . . , y

∗
s , μ

∗
ω, λ∗

ω)}.
Consider any GBD iteration m > 1 in this convergent subsequence. Let UBD and LBD

be the upper and lower bounds after this GBD iteration, then

objBPP(m−1) ≥ UBD,

LBD ≥ η(m),

and that the JD algorithm does not terminate after GBD iteration m implies

UBD > LBD + ε,

therefore
objBPP(m−1) > η(m) + ε. (3)

According to how JRMP is constructed,

η(m) ≥objBPP(m−1)+
s∑

ω=1

[
(λ(m−1)

ω )TBω(y(m)
ω − y(m−1)

ω ) + (μ(m−1)
ω )T

(
x (m)
0 − x (m−1)

0

)]
.

(4)

Equations (3) and (4) imply that

0 >

s∑

ω=1

[
(λ(m−1)

ω )TBω(y(m)
ω − y(m−1)

ω ) + (μ(m−1)
ω )T

(
x (m)
0 − x (m−1)

0

)]
+ ε. (5)
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However, when m is sufficiently large, y(m)
ω − y(m−1)

ω and x (m)
0 − x (m−1)

0 are sufficiently

close to 0 while μ
(m−1)
ω and λ

(m−1)
ω are sufficiently close to limit points μ∗

ω and λ∗
ω, so the

right-hand-side of Eq. (5) is a positive value (as ε > 0). This contradiction implies that the
JD algorithm cannot include an infinite number of GBD iterations at which BPP is feasible.

�	
Theorem 1 With an initial feasible point, the JD algorithm shown in Table 1 terminates in a
finite number of iterations with an ε-optimal solution, if one the following three conditions
is satisfied:

(a) Set Xω is polyhedral ∀ω ∈ {1, · · · , s}.
(b) Set X0 × Y1 × · · · × Ys is finite discrete.
(c) There are only a finite number of GBD iterations at which the Benders primal problem

BPP is infeasible.

Proof FromProposition 3, the JD algorithm can only include a finite number of LD iterations.
From Propositions 4 and 5, when condition (a) or (b) is satisfied, the JD algorithm can only
include a finite number of BD iterations. From Proposition 6, the JD algorithm can only have
a finite number of GBD iterations at which the Benders primal problem BPP is feasible, and
together with condition (c), it implies that the JD algorithm can only include a finite number
of BD iterations. Therefore, if one of the three conditions is satisfied, the JD algorithm can
only include a finite number LD and BD iterations before termination.

On the other hand, according to Proposition 2, the JD algorithm never excludes an optimal
solution. This together with the termination criterion ensures that the solution returned is ε-
optimal. �	
Remark 5 Condition (c) in Theorem 1 is actually not a restrictive condition, because we can
always “soften” the complicating constraints in Problem (P) (i.e., penalize the violation of
these constraints in the objective function) so that Problem (BPP(l)

ω ) is always feasible.

4 Enhancements to joint decomposition

The solution of Problem (JRMP(l)) is the bottleneck of the JD algorithm, even considering
that the problem is solved only when necessary. Problem (JRMP(l)) is challenging due to
two major reasons. One is that the number of complicating variables in Problem (JRMP(l))
is dependent on the number of scenarios, so the size of Problem (JRMP(l)) is large (although
smaller than the original problem). The other is that the number of constraints in the problem
grows with the JD iteration; in other words, Problem (JRMP(l)) becomes more and more
challenging as JD progresses. In this section, we introduce two ways to mitigate the difficulty
in solving Problem (JRMP(l)):

1. To solve a convex relaxation of Problem (JRMP(l)) before solving Problem (JRMP(l)).
If the solution of the convex relaxation can improve the lower bound, then skip solving
Problem (JRMP(l)).

2. To perform domain reduction iteratively in JD in order to keep reducing the ranges of
the complicating variables. This way, the convex relaxation of Problem (JRMP(l)) is
progressively tightened and Problem (JRMP(l)) itself does not become much harder as
the algorithm progresses.

In addition, domain reduction for the complicating variables can make other nonconvex
JD subproblems easier, including Problems (LSkω) and (PPkω). Domain reduction for the
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linking variables can also tighten the Lagrangian relaxation gap [41]; in extreme cases, the
Lagrangian relaxation gap can diminish and there is no need to solve Problem (JRMP(l))
in JD to close the optimality gap. Note that we do not perform domain reduction for non-
complicating variables, because normally reducing ranges on these variables do not help
much to tighten convex relaxations and ease the solution of nonconvex subproblems.

4.1 Convex relaxation and domain reduction

The convex relaxation of Problem (JRMP(l)) is a valid lower bounding problem for Problem
(JRMP(l)) and consequently for Problem (P) as well. It can be written as:

min
x0,η0,η1,...,ηs

y1,...,ys

η0

s.t. η0 ≥
s∑

ω=1

ηω,

ηω ≥ obj
BPP( j)

ω
+ (λ( j)

ω )TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ T (l),

0 ≥ obj
BFP( j)

ω
+ (λ( j)

ω )TBω(yω − y( j)
ω ) + (μ( j)

ω )T
(
x0 − x ( j)

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ S(l),

ηω ≥ obj
BPP j

ω
+ (λ j

ω)TBω(yω − y j
ω) + (μ j

ω)T
(
x0 − x j

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ T k,

0 ≥ obj
BFP j

ω
+ (λ j

ω)TBω(yω − y j
ω) + (μ j

ω)T
(
x0 − x j

0

)
,

∀ω ∈ {1, . . . , s}, ∀ j ∈ Sk,

η0 ≤ UBD,

η0 ≥ LBD,

ηω ≥ objLSiω + (π i
ω)Tx0, ∀ω ∈ {1, . . . , s}, ∀i ∈ Rk,

x0 ∈ X̂0, yω ∈ Ŷω, ∀ω ∈ {1, . . . , s}.

(JRMPR(l))

Here X̂0 and Ŷω denote the convex relaxations of X0 and Yω. Let objJ RMPR(l) be the
optimal objective of Problem (JRMPR(l)).

Since Problem (JRMPR(l)) is also a valid convex relaxation of Problem (P), the solution
of Problem (JRMPR(l)) can be exploited to eliminate the parts of variable ranges that cannot
include an optimal solution of Problem (P), using marginal based domain reduction method.
This method was first proposed in [22] (and it was called range reduction therein). The fol-
lowing proposition lays the foundation of marginal based domain reduction for complicating
variables yω in JD, which results directly from Theorem 2 in [22].

Proposition 7 Consider the following bounds on yω, j (∀ω ∈ {1, · · · , s}, ∀ j ∈
{1, · · · , ny}):

yω, j − yupω, j ≤ 0,

yloω, j − yω, j ≤ 0,

123



612 Journal of Global Optimization (2019) 75:595–629

whose Lagrange multipliers obtained at the solution of Problem (JRMPR(l)) are uω, j , vω, j .

Let J(l)
1,ω include indices of upper bounds whose uω, j are nonzero, and J

(2)
1,ω include indices

of lower bounds whose vω, j are nonzero, then the following constraints do not exclude an
optimal solution of (P):

yω, j ≥ yupω, j − (UBD − objJ RMPR(l) )

uω, j
, ∀ j ∈ J

(l)
1,ω, ∀ω ∈ {1, . . . , s},

yω, j ≤ yloω, j + (UBD − objJ RMPR(l) )

vω, j
, ∀ j ∈ J

(l)
2,ω, ∀ω ∈ {1, . . . , s}.

The following proposition states a similar result for the linking variables x0:

Proposition 8 Consider the following bounds on x0, j (∀ j ∈ {1, · · · , n0}):
x0, j − xup0, j ≤ 0,

xlo0, j − x0, j ≤ 0,

whose Lagrange multipliers obtained at the solution of Problem (JRMPR(l)) are u0, j , v0, j .

Let J(l)
1,0 include indices of upper bounds whose u0,i are nonzero, and J

(l)
2,0 include indices

of lower bounds whose v0,i are nonzero, then the following constraints do not exclude an
optimal solution of (P):

x0, j ≥ xup0, j − (UBD − objJ RMPR)

u0, j
, ∀ j ∈ J

(l)
1,0

x0, j ≤ xlo0, j + (UBD − objJ RMPR(l) )

v0, j
, ∀ j ∈ J

(l)
2,0

According to Propositions 7 and 8, the bounds of nonconvex and linking variables can be
updated via the following range reduction calculation:

yupω, j = min

{
yupω, j , yloω, j + G(l)

uω, j

}
, ∀ j ∈ J

(l)
1,ω, ∀ω ∈ {1, . . . , s},

yloω, j = max

{
yloω, j , yupω, j − G(l)

vω, j

}
, ∀ j ∈ J

(l)
2,ω, ∀ω ∈ {1, . . . , s},

xup0, j = min

{
xup0, j , xlo0, j + G(l)

u0, j

}
, ∀ j ∈ J

(l)
1,0,

xlo0, j = max

{
xlo0, j , xup0, j − G(l)

v0, j

}
, ∀ j ∈ J

(l)
2,0,

(MDR(l))

where G(l) = UBD − objRMPCR(l) .
The effectiveness of marginal based domain reduction relies on how many bounds are

active, the magnitude of Lagrange multipliers of active bounds at the solution of JRMPR(l),
and how often JRMPR(l) is solved. In order to achieve effective domain reduction more con-
sistently, we also introduce optimization based domain reduction in JD. Optimization based
domain reduction, or called bound contraction or bound tighening [21,45], is to maximize or
minimize a single variable over a convex relaxation of the feasible set of the original problem.
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For example, if we are to estimate the upper bound of a linking variable x0, j at JD iteration
k, we can solve the following optimization problem:

max
x0,x1,...,xs
y1,...,ys

x0,i

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bωyω ≤ 0, ∀ω ∈ {1, . . . , s},
s∑

ω=1

cTωxω ≤ UBD,

x0 ∈ Xk
0,

xω ∈ Xω, yω ∈ Ŷ k
ω, ∀ω ∈ {1, . . . , s}.

(ODRStdki )

The third group of constraints in Problem (ODRStdki ) utilizes the known upper bound of
(P) to tighten the convex relaxation, but it cannot be included in Problem (ODRStdki ) when
UBD is not available (e.g., before a feasible solution of (P) is known). We now index sets
X0, Ŷω with the JD iteration number k, as these sets may change after the domain reduction
calculations.

Problem (ODRStdki ) represents the standard optimization based domain reduction formu-
lation, but it can be further enhanced in the JD algorithm, via the incorporation of valid cuts
derived from other JD subproblems. First, we can add the following constraint:

s∑

ω=1

cTωxω ≥ LBD.

This constraint is redundant in the classical branch-and-bound based global optimization,
as LBD is obtained via convex relaxation as well. In JD, LBD is obtained via Lagrangian
subproblems and JD relaxed master problems, which may be tigher than convex relaxations
of the original problem, so this constraint may enhance Problem (ODRStdki ). Second, we can
include constraints (*) (that are derived from Problem (JRMP(l))). Therefore, we can write
the enhanced optimization based domain reduction formulation as:

min
x0,x1,...,xs
y1,...,ys

/ max
x0,x1,...,xs
y1,...,ys

x0,i

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bωyω ≤ 0, ∀ω ∈ {1, . . . , s},
s∑

ω=1

cTωxω ≤ UBD,

s∑

ω=1

cTωxω ≥ LBD,

UBD ≥
s∑

ω=1

objLSiω +
s∑

ω=1

(π i
ω)Tx0, ∀i ∈ Rk,

x0 ∈ Xk
0,

xω ∈ Xω, yω ∈ Ŷ k
ω, ∀ω ∈ {1, . . . , s}.

(ODRk
i )
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and MDR(l)

JRMP(l)

yes

no

Fig. 2 The enhanced joint decomposition framework

If we are to estimate an upper bound, then Problem (ODRk
i ) is a maximization problem;

otherwise, Problem (ODRk
i ) is a minimization problem.

Although Problem (ODRk
i ) is convex, it can have a very large size because its size grows

with the number of scenarios. Therefore, we proposed to solve Problem (ODRk
i ) for x0 but

not for yω. Actually, we can see in the case study section that optimization based domain
reduction is time consuming even when we only solve Problem (ODRk

i ) for x0.

4.2 The enhanced joint decompositionmethod

Figure 2 shows the framework of the JD method that includes solving convex relaxation,
Problem (JRMPR(l)), bound tightening for x0 and the domain reduction calculations. In
this framework, optimization based domain reduction is performed at the beginning of the
algorithm and in every LD iteration (right before the solution of nonconvex Lagrangian
subproblems). Convex relaxation, Problem (JRMPR(l)) is solved before solving Problem
(JRMP(l)), and after solving Problem (JRMPR(l)), marginal based domain reduction is per-
formed. Problem (JRMP(l)) is not solved if Problem (JRMPR(l)) can improve the lower
bound significantly; this strategy can postpone solving Problem (JRMP(l)) to a later time, so
that the ranges of x0 can be reduced as much as possible when a Problem (JRMP(l)) has to
be solved. The detailed algorithm for the enhanced JD is shown in Table 2.

Theorem 2 The decomposition algorithm described in Table 2 terminates in a finite number
of steps with an ε-optimal solution of Problem (P), if one the following three conditions is
satisfied:

(a) Set Xω is polyhedral ∀ω ∈ {1, · · · , s}.
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Table 2 Enhanced joint decomposition method—enhancement is in bold font

Initialization

(I.a) Select x10 , y[1]
1 , · · · , y[1]

s that are feasible for Problem (P).

(I.b) Give termination tolerance ε > 0. Let index sets T 1 = S1 = R1 = ∅, I 1 = {1}, iteration counter k = 1,
i = 1, l = 1, bounds UBD = +∞, LBD = −∞.

(I.c) Solve Problem (ODRk
i ) to update bounds of all x0,i .

LD Iteration

(1.a)Solve Problem (PPkω). If Problem (PPkω) is infeasible, solve Problem (FPkω). Let the solution obtained be

(xkω, ykω), and update i = i + 1, I k=I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (yk1 , · · · , yks ).

(1.b)Solve Problem (BPPkω) by fixing (x0, y1, . . . , ys ) = (xk0 , yk1 , . . . , yks ). If (BPPkω) is feasible for all ω,

generate Benders optimality cuts with the obtained dual solution μk
ω and λkω , and update

T k+1 = T k ∪ {k}. If ∑s
ω=1 objPPk

ω
< UBD, update UBD = ∑s

ω=1 objPPk
ω
, and incumbent

solution (x∗
0 , x∗

1 , · · · , x∗
s , y∗

1 , · · · , y∗
s ) = (xk0 , xk1 , · · · , xks , yk1 , · · · , yks ). If Problem (BPPkω) is

infeasible for at least one ω, solve Problem (BFPkω). Generate Benders feasibility cuts with the
obtained dual solution μk

ω and λkω , and update S
k+1 = Sk ∪ {k}.

(1.c)Solve Problem (ODRk
i ) to update bounds of all x0,i .

(1.d)Solve Problem (RPMPk ). Let xk+1
0 , {θ [i,k]

ω }i∈I k ,ω∈{1,...,s} be the optimal solution obtained, and

πk
1 , . . . , πk

s be Lagrange multipliers for the NACs.

(1.e)Solve Problems (LSkω) and (LSk0). If objLSk = ∑s
ω=1 objLSkω

+ objLS0k
> LBD, update

LBD = objLSk . Generate a Lagrangian cut and update Rk+1 = Rk ∪ {k}. Update i = i + 1,

I k+1 = I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (yk1 , · · · , yks ).

(1.f) If UBD ≤ LBD + ε, terminate and return the incumbent solution as an ε-optimal solution. If
objLSk ≥ objLSk−1 + ε, k = k + 1, go to step (1.a); otherwise k = k + 1 and go to step (2.a);

GBD Iteration

(2.a)Solve Problem (JRMPR(l)), and then perform marginal based domain reduction (MDR(l)). If
objJ RMPR(l) ≥ LBD + ε, let the obtained solution be (x(l)

0 , y(l)
1 , . . . , y(1)

s ), update

LBD = objJ RMPR(l) , i = i + 1, I k+1 = I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (y(l)
1 , · · · , y(l)

s ), go to step
(2.c). Otherwise, go to set (2.b).

(2.b)Solve Problem (JRMP(l)), and let the obtained solution be (x(l)
0 , y(l)

1 , . . . , y(1)
s ). Update i = i + 1,

I k+1 = I k ∪ {i}, (y[i]
1 , · · · , y[i]

s ) = (y(l)
1 , · · · , y(l)

s ). If objRMP(l) > LBD, update
LBD = objJ RMP(l) .

(2.c)Solve Problem (BPP(l)
ω ) by fixing (x0, y1, · · · , ys ) = (x(l)

0 , y(l)
1 , · · · , y(l)

s ). If (BPP(l)
ω ) is feasible for

all ω, generate Benders optimality cuts with the dual solution μk
ω and λkω , and update

T (l+1) = T (l) ∪ {l}. If ∑s
ω=1 objBPP(l)

ω
< UBD, update UBD = objBPP(l) and the incumbent

solution (x∗
0 , x∗

1 , · · · , x∗
s , y∗

1 , · · · , y∗
s ) = (x(l)

0 , x(l)
1 , · · · , x(l)

s , y(l)
1 ), · · · , y(l)

s ). If Problem

(BPP(l)
ω ) is infeasible for at least one ω, solve Problem (BFP(l)

ω ). Generate Benders feasibility cuts
with the obtained dual solution μl

ω and λlω , and update S
(l+1) = S(l) ∪ {l}.

(2.d)If UBD ≤ LBD + ε, terminate and return the incumbent solution as an ε-optimal solution;
otherwise l = l + 1, go to step (1.a).

(b) Set X0 × Y1 × · · · × Ys is finite discrete.
(c) There are only a finite number of GBD iterations at which the Benders primal problem

BPP is infeasible.
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Proof This can be proved by showing that, solving Problem (JRMPR(l)) in every GBD itera-
tion in JD and including domain reduction calculations do not invalidate the finite termination
to an ε-optimal solution.

First, we can show that there cannot be an infinite number of GBD iterations at which
Problem (JRMPR(l)) is solved but Problem (JRMP(l)) is not solved. Consider aGBD iteration
at which Problem (JRMPR(l)) is solved but Problem (JRMP(l)) is not solved, then Problem
(JRMPR(l)) is not unbounded (because otherwise Problem (JRMP(l)) needs to be solved)
and the lower bound LBD is finite. The upper bound UBD is also finite (because an initial
feasible solution exists). Therefore, it is not possible that LBD can be improved by ε > 0 for
an infinite number of GBD iterations, so there cannot be an infinite number of GBD iterations
at which Problem (JRMPR(l)) is solved but Problem (JRMP(l)) is not solved. According to
the proof of Theorem 1, JD can only include a finite number of LD iterations, and a finite
number of GBD iterations at which Problem (JRMP(l)) is solved, if one of the three listed
conditions are satisfied.

Second, domain reduction reduces the ranges of x0 and y1, . . . , ys but does not exclude
any optimal solution from the reduced ranges. So the Lagrangian relaxation problems and
JD relaxation master problems are still valid lower bounding problems and they cannot cut
off any optimal solution. �	

5 Case studies

The purpose of the case studies is to demonstrate the potential computational advantages of
the proposed joint decomposition method for problems exhibiting the decomposable struc-
ture of (P0), especially when off-the-shelf solvers cannot effectively exploit the problem
structure. We consider two case study problems here, which are both scenario-based two-
stage stochastic nonconvex MINLPs arising from integrated design and operation under
uncertainty.

5.1 Case study problems

Case Study A—This problem is a variant of the stochastic Haverly pooling problem [3],
which was originally developed based on the classical Haverly pooling problem [46,47].
Figure 3 shows the superstructure of the pooling system to be developed. The circles denote
four sources that supply intermediate gasoline products with different sulfur percentages and
costs, the ellipse denotes a blender (or called a pool) at which some intermediate products can
be blended, and the rectangles denote product sinks at which the final products are blended.
The goal of optimization is to minimize the negative profit of the system by determining:
(1) Whether the pool and the two product sinks are to be developed in the system; (2) The
capacities of the sources and the pipelines. The stochastic pooling model of the problem
can be found in “Appendix B”. Two uncertain parameters, percentage of sulfur in source 4
and upper limit on the demand at sink 1, were considered. They were assumed to follow
independent normal distributions, with means of 2.5 and 180 and standard deviations of
0.08 and 10, respectively. Other parameters used in the problem can be found in [3]. For
this problem, x0 contains 3 binary variables and 13 continuous variables, xω contains 7s
continuous variables and yω contains 14s continuous variables, where s stands for the total
number of scenarios. In the case study, each uncertain parameter was sampled for 5, 6, 7,
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Fig. 3 Superstructure of case
study A problem

8, 9 and 10 scenario values, via the sampling rule described in [3], and this led to problem
instances with 25, 36, 49, 64, 81 and 100 scenarios.

Case Study B—This problem is a variant of the Sarawak Gas Production System (SGPS)
design problem [48], and the original form of the design problem appeared in [3]. Figure 4
shows the superstructure of the SGPS system under consideration, where the circles represent
gas fields (sources), ellipses represent offshore gas platforms (pools) at which gas flows from
different gas fields are mixed and split, rectangles represent onshore liquefied natural gas
(LNG) plants (product terminals). Symbols with solid lines represent the part of the system
that is already developed, and symbols with dashed lines represent the superstructure of the
part of the system that needs to be designed in the problem. The goal of optimization is to
maximize expected net present value while satisfying specifications for gas qualities at the
LNGplants in the presence of uncertainty. There are two uncertain parameters, i.e., the quality
of CO2 at gas field M1 and upper limit on the demand at LNG plant 2. They were assumed
to follow independent normal distributions with means of 3.34% and 2155 Mmol/day and
standard deviations of 1% and 172.5Mmol/day, respectively. In the case study, each uncertain
parameter was sampled for 5, 6, 7, 8, 9 and 10 scenario values, via the same sampling rule
described in [3], which led to problem instances with 25, 36, 49, 64, 81 and 100 scenarios.
The problem was also formulated following the new stochastic pooling model provided in
“Appendix B”. In the resulting formulation, x0 contains 5 binary variables and 29 continuous
variables. The 5 binary variables are to determine whether gas fields HL, SE, M3, M1 and
JN are to be developed, and the 29 continuous variables are the capacities of other units to
be developed. xω contains 8s variables and yω contains 85s variables, where s stands for the
total number of scenarios.

5.2 Solution approaches and implementation

The case studies were run on a virtual machine allocated with a 3.2GHz CPU. The virtual
machine ran Linux operating system (Ubuntu 16.04) with 6 GB of memory. Four solution
approaches were compared in the case studies: Monolith, GBD, JD1, JD2. Monolith refers to
solving the problem using an off-the-shelf, general-purpose global optimization solver, GBD
refers to generalized Benders decomposition, JD1 refers to the basic JD algorithm, and JD2
refers to the enhanced JD algorithm. The case study problems and the subproblems required
in GBD, JD1 and JD2 were all modeled on GAMS 24.7.4 [49], but GBD, JD1 and JD2
algorithms were programmed on MATLAB 2014a [50]. Data exchange between MATLAB
and GAMS was realized via GAMS GDXMRW facility [51].
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Fig. 4 Superstructure of case study B problem

The monolith approach solved the problems using three global optimization solvers, i.e.,
ANTIGONE 1.1 [25], BARON 16.8 [2], SCIP 3.2 [52]. ANTIGONE 1.1 and BARON 16.8
adopted CONOPT 3 [53] as its NLP solver and CPLEX 12.6 [54] as its LP/MILP solver,
and SCIP 3.2 used its default solvers for the subproblems. GBD, JD1 and JD2 solved the
problems by using CPLEX 12.6 for the LP/MILP subproblems and ANTIGONE 1.1 for the
nonconvex NLP/MINLP subproblems.

The construction of Problems (ODRk
i ) and (JRMPR(l)) in JD2 requires the convex relax-

ation of nonconvex sets X0 and Yω. In the case studies, X0 was a mixed integer set defined
by linear constraints, and it was relaxed into a polyhedral set via continuous relaxation. Yω

was a nonconvex continuous set defined with bilinear functions, and it was relaxed into a
polyhedral set via standardMcCormick relaxation [14]. The relative and absolute termination
tolerances for Case Study A were set to 10−3, and for Case study B were set to 10−2. GBD,
JD1 and JD2 started with all design decisions being 0 (which is a trivial feasible solution for
both case study problems).

During the execution of JD1 and JD2, large computing overhead may be incurred due to
frequent model generation in GAMS and data exchange between GAMS and MATLAB. So
both “Total solver time” and “Total run time” were recorded for the simulation studies, which
refer to the total time for the subproblem solvers to solve each individual subproblem and
the wall time for the entire solution procedure, respectively. The computing overhead could
have been significantly reduced if JD1 and JD2 had been implemented using general-purpose
programming languages, such as C++. For the monolith approach, the computing overhead
was much less, as seen from the results in the next subsection.

5.3 Results and discussion

Summary of the results for case study A is presented on Tables 3, 4, 5 and 6. Table 3 shows
the results for the monolith approach using the three global optimization solvers. It can be
seen that ANTIGONEwas the fastest among the three solvers, but its solution time increased
quickly with the problem size. BARON could also solve small problem instances quickly,
but it could not find the desired 10−3-optimal solution (i.e., a solution with a relative gap
no larger than 0.1%) for larger problem instances within the 1h run time limit. SCIP was
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Table 3 Results for case study A—Monolith (unit for time: s)

Number of scenarios 25 36 49 64 81 100

ANTIGONE 1.1

Objective val. ($) −532.1 −530.6 −531.2 −531.5 −531.1 −531.1

Relative gap ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1%

Total solver time 12 30 95 242 548 1470

Total run time 13 35 112 284 645 1703

BARON 16.8

Objective val. ($) −532.1 −530.6 −233.17 −397.7 −163.2 −427.8

Relative gap ≤0.1% ≤0.1% 63.6% 25.5% 69.6% 22.2%

Total solver time 18 30 –a –a –a –a

Total run time 20 37 –a –a –a –a

SCIP 3.2

Objective val. ($) −532.1 −530.6 −531.2 −531.5 −531.1 −531.1

Relative gap ≤0.1% ≤0.1% 0.58% 2% 3.7% 0.13%

Total solver time 134 1226 –b –b –b –b

Total run time 163 1470 –b –b –b –b

aSolver terminated after the 1h time limit, without finding the optimal solution
bSolver obtained the optimal solution after the 1h time limit, but did not reduce the gap to the set tolerance
(10−3)

the slowest of the three solvers; but unlike BARON, it happened to find the 10−3-optimal
solution within 1h for all problem instances (but could not verify the optimality for large
problem instances). Table 4 shows that GBD could not find a nontrivial feasible solution for
any problem instance within the 1h time limit (and the zero objective value is from the initial
trivial solution). On the other hand, Tables 4 and 5 show that both JD1 and JD2 could solve
all problem instances fairly quickly. JD1 was not as fast as ANTIGONE or BARON for small
problem instances, but its solution time increased more slowly than that of ANTIGONE or
BARON. This was primarily because the number of JD1 iterations did not vary much with
the number of scenarios. The nonconvex relaxed master problem (JRMP(l)) was the major
contributor to JD1 solution time, and sometimes it dominated the solution time (as in the
64 scenario case). In JD2 where the relaxation of (JRMP(l)) (i.e., (JRMPR(l))) is solved, the
number of (JRMP(l)) needed to be solved was significantly reduced, and each (JRMP(l)) was
much easier to solve due to extensive domain reduction. The price for reducing the (JRMP(l))
solution time was the time spent on optimization based domain reduction ODRk , but the
resulting total solution time still decreased for most cases, so JD2 generally outperformed
JD1 and it scaled with the number of scenarios in a more consistent way. Note that Tables 4
and 5 do not include the times to solve easy LP andMILP subproblems like Problem (BPP(l)

ω ),
(BFP(l)

ω ), (LSk0) and (JRMPR(l)), because those times were very small compared to the total
solution time.

Tables 7, 8, 9 and 10 present the results for case study B. ANTIGONE actually found the
desired 10−2-optimal solution, but it cannot reduce the gap to 1% within the 24h run time
limit; for the 25-scenario instance, it mistakenly terminated before the run time limit without
reducing the gap to 1%. BARON had the similar problem; it obtained the 10−2-optimal
solution for most problem instances but could not reduce the gap to 1% for any problem
instance. SCIP performed better than ANTIGONE and BARON for case study B, but it
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Table 4 Results for case study A—GBD (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Optimal obj. ($) 0 0 0 0 0 0

Num. of iterations 5 8 5 5 5 5

Total solver time >3600 >3600 >3600 >3600 >3600 >3600

For all cases, the solver terminated after 1h time limit without finding a nontrivial feasible solution. The zero
objective value is from the initial point where all variables are zero

Table 5 Results for case study A—JD1 (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Optimal obj. ($) −532.1 −530.6 −531.2 −531.5 −531.1 −531.1

Relative gap ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1%

Num. of iterations 8 13 10 14 10 12

Num. of JRMP(l) solved 4 5 5 7 5 6

Time for JRMP(l) 6 8 11 519 122 202

Time for LSkω 49 128 108 188 179 262

Time for PPk 7 25 18 124 45 66

Total solver time 63 168 141 840 352 540

Total run time 139 479 318 1223 677 1020

Table 6 Results for case study A—JD2 (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Objective val. ($) −532.1 −530.5 −531.2 −531.5 −530.7 −530.7

Relative gap ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1% ≤0.1%

Num. of iterations 10 10 10 8 10 10

Num. of JRMPR(l) solved 7 5 6 4 4 5

Num. of JRMP(l) solved 3 1 3 1 1 2

Time for JRMP(l) 1 2 2 2 3 5

Time for LSkω 51 71 103 110 165 190

Time for PPk 10 22 24 47 66 37

Time for ODRk 35 44 55 61 104 140

Total solver time 100 142 192 283 345 391

Total run time 210 308 406 549 739 968

could only solve the 25 scenario and 36 scenario problem instances successfully. Table 8
shows that GBD could not return a nontrivial feasible solution within the 24h time limit.
Table 9 shows that JD1 achieved an optimal solution for the 36 and 64 scenario cases, but
it could not close the optimality gap within the 24h time limit for the 25 and 49 scenario
cases, and it suffered from insufficient memory for the 81 and 100 scenario cases. Either the
insufficient solution time limit or the insufficient memory problem results from the fact that
subproblem (JRMP(l)) is too difficult if its domain is not sufficiently reduced according to the
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Table 7 Results for case study B—Monolith (unit for time: s)

Number of scenarios 25 36 49 64 81 100

ANTIGONE 1.1

Objective val. (Billion $) −33.87 −33.67 −33.81 −33.76 −33.78 −33.79

Relative gap. 1.4% 2.1% 1.7% 1.8% 1.8% 1.7%

Total solver time 51,465a –b –b –b –b –b

Total run time 58,522a –b –b –b –b –b

BARON 16.8

Objective val. (Billion $) −33.87 −33.91 −33.90 −33.31 −33.91 −33.79

Relative gap. 1.4% 1.3% 1.3% 3.6% 1.3% 1.6%

Total solver time 40,530 a 59,965 a 58,460a –b –b –b

Total run time 68,060 a 69,520 a 70,196 a –b –b –b

SCIP 3.2

Objective val. (Billion $) −33.92 −33.91 −33.81 −33.76 −33.78 −33.77

Relative gap. ≤1% ≤1% 1.52% 1.69% 1.69% 1.75%

Total solver time 54,337 11,952 –b –b –b –b

Total run time 61,365 13,316 –b –b –b –b

aSolver terminated with a nonzero exit code within 24h, and the relative gap was larger than the set tolerance
(10−2)
bSolver terminated after the 24h time limit, with a relative gap larger than the set tolerance (10−2)

Table 8 Results for case study B—GBD (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Optimal obj. ($) 0 0 0 0 0 0

Num. of iterations 205 145 117 101 111 121

Total solver time >86,400 >86,400 >86,400 >86,400 >86,400 >86,400

For all cases, the solver terminated after the 24h time limit without finding a nontrivial feasible solution. The
zero objective value is from the initial point where all variables are zero

information from previous solved subproblems. Table 7 shows that JD2 solved all problem
instances successfully, and its solution time scaled well with the number of scenarios. This
is because the total number of JD2 iterations did not vary significantly with the number of
scenarios, and the times for JRMP(l) and domain reduction did not increase greatly with the
number of scenarios. It can be seen that for this problem, domain reduction, primarily (ODRk

i ),
dominated the total solution time, so a more efficient way to perform domain reduction could
have been able to effectively reduce the solution time. This case study problem indicates
that, general-purpose global optimization solvers may not be able to effectively exploit the
structure of a complex nonconvex MINLP and solve the problem efficiently enough, and this
is when onemight consider the use of a tailored decomposition strategy like the one proposed
in this paper.
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Table 9 Results for case study B—JD1 (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Objective val. (Billion $) −33.49a −33.58 −33.5a −33.56 0b −33.50b

Relative gap 1.3% ≤1% 2.1% ≤1% – 2.8%

Num. of iterations 15 25 14 21 6 17

Num. of JRMP(l) solved 9 17 8 12 4 8

Time for JRMP(l) >86,400 25,066 >86,400 4452 797 1975

Time for LSkω 251 4418 323 4642 172 1137

Time for PPk 61 146 229 206 118 199

Total solver time >86,400 29,713 >86,400 9440 1105 3401

Total run time >86,400 33,913 >86,400 14,127 2051 6944

aSolver terminated while solving JRMP because of the 24h limit (86,400s). The relative gap was larger than
the set tolerance (10−2)
bSolver terminated because of insufficient memory

Table 10 Results for case study B—JD2 (unit for time: s)

Number of scenarios 25 36 49 64 81 100

Objective val. (Billion $) −33.58 −33.57 −33.77 −33.71 −33.57 −33.55

Relative gap ≤1% ≤1% ≤1% ≤1% ≤1% ≤1%

Num. of iterations 27 24 30 25 23 23

Num. of JRMPR(l) solved 21 17 23 17 16 14

Num. of JRMP(l) solved 17 10 15 7 8 6

Time for JRMP(l) 948 696 3547 1617 3948 5651

Time for LSkω 5676 3820 14,279 2734 2188 2814

Time for PPk 155 443 560 509 388 1000

Time for ODRk 7203 9247 19,020 22,661 21,137 30,961

Total solver time 14,028 14,288 37,832 27,702 27,893 40,769

Total run time 16,431 16,482 44,525 32,150 33,271 47,483

6 Concluding remarks

Two joint decomposition methods, JD1, and JD2, are developed in this paper for efficient
global optimization of Problem (P). JD1 is a basic joint decomposition approach, which
follows the notions of classical decomposition methods as well as convex relaxation, in
order to solve (P) via solving a sequence of relatively easy subproblems. JD2 is an enhanced
version of JD1 that integrates several domain reduction techniques. It has been proved that
both methods can terminate in a finite number of iterations with an ε-optimal solution if some
mild conditions are satisfied.

We considered two case study problems that come from integrated design and operation
under uncertainty, in order to demonstrate the potential computational advantages of joint
decomposition. For the first problem which is smaller and easier, both JD1 and JD2 out-
performed state-of-the-art global solvers when the number of scenarios was large, and JD2
generally outperformed JD1. For the second problem which is larger and more difficult, JD2
outperformed state-of-the-art global solvers and JD1 (which could not close the gap for most
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cases). The case study results indicate that, when joint decomposition can effectively exploit
the problem structure, the total number of iterations it requires does not increase significantly
with the number of scenarios, and consequently the solution time increases slowly with the
problem size compared to the general-purpose global optimization solvers. On the other
hand, like all decomposition methods, joint decomposition uses existing solvers to solve its
subproblems, so its computational performance does rely on the advances in general-purpose
local and global optimization solvers.

In this paper, we only consider domain reduction for the linking variables in x0. In the
future, we will also consider domain reduction for some key non-linking complicating vari-
ables in yω that influence the convergence rate the most, and investigate how to find out
these key variables. This can effectively tighten the convex relaxation of Problem (JRMP(l)),
and therefore reduce the number of JRMP(l) to be solved and accelerate the solution of
each JRMP(l). In addition, in the current JD method subproblem (RPMPk) is used for gen-
erating Lagrangian multipliers (as well as x0), but this subproblem may be time-consuming
when a large number of JD iterations is required. In the future, we would like to use a sub-
gradient based method (such as a bundle method [55]) to generate Lagrangian multipliers in
the JD framework, and assess the performance of this method in comparison to the (RPMPk)
approach.

Acknowledgements The authors are grateful to the discovery grant (RGPIN 418411-13) and the collaborative
research and development grant (CRDPJ 485798-15) fromNatural Sciences andEngineeringResearchCouncil
of Canada (NSERC).

Appendix A: Reformulation from (P0) to (P)

From Problem (P0), We first separate the convex part and the nonconvex part of the problem.
Specifically, let vω = (vc,ω, vnc,ω), where vc,ω includes variables that are only involved in
convex functions and restricted by convex constraints/sets, and vnc,ω includes the variables
that are involved in a nonconvex function and/or restricted by a nonconvex constraint/set.
In addition, we introduce duplicate variables v0,1, . . . , v0,s for variable x0, to express the
relation among all scenarios using NACs. We then rewrite Problem (P0) as:

min
x0,v0,1,...,v0,s
vc,1,...,vc,s

vnc,1,...,vnc,s

s∑

ω=1

[ f0,ω(v0,ω) + fc,ω(vc,ω) + fnc,ω(vnc,ω)]

s.t. x0 = v0,ω, ∀ω ∈ {1, . . . , s},
g0,ω(v0,ω) + gc,ω(vc,ω) + gnc,ω(vnc,ω) ≤ 0, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

v0,ω ∈ X̂0, vc,ω ∈ Vc,ω, vnc,ω ∈ Vnc,ω, ∀ω ∈ {1, . . . , s}.

(A.1)

In the above formulation, set X0 ⊂ R
n0 is either convex or nonconvex, set Vc,ω ⊂ R

nc

is convex, set Vnc,ω ⊂ R
nnc is either convex or nonconvex. Functions fc,ω : Vc,ω → R and

gc,ω : Vc,ω → R
mc are convex. Functions fnc,ω : Vnc,ω → R, gnc,ω : Vnc,ω → R

mnc , f0,ω,
and g0,ω are either convex or nonconvex. Set X̂0 ∈ R

n0 is a convex relaxation of X0 (and
it is same to X0 if X0 is convex). The restriction z0,ω ∈ X̂0 is actually redundant with the
presence of NACs; however, it tightens the problem when the NACs are dualized. Note that
in order to generate a convex relaxation of X0, extra variables may be introduced [56], so the
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dimension of the relaxation may be larger than that of X0. Here X̂0 can be understood as the
projection of the relaxation set on the Rn0 space. For simplicity of notation, in this paper we
always express a convex relaxation (of a set or a function) on the original variable space and
do not explicitly show the extra variables needed for constructing the relaxation.

Define new variables tω, αc,ω, αnc,ω, βc,ω, βnc,ω, such that Problem (A.1) can be written
as:

min
s∑

ω=1

tω

s.t. x0 = v0,ω, ∀ω ∈ {1, . . . , s},
βc,ω + βnc,ω ≤ 0, ∀ω ∈ {1, . . . , s},
tω ≥ αc,ω + αnc,ω, ∀ω ∈ {1, . . . , s},
αc,ω ≥ fc,ω(vc,ω), ∀ω ∈ {1, . . . , s},
αnc,ω ≥ f0,ω(v0,ω) + fnc,ω(vnc,ω), ∀ω ∈ {1, . . . , s},
βc,ω ≥ g0,ω(v0,ω) + gc,ω(vc,ω), ∀ω ∈ {1, . . . , s},
βnc,ω ≥ gnc,ω(vnc,ω), ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

v0,ω ∈ X̂0, vc,ω ∈ Vc,ω, vnc,ω ∈ Vnc,ω, ∀ω ∈ {1, . . . , s}.

(A.2)

Define xω = (v0,ω, vc,ω, tω, αc,ω, βc,ω), yω = (vnc,ω, αnc,ω, βnc,ω), then the above formu-
lation can be written as the following Problem (P):

min
s∑

ω=1

cTω xω

s.t. x0 = Hωxω, ∀ω ∈ {1, . . . , s},
Aωxω + Bωyω ≤ 0, ∀ω ∈ {1, . . . , s},
x0 ∈ X0,

xω ∈ Xω, yω ∈ Yω, ∀ω ∈ {1, . . . , s},

(P)

where the matrices

cω =

⎡

⎢⎢⎢⎢⎣

0
0
I
0
0

⎤

⎥⎥⎥⎥⎦
, Hω = [I 0 0 0 0] , Aω =

[
0 0 0 0 I
0 0 −I I 0

]
, Bω =

[
0 0 I
0 I 0

]
,

and the sets

Xω ={(v0,ω, vc,ω, tω, αc,ω, βc,ω) : v0,ω ∈ X̂0, vc,ω ∈ Vc,ω,

αc,ω ≥ fc,ω(vc,ω), βc,ω ≥ g0,ω(v0,ω) + gc,ω(vc,ω)},
Yω ={(vnc,ω, αnc,ω, βnc,ω) : vnc,ω ∈ Vnc,ω, αnc,ω ≥ f0,ω(v0,ω) + fnc,ω(vnc,ω),

βnc,ω ≥ gnc,ω(vnc,ω)}.
The “0” and “I” in the matrices represent zero and identity matrices, and their dimensions
are conformable to the relevant variables. According to the convexity/nonconvexity of the
functions and the sets stated before, set Xω is convex and set Yω is nonconvex.
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Appendix B: The stochastic pooling problem with mixed-integer first-
stage decisions

The two-stage stochastic pooling problem from Li et al. [3] is modified here to address
continuous design (first-stage) decisions. The nomenclature used in [3] is adopted to describe
the model, in which the scenarios are indexed by h (rather than ω).

In the modified model, the design decisions on sources, pools, product terminals, denoted
by ySi , y

P
j , y

T
k , can be continuous, integer, or mixed integer. If ySi ∈ {0, 1}, then the design

decision is to determine whether source i is to be developed, and the related parameter
ZUB
i represents the fixed capacity of the source. If ySi is continuous and ySi ∈ [0, 1], then

it is a capacity design decision, specifically it represents the ratio of source i capacity to
the maximum allowed capacity of the source (denoted by ZUB

i ). The design decisions on the
pipelines among sources, pools, and terminals are all continuous, denoted by ySPi, j , y

ST
i,k , y

PP
j, j− ,

yPTj,k ∈ [0, 1]. They represents the ratios of the pipeline capacities to the maximum allowed

capacities (denoted by FSP,UB
i, j , FST,UB

i,k , FPP,UB
j, j− , FPT,UB

j,k ).
All design and operational decision variables are nonnegative, and we do not impose other

lower bounds on these variables in order to simplify discussion. The new stochastic pooling
model consists primarily of three submodels, for the sources, pools, and product terminals,
respectively.

Model for the sources

The following group of constraints (B.1) represents the submodel for the sources. Equa-
tions (B.1a–B.1c) are same to Eqs. (12–14) in [3], except that the lower flow bounds are not
imposed. Equations (B.1d–B.1f) are developed in place of the topology constraints Eqs. (15–
16) (which are invalid for continuous design decisions). Equations (B.1d–B.1e) limit the
capacity of a pipeline by the capacity of the source it connects. If ySi = 0, then there cannot
exist a pipeline connecting it, in other words, the capacity of a pipeline connecting it has to
be zero. Equation (B.1f) requires that the total capacity of all pipelines connecting to a source
should be no less than the capacity of the source. This is to ensure enough pipeline capacity
to move all materials generated in the source to other parts of the system in real-time.

∑

j∈ΘSP
i

f SPi, j,h +
∑

k∈ΘST
i

f STi,k,h ≤ ySi Z
UB
i , (B.1a)

f SPi, j,h ≤ ySPi, j F
SP,UB
i, j , (B.1b)

f STi,k,h ≤ ySTi,k F
ST,UB
i,k , (B.1c)

ySPi, j F
SP,UB
i, j ≤ ySi Z

UB
i , (B.1d)

ySTi,k F
ST,UB
i,k ≤ ySi Z

UB
i , (B.1e)

ySi Z
UB
i ≤

∑

j∈ΘSP
i

ySPi, j F
SP,UB
i, j +

∑

k∈ΘST
i

ySTi,k F
ST,UB
i,k ,

∀i ∈ {1, . . . , n}, ∀ j ∈ ΘSP
i , ∀k ∈ ΘST

i , ∀h ∈ {1, . . . , b}. (B.1f)
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Model for the pools

The following group of constraints (B.2) represents the submodel for the pools. Eua-
tions (B.2a–B.1e) are same to Eqs. (17–21) in [3], except that the lower flow bounds are
not imposed. Equations (B.2f–B.2k) are developed in place of the topology constraints (23–
26) in [3]. The interpretation of Eqs. (B.2f–B.2k) is similar to that of Eqs. (B.1d–B.1f) and
therefore omitted.

f PTj,k,w,h = sPTj,k,h

⎛

⎜⎝
∑

i∈ΩSP
j

f SPi, j,hUi,w,h +
∑

j+∈ΩPP+
j

f PPj+, j,w,h

⎞

⎟⎠ , (B.2a)

f PPj, j−,w,h = sPPj, j−,h

⎛

⎜⎝
∑

i∈ΩSP
j

f SPi, j,hUi,w,h +
∑

j+∈ΩPP+
j

f PPj+, j,w,h

⎞

⎟⎠ , (B.2b)

∑

j−∈ΩPP−−
j

sPPj, j−,h +
∑

k∈ΩPT
j

sPTj,k,h = 1, sPPj, j−,h, s
PT
j,k,h ≥ 0, (B.2c)

yPPj, j−F
PP,LB
j, j− ≤

∑

w∈{1,...,l}
f PPj, j−,w,h ≤ yPPj, j−F

PP,UB
j, j− , (B.2d)

yPTj,k F
PT,LB
j,k ≤

∑

w∈{1,...,l}
f PTj,k,w,h ≤ yPTj,k F

PT,UB
j,k , (B.2e)

yPj Z
P,UB
j ≥ ySPi, j F

SP,UB
i, j , (B.2f)

yPj Z
P,UB
j ≥ yPPj+, j F

PP,UB
j+, j , (B.2g)

yPj Z
P,UB
j ≥ yPPj, j−F

PP,UB
j, j− , (B.2h)

yPj Z
P,UB
j ≥ yPTj,k F

PT,UB
j,k , (B.2i)

yPj Z
P,UB
j ≤

∑

j+∈ΩPP+
j

yPPj+, j F
PP,UB
j+, j +

∑

i∈ΩSP
j

ySPi, j F
SP,UB
i, j , (B.2j)

yPj Z
P,UB
j ≤

∑

j−∈ΩPP−
j

yPPj, j−F
PP,UB
j, j− +

∑

k∈ΩPT
j

yPTj,k F
PT,UB
j,k ,

∀ j ∈ {1, . . . , r}, ∀ j− ∈ ΩPP−
j , ∀k ∈ ΩPT

j , ∀w ∈ {1, . . . , l}, ∀h ∈ {1, . . . b}. (B.2k)

Model for the product terminals

The following group of constraints (B.3) represents the submodel for the terminals. Equa-
tions (B.3a–B.3b) are same to Eq. (27–28) in [3], except that the lower flow bounds and
content bounds are not imposed. Again, Eqs. (B.3c–B.3e) are developed in place of the old
topology constraints that are invalid for continuous design decisions (i.e., Eqs. (23–26) in
[3]).

∑

j∈ΠPT
k

∑

w∈{1,...,l}
f PTj,k,w,h +

∑

i∈ΠST
k

f STi,k,h ≤ yTk D
UB
k,h , (B.3a)
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∑

j∈ΠPT
k

f PTj,k,w,h +
∑

i∈ΠST
k

f STi,k,hUi,w,h ≤
⎛

⎜⎝
∑

j∈ΠPT
k

∑

w∈{1,...,l}
f PTj,k,w,h +

∑

i∈ΠST
k

f STi,k,h

⎞

⎟⎠ VUB
k,w (B.3b)

yTk D
UB
k ≥ ySTi,k F

ST,UB
i,k (B.3c)

yTk D
UB
k ≥ yPTj,k F

PT,UB
j,k , (B.3d)

yTk D
UB
k ≤

∑

i∈ΠST
k

ySTi,k F
ST,UB
i,k +

∑

k∈ΠPT
k

yPTj,k F
PT,UB
j,k

∀k ∈ {1, . . . ,m}, ∀w ∈ {1, . . . , l}, ∀h ∈ {1, . . . , b}. (B.3e)

The modified stochastic pooling model can be stated as:

minimize objective

s.t . Eq. (B.1a-B.1f), Eq. (B.2a-B.2k), Eq. (B.3a-B.3e),

ySi , yPj , y
T
k ∈ {0, 1} or [0, 1],

ySPi, j , y
ST
i,k , y

PP
j, j− , yPTj,k ∈ [0, 1],

all flow rates are nonnegative,

redudant constraints for accelerating global optimizaiton (Eqs. (38–39) in [3]).
The objective can be negative net present value, or negative annualized profit, as specified

in [3].
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