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Abstract

Packing ellipses with arbitrary orientation into a convex polygonal container which has a
given shape is considered. The objective is to find a minimum scaling (homothetic) coefficient
for the polygon still containing a given collection of ellipses. New phi-functions and quasi
phi-functions to describe non-overlapping and containment constraints are introduced. The
packing problem is then stated as a continuous nonlinear programming problem. A solution
approach is proposed combining a new starting point algorithm and a new modification of
the LOFRT procedure (J Glob Optim 65(2):283-307, 2016) to search for locally optimal
solutions. Computational results are provided to demonstrate the efficiency of our approach.
The computational results are presented for new problem instances, as well as for instances
presented in the recent paper (http://www.optimization-online.org/DB_FILE/2016/03/5348.
pdf, 2016).

Keywords Packing - Ellipses - Continuous rotations - Convex polygon - Phi-function
technique - Nonlinear optimization

1 Introduction

Packing ellipses in a container is a benchmark problem for two-dimensional packing. The
problem is NP-hard [3] and has multiple applications in molecular dynamics (structure
and properties of liquid crystals, the structure of liquids and glasses, chromosome pack-
ing in cell nucleus mineral, powder metallurgy, mineral industries), logistics (packing rolls
of wallpaper, transportation of the pipes, transportation of paint buckets), cutting of industrial
materials (mirror manufacturers, furniture making, 3D modeling of granular, structures and
substances), robotics (see, e.g. [4-8] and the references therein).

Many authors tackled placement problems for ellipses. In [6] the following problem is
considered: a set of ellipses with given axes has to be cut from a rectangular design plate,
while minimizing the area of the design rectangle. The design plate is subject to lower and
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upper bounds of its width and length while orientations of ellipses are free. A mathematical
programming formulation for this ellipse cutting problem is presented. Separating lines are
used to derive non-overlapping conditions. For a small number of ellipses the authors report
globally optimal solutions. However, for more than 14 ellipses none of the local or global
NLP solvers available in GAMS can even compute a feasible point. So called polylithic
approaches are proposed where ellipses are added sequentially in a strip-packing fashion to
the rectangle restricted in width, but unrestricted in length. The rectangle’s area is minimized
in each step in a greedy fashion.

The problem of placing a given collection of ellipses into a rectangular container of
minimum area is studied in [1]. Quasi phi-functions for an analytical description of non-
overlapping and containment constraints for ellipses under continuous rotation and translation
are introduced. A corresponding nonlinear programming problem is stated and an efficient
solution algorithm is proposed. Computational results of new instances and instances that
compare favorably with those published elsewhere before are considered in the paper.

In [7] continuous and differentiable nonlinear programming models and algorithms for
packing multidimensional ellipsoids in a container (a cuboid and a sphere) of minimum
area are considered. Two different models for non-overlapping and containment conditions
are presented. A simple multi-start strategy is combined with an intelligent choice of start-
ing points and a nonlinear programming local solver. The number of variables (constraints)
for non-overlapping models grows quadratically with the number of ellipsoids to be packed.
Numerical experiments are suggested for instances with up to 100 ellipsoids to obtain accept-
able solutions in a reasonable time.

In [8] the authors present a nonlinear programming model for packing ellipses and ellip-
soids that contains a linear number of variables and constraints. The proposed model finds its
basis in a transformation-based non-overlapping model introduced in [7]. Numerical exper-
iments in [8] show the efficiency and effectiveness of the proposed model and methodology
for solving large-sized instances.

Regular grids are used in [9, 10] to approximate a container resulting in corresponding
linear integer programming models for optimal packing. Packing different shapes including
so-called circular-like objects (ellipses, rectangles, rhombuses, octagons, etc.) is considered
as well as nesting objects inside one another (recursive packing). However, it is assumed that
all objects have the same orientation and no rotation is allowed.

In the recent paper [2] the authors present a model and a numerical solution approach to
packing ellipses into an optimized regular polygon. Specifically, the optimization strategy
is based on the concept of embedded Lagrange multipliers. In this Lagrangian setting the
apothem (and thereby the area) of a regular polygon is optimizing while preventing ellipses
overlapping. They proceed simultaneously towards these objectives using the LGO solver
system for global-local nonlinear optimization. The numerical results given in the paper
demonstrate the applicability of the embedded Lagrange multipliers based modeling approach
combined with global optimization to tackle a broad class of highly non-convex ellipse
packing problems.

In this work a problem of packing a given collection of ellipses into a fixed shape convex
polygonal container is considered. The ellipses can be continuously rotated, while the con-
tainer can be homothetically scaled. The objective is to minimize the scaling coefficient for
the container subject to non-overlapping and containment constraints.

The main contributions of this work are as follows:

o It is demonstrated that the original problem is closely related to packing homothetically
scaling ellipses in a fixed container while maximizing the scaling coefficient for the ellipses.
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Fig. 1 Illustration of the angle ¢ AY

e New tools for mathematical modelling of placement constraints are proposed: a quasi
phi-function to describe non-overlapping of ellipses and a phi-function to describe the
containment of an ellipse in a convex polygon analytically;

e An exact mathematical model for optimal packing ellipses under rotation is stated as a
continuous nonlinear programming problem;

e An efficient algorithm for finding a good solution (local optimum) to the original packing
problem is proposed. The method involves problem reformulation and employs two prin-
cipal steps: a simple technique to find a starting point and a local optimization algorithm.
The optimization algorithm results in a sequence of NLP subproblems of considerably
smaller dimension.

2 Problem formulation

A set of ellipses E;,i € {1,2,...,n} = I,, is given. Each ellipse E; is defined by its
semi-axes a; and b;.

The position of the ellipse E; is characterized by the vector of variable object placement
parameters u; = (v;, 6;), where v; = (x;, y;) is a translation vector, and 6; is a rotation angle.
The center of the ellipse coincides with the origin of its own coordinate system. Rotated
by angle 6; and translated by vector v; ellipse E; is defined as E;(u;) = {p € R?:p=
vi + M(6;) - pO, Vpo € E? }, where E? denotes non-translated and non-rotated ellipse Ej,
cos6; sinb; )

M (6;) is a rotation matrix, M(6;) = ( sind: cosd
- i i

Let £2(A) be a convex m-polygonal domain given by its vertices {Ap, Ap2, ..., Ap;y} in
the global coordinate system XOY . Here we define and use the variable homothetic coefficient
A >0,aps = (xl, ayP), s =1,2,..., m, and it is assumed that the origin O is an interior
point of 2= 2(1).

In what follows we will also use the presentation of £2 in the form 2 = ﬂ;”:] P(A),
where Ps(A) = {(x, y) : us(x, ¥, L) = cos ¢s-x+sin ¢s- y+Ays > 0} is a half plane. Here the
equation pg(x, y, A) = 0 corresponds to a straight line Ly(A) = {(x, y) : us(x, y, 1) = 0}
passing through the s-th side of £2(1); ¢ is the angle between axis OX and the normal ny to
the straight line L;(A) (Fig. 1), o5 = const, y; = const,s = 1,2, ..., m, and it is assumed
that us(0, 1) > 0.

In what follows two related problems are considered: (1) packing the set of ellipses in a
homothetically scaled convex polygonal container minimizing the scaling coefficient for the
container; (2) packing a set of homothetically scaled ellipses in a fixed polygonal container
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maximizing the scaling coefficient for the ellipses. More specifically, these two problems are
as follows.

Ellipse packing problem EPP_1. Pack the set of ellipses E;(u;), i € I, in a convex polygonal
domain A§2 minimizing the homothetic coefficient A > 0.
In EPP_1I the following placement constraints have to be satisfied:

o Non-overlapping constraints: int E; (u;) Nint E;(u;) =@, fori > j € I,
e Containment constraints: E;(u;) C §2(A) foreachi € I,,.

Leteachellipse E; (u;) be defined by its semi-axes 8-a; and 8-b;, where § > 0is a homothetic

coefficient of the ellipse E;(u;), i € I,. In what follows the notation Ei(ui, B)=p-Ei(u;),
i €1, is used.

Ellipse packing problem EPP_2. Place the set of ellipses E i(u;i, B),i € I, into a fixed convex
polygonal domain £2(A = 1) maximizing the ellipse homothetic coefficient § > 0.
In EPP_2 the following placement constraints have to be satisfied:

e Non-overlapping constraints: int E,-(ui, B) Nint Ej(uj, B)=0,fori > jel,,
e Containment constraints: E i(ui, B) C §2 foreachi € I,.

It will be demonstrated in Sect. 5 that although these two problems are closely related, the
second is more attractive from the computational point of view and will be used further in
algorithmic constructions.

3 Mathematical modeling tools

In this study we use the phi-function technique which provides a powerful tool for mathemat-
ical modeling of placement constraints in the field of Packing& Cutting (see, e.g. [11-14]).

We introduce a new phi-function to describe containment constraints and a new quasi
phi-function to describe non-overlapping constraints in the ellipse packing problem. These
new tools allow us reducing considerably the number of auxiliary variables and using simpler
mathematical model than in [1] proposed for the ellipse packing problem in a rectangular
container.

For the reader’s convenience we provide here definitions of a phi-function and a quasi
phi-function (see [2, 11] for more details).

Let A C R? and B C R? be two objects. The position of object A is defined by a vector
of placement parameters us = (v4, 64), where: v4 = (x4, y4) is a translation vector and
64 is a rotation angle. The object A, rotated by angle 64 and translated by vector v4 will be
denoted by A(u4).

Phi-functions allow us to distinguish the following three cases: A(u4) and B(upg) are
intersecting so that A(u 4) and B(up) have common interior points; A(u4) and B(u g) do not
intersect, i.e. A(u4) and B(u g) do not have common points; A(u 4) and B(u p) are in contact,
i.e. A(us) and B(up) have only common frontier points. We denote by frA(-) the frontier
of set (-).

Definition [11]. A continuous and everywhere defined function ®AB(yu,, up) is called a
phi-function for objects A(u4) and B(up) if
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DB (up,up) <0, ifint A(ua) Nint B(up) # 0;
DB (up,up) =0, ifint Awa) Nint B(ug) =@ and frAua) N frBug) # ¥
DB (us,up) >0, if Awa) N Bug) = 9.

It should be noted that inequality @42 (u 4, ug) > 0 provides the non-overlapping constraint,
i.e.,int A(uyg)Nint B(up) = @, and inequality @ AB* (uyg,up) > 0 provides the containment
constraint A(us) CB(up), i.e.int A(us) Nint B*(ug) = ¥, where B* = R%\int B.

Definition [1]. A continuous and everywhere defined function &’ AB(ya, ug,u') is called
a quasi phi-function for two objects A(u4) and B(up) if max,, DBy, up,u)is a phi-
function for the objects.

Here u’ is a vector of auxiliary continuous variables that belongs to Euclidean space.
Based on features of a quasi phi-function [ 1] the non-overlapping constraint can be describe
in the form:

if 48 (up, up,u') > 0 for some u’, thenint A(ua) Nint B(ug) = @.

3.1 Phi-function for containment constraints

Let us construct a phi-function for containment constraints for the problem EPP_1:
E; C 2(0) < int E;(u;) N 2*(A) = ¥, where 2%(1) = R*\int 2(}).
Proposition 1 A function defined by
L (u;, 1) = min{ D (ui, 1), s € I}, 1)

is a phi-function of E;(u;) and §2*(}), where @} (u;, 1) is a phi-function of ellipse E;(u;)
and half plane P¥()), P¥().) = R?\int Py(}).

Proof 1t is clear that ellipse E;(u;) is arranged inside a convex polygon £2(1) if and only if
ellipse E;(u;) does not overlap with each half plane Pj(}), i.e. E;(u;) Nint P}(1) = @, for
each s € I,. In terms of phi-functions it means that a phi-function of E;(u;) and half plane
P(1) should take nonnegative value for all s € I,,,. Q.E.D.

Therefore, according to (1), the inequality QL *(u,-, ) > 0 provides the containment
constraint E;(u;) C§2,i.e.int E;(u;) Nint 2*(1) = @.
Now we define a phi-function @7 (u;, A) of ellipse E;(u;) and half plane P;(}).

Proposition 2 A phi-function of E;(u;) and half plane P}()\) has the form
D/ (Ui, A) = 8is(vi, 1) — dis (6;), )

where

Bis (Ui, 1) = XiCosy + yi Sin gy + 1y, dis 65) = /A - cos2(6; 4 + 0, A = (aF — )

Proof A deviation of v; to Lg()) is derived as §;5(vi, A) = x;jcos¢s +y; sin ¢+ Ly; (Fig. 2a).
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Fig. 2 Illustration for phi-function @i*s: a the given position of ellipse E;(v;, 6;) and Lg(A); b the position of
the rotated ellipse E; and the rotated straight line L} (1)

Now let us get the expression for the semi length d;(6;) of the orthogonal projection of
E;(v;, 6;) on the straight line Lﬁ-(k) that is perpendicular to Ls(}) (Fig. 2a). To this aim
we rotate ellipse E;(v;, 6;) and straight line L (1) by angle 7 — ¢,. As a result we obtain
Li(A\)LOX (Fig. 2b).

Now, based on the idea proposed in [6], we can derive the semi length of the projection

of Ei(v]. 6;) on OX in the form di,(6) = /Ay - cos?(6; + ) + b},

Function (2) is everywhere defined and continuous. It addition, since d;s(6;) is always
positive, then either §;5(v;i, A) > dis(6;) or §;5(vi, A) = dis(6;), or §;5(vi, A) < dis(6;). Thus:
(1) @ (u;, 1) > 0if and only if 8;5(v;, 1) — d;s(6;) > O (it means that E;(u;) N P} (L) = 0);
(2) @} (u;, A) = 0if and only if §;5(v;, A) — d;s(6;) = O (it means thatint E;(u;)N PF(L) =0
and frE;(u;) N Lg(A) # 0); (3) <I>i*s(u,-, A) < 0 if and only if §;5(vi, A) — dis(6;) < O (it
means that int E;(u;) N P(L) # ¥). Therefore function (1) is a phi-function of the ellipse
E;(u;) and the half plane P;(1). Q.E.D.

The inequality @/ (u;, A) > 0 guarantees the non-overlapping of E;(u;) and P;"(}).

Now let us construct a phi-function for containment constraints for the problem EPP_2:

Based on (2) and assuming A = 1 we define a phi-function for containment of E i(ui, B)
into £2 that we present as follows:

(p’E\iQ*(ui! :3) = mln{Cb,*s(Mn '3),.8‘ € Im}’ (3)

B (ui. B) = X - cos by +yi - sin by + 5 — By Aicos? (6 + pi) + b2, @)
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Fig. 3 Illustration for the construction of quasi-phi function @'EiEj

3.2 Quasi-phi-function for non-overlapping constraints

Next, we construct a quasi phi-function of two ellipses E;(u;) and Ej(u ) for the problem
EPP_1, that is considerably simpler than a quasi phi-function considered in [2].

The key idea is based on the following statement: if two ellipses do not intersect each
other, then there exists a straight line, passing through the center of the coordinate system
XOY, such that the projections of the ellipses on this line do not intersect each other. In fact,
let two ellipses have no common interior points. Then, there exists a line that divides the
plane into two half-planes in such a way that the two ellipses lie in different half-planes.
Consequently, the projections of the ellipses on any straight line, that is perpendicular to the
separating line (in particular, passing through the center of the coordinate system), do not
have common interior points in R'.

We denote the straight line, that is perpendicular to a separating line L;; and passing
through the origin O, by LIJ]- Let ¢;; be the angle between the line Ll.J} and axis OX, while
E;j and Ej; be projections (line segments with the appropriate centers #;; = (x;;, y;;) and
tj,' = (x]'i, yji)) of ellipses E,‘ (u,) and Ej(uj) (Fig. 3).

Rotating the straight line Ll.J; around the origin O by the angle —¢;;, we obtain two
segments E{j C OX and E}i C OX with centers xi’j(vi, ¢ij) and x}i(vj, ¢;j) (Fig. 3) and
semi lengths d;;(6;, ¢;;) and d; (6;, ¢;;), where

xij(vi, ¢i) = xicoshij — yisingij, X (vj, dij) = xjcosgij — yjsingij, (5

i (012 41) = B2 + Dicos™ (6 — 9i). dji (6. 67) = 3+ B jeos(6; = 4). (6
A= (a? =) a5 = (a2 = 12).
Proposition 3 A function defined by
DB i, uj, i) = xfj (v bij) = x5 (v dij) = (dis (65, 6ij) +dji (6. ¢37)) - (D)

is a quasi phi-function of ellipses E;(u;) and E j(u;).
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Proof To show that function @5 Ei (u;, uj, ¢;j)is aquasi phi-function of ellipses E; (u;) and
E j(uj) we need to prove that maxg,; [0,2r] @'EEj(y;, uj, ¢;j) is a phi-function for ellipses
E;(u;)and E;(u ;) (see definitions of a phi-function and a quasi phi-function at the beginning
of this section).

Further we show that the function possesses the following characteristics:

(1) maxg, c0.272] PEE (i, uj, ¢ij) > Oif Ej(ui) NE;j(uj) = 0;

2) maxg;; [0,2x] @/EiE-f(ui, uj,¢ij) = 0ifint E;(u;) Nint Ej(u;) = ¥ and frE;(u;) N
STE;juj) # 9;

(3) maxg, ef0,272] " FEi (ui, uj, ¢ij) < 0if int E;(up) Nint Ej(uj) # 0.

First we show that the following equation

E,E;
max D55 (ug,u;, ¢
¢ij €l0,27] (i uj, )

=, max (bt (o @us) = s (v 017) 1= (di (61 617) + i 67 917))) ®

is valid.
Based on (5) we have

xjj (vi ij + ) = i (v i + ) = xj; (vis dij) — x5 (v, 4ij). since
xi/j (vi, $ij + 1) = xicos (¢ij +71) — y;sin (qﬁij +7)
= —x,'COS¢l'j + y,-sinqb,'j = —x{j (v,-, ¢ij) .
Similarly we get
x;-i(vj, ¢ij +T[) = —XjCOS¢ij +yjsin¢ij = —x}i(vj, d’ij)-
Based on (6) we have
dij (0i. ¢ij +7) +dji (0. ¢ij + 1) = dij (0. §ij) +dji (9. $ij)
Then we consider three cases.

1. LetEj(u;)NE;(uj) = @.Itis known that if two ellipses E;(u;) and E j(u ;) do not overlap
each other then there exists a straight line such that orthogonal projections E;; and E j;
of the ellipses on the straight line have no common interior points. It means that there
exists a separating line L;; and therefore the straight line Lf} , that is perpendicular to L;;

and passing through the origin O with the angle ¢;; between the line ijf and axis OX
(Fig. 4a).

Based on (8) the non-overlapping constraint, E;(u;) N E(u ;) = @, can be described by
the following inequality:

iy (vi i) — i (v ¢i1)’ > dij (6:. ¢ij) +dji (0. ¢i))-

Therefore maxg,; (0,27 @'EEj(y;, uj, ¢ij) > 0.
It should be noted that for some values of the angle ¢;; quasi phi-function (7) can take
zero value (Fig. 4b) or be negative (Fig. 4c).
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(@) (b ©

Fig. 4 Illustration to case 1: a ®'Fifi =0,b @'Fifi > 0, ¢ ¢'Fifi <0

2. Let int E;(u;) N int Ej(u;) = ¥ and frE;(u;) N frE;jum;) # . Then either
(@int EJ;(xi;, 0) N int E;(x;i,0) # © or (b) int E},(xi;, 0) N int E;(x;1,0) = @
and frElfj(xij,O) N frE}i(xji,O) # ). Therefore, xlfj(vi,¢ij)—x}i(vj,¢ij) <
d;ij(6;, ¢ij) + dji(0}, ¢i;) and @’EiEf(u,-,uj,qb,-j) < 0 for case (a) or
bt s 1) — 5307 60| = iy O, i) + dji®), i) and DEFi i, i) = 0
for case (b). Thus, there is always exists ¢;; with max, ef0,27] "5 %1 (ui, uj, ¢ij) = 0.

3. Letint E;(u;) Nint Ej(u;) # ¥. Then also int Elfj(x,;,-, 0) Nint E}i(xj,-, 0) £ 4.

X{j(vi,¢ij)—x}i(vj,¢ij)) < dij(6;, ¢ij) + dji(0}, ¢ij) for any
bij, ie. maxg,; efo,2x] P'EE; (u,', uj, (f)l'j) < 0. Q.E.D.

It means that

Thus, according to the main property of a quasi phi-function [1], we can conclude that, if
@'EiLi(u;, uj, ¢ij) > 0 for some ¢;;, then int E;(u;) Nint E;(u;) = 9.

Now based on (7), we define a quasi phi-function to describe non-overlapping of E i(ui, B)
and E j(u, ) in problem EPP_2

O"EEi (up,uj, dij, B) = (xi — xj)cosgyj + (vj — vi)singi;

— ﬂ<\/bl2 + A[COSZ(G[ — ¢ij) + \/bf + AjCOSz(ej — (]5,'j)),
&)

4 Mathematical models for ellipse packings
Let us state a mathematical model of the problem EPP_1. A mathematical model for packing
rotatable ellipses in a convex polygonal domain 2 of minimum homothetic coefficient can

be formulated in the form

min A (10)
(t,0)€VCRO
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V=1t ¢)e R : & FiEi(u;,uj, ¢ij) > 0,0, j) € &, @2 (u;, 1) > 0,i € I, » > 0},
where t = (v, 0, A) is a vector of variables, v = (vi,v2,...,v,), 8 = (01,6a,...,6,),
¢ = (¢ij,(i,)) € B, E ={G,)):i < j e I}, ®EEi(u;,u;,¢;j) is defined in (7),
@ L2 (y; 3 is defined in (1), u; = (vi, 6;), vi = (xi, yi), 0 =3n+0.5-n(n — 1)+ 1 is the
number of the problem variables.

Based on (1) the inequality <DE"9*(u,', A) > 0 can be substituted by m inequalities
@¥ (i, ) = 0,5 € Iy, where @7 (u;, A) is defined in (2). Therefore we can rewrite the
feasible region V in the form

V:hn@eR%¢@@@hW¢wzQ @pea¢ymmnmJe%Je@szL
(11)

The number of inequalities that describes feasible region (11) is N = 0.5n(n — 1) + nm.

Feasible region V given by (11) is defined by a system of inequalities with differentiable
functions. Our model (10)—(11) is a non-convex and continuous nonlinear programming
problem. This is an exact formulation in the sense that it gives all optimal solutions to the
ellipse packing problem. Itis possible, at least in theory, using a global solver for this nonlinear
programming problem to get an optimal packing.

However in practice, the model has a large number of variables and inequalities. The
model (10)—(11) involves O(n?) nonlinear inequalities and O(n?) variables due to the auxiliary
variables in quasi phi-functions. As a result, even finding a locally optimal solution becomes
a complicated procedure for the available state of the art NLP-solvers employed directly to
model (10)—(11).

Therefore developing an efficient algorithm combining a fast and simple (feasible) starting
point selection technique and local optimization procedure (linear to the number of ellipses)
is of very important.

Then we state a mathematical model of EPP_2 in the form:

12

(u,d)?&lgVXCR‘T '8 ( )
W= {(u,¢) € R EEi (u,uj, B, ¢ij) 20, (i,))€ B, ®fui,f)=0,5€ly,iclyp> o},

(13)

where, u = (v, 0, B), v = (V1, V2, ..., V), 0 = (01,02, ..., 0,).00 = (¢ij, (i, ) € E), & =

(G, )i < je L} ui =i, 0), v = (x;,),@EEi(ui,uj, B, $ij) is defined in (9),
@ (u;, B)isdefinedin (4),0 = 3n+0.5-n(n—1)+1 is the number of the problem variables.
The number of inequalities that describe the feasible region (13) is N = 0.5n(n — 1) + nm.

It is not hard to verify the following relation between the models (10)—(11) and (12)—(13).
The problem (10)—(11) is equivalent to the problem (12)—(13) for 8 >0 in the sense that there
exists the following one-to-one correspondence between the appropriate feasible solutions
of these problems:

(% 0, A= %(ﬁ) < (v,60,8,9), Y, 9)eV,VYu,p)e W, >0. (14)
Further we refer to (14) as a scaling transformation.

To find “good” locally optimal solutions of the problem (10)—(11) within a reasonable
computational time we propose in Sect. 5 an efficient solution algorithm for the problem
(12)—(13). We focus on the problem (12)—(13) and provide a fast and simple procedure to
generate a good initial feasible solution. In most cases the approach reduces our problem
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with O(n?) variables and nonlinear constraints to a sequence of nonlinear programming sub-
problems of considerably smaller dimension, with O(n) variables and nonlinear constraints.

5 Solution algorithm

Our solution strategy consists of four stages:

Stage 1. Generate a set of vectors of feasible placement parameters of ellipses in problem
(12)—(13) provided that 8 = 0 (see Sect. 5.1).

Stage 2. Search for a set of local maxima of problem (12)—(13) starting from each starting
point obtained at Stage 1 (see Sect. 5.2).

Stage 3. Derive local minima of problem (10)—(11) based on local maxima found at Stage
2, using scaling transformation (14).

Stage 4. Choose the best local minimum from those found at Stage 3.

We note that this is a heuristic local solution strategy which produces good results as shown
below.

5.1 Starting feasible parameters algorithm (SFP)

Let us consider problem (12)—(13). Let £2 given by its vertices p; = (x7, y/),s € I,,. We
assume 8 = 0.

Step 1. Generate within £2 a set of n randomly chosen centers vi1 = (xil, yl.l), of ellipses
E;,i € I, using the formula v? =30 Py ais = 1,0 <o < 1,5 € Iy.
To find «;s,s € I,, we randomly generate m positive numbers n;s, s € I,,, and derive

njg
Ujs = o —, S S Im-
s=1Mis

Step 2. Generate random rotation parameters 91.1 € [0, ) of ellipses E;,i € I, (Fig. 5a).
Step 3. Form a vector ul = !, 6!, ,31 =0).

Step 4. Form a vector ¢! of auxiliary variables based on the elementary geometrical
calculations. Each element of the vector ¢! is defined as an angle qbi]j between axis OX

and a straight line paralleled to ij-. and passing through points vl.1 and v } (Fig. 5b).

Step 5. Return a starting point (u!, ¢!) for a subsequent search for a local maximum of
the problem (12)—(13).

Note that the starting feasible point obtained by the algorithm for the problem (12)—(13)
can not be transformed to a feasible point of the problem (10)—(11) using relation (14) for
B = 0. This is the reason for considering the problem EPP_2 instead of the problem EPP_1.

5.2 Local optimization algorithm (LOFRT_P)

We propose a decomposition algorithm (LOFRT_P) to search for local maxima of the problem
(12)-(13) with O(n?) variables and O(n%) nonlinear constraints.

The iterative algorithm reduces the large scale problem to a sequence of nonlinear program-
ming subproblems of smaller dimension (O(n) variables and O(n) nonlinear constraints). It is
based on a modification of the LOFRT procedure introduced in [1] for the packing problem
of ellipses of given sizes in a rectangular domain of minimum area.

The key idea of the LOFRT_P algorithm is as follows. At each iteration a fixed individual
rectangular e-container centered at the feasible staring point is constructed for each ellipse.
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Fig. 5 Illustrations to the SFP Ay
algorithm: a Steps 1-3; b Step 4

Then each ellipse can be moved within its individual e-container. The motion of each ellipse
is described by a system of four e-inequalities. Then a subregion of the feasible region W
is formed in the following way: we add 4n e-inequalities to constraints (13) and then delete
O(n?) phi-inequalities corresponding to pairs of ellipses with non-overlapping individual
containers. Some redundant containment constraints are also deleted.

While deleting quasi phi-functions for some pairs of ellipses we also delete O(n?) cor-
responding auxiliary variables. This results in reducing the number of variables in our
subproblem. Then we search for a local maximum for the subproblem with O(n) variables
and nonlinear constraints. This local maximum is then used as a starting point for the next
iteration. On the last iteration of our algorithm we find a local maximum of the problem
(12)—(13).

The LOFRT_P algorithm comparing to the LOFRT procedure deals with an arbitrary con-
vex polygon (vs. a rectangular container in LOFRT); does not use circular approximation of
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Fig. 6 Illustration to construction
of individual containers of
ellipses for Steps 2-6

ellipses to generate e-inequalities (vs. circumscribed circles around ellipses of given sizes);
takes into account variable scaling parameters of ellipses while generating individual con-
tainers (vs. given sizes of ellipses); orientation of the individual container is associated with
the ellipse orientation (vs. the fixed orientation of the individual container); maximizes the
scaling parameter for ellipses (vs. minimizing area of the rectangular container).

Let us consider the algorithm in details. Let u' be one of the points found by the SFP
algorithm. Now we describe the LOFRT_P algorithm which is an iterative decomposition
procedure.

We denote the value of the decomposition step of the algorithm by ¢ and assume that
e = % . :‘:l b;, where y = %, S 18 the area of container (A = 1),S; = -a; - b;
is the area of ellipse E;.

Step1.Letk = 1.

Step 2. Construct a fixed “individual” rectangular container Qlk S E i(uff, BX) of sizes
2(B* - a; + &) and 2(B* - b; + &) with the center point v¥ for each i € I, (Fig. 6).
Step 3. Create a system of auxiliary “artificial” inequality constraints on the vector (#;, 8)

of each ellipse E; in the form: ®@E% " (u;, B) > 0, i € I,, where ®E 2 (u;, B) is defined
based on (3)

OBy, B) = min] £ wi, B), flyus. B). £, B, fhywi. B}

The inequality L2 (ui, B) = 0 is equivalent to the system of four inequalities

TR i, B) =0, fhi, By =0, fE@i, B) = 0, fR i, g) =0,

where
PG, ) = (11— ) - o5+ (s = %) - sin6F + B -y + ¢ — 5[ scos? (01 +61) + 7.

f/;m,-, B) = —(xi —xf) -cos@ik — (y,- - y,") -sin@ik +85 . ai+e— ﬂ\/Aicosz(Oi +9[k) +b7,
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flwipy = @i — xH - singf — (i = ¥ - cosOf + BF b+ & —

ﬂ\/Ai sin?(8; +05) + b2, fhui, B) = —(x; — xF) - sin0F + (yi — y5) - cos0F + g - b; +

& — ﬁ\/Ai sin2(9,~ + Ol.k) + biz.We note that v¥, %, <pk, ,Bk, a;, b;, A\; are constant.
Step 4. Construct an index set

k ok
k= [(i,j) . @22 <u{5,u’;,ﬂk) <0, i>je¢ In],
k ok

where & %) (uf.‘, u’; B%) is a phi-function for two polygons .Qlk(uf‘ B%) and .Qj‘(u’; B85
[13].

It is clear that if two individual containers .Qlk and £2 j‘ do not have common interior points

k ok

(i.e. @Y (uf.‘, ulj, ,B") > (), then we do not need to check the non-overlapping constraint

for the corresponding pair of ellipses E i(ui.‘, ,Bk) and E j(ulj‘., /3") (e.g., the ellipses E; and
E3 in Fig. 6. In the case &% = {(1, 2), (2, 3)}).
Step 5. Form an subset
;= {(u, bue) € R7™: fR(ui, B) = 0, fly(ui, B) = 0, fiy(ui. B) = 0, fly(ui. p) = 0, i€ In],
(15)

where o, = card(E\Ek).
Step 6. Construct an index set

g = [(i,s) LD (uk ) <0, s el ie Inl,

Qkpr ok gky : ; ke k gk
where @i *s (u;, B*) is a phi-function for polygon £27 (u;, ) and a half plane P [13].
In other words, if individual container .Qlk and half plane P;" have common interior points

(i.e.@gr‘k Py (uf.‘, B%) < 0), then we need to take into account the containment constraint for
the corresponding pair of objects. For example, we need to monitor pairs £ and P;*, £ and
Py, E3 and P shown in Fig. 6. In the case E* = {1, 1), (1,2),3,H).

Step 7. Construct a vector of starting values for auxiliary variables ¢£k = (qb{(j, @i, j) e
ghy.

For each pair (i, j) € & k we search for the maximum value of auxiliary variable ¢;; (see
Fig. 3), using the following non-constrained nonlinear optimization problem:

¢!‘j —arg max @'EE (M{(, M];, B~ ¢ij)a
¢>l‘j€[0,2ﬂ]CR1 X

where uf.‘, u]; , B¥ are fixed parameters.
Step 8. Solve the k-th subproblem, starting from point uk, qbfj]k) = (vF, 0¥, ﬁk, d)f;k):

max B, (16)
k. gk, )W

W, = {(uk,qb,]fjk) € RO% : @'EiEj (i, ”j,ﬁ»¢ij) >0, G.j)e Ek}’ a7

_k*

OF (i, B) = 0,(,s) € B, @E% (i, B) >0, i€l

where (it, ¢uy) = (1. 0. . ) @' EEi (ui 1, . ¢j)is defined in (9), 7 (u;, B) is defined

by (4), @Efgik*(ui, B) is defined at Step 3, Zy is defined at Step 4, o is defined at Step 5,
&} is defined at Step 6.

@ Springer



Journal of Global Optimization (2019) 75:495-522 509

Fig. 7 Illustration to LOFRT_P algorithm

Step 9. If the point (uk*, </>,’;k) of local maximum of the k-th subproblem (16)—(17) belongs
to the frontier of the subset H,f described by (15) then we set uktl = y** take k= k+1 and
go to Step 2, otherwise (i.e. (u**, éy,) € int %) set u* = u** and go to Step 10.

Remark We do not need to redefine the deleted auxiliary variables at the last step of
our algorithm based on the following reasons. Let (uy, , ¢;, ) € R~ be the last point
of our iterative procedure. We can construct vector ¢** by means of redefining values
of the previously deleted auxiliary variables for (i, j) € &\E (see Step 7). The point
u*, ¢*) = Wk = 7 @®**) € RY is a point of local maximum of the problem (12)—(13).
The assertion comes from the property of quasi phi-functions: any arrangement of each pair

of non-overlapping ellipses E ; and E i for (i, j) € &\ E* guarantees that there always exists
a vector ¢F* of auxiliary variables ¢>l.*j such that @'EiEj (uf, uj‘., B*, ¢>l.*j) >0, 3, j) e &\&5k.
Therefore the values of auxiliary variables of the vector ¢** have no effect on the objective

. . _ k k
function value, i.e. F(u*,;k, :Zk) = F@u™*, ¢"*).

Figure 7 shows a diagram for local optimization of problem EPP_2: maximization of
assuming A = 1, starting from 8 = 0. We grow ellipses as much as possible in the fixed
container 2(A = 1).

Step 10. Get a local minimum solution of the problem (10)—(11) using the local maximum
of the k-th subproblem (16)—(17) and scaling transformation (14)

v* 1
=0y = (e = 1)
and stop our LOFRT_P procedure.

Figures 8 and 9 show diagrams for the Step 10 corresponding to f* > 1 and 0 < 8* < 1.
Using the correspondence (14) between the problem EPP_2 (maximizing the homothetic

coefficient § of ellipses E ;) and the problem EPP_1 (minimizing the homothetic coefficient

A of the convex polygon) we find A* = ﬂi*
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(a) (b)

Fig. 8 Ilustration to Step 10 for B* > 1:a B* > 1,A =1;b A* = ﬂL* <1

(a) (b)

Fig. 9 Illustration to Step 10 for 8* < l:a B* < 1,A=1;b A* = ﬁl—* > 1

Note that if B* > 1 (each ellipse size is larger than the original ellipse), then A* < 1
(Fig. 8), otherwise 0 < B* < 1 (each ellipse size is smaller than the original ellipse), then
A* > 1 (Fig. 9).

Our algorithm can in most cases actively control only O(n) pairs of ellipses from O(n?)
since for each ellipse only its “c-neighbors” have to be monitored. This depends on the sizes
of ellipses and the value of ¢ [1]. The ¢ parameter provides a balance between the number
of inequalities in each NLP sub-problem and the number of the subproblems (16)—(17) have
to be generated and solved to get a locally optimal solution of the problem (12)—(13). The
LOFTR_P procedure allows us to reduce considerably the computational time.

6 Computational results

Here we present a number of examples to demonstrate the efficiency of our methodology.
We have run all experiments on an AMD FX(tm)-6100, 3.30 GHz computer, programming
language C++, OS: Windows 7. For local optimisation we use the [IPOPT code https://projects.
coin-or.org/Ipopt), developed in [15], with default options.

First we present our new instances for the ellipse packing problem.

Example 1 A convex polygonal domain with m = 5 sides is given by its vertices {(xs, ys), s=
1,...,5} = {(— 7.266244, 1.593456), (— 5.941336, — 6.880334), (2.310916, — 10.663272),
(6.702019, — 10.663272), (20.670273, 2.387873)}. Collections of ellipses are taken from
[6]: (a) n= 20 (TC20), (b) n= 30 (TC30), c() n= 50 (TC50). Corresponding optimized
packings are presented in Fig. 10a, b, c.
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1

Fig. 11 Ellipse packings: a n= 50, b n= 140, in the optimized convex irregular polygon with m =9 in Example
2

Example 2 A convex polygonal domain with m = 9 sides is given by its vertices {(xs, ys), s=
1,....9} = {(— 7.266244, 1.593456), (— 5.941336, — 6.880334), (— 3.291530, — 8.733971),
(2.310916, — 10.663272), (6.702019, — 10.663272), (16.052038, — 4.080957), (20.670273,
2.387873), (7.118418, 9.915923), (— 1.853066, 7.948795)}. We consider collections of
ellipses: (c) n= 50 (TC50) is taken from [6], (d) n= 20 x 7 = 140 is produced from
[2]. Corresponding optimized packings are presented in Fig. 11a, b.

We used 100 runs for the LOFTR_P procedure in our multistart strategy for each instance
in Examples 1 and 2.
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m=3 m= m=5

Fig. 12 Packings for n = 8 ellipses with parameter c = 1.25 in a regular polygon of m = 3, 4, 5, 6 sides

For these examples the optimized value of the homothetic coefficient A* and the corre-
sponding CPU time are as follows: (a) A* = 0.536303, CPU = 654.96 5., (b) A* = 0.640662,
CPU = 1222.99 s., (c) A* = 0.810372, CPU = 3764.04 s. in Example 1; (a) A* = 0.6307,
CPU = 298.125 s., (b) A* = 0.419, CPU = 35840.98 s. in Example 2.

Further we apply our approach to the problem instances considered in [2]. The ellipse
packing problem instances in [2] were designed as follows: a¢; = % b, = %’ i €I, for

ellipses with eccentricity e = /1 — }2 and a regular polygonal domain with m sides for the
container.
Two groups of instances presented in [2] were running by our approach:

The first group of instances: for c= 1.00, 1.05, 1.15, 1.35, 1.50, 1.75, 2.00, n= 3, 4, 5,
6,8, 10and m=3,4,5,6, 8.

The second group of instances: for c= 1.00, 1.05, 1.15, 1.35, 1.50, 1.75, 2.00, n= 10,15,
20 and m = 40.

Comparative results for 210 instances of the first group are presented in Tables 1, 2, 3,4, 5,6
and 7, while Table 8 summarizes computational results for 21 instances of the second group.
For each problem instance we present the area of the optimized container (line Area) and
CPU time in sec. (line Time) corresponding to our algorithm (column our result). The area of
the optimized container obtained in [2] is also presented (column [2]). Since our computer,
computing platform and solver used for subproblems are different from those used in [2], we
do not compare here CPU times for both techniques. The column “impr. %” corresponds to
the area of the optimized container and gives the value (result of [2] minus our result)/(result
of [2]) in %. Thus positive values in this column indicate the better performance of our
approach, while zero or negative (highlighted in bold) show that results of [2] were not
improved. We used 10 runs for the LOFTR_P procedure in our multistart strategy for each
instance.

Figures 12 and 13 demonstrate our optimized packings for some problem instances of
the first group. In [2] one can find configurations obtained for the same instances by their
approach.

Figure 14 provides our optimized packings for some problem instances of the second
group: packing n= 20 ellipses with six different values of parameter ¢ = %ﬁ, ie€l,,ina
regular polygon of m = 40 sides. In [2] one can find configurations for the same instances
obtained by their approach.
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Table 8 Comparison results for m = 40

n 10 15 20

¢ Our 2] Impr % Our [2] Impr % Our [2] Impr %

result result result

1 Area 11.9841 12.7618 6.090 13.4129 139156 3.610 14.5358 14.8480 2.100
Time 5.55000 9.38000 43.5900

1.05 Area 11.0175 11.5416 4.540 12.4215 12.9380 3.990 13.4746 13.5649 0.670
Time 6.47000 15.6800 55.8200

1.15 Area 10.0881 10.1715 0.820 11.3100 11.4132 0.900 11.8785 12.2667 3.160
Time 5.40000 21.6400 57.1000

125 Area 825730 9.25550 10.78 9.09080 10.1671 10.59 9.79380 11.2711 13.11
Time 5.32000 20.8100 70.1500

1.5 Area 7.12860 7.24320 1.580 8.13970 8.38260 2.900 8.77000 9.11340 3.770
Time 5.47000 21.9200 64.4800

1.75 Area 6.14890 6.36260 3.360 6.79740 6.99610 2.840 7.48320 7.71640 3.020
Time 8.13000 17.9100 70.2900

2 Area 5.35890 5.50100 2.580 6.01160 6.46780 7.050 6.50510 6.57780 1.100
Time 6.05000 21.5100 65.6800
c=1 c=1.15
c=1.25 c=2

Fig. 13 Packings for n = 8 ellipses with parameter c= 1.0, 1.05, 1.15, 1.25, 1.50, 1.75, 2.0 in a regular polygon

of m = 8 sides

7 Conclusions

In this work we study a packing problem of a set of n arbitrary ellipses into an optimized
convex polygon. The packed ellipses are given by their semi-axes and can be continuously

@ Springer
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c=1.05 c=1.15 c=1.25

Fig. 14 Packings for n = 20 ellipses with parameter c= 1.05, 1.15, 1.25, 1.50, 1.75, 2.0, in a regular polygon
of m = 40 sides

translated and rotated. We propose new tools of mathematical modelling of placement con-
straints: a quasi phi-function to describe non-overlapping ellipses and a phi-function for
containment constraints. Our quasi phi-function is considerably simpler than the quasi phi-
function presented in [1, 12]: it has only one auxiliary variable and does not involve the “min”
operator. An exact mathematical formulation for the ellipse packing problem is stated as the
large scale nonlinear programming problem with O(n?) continuous variables and O(n?)
nonlinear inequalities. We propose a simple algorithm to construct feasible starting points
and the LOFTR_P procedure to search for good local optimal solutions. The LOFTR_P typ-
ically reduces our problem to a sequence of nonlinear programming subproblems of smaller
dimension with O(n) variables and O(n) constraints. Computational results are provided to
demonstrate the efficiency of our approach. The experiments were performed by solving new
problem instances, as well as for the instances presented in [2]. In this work an open source
local solver IPOPT [15] was used for implementing the algorithms. However, open source or
commercial global solvers (i.e., COUENNE [16] or LGO [17]) can be used directly for the
exact formulations (NLP-models) of the problems EPP_1 or EPP_2. Using global solvers
in combination with the proposed starting point algorithm is an interesting direction for the
future research.
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