
Journal of Global Optimization (2019) 75:393–416
https://doi.org/10.1007/s10898-019-00769-y

A scalable global optimization algorithm for stochastic
nonlinear programs

Yankai Cao1 · Victor M. Zavala1

Received: 13 August 2017 / Accepted: 4 April 2019 / Published online: 16 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We present a global optimization algorithm for two-stage stochastic nonlinear programs
(NLPs). The algorithm uses a tailored reduced-space spatial branch and bound (BB) strategy
to exploit the nearly decomposable structure of the problem. At each node in the BB scheme,
a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an
upper bound is constructed by fixing the first-stage variables to the current candidate solution.
A key advantage of this approach is that both lower and upper bounds can be computed by
solving individual scenario subproblems. Another key property of this approach is that it only
needs to perform branching on the first-stage variables to guarantee convergence (branching
on the second-stage variables is performed implicitly during the computation of lower and
upper bounds). Notably, convergence results for this scheme also hold for two-stage stochas-
tic MINLPs with mixed-integer first-stage variables and continuous recourse variables. We
present a serial implementation of the algorithm in Julia, that we call SNGO. The imple-
mentation is interfaced to the structured modeling language Plasmo.jl, which facilitates
benchmarking and model processing. Our implementation incorporates typical features that
help accelerate the BB search such as LP-based lower bounding techniques, local search-
based upper bounding techniques, and relaxation-based bounds tightening techniques. These
strategies require the solution of extensive forms of the stochastic program but can potentially
be solved using structured interior-point solvers (when the problem is an NLP). Numerical
experiments are performed for a controller tuning formulation, a parameter estimation formu-
lation for microbial growth models, and a stochastic test set from GLOBALlib. We compare
the computational results againstSCIP and demonstrate that the proposed approach achieves
significant speedups.

Keywords Stochastic NLP · Global optimization · Scalable

B Victor M. Zavala
victor.zavala@wisc.edu

1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison,
1415 Engineering Dr, Madison, WI 53706, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-019-00769-y&domain=pdf
http://orcid.org/0000-0002-5744-7378

394 Journal of Global Optimization (2019) 75:393–416

1 Introduction

We study algorithms for finding global solutions for nonconvex nonlinear programs (NLPs)
arising in two-stage stochastic programming. Our work is motivated by the observation that
the direct application of spatial branch and bound (BB) techniques (as those implemented in
several popular packages such as BARON [21], ANTIGONE [18], and SCIP [17]) do not
scale well with the number of scenarios because branching may be performed on all variables
(which include first and second-stage variables). Several approaches have been previously
proposed to exploit the structure of stochastic programs in order to achieve better scalability.A
class of these methods is based on direct application of generalized Benders decomposition
(GBD) [10], which solves a sequence of master problems to generate lower bounds and
primal problems to generate upper bounds. The master problems are obtained from outer
approximation and the primal problems are obtained by fixing the first-stage variables at
candidate values. Convergence of GBD is not guaranteed for nonconvex problems. The work
in [16] proposes a nonconvex GBD scheme in which a lower bound is generated by solving a
convexified problemwith GBD and an upper bound is generated by fixing first stage variables
and solving the resulting scenario subproblems to global optimality. Finite termination of
this approach can be guaranteed if the first stage variables are all bounded integers.

Another class of methods is based on Lagrangian relaxation (LR) [8,11,15]. Lagrangian
relaxation is used to generate lower bounds within a BB framework. The approaches reported
in [5] and [14] use this approach to solve stochastic MILPs and stochastic MINLPs, respec-
tively. Lagrangian relaxation has also been used to develop reduced-space search approaches
that only branch on complicating variables. The approaches reported in the literature, how-
ever, do not provide convergence guarantees for general two-stage stochastic problems.

Reduced-spaceBBapproacheswith convergenceguarantees havebeen reported for special
problem classes. The approach proposed in [6] provides a reduced-space BB scheme for
solving partially convex problems (i.e., problems that are convex when a subset of variables
are fixed). The authors provide a proof of convergence when branching only in the space of
variables that induce nonconvexity. The approaches proposed in [7] and [9] are also reduced-
space BB schemes that can be used to solve partially convex problems.

In this paper we introduce a tailored reduced-space BB scheme for general two-stage
stochastic NLPs. For each node in the BB scheme, a lower bound is constructed by relaxing
the so-called non-anticipativity constraints and an upper bound is constructed by fixing the
first-stage variables to a given candidate solution and solving the scenario subproblems. The
proposed lower bound is a special case of Lagrangian relaxation with the dual variables
fixed to zero. A key advantage of the proposed approach is that both lower bounding and
upper bounding problems can be decomposed into scenario subproblems that are solved
independently to global optimality. Another key property of this approach is that we only
need to perform spatial branching on the first-stage variables to guarantee convergence. The
algorithm also exploits the fact that the gap between the upper and lower bounding problems
is the so-called expected value of perfect information, which is usually small in applications
(relative to the overall magnitude of the objective). Notably, our convergence results also hold
for two-stage stochasticMINLPswithmixed-integer first stage variables and continuous two-
stage variables. We provide a software implementation of the algorithm that we call SNGO.
This is a Julia-based package that is interfaced to themodeling languagePlasmo.jl, which
facilitates model processing. Our implementation contains typical algorithmic features of
global optimization solvers such as convexification, outer approximation, feasibility-based

123

Journal of Global Optimization (2019) 75:393–416 395

bound tightening (FBBT), optimality-based bound tightening (OBBT), and local search.
SNGO also exploits lower bounds obtained from linear programming (LP) relaxations.

The paper is organized as follows: Sect. 2 introduces basic nomenclature and lower/upper
bounding problems. Section 3 introduces the BB algorithm and provides a convergence
proof. Section 4 provides implementation details for this algorithm. Section 5 illustrates
numerical performance in a stochastic programming formulation for controller tuning, a
parameter estimation formulation for microbial community models, and stochastic versions
of GLOBALLib instances. The paper closes in Sect. 6 with final remarks and directions of
future work.

2 Basic nomenclature and setting

We consider two-stage stochastic programs of the form:

z = min
x∈X0

∑

s∈S
Qs(x). (2.1)

Here, S := {1, . . . , S} is the scenario set, x ∈ X0 ⊂ R
nx are the first-stage variables,

X0 := {x |xl ≤ x ≤ xu} is a closed set, and Qs(x) is the optimal value of the second-stage
problem:

Qs(x) =min
ys

fs(x, ys)

s.t. gs, j (x, ys) ≤ 0 , j = 1, . . . ,ms .
Ps(x)

Here, ys ∈ R
nys are the second-stage variables. The scenario objectives fs : R

nx ×R
nys →R

and constraints gs, j : R
nx × R

nys →R are assumed to be continuous and potentially
nonconvex. Equality constraints such as cs(x, ys) = 0 can be reformulated by using
sets of inequalities. We define the feasible set for the recourse variables as Ys(x) :=
{ys |gs, j (x, ys) ≤ 0, j = 1, . . . ,ms}. The recourse function Qs(·) implicitly defines a feasi-
ble set of x , which is in turn defined as Ks := {x | ∃ys ∈ Ys(x)}. If �ys ∈ Ys(x) for some x ,
we set Qs(x) = ∞. We define the relative interior of a set X as relint(X). We use δ(X) to
denote the diameter of set X . In our context, the diameter of the box set {x | xl ≤ x ≤ xu} is
δ(X) = ||xu − xl ||∞.

The feasible set defined by all second-stage subproblems is denoted as K = ⋂
s∈S

Ks .

Consequently, the feasible region of the first-stage variables x is X0 ∩ K . We make the
following blanket assumptions:

Assumption 1 The set K is compact and X0 ∩ K is nonempty.

Assumption 2 The feasible sets Ys(x) are compact for all x ∈ X0 and s ∈ S.
Assumption 2 implies that Qs(x) is lower semicontinuous in x for all s ∈ S (see Theorem
35 in [3]). This also implies that the function Q(x) := ∑

s∈S
Qs(x) is lower semicontinuous in

x . Assumption 1 ensures that problem (2.1) attains its minimum according to the generalized
Weierstrass theorem.

At each node in a BB algorithm we solve the following problem with respect to the
partition set X ⊆ X0:

z(X) = min
x∈X

∑

s∈S
Qs(x) (2.2)

123

396 Journal of Global Optimization (2019) 75:393–416

We refer to this problem as the primal node problem. This problem can be written in the
extensive form:

min
x∈X ,ys

∑

s∈S
fs(x, ys) (2.3a)

s.t. gs, j (x, ys) ≤ 0, j = 1, . . . ,ms, s ∈ S. (2.3b)

We can also lift the node problem (2.2) by replicating the first stage variables across scenarios
and then enforce non-anticipativity constraints. This gives the lifted problem:

min
xs∈X

∑

s∈S
Qs(xs) (2.4a)

s.t. xs = xs+1, s = 1, . . . , S − 1. (2.4b)

It is easy to verify that problems (2.2), (2.3), (2.4) are equivalent.

2.1 Lower bounding problem

If the nonanticipativity constraints of (2.4) are removed, we obtain a lower bounding problem
of the form:

β(X) := min
xs∈X

∑

s∈S
Qs(xs). (2.5)

Clearly, the lower bounding problem can be decomposed into S subproblems of the form:

βs(X) := min
xs∈X

Qs(xs), (2.6)

or, equivalently:

βs(X) = min
xs∈X ,ys

fs(xs, ys)

s.t. gs, j (xs, ys) ≤ 0 , j = 1, . . . ,ms, (2.7)

with β(X) = ∑
s∈S

βs(X). It is also obvious that β(X) ≤ z(X) because the feasible region

of (2.4) is a subset of the feasible region of (2.5). Moreover, we have that β(X1) ≥ β(X2)

for X1 ⊂ X2. The lower bounding problem is also called wait-and-see problem and the
gap between the primal problem (2.2) and the lower bounding problem (2.5) is called the
expected value of perfect information (EVPI).We highlight that βs(X) is obtained by solving
the scenario subproblems to global optimality. We also note that, if βs(X) = ∞ for some
s ∈ S, then z(X) = ∞. In other words, if a subproblem is infeasible, the primal node problem
is infeasible.

The lower bounding problem can be seen as the first iteration of Lagrangian relaxation
(obtained by dualizing the non-anticipativity constraints and initializing the dual variables
to zero). In principle, it is possible to perform multiple Lagrangian relaxation iterations
to update the dual variables (i.e., by using subgradient schemes) to obtain a tighter lower
bound. Unfortunately, subgradient schemes are difficult to tune and performance is ad-hoc.
The approach that we present in this work does not require computation and updates of dual
variables.

123

Journal of Global Optimization (2019) 75:393–416 397

2.2 Upper bounding problem

An upper bound for the stochastic program can be obtained by fixing the first stage variable
at a candidate solution x̂ ∈ X . The upper bound is denoted as α(X) := ∑

s∈S
Qs(x̂) and we

note that the upper bound can be computed by solving S subproblems with optimal values
αs(X) = Qs(x̂) and by setting α(X) = ∑

s∈S
αs(X). In our proposed scheme, the subproblems

are also solved to global optimality. It is easy to see that z(X) ≤ α(X) holds for any x̂ ∈ X .
We highlight that, a classic BB scheme obtains an upper bound by solving the extensive form
(2.3) to local optimality. We note this approach requires solving a coupled problem, while
our approach requires solutions of decoupled scenario subproblems to global optimality.
In Sect. 4 we discuss implementations that allow for the possibility of using a local solver
to solve the extensive form and possibly obtain a better upper bound. In the convergence
analysis that follows we assume that the lower and upper bounding problems are solved
exactly to global optimality. In Sect. 4 we discuss implementation strategies to set proper
solution tolerances.

3 Convergence of branch and bound socheme

This section establishes convergence for a BB scheme constructed using the proposed lower
and upper bounding problems. We outline the BB scheme as follows:

1. Initialization
Initialize the iteration index k ← 0.
Set X ← {X0}, and tolerance ε > 0.
Compute initial upper and lower bounds αk = α(X0), βk = β(X0).

2. Node Selection
If X = ∅, STOP.
Select and delete from X a set X ∈ X satisfying β(X) = βk .
Update k ← k + 1.

3. Branching
Partition X into subsets X1 and X2 with relint(X1) ∩ relint(X2) = ∅.
Add each subset to X to create separate child nodes.

4. Bounding
For each child node Xi , compute β(Xi) and α(Xi).
If βs(Xi) = ∞ for some s ∈ S, remove Xi from X .
Let βk ← min{β(X

′
) : X ′ ∈ X } and αk ← min(αk−1, α(X1), α(X2)).

Remove all X
′
from X with β(X

′
) ≥ αk .

If βk − αk ≤ ε, STOP.
Return to Step 2.

Algorithm 1: Branch and Bound Scheme

A key feature of the proposed BB scheme is that it only branches on the first-stage
variables (because the recourse variables are handled implicitly in the evaluation of the
recourse functions).

The BB scheme can be viewed as a rooted tree, where X0 is the root node at level 0 and
Xkq denotes a node at level q explored at iteration kq . An arc connects a node Xkq at level q

123

398 Journal of Global Optimization (2019) 75:393–416

with one of its children Xkq+1 at level q + 1. In other words, Xkq+1 is a direction partition of
Xkq satisfying Xkq+1 ⊂ Xkq . A path in the tree from the root node corresponds to a sequence
{Xkq } of successively refined partition elements.

It is easy to see that the sequence {αk} is monotonically nonincreasing and that {βk}
is monotonically nondecreasing. The BB scheme is said to be convergent if lim

k→∞ αk =
lim
k→∞ βk = z. If the scheme is convergent then it produces a global ε-optimal solution in a

finite number of steps.We now proceed to prove convergence; to do so, we adapt basic results
from Chapter VI of the seminal work in [12] (Definitions IV.6, IV.7, IV.8, IV.10, Theorem
IV.3, and Corollary IV.1) to our context.

Lemma 1 If a BB procedure is infinite, then it generates at least one infinitely decreasing
sequence {Xkq } of successively refined partition elements, Xkq+1 ⊂ Xkq [12].

Definition 1 A subdivision is called exhaustive if lim
q→∞ δ(Xkq) = 0, for all decreasing sub-

sequences Xkq generated by the subdivision [12].

A subdivision can be guaranteed to be exhaustive on X0 if a first-stage variable xi that
corresponds to the diameter of X is selected for partitioning.

In a BB scheme, a “delete by infeasibility” rule is used to delete infeasible partition sets X
(i.e., sets X with X ∩ K = ∅). For example, if the lower bounding problem is infeasible, the
node problem is infeasible and the partition set can be deleted from further consideration.

Definition 2 The “delete by infeasibility” rule throughout a BB procedure is called certain
in the limit if, for every infinite decreasing sequence Xkq of successively refined partition
elements with limit X̄ , we have X̄ ∩ K �= ∅ [12].

Lemma 2 Given an exhaustive subdivision, the “delete by infeasibility” rule is certain in the
limit.

Proof Under an exhaustive subdivision, Xkq eventually collapses to a single point x̄ and
we thus have that X̄ = {x̄}. Assume by contradiction that there exists a sequence Xkq
converging to an infeasible point x̄ . Since x̄ is infeasible and x̄ ∈ Xkq ⊆ X0, we have that
x̄ /∈ K . Consequently, there is at least one set Ki satisfying x̄ /∈ Ki . By the compactness
of Ki , the distance between x̄ and Ki is nonzero and there is a ball around x̄ , denoted as
Br (x̄) = {x |‖x − x̄‖ ≤ r}, satisfying Br (x̄) ∩ Ki = ∅. Since lim

q→∞ δ(Xkq) = 0, there is a

q0 such that Xkq ⊂ Br (x̄),∀q ≥ q0. At this iteration, Xkq0
∩ Ki = ∅, which implies that

βs(Xkq0
) = ∞. Consequently, the infeasible set will be detected and deleted. Hence, it is

impossible that Xkq converges to an infeasible point without being detected by the “delete
by infeasibility” rule. ��
Definition 3 A lower bounding operation is called strongly consistent if, at every iteration,
any undeleted partition set can be further refined and if any infinite decreasing sequence Xkq

of successively refined partition elements contains a sub-sequence Xkq′ satisfying X̄∩K �= ∅,
lim

q ′→∞
β(Xkq′) = z(X̄ ∩ K), where X̄ = ⋂

q
Xkq [12].

Lemma 3 Given an exhaustive subdivision on x, Algorithm 1 is strongly consistent.

Proof From Lemma 2 we have that X̄ ∩ K �= ∅ holds. With an exhaustive subdivision,
Xkq shrinks to a single point x̄ and we thus have that X̄ = {x̄} and X̄ ∩ K = {x̄}. The

123

Journal of Global Optimization (2019) 75:393–416 399

result can thus be proven by showing that lim
q→∞ β(Xkq) = z(X̄ ∩ K) = ∑

s∈S
Qs(x̄). Take

x̃kq ,s ∈ argmin{Qs(xs) : xs ∈ Xkq }, since Xkq shrinks to x̄ , lim
q→∞ x̃kq ,s = x̄ . Since x̄ ∈ Xkq ,

it follows that Qs(x̃kq ,s) ≤ Qs(x̄). From the lower semicontinuity of Qs , it follows that
Qs(x̄) ≤ lim

q→∞ Qs(x̃kq ,s). Therefore, Qs(x̄) = lim
q→∞ Qs(x̃kq ,s) = lim

q→∞ βs(Xkq). Take the

sum over s, we obtain lim
q→∞ β(Xkq) = ∑

s∈S
Qs(x̄). ��

We now proceed to prove convergence of the lower bounds.

Definition 4 A selection operation is said to be bound improving if, after a finite number of
steps, at least one partition element where the actual lower bounding is attained is selected
for further partition. [12].

Algorithm 1 is bound improving since, at every step, a partition where the actual lower
bounding is attached is selected for further partition.

Lemma 4 For a BB scheme using a lower bounding operation that is strongly consistent and
using a selection operation that is bound improving, we have that lim

k→∞ βk = z [12].

Lemma 5 Given an exhaustive subdivision on x, Algorithm 1 satisfies lim
k→∞ βk = z.

Proof This result can be established by combining Lemmas 4 and 3. ��
To prove finite-epsilon convergence of the upper bounds, we need to make the following

assumption.

Assumption 3 The recourse function Q(·) is Lipschitz continuous in a nonempty neighbor-
hood of a solution x∗.

This assumption requires that the feasible set of the stochastic NLP has a nonempty interior
for the first-stage variables, which preclude the application of the following lemma when the
formulation has nontrivial equality constraints involving only first stage variables. Typical
regularity conditions of the scenario subproblems guaranteeing Lipschitz continuity of Q(·)
are discussed in [4]. In particular, Lipschitz continuity follows if the solutions of the sub-
problems satisfy the strong second order condition and the linear independence constraint
qualification (at fixed x∗).

Lemma 6 Given an exhaustive subdivision on x, Algorithm 1 delivers a sequence {αk} sat-
isfying lim

k→∞ αk = z.

Proof Because Q(·) is Lipschitz continuous around x∗, there is a ball denoted as Br (x∗) =
{x | ‖ x − x∗ ‖≤ r}, satisfying Q(x) − Q(x∗) ≤ K‖x − x∗‖ for all x ∈ Br (x∗) and where
K is a Lipschitz constant. Therefore, for ε > 0 and every point x ∈ Br ′(x∗), we have that
Q(x) − Q(x∗) ≤ ε holds with r ′ = min(r , ε/K).

Because the subdivision is exhaustivewe have that, either after a finite number of iterates k̄,
the partition considered satisfies Xk̄ ⊆ Br ′(x∗), or at iteration k̂, the partition Xk̂ containing
x∗ is pruned. In the first case, because any point x ∈ Xk̄ satisfies Q(x) − Q(x∗) ≤ ε,
we have that αk̄ ≤ α(Xk̄) ≤ Q(x∗) + ε. In the second case, the node is pruned because
αk̂ ≤ β(Xk̂) + ε. Since x∗ ∈ Xk̂ , we have β(Xk̂) ≤ Q(x∗) and thus αk̂ ≤ Q(x∗) + ε .
Because the value of ε is arbitrary, we have lim

k→∞ αk = z. ��

123

400 Journal of Global Optimization (2019) 75:393–416

Combining Lemmas 5 and 6, we obtain our main result:

Theorem 1 Given an exhaustive subdivision on x, Algorithm 1 is convergent in the sense
that:

lim
k→∞ αk = lim

k→∞ βk = z. (3.1)

Remark We note that the assumptions are also expected to hold for two-stage stochastic
MINLPs with mixed-integer first-stage variables x but purely continuous recourse variables.
In particular, Lipschitz continuity of the recourse function holds under purely continuous
recourse variables and typical regularity assumptions. Consequently, the convergence results
hold in this case as well.

4 Implementation details

The software implementation of the proposed algorithm is calledSNGO (StructuredNonlinear
Global Optimizer). SNGO is implemented in Julia and interfaced with the following tools:
Plasmo for modeling stochastic programs, IPOPT for solving an extensive form of the
problem to local optimality, SCIP to solve subproblems to global optimality, and Gurobi
for solving linear programs (LPs). We leverage the syntax and interfaces of the algebraic
modeling language JuMP in our implementation.

To compute lower bounds, SNGO first creates an LP relaxation (obtained from convexifi-
cation and outer approximation using the auxiliary variable technique of [20]) of the form:

zLP (X) = min
x∈X ,ys ,ws

∑

s∈S
f̄s(x, ys, ws) (4.1a)

s.t. ḡs, j (x, ys, ws) ≤ 0, j = 1, . . . , m̄s, s ∈ S, (4.1b)

where f̄s(·) and ḡs, j (·) are linear underestimators for fs(·) and gs, j (·), respectively; and ws

are auxiliary variables. Here, m̄s ≥ ms holds, since auxiliary constraints might be introduced.
These LP relaxations are constructed automatically. After solving the LP, the outer approx-
imation is refined at the solution of the LP problem (resulting in a tighter LP relaxation).
This process is repeated until the improvement of the lower bounds is sufficiently small. The
LP is also a stochastic program because the underestimators are generated for each scenario
subproblem. Note that this is a coupled but structured problem in which the number of vari-
ables and constraints increases linearly with the number of scenarios. This problem can, in
principle, be solved using a structure-exploiting interior-point solver such as PIPS. In our
implementation, we solve this problem directly with Gurobi. Since zLP (X) ≤ z(X) holds
by construction, the solution of the LP relaxation can be used as an alternative lower bound.
SNGO also adds αBB cuts [2] and cuts from the reformulation-linearization technique (RLT)
[19] automatically to the relaxed LP. The cost of generating and solving the relaxed LP is
modest compared to the solution of the nonlinear scenario subproblems in the branch and
bound scheme.

After solving the LP relaxation, SNGO solves the lower bounding problem, which is
decomposed into S subproblems of the form (2.6). The lower bound of the node is set to
be the maximum of the lower bounds from the LP relaxation and of the lower bounding
problem. We consider different strategies to strengthen the tightness of the lower bounds.
First, it is easy to see that the scenario objective is always greater than the optimal value of a

123

Journal of Global Optimization (2019) 75:393–416 401

subproblem. Consequently, the cut fs(x, ys) ≥ βs(X) can be added to the node with partition
X . Moreover, for all the descendants of this node X

′ ⊂ X , we have that βs(X
′
) ≥ βs(X)

holds; consequently, this cut is still valid. SNGO creates an auxiliary variable denoting the
scenario objective and the lower bound of this variable is updated at each node. Second, we
note that if we pick x̃s ∈ argmin{Qs(xs) : xs ∈ X} and assume X is partitioned into two
subsets X1 and X2 with X1 ∩ X2 = ∅, then either x̃s ∈ X1 or x̃s ∈ X2 is valid, or both
are valid. If x̃s ∈ X1, then this implies that x̃s ∈ argmin{Qs(xs) : xs ∈ X1}. Consequently,
the solution of the subproblem in a parent node can be reused in the children nodes and
the associated subproblems do not need to be re-solved. The solution of lower bounding
subproblems is thus stored and passed to the children nodes.

To compute upper bounds, SNGO first solves the extensive form (2.3) with a local NLP
solver. At the root node, the local solver is run with a multi-start technique. If the local
solver returns a feasible solution, the first stage solution from the local solver can be set
to x̂ for the upper bounding problem. We also note that, when solving the extensive form,
removing redundant duplicates of first stage constraints can aid the local solver. If the local
solver fails, then SNGO takes the expected value of first stage solutions from the lower
bounding subproblems to obtain x̂ , as propopsed in [14]. Having x̂ , the upper bounding
problem is solved by solving S separate subproblems Ps(x̂) to global optimality. Through
experiments we have found that, in many cases, upper bounds reach optimality at an early
stage. Consequently, upper bounding problems are solved at the first Lt levels (default of
three) and then every Le levels (default of two) .

SNGO also implements bound tightening techniques including feasibility-based bound
tightening (FBBT) and optimality-based bound tightening (OBBT). OBBT is performed by
cycling through each component xi of first stage variables and solving 2nx LPs of the form:

max / min
x∈X ,ys ,ws

xi (4.2a)

s.t. ḡs, j (x, ys, ws) ≤ 0, j = 1, . . . , m̄s, s ∈ S. (4.2b)

Each LP can be decomposed into S subproblems, where subproblem s is of the form:

max / min
x∈X ,ys ,ws

xi (4.3a)

s.t. ḡs, j (x, ys, ws) ≤ 0, j = 1, . . . , m̄s, . (4.3b)

Each pair of subproblems minimizing or maximizing xi gives a pair of lower and upper
bounds of xi . Pairs of bounds from different scenarios are summarized by computing the
tightest lower and upper bounds. In many other global optimization solvers, OBBT is not
performed in every BB node because the computational expense of this procedure is high.
For SNGO, however, the solution of the nonlinear subproblems is the main computational
bottleneck and the number of first stage variables is usually small. Consequently, OBBT is
performed at every BB node.

SNGO uses strong branching [1] to select branching variables. For each component of first
stage variables xi , we compute the branching point xbi , divide the current partition set X ,
into two sets X1 = {x |x ∈ X , xi ≤ xbi } and X2 = {x |x ∈ X , xi ≥ xbi }, and compute the
lower bounds of the two subsets from LP relaxation zLP (X1) and zLP (X2). We compare the
improvement of zLP (X1) and zLP (X2) over the lower bound of the current node β(X), and
select the first stage variable xi that achieves the largest improvement.When the improvement
in terms of the lower bounds from the LP relaxation are lower than a threshold, the first stage
variable with the longest width is selected. The branching point is decided according to the

123

402 Journal of Global Optimization (2019) 75:393–416

expected value of solutions from the lower bounding problem, that is
∑
s∈S

x̃s/|S|. We also

enforce that the branching point keeps a minimum distance away from the variables bounds
to ensure that the overall subdivision is exhaustive, which is a standard practice in global
optimization software such as ANTIGONE [18] and BARON [21]. In our implementation,
we project the expected value of solutions from the lower bounding problem to be within
[xli + θ(xui − xli), x

u
i − θ(xui − xli)], where the default setting for θ is 0.1. To avoid excessive

partitioning on one variable, a first stage variable with a range below a certain threshold (i.e.,
xui − xli < γ with γ = 10−4) is not considered for further branching until the ranges of all
first stage variables are below this threshold.

The SNGO implementation follows six major computational steps: (1) solution of LP
relaxation, (2) solution of extensive form to local optimality, (3) solution of at most S lower
bounding subproblems to global optimality, (4) solution of at most S upper bounding sub-
problems to global optimality, (5) solution of 2nx · S small LPs for OBBT, and (6) solution
of 2nx LPs for branching variable selection. Experiments in Sect. 5 show that, for most prob-
lems, over half of the solution time is spent in steps (3) and (4). For some cases (ex2_1_8
and ex8_4_1 in Sect. 5.3), over 90% of the solution time is spent on these two steps. Ideally,
the time spent on these steps grows linearly with the number of scenarios, however, the solu-
tion time for a subproblem is not consistent and the number of subproblems is not always
equal to the number of scenarios at every node. For example, the information from step (1)
and (2) might be enough to decide that this node can be pruned and thus no subproblem
are solved. With the number of variables to branch on fixed (i.e., the number of first stage
variables), the number of nodes needed is not expected to explode with the increase in the
number of scenarios. The problems to be solved in steps (1, 2, 6) have an extensive form
and the size of the problems grows linearly with the number of scenarios, while the prob-
lems to be solved at steps (3, 4, 5) can be decomposed into subproblems and the number of
subproblems grows linearly with the number of scenarios. We also note that steps (3, 4, 5,
6) are directly parallelizable and step (1) can also be parallelized by using solvers such as
PIPS and PIPS-NLP. In this paper, however, we use a serial implementation because we
aim to compare algorithmic performance with off-the-shelf solvers on an equal basis. We
also highlight that achieving an efficient parallel implementation is challenging because of
memory management and load imbalancing issues.

When deriving convergence results, we assumed that the lower/upper bounding problems
are solved exactly. However, in a practical implementation, we need to set up a tolerance
for the global solver to solve lower/upper bounding problems. For each subproblem, we set
the termination tolerance to be ε

2S . For the upper bounding subproblems, the primal bound
returned from global solver is used to compute the upper bounds, while for lower bounding
subproblems, the dual bound returned fromglobal solver is used to compute the lower bounds.

We use Plasmo.jl1 to express the stochastic NLPs under study. Plasmo.jl is a
Julia-based algebraic modeling framework that facilitates the construction and analysis
of large-scale structured optimization models. To do this, it leverages a hierarchical graph
abstraction wherein nodes and edges can be associated with individual optimization mod-
els that are linked together [13]. Given a graph structure with models and connections,
Plasmo.jl can produce either a pure (flattened) optimization model to be solved using
off-the-shelf optimization solvers such as IPOPT and SCIP, or it can communicate graph
structures to structure-exploiting solvers such as SNGO.

The code snippet shown in Fig. 1 illustrates how to implement stochastic problems in
Plasmo.jl. As can be seen, the individual scenario models are created and appended to

1 https://github.com/zavalab/Plasmo.jl.

123

https://github.com/zavalab/Plasmo.jl

Journal of Global Optimization (2019) 75:393–416 403

Fig. 1 Snippet of a stochastic NLP implementation in Plasmo.jl

the parent node on-the-fly to create a two-level graph structure. The snippet also shows how
to use Plasmo.jl to create a flattened NLP to be solved by off-the-shelf solvers like SCIP
[17]. This allows the user to compare computational performance.

5 Computational experiments

We evaluate the performance of SNGO by using stochastic NLPs arising from applications
such as optimal controller tuning and parameter estimation formulations for microbial com-
munity models, and a test set containing stochastic variants of the GLOBALlib set. The Julia
scripts of the test cases are available at https://github.com/zavalab/JuliaBox/tree/master/
SNGO/examples. We compare the computational results against those of the state-of-the-
art global solver SCIP 4.0.0, which is linked to SoPlex 3.0.0 and IPOPT 3.12.7. Each
solver terminates under one of the following conditions: (1) relative optimality gap satisfies

αk−βk
min{|βk |,|αk |} ≤ 1%, (2) absolute optimality gap satisfies αk − βk ≤ 0.01, or (3) the search

reaches a 12-h time limit. We use a computing server with Intel(R) Xeon(R) CPU E5-2698
v3 processors running at 2.30 GHz to conduct the experiments.

5.1 Optimal controller tuning

We consider the identification of optimal PID controller parameters capable of withstanding
diverse scenarios on set-point changes x̄s , model structural uncertainty (τx,s and τu,s), and
disturbances ds . The optimal parameters aim to minimize the expected error between the
state and the desired set-point. The formulation is given in (5.1). The first stage variables are
the controller parameters (gain Kp , integral gain Ki , and derivative gain Kd) of the controller
and the second-stage variables are the state time trajectories xs(t) for each scenario s ∈ S.We
generate the scenarios using Monte Carlo simulations and assume that x̄ , τx τu , and d are

123

https://github.com/zavalab/JuliaBox/tree/master/SNGO/examples
https://github.com/zavalab/JuliaBox/tree/master/SNGO/examples

404 Journal of Global Optimization (2019) 75:393–416

independent and uniform random variables. The state trajectories are discretized using an
implicit Euler scheme and the integral term in (5.1d) is approximated as the accumulated
errors prior to a given time step. We note that the number of state variables grows linearly
with the number of scenarios. The largest problem solved includes 60 scenarios and has a
total of 4803 variables, 4800 constraints, and 4800 nonlinear nonconvex terms.

Table 1 compares the performance of SNGO, SCIP, IPOPT. We note that, when the
number of scenarios is 10, 30, 40, 50 and 60, SNGO can solve problems to a gap of 1% while
SCIP cannot solve the problem within 12 h. For the problem with 20 scenarios, SCIP can
solve the problem but this requires 7.5 h of solution time while SNGO solves the problem
in 30 min. The key advantage of SNGO over SCIP is that it only needs to branch on the
three first stage variables while branching over second-stage variables is done implicitly in
the solution of the scenario subproblems. SCIP, on the other hand, needs to branch on both
first and second-stage variables (2323 in the 20 scenario case) simultaneously. As a result,
the number of nodes visited by SCIP is 14,053 times more than those visited by SNGO. On
the other hand, since at each node SNGO needs to solve subproblems to global optimality,
the computational cost of SNGO for each BB node is 923 times larger than that of SCIP.
Despite of this, the computational benefits are significant.We emphasize that the subproblems
solved in SNGO are solved with SCIP. We have found SCIP to be robust in solving small to
medium-sized problems but it is clear that direct branching on all variables is not scalable.

Table 1 also shows time spent on different tasks of the solver including solving lower
bounding subproblems to global optimality (LB1), solving LP relaxations (LB2), solving
upper bounding subproblems to global optimality (UB1), solving extensive form NLPs to
local optimality (UB2), bound tightening, and branching variable selection (VS). For this
problem, solving lower bounding subproblems is relatively expensive while solving upper
bounding subproblems is relatively cheap. One reason for this is that the upper bounding
subproblems are not solved at every node. Another reason is that this problem has the property
that, when the first stage variables are fixed, each subproblem has only one feasible solution.
When the number of scenarios is between 10 and 50, the number of nodes is quite consistent
and the solution time per node grows almost linearly (as shown in the Fig. 2). However,
when the number of scenarios is 60, the node tree explored might be quite different, thus the
number of nodes explored and the solution time per node grows quite quickly. We note that
SNGO is not able to solve problems with more than 60 scenarios within the time limit.

min
xs (t),Kp,Ki,Kd

∑

s∈S

∫ T

0
es(t)

2dt (5.1a)

s.t.
dxs(t)

dt
= −τx,s xs(t)

2 + τu,sus(t) + τd,sds, s ∈ S (5.1b)

es(t) = xs(t) − x̄s, s ∈ S (5.1c)

us(t) = Kpes(t) + Ki

∫ t

0
es(τ) dτ + Kd

des(t)

dt
, s ∈ S (5.1d)

5.2 Estimation for microbial growthmodels

We now consider the problem of estimating parameters in microbial community models.
This problem is not a stochastic program but exhibits the same algebraic structure if the time
horizon is partitioned into blocks. We can view each time partition as a scenario and the
parameters to be estimated and the variable linking partitions as first stage (complicating)

123

Journal of Global Optimization (2019) 75:393–416 405

Ta
bl
e
1

C
om

pu
ta
tio

na
lp

er
fo
rm

an
ce

of
S
N
G
O
an
d
S
C
I
P
on

co
nt
ro
lle

r
tu
ni
ng

pr
ob

le
m

Pr
ob
le
m

S
N
G
O

S
C
I
P
4.
0

#
S

T
im

e
(s
)

L
B
1
(s
)

L
B
2
(s
)

U
B
1
(s
)

U
B
2
(s
)

B
T
(s
)

V
S
(s
)

G
ap

(%
)

#
N
od

es
T
im

e
(s
)

G
ap

(%
)

#
N
od

es

10
97

9
22

5
23

3
25

5
15

2
31

4
1

67
43

,2
00

1.
29

2,
24

8,
31

4

20
17

78
51

5
37

3
44

8
24

0
55

9
1

59
27

,0
45

1.
00

82
9,
18

1

30
39

78
15

18
88

0
85

18
44

0
96

9
1

61
43

,2
00

2.
85

87
9,
50

0

40
46

03
19

61
91

2
96

17
52

5
10

16
1

55
43

,2
00

2.
16

59
5,
29

4

50
53

00
18

98
11

14
12

8
19

65
9

13
83

1
57

43
,2
00

2.
51

35
2,
28

2

60
16

,6
10

10
,0
14

20
43

16
8

85
13

51
27

64
1

93
43

,2
00

2.
90

37
7,
47

4

123

406 Journal of Global Optimization (2019) 75:393–416

Fig. 2 Total solution time of SNGO and solution time per node to solve robust controller problemwith different
numbers of scenarios

Table 2 Computational
performance of SNGO and SCIP
on estimation problems for
microbial growth models

Problem SNGO SCIP

Name Time (s) Gap (%) # Nodes Time (s) Gap (%)

sp.1 7248 1 291 43,200 592

sp.2 1382 1 35 43,200 8297

sp.3 1411 1 23 43,200 14.2

sp.4 2181 1 71 1059 0.8

sp.5 591 1 15 43,200 4052.2

sp.6 1303 1 33 43,200 1031.6

sp.7 482 1 11 321 1.00

sp.8 520 1 15 43,200 59.37

sp.9 503 1 3 43,200 25.27

sp.10 1377 1 47 43,200 113.86

sp.11 730 1 23 299 0.29

sp.12 519 1 13 43,200 280.55

variables. The problem formulation has the form:

min
xk (t),α,β

∑

k∈K

∫ tk+1

tk
(xk(t) − x̄k)

2dt (5.2a)

s.t.
dxk(t)

dt
= αxk(t)

2 + βxk(t), t ∈ [tk, tk+1], k ∈ K (5.2b)

xk+1(tk+1) = xk(tk+1), k ∈ K, (5.2c)

where α, β are the parameters to be estimated, K is the set of time partitions, and xk(·)
is the state trajectory in partition k ∈ K. We partition the time domain into 47 blocks to
obtain a problem with 48 first stage variables, 1082 total variables, 1080 total constraints,
and 1411 nonlinear terms. We solved the problem using 12 different real experimental data
sets, corresponding to the growth of different species of bacteria.

Table 2 summarizes the performance of the solvers on these instances. As can be seen,
SCIP cannot solve most problems within 12 h, while SNGO can solve most of the problems
within 20 min. The shortest solution time is 8 min and the longest solution time is 2 h.

123

Journal of Global Optimization (2019) 75:393–416 407

Table 3 Computational performance of SNGO and SCIP on stochastic variants of GLOBALLib instance for
|S| = 100

Problem SNGO SCIP

Name Time (s) Gap (%) # Nodes Time (s) Gap (%)

abel 147 1 1 10 0.0

ex2_1_10 217 1 7 3067 0.8

ex2_1_7 160 1 1 43,200 222.5

ex2_1_8 4845 1 39 43,200 54.4

ex5_2_5 390 1 1 43,200 484.74

ex5_3_2 1260 1 59 43,200 50.88

ex8_4_1 35,157 1 175 43,200 ≥ 10,000

hydro 51 1 1 7 0.0

immun 14 1 1 43,200 ≥ 10,000

st_fp7a 171 1 1 43,200 97.5

st_fp7b 153 1 2 43,200 55.1

st_fp7c 951 1 2 43,200 80.1

st_fp7d 105 1 1 43,200 297.1

st_fp7e 133 1 1 43,200 247.8

st_fp8 136 1 1 43,200 7.5

st_m1 43,200 1.5 126 43,200 8.1

st_m2 43,200 5.3 22 43, 200 25.21

st_rv2 48 1 1 43,200 4.3

st_rv3 70 1 1 43,200 7.7

st_rv7 77 1 1 43,200 2.8

st_rv8 3018 1 2 43,200 8.9

chenery 6624 1 23 43,200 10.6

ex8_4_8 282 1 1 43,200 ≥ 10,000

ex8_4_8_bnd 1023 1 1 43,200 ≥ 10,000

harker 67 1 1 153 0.0

pollut 60 1 1 46 0.0

ramsey 50 1 1 2 0.0

srcpm 50 1 1 2 0.0

5.3 Stochastic GLOBALLib instances

We have also tested the algorithm using stochastic variants of the GLOBALLib instances. To
construct such variants, we selected 28 problems with 20–50 variables, and added random
perturbations to the right hand side of a subset of the constraints. The first 5 variables of
the problem are selected as first stage variables. There are 7 problems (ex5_4_4, ex8_4_2,
ex8_6_2, hhfair, launch, maxmin, prolog) also with 20–50 variables not selected because
SCIP cannot solve a single scenario problem. The nonconvexities encountered in these 28
problems include bilinear terms, fractional terms, logarithmic terms, and signomial terms,
as well as composite functions of these terms and linear terms. The size of the problems
depends on the number of scenarios and is outlined in Table 5. The total number of variables

123

408 Journal of Global Optimization (2019) 75:393–416

Table 4 Computational performance of SNGO and SCIP on stochastic variants of GLOBALLib instance for
|S| = 1000

Problem SNGO SCIP

Name Time (s) Gap (%) # Nodes Time (s) Gap (%)

abel 43,200 3.73 137 38,536 0.0

ex2_1_10 3130 1.0 5 43,200 457.4

ex2_1_7 2363 1.0 1 43,200 231.2

ex2_1_8 43,200 1.4 23 43,200 109.9

ex5_2_5 43,200 f f 43,200 f

ex5_3_2 43,200 5.5 391 43,200 63.2

ex8_4_1 13,456 1.0 1 43,200 ≥ 10,000

hydro 1367 1.0 1 43,200 ≥ 10,000

immun 202 1.0 1 43,200 ≥ 10,000

st_fp7a 2579 1.0 1 43, 200 101.9

st_fp7b 2431 1.0 1 43,200 57.0

st_fp7c 8397 1.0 2 43,200 83.2

st_fp7d 2857 1.0 2 43,200 308.1

st_fp7e 2374 1.0 1 43, 200 257.4

st_fp8 2439 1.0 1 43,200 5.8

st_m1 43,200 3.1 10 43,200 3490

st_m2 43,200 8.7 3 43,200 ≥ 10,000

st_rv2 651 1.0 1 43,200 4.8

st_rv3 1217 1.0 1 43,200 8.2

st_rv7 1044 1.0 1 43,200 3.7

st_rv8 30,404 1.0 3 43,200 f

chenery 43,200 9.4 8 43,200 10.6

ex8_4_8 3956 1.0 1 43,200 ≥ 10,000

ex8_4_8_bnd 43,200 f f 43,200 ≥ 10,000

harker 2903 1.0 1 43,200 ≥ 10,000

pollut 1796 1.0 1 1474 0.1

ramsey 762 1.0 1 508 0.0

srcpm 1490 1.0 1 1218 0.0

when the number of scenarios is 1000 ranges from 21,005 to 44,005 (these are large-scale
instances).

Tables 3 and 4 summarize the computational performancewhen the number of scenarios is
100 and 1000, respectively.We use “f” to indicate when the solver failed to return any bounds
or candidate solution. For problems with 100 scenarios, SCIP can only solve 7 problems
while SNGO can solve 26 out of 28 problems. For problems with 1000 scenarios, SCIP can
only solve 4 problems while SNGO can solve 20 problems. Most of the problems are solved
with only one node, thismight be related to theway how randomperturbations are introduced.
However, a naive implementation of lower/upper bounding problems explores significantly
more nodes. One reason why SNGO only explores one node for these problems is because
bounding tightening and multi-start local search is quite extensive at the root node.

123

Journal of Global Optimization (2019) 75:393–416 409

Table 5 Size of problems from stochastic version of GLOBALLib when the number of scenarios is 100 and
1000

Problem S = 100 S = 1000

Name # Vars # NL terms # Cons # Vars # NL terms # Cons

abel 3105 0 1500 31,005 0 15,000

ex2_1_10 2105 1000 1100 21,005 10,000 11,000

ex2_1_7 2105 2000 1100 21,005 20,000 11,000

ex2_1_8 2505 2400 1100 25,005 24,000 11,000

ex5_2_5 3305 6000 2000 33,005 60,000 20,000

ex5_3_2 2305 1200 1700 23,005 12,000 17,000

ex8_4_1 2305 1000 1100 23,005 10,000 11,000

hydro 3205 600 2500 32,005 6000 25,000

immun 2205 0 800 22,005 0 8000

st_fp7a 2105 2000 1100 21,005 20,000 11,000

st_fp7b 2105 2000 1100 21,005 20,000 11,000

st_fp7c 2105 2000 1100 21,005 20,000 11,000

st_fp7d 2105 2000 1100 21,005 20,000 11,000

st_fp7e 2105 2000 1100 21,005 20,000 11,000

st_fp8 2505 2400 2100 25,005 24,000 21,000

st_m1 2105 2000 1200 21,005 20,000 12,000

st_m2 3105 3000 2200 31,005 30,000 22,000

st_rv2 2105 2000 1100 21,005 20,000 11,000

st_rv3 2105 2000 2100 21,005 20,000 21,000

st_rv7 3105 3000 2100 31,005 30,000 21,000

st_rv8 4105 4000 2100 41,005 40,000 21,000

chenery 4405 4200 3900 44,005 42,000 39, 000

ex8_4_8 4305 8100 3100 43,005 81,000 31,000

ex8_4_8_bnd 4305 8100 3100 43,005 81,000 31,000

harker 2105 1400 800 21,005 14,000 8000

pollut 4305 4000 900 43,005 40,000 9000

ramsey 3405 2200 2300 34,005 22,000 23,000

srcpm 4005 500 2800 40,005 5000 28,000

By comparing the results of Tables 3 and 4we can again see favorable scalability ofSNGO.
For 19 problems (ex2_1_10, ex2_1_7, ex8_4_1, hydro, immun, st_fp7a, st_fp7b, st_fp7c,
st_fp7d, st_fp7e, st_fp8, st_rv2, st_rv3, st_rv7, st_rv8, ex8_4_8, pollut, ramsey, srcpm), the
solution time increases by less than 30 timeswhen the number of scenarios increases from100
to 1000 (a factor of 10). For 5 problems (abel, ex5_2_5, ex5_3_2, harker, and ex8_4_8_bnd),
the increase in solution time is more dramatic. For the rest 4 problems SNGO reaches the time
limit but the gap is kept below 10% in most cases (only two instances have a larger gap).

To further illustrate the scalability of SNGO, Table 6 shows how the time spent on different
tasks changes as the number of scenarios increase. Figures 3 and 4 illustrate how the total
solution time and the solution time per node change as the number of scenarios increase. We
present five relatively difficult instances ex2_1_10, ex2_1_8, ex5_3_2, ex8_4_1, chenery.
For problems (ex2_1_8, ex5_3_2, ex8_4_1, chenery), solving the subproblems to global

123

410 Journal of Global Optimization (2019) 75:393–416

Ta
bl
e
6

C
om

pu
ta
tio

na
lp

er
fo
rm

an
ce

of
S
N
G
O
on

fiv
e
pr
ob
le
m

in
st
an
ce
s
fr
om

G
L
O
B
A
L
L
ib

w
ith

di
ff
er
en
tn

um
be
rs
of

sc
en
ar
io
s.
W
e
us
e
“–
”
to

de
no
te
th
e
si
tu
at
io
ns

w
he
n
th
e

tim
e
lim

it
is
re
ac
he
d

Pr
ob
le
m

S
N
G
O

N
am

e
#
S

T
im

e
(s
)

L
B
1
(s
)

L
B
2
(s
)

U
B
1
(s
)

U
B
2
(s
)

B
T
(s
)

V
S
(s
)

G
ap

(%
)

#
N
od

es

ex
2_

1_
10

10
28

2
1

0.
6

10
9

1.
5

1.
0

3

20
49

4
1.
6

0.
7

23
11

2.
4

1.
0

3

50
13

1
9

3
0.
7

87
18

8
1.
0

3

10
0

21
7

48
2

10
10

7
24

16
1.
0

7

20
0

88
9

10
8

11
21

61
0

67
49

1.
0

5

50
0

24
11

28
3

9
55

17
30

11
8

16
8

1.
0

7

10
00

31
30

46
8

24
89

19
67

20
9

24
8

1.
0

5

ex
2_

1_
8

10
21

3
18

3
1.
7

2
8

9
2

1.
0

17

20
57

7
47

5
5

21
34

18
10

1.
0

41

50
23

11
20

74
14

46
97

39
21

1.
0

41

10
0

48
45

44
23

23
97

17
5

66
34

1.
0

39

20
0

18
,6
47

16
,0
81

11
2

34
8

17
08

19
4

13
2

1.
0

57

50
0

34
,4
57

26
,0
47

14
4

92
8

59
20

39
7

76
0

1.
0

33

10
00

43
,2
00

–
–

–
–

–
–

–
–

123

Journal of Global Optimization (2019) 75:393–416 411

Ta
bl
e
6

co
nt
in
ue
d

Pr
ob
le
m

S
N
G
O

N
am

e
#
S

T
im

e
(s
)

L
B
1
(s
)

L
B
2
(s
)

U
B
1
(s
)

U
B
2
(s
)

B
T
(s
)

V
S
(s
)

G
ap

(%
)

#
N
od

es

ex
5_

3_
2

10
51

0
27

4
28

49
5

10
6

6
1.
0

18
9

20
87

8
50

9
45

81
8

16
9

7
1.
0

16
1

50
67

75
40

66
25

8
77

8
92

11
51

59
1.
0

59
3

10
0

12
60

76
0

85
57

21
26

0
3

1.
0

59

20
0

37
,3
52

22
,0
37

21
47

41
31

11
64

62
10

17
2

1.
0

97
3

50
0

43
,2
00

–
–

-
–

–
–

–
–

10
00

43
,2
00

–
–

-
–

–
–

–
–

ex
8_

4_
1

10
43

,2
00

–
–

–
–

–
–

–
–

20
31

,7
47

24
,2
21

22
4

63
16

29
68

3
2

1.
0

10
27

50
26

,0
73

21
,2
29

20
5

39
85

21
48

8
4

1.
0

26
3

10
0

35
,
15

7
29

,2
09

30
4

47
94

26
65

3
7

1.
0

17
5

20
0

65
36

41
42

10
6

19
28

11
24

7
16

1.
0

21

50
0

76
23

73
53

48
0

12
19

2
0

1.
0

1

10
00

13
,4
56

12
,9
03

99
0

23
39

7
0

1.
0

1

C
he
ne
ry

10
39

4
26

7
18

5
45

42
9

1.
0

7

20
17

40
88

0
77

57
40

1
26

9
3

1.
0

57

50
47

69
30

47
11

0
11

3
80

8
48

6
12

6
1.
0

33

10
0

66
24

45
34

21
4

14
1

86
4

59
6

13
9

1.
0

23

20
0

12
,5
07

82
58

33
7

23
6

25
26

79
1

24
2

1.
0

13

50
0

43
,2
00

–
–

–
–

–
–

–
–

10
00

43
,2
00

–
–

–
–

–
–

–
–

123

412 Journal of Global Optimization (2019) 75:393–416

(a) (b)

(c) (d)

(e)

Fig. 3 Total solution time of SNGO to solve five problem instances from GLOBALLib with different numbers
of scenarios

optimality requires more than half of the solution time. For problems (ex2_1_10, ex2_1_8,
chenery), the number of nodes explored is relatively consistent with the number of scenarios.
For each test problem, the solution time per node grows nearly linearly when the number of
scenarios are within a certain range (10–1000 for ex2_1_10, 20–500 for ex2_1_8, 10–200
for ex5_3_2, 20–200 for ex8_4_1 and chenery).

Figure 5 shows the progression of the lower and upper bounds for these five problems. The
dots represent iterates under which the bound updates are obtained from lower and upper
bounding problems while the crosses represent iterates under which updates are obtained
from convexification and local search (i.e., lower bounds are obtained from the LP relax-
ation). The bounds obtained from convexification and local search at the root node are shown
at iteration zero. Figure 5 shows that, while the lower bounding problems proposed play a

123

Journal of Global Optimization (2019) 75:393–416 413

(a) (b)

(c) (d)

(e)

Fig. 4 Solution time of SNGO per node to solve five problem instances from GLOBALLib with different
numbers of scenarios

significant role, the bounds obtained from convexification also help accelerate the solution
process. Interestingly, for all test problems, optimal solutions are always found at the root
node and the rest of the process is used to prove that these solutions are within the optimality
gap. For ex2_1_8, the solution of upper bounding problems finds a significantly better solu-
tion than the local search with a multi-start scheme while, for the other problems, optimal
solutions are found from local search. The gap between the primal problem and the lower
bounding problem (the expected value of perfect information (EVPI)) is typically small in
many applications. This can be verified in our test set, where we observe that the gaps at
the first iteration are 20.0%, 16.0%, 14.3%, 1.36%, 32.0%; while the initial gaps from con-
vexification and local search observed at iteration zero are 286%, 126%, 43.8%, 354%,≥
10, 000%. This illustrates that our lower bounding approach provides tight lower bounds.

123

414 Journal of Global Optimization (2019) 75:393–416

(a) (b)

(c) (d)

(e)

Fig. 5 Evolution of lower and upper bounds for five problem instances from GLOBALLib

123

Journal of Global Optimization (2019) 75:393–416 415

We expect that a parallel version of our implementation can help reduce the solution
times.

6 Conclusions and future work

We have proposed and implemented a global optimization algorithm for stochastic nonlinear
programs. The main advantages of the proposed algorithm are that both lower bounding and
upper bounding problems can be decomposed into smaller scenario subproblems and that
branching needs to be performed only on the first-stage variables. We provide a proof of
convergence and numerical evidence that the proposed approach significantly outperforms
the state-of-the-art solver SCIP. As a part of future work, we are interested in extending the
work to stochasticmixed integer nonlinear programs and to developparallel implementations.

Acknowledgements We acknowledge financial support by the U.S. Department of Energy under Grant DE-
SC0014114. We thank Ophelia Venturelli for providing the model and experimental data for the microbial
growth estimation problem. We also thank Felipe Serrano and Ambros Gleixner for providing assistance with
the use of SCIP.

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
2. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αbb: a global optimization method for general con-

strained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)
3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011)
4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2013)
5. CarøE, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1),

37–45 (1999)
6. Dür, M., Horst, R.: Lagrange duality and partitioning techniques in nonconvex global optimization. J.

Optim. Theory Appl. 95(2), 347–369 (1997)
7. Epperly, T.G., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization.

J. Glob. Optim. 11(3), 287–311 (1997)
8. Fisher, M.L.: The lagrangian relaxation method for solving integer programming problems. Manag. Sci.

27(1), 1–18 (1981)
9. Floudas, C.A., Visweswaran, V.: Primal-relaxed dual global optimization approach. J. Optim. Theory

Appl. 78(2), 187–225 (1993)
10. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
11. Guignard, M., Kim, S.: Lagrangean decomposition: a model yielding stronger lagrangean bounds. Math.

Program. 39(2), 215–228 (1987)
12. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, New York (2013)
13. Jalving, J., Abhyankar, S., Kim, K., Hereld, M., Zavala, V.M.: A graph-based computational framework

for simulation and optimization of coupled infrastructure networks. Under Review (2016)
14. Karuppiah, R., Grossmann, I.E.: A lagrangean based branch-and-cut algorithm for global optimization

of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41(2),
163–186 (2008)

15. Khajavirad, A., Michalek, J.J.: A deterministic lagrangian-based global optimization approach for qua-
siseparable nonconvex mixed-integer nonlinear programs. J. Mech. Des. 131(5), 051,009 (2009)

16. Li,X., Tomasgard,A.,Barton, P.I.:Nonconvexgeneralized benders decomposition for stochastic separable
mixed-integer nonlinear programs. J. Optim. Theory Appl. 151(3), 425 (2011)

17. Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hendel, G., Koch, T.,
Lübbecke, M.E., Miltenberger, M., et al.: The scip optimization suite 4.0 (2017)

18. Misener, R., Floudas, C.A.: Antigone: algorithms for continuous/integer global optimization of nonlinear
equations. J. Glob. Optim. 59(2–3), 503–526 (2014)

19. Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving Discrete and Contin-
uous Nonconvex Problems, vol. 31. Springer, New York (2013)

123

416 Journal of Global Optimization (2019) 75:393–416

20. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex minlps. Comput. Chem. Eng. 23(4–5), 457–478 (1999)

21. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103(2), 225–249 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A scalable global optimization algorithm for stochastic nonlinear programs
	Abstract
	1 Introduction
	2 Basic nomenclature and setting
	2.1 Lower bounding problem
	2.2 Upper bounding problem

	3 Convergence of branch and bound socheme
	4 Implementation details
	5 Computational experiments
	5.1 Optimal controller tuning
	5.2 Estimation for microbial growth models
	5.3 Stochastic GLOBALLib instances

	6 Conclusions and future work
	Acknowledgements
	References

