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Abstract
In 2016 Aussel, Sultana and Vetrivel developed the concept of projected solution for Nash
equilibria. The purpose of this work is to study the same concept of solution, but for quasi-
equilibrium problems. Our results recover several existence theorems for quasi-equilibrium
problems in the literature. Additionally, we show the existence of projected solutions for
quasi-optimization problems, quasi-variational inequality problems, and generalized Nash
equilibrium problems.
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1 Introduction

Given a non-empty subset C of Rn and a bifunction f : Rn × R
n → R, the equilibrium

problem (EP) is the following:

find x ∈ C such that f (x, y) ≥ 0, for all y ∈ C . (EP)

The equilibrium problem was introduced in [8] and has been extensively studied in recent
years (see e.g. [9,12,19,24] and the references therein). Related to (EP), it is natural to consider
the following problem:

find x ∈ C such that f (y, x) ≤ 0, for all y ∈ C, (MEP)

which was called Minty equilibrium problem (MEP) in [9]. This problem corresponds to a
particular case of the Convex Feasibility Problem [17,26]. It was established in [3], that if f
has the upper sign property, then every solution of (MEP) is a solution of (EP). Moreover,
both solution sets trivially coincide when f is also pseudomonotone.

The classical example of equilibrium problem is the variational inequality problem (see
e.g. [5,25]), which is defined as follows: a Stampacchia variational inequality problem is
formulated as
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find x ∈ C such that there exists x∗ ∈ T (x)
with 〈x∗, y − x〉 ≥ 0, for all y ∈ C,

where T : Rn ⇒ R
n is a set-valued map and 〈·, ·〉 denotes the Euclidean inner product. So,

if T has compact values, and we define the representative bifunction fT of T by

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉, (1)

it follows that every solution of the equilibrium problem associated to fT and C is a solution
of the variational inequality problem associated to T and C , and conversely.

Given a set-valued map K : C ⇒ C , the quasi-equilibrium problem (QEP) associated to
f and K is the following

find x ∈ K (x) such that f (x, y) ≥ 0, for all y ∈ K (x). (QEP)

The associated Minty quasi-equilibrium problem (MQEP), consists of

find x ∈ K (x) such that f (x, y) ≤ 0, for all y ∈ K (x). (MQEP)

A (Minty) quasi-equilibrium problem is an (Minty) equilibrium problem in which the
constraint set depends on the optimizing variable. This dependence allows one to model
some complex problems such as quasi-optimization problems, quasi-variational inequalities,
generalized Nash equilibrium problems, among others. These problems are unified conve-
niently, andmany of the results obtained for one can be extended, with suitablemodifications,
to general quasi-equilibrium problems, thus obtaining broader applicability.

A quasi-equilibrium problem is defined by a bifunction and a constraint set-valued map.
In most of the results on the existence of solutions for quasi-equilibrium problems in the
literature, the constraint map is assumed to be a self-map (see for instance [3,10,11,13]).
Our aim in this paper is to study quasi-equilibrium problems with non-self constraint maps.
This type of problems arises, for example, in the electricity market as in the work of Aussel,
Sultana, and Vetrivel in [6]. In this case, there is usually no solution to the quasi-equilibrium
problem.

We study the same concept of projected solution introduced in [6], but for quasi-
equilibrium problems. In doing so we improve two general results presented in [6]. As a
consequence of our results, we obtain applications for quasi-optimization problems, quasi-
variational inequalities, and Nash equilibria.

The paper is organized as follows. Notation and basic definitions are given in Sect. 2. In
Sect. 3, we show that the notions of generalized monotonicity for bifunctions can be charac-
terized in terms of solution sets of (EP) and (MEP). Moreover, we show that the concept of
pseudomonotonicity and upper sign property are related under suitable assumptions. Then, in
Sect. 4, we present the projected solution for quasi-equilibrium problems and prove different
results on the existence of such solutions and recover several well-know theorems, one of
them is due to Fan [18]. Finally, in Sect. 5, we consider three applications: first, we obtain
an existence result for quasi-optimization problems with a non-self constraint map; second,
an application to quasi-variational inequalities is given; and finally, we show the existence
of projected solutions for Nash equilibria.

2 Basic definitions and preliminaries

Let X and Y be Hausdorff topological spaces and let K : X ⇒ Y be a set-valued map. We
recall that K is:
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– closed, when for any net (xi , yi )i∈I in the graph of K such that (xi , yi )i∈I converges to
(x0, y0), we have y0 ∈ K (x0);

– lower semicontinuous by nets, when for any x0, and any net (xi )i∈I converging to x0 and
any y0 ∈ K (x0), there exists a subnet (xϕ( j)) j∈J of (xi ) and a net (y j ) j∈J converging to
y0 such that y j ∈ K (xϕ( j)), for all j ∈ J ;

– lower semicontinuous by sets, when for any x0 and any neighborhood V of K (x0), there
exists a neighborhood U of x0 such that for all x ∈ U , the set K (x) ∩ V is not empty;

– upper semicontinuous (usc), when for any x0 and any neighborhood V of K (x0), there
exists a neighborhood U of x0 such that K (U ) ⊂ V .

In [21, Proposition 2.5.6] the authors show that lower semicontinuity by nets is equivalent
to lower semicontinuity by sets. Hence, from now on, we can use any of these two definitions
interchangeably and refer to them as lsc.

A fixed point of a set-valued map T : X ⇒ X is a point x ∈ X such that x ∈ T (x). The
set of fixed points of T is denoted by Fix(T ).

Our existence result will be obtained as a consequence of Himmelberg’s fixed point the-
orem, which is stated below and it can be found in [23, Theorem 2].

Theorem 1 (Himmelberg) Let A be a non-empty and convex subset of a Hausdorff, locally
convex topological vector space Y , and let T : A ⇒ A be a set-valued map. If T is usc with
convex, closed and non-empty values, and T (A) is contained in some compact subset N of
A, then Fix(T ) is a non-empty set.

We will also need the following selection theorem due to Michael which can be found in
[27, Theorem 3.1”’].

Theorem 2 (Michael) Every lower semicontinuous set-valued map Φ from a metric space
to R

n with non-empty and convex values admits a continuous selection. This means that
there exists a continuous function h, with the same domain as Φ, such that the graph of h is
included in the graph of Φ.

As a consequence of the two previous theorems, one can deduce the following result in a
similar way to a part of the proof of Theorem 2.1 in [15].

Corollary 1 Given a non-empty, convex and closed subset C of Rn, if Φ : C ⇒ C is lsc with
non-empty, convex values and Φ(C) is relatively compact, then Fix(Φ) is a non-empty set.

We now recall some different definitions of generalized monotonicity (which we use
throughout this article).

A set-valued map T : Rn ⇒ R
n is said to be:

– pseudomonotone on a subset C of Rn if, for all x, y ∈ C and any x∗ ∈ T (x), y∗ ∈ T (y),
the following implication holds

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0,

– quasimonotone on a subset C of Rn if, for all x, y ∈ C and any x∗ ∈ T (x), y∗ ∈ T (y),
the following implication holds

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0,

– properly quasimonotone on a convex subset C of Rn if, for all x1, . . . , xm ∈ C and
x ∈ co({x1, . . . , xm}) (the convex hull), there exists i such that

〈x∗
i , x − xi 〉 ≤ 0, ∀x∗

i ∈ T (xi ).
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In a similar way, a given bifunction f : Rn × R
n → R is said to be:

– pseudomonotone on a subsetC ofRn if, for all x, y ∈ C , the following implication holds

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0;
– quasimonotone on a subset C of Rn if, for all x, y ∈ C , the following implication holds

f (x, y) > 0 ⇒ f (y, x) ≤ 0;
– properly quasimonotone on a convex subset C of Rn if, for all x1, . . . , xm ∈ C , and all

x ∈ co({x1, . . . , xm}), there exists i such that

f (xi , x) ≤ 0.

When C = R
n , we only say that a set-valued map (or a bifunction) is pseudomonotone

(quasimonotone or properly quasimonotone) instead of saying that it is pseudomontone
(quasimonotone or properly quasimonotone) on Rn .

In the case of set-valued maps, pseudomonotonicity implies proper quasimonotonicity,
which implies quasimonotonicity. However, for bifunctions, pseudomonotonicity implies
proper quasimonotonicity, provided that the bifunction is quasiconvex with respect to its
second argument (see [7, Proposition 1.1]). Moreover, no relationship exists between quasi-
monotonicity and proper quasimonotonicity of bifunctions (see the counter-examples in [7]).

It is very well-known that a set-valued map T : Rn ⇒ R
n , with non-empty and compact

values, satisfies some generalized monotonicity if and only if, its bifunction fT , defined as
in (1), does too. In a similar spirit, we have the following result which is easy to check.

Proposition 1 Let T : Rn ⇒ R
n be a set-valued map with compact values. If −T is pseu-

domonotone, then − fT is too.

Remark 1 The previous proposition is also true in Banach spaces. In this case we can use
weak∗-compactness instead of regular compactness.

The converse of the previous result does not hold in general, as the following example shows.

Example 1 Let T : R ⇒ R be a set-valued map defined by

T (x) = {−1, 1}, for all x ∈ R.

Clearly, −T is not pseudomonotone but − fT is pseudomonotone, because fT ≥ 0 and it
only vanishes on the diagonal of R × R.

Another important concept is the upper sign condition, which is given first for set-valued
maps and later for bifunctions. Let C be a convex subset of Rn . For a given t ∈ R and
x, y ∈ R

n , let xt = (1 − t)x + t y.

– A set-valued map T : R
n ⇒ R

n is said to be upper sign-continuous on C if, for all
x, y ∈ C , the following implication holds(

∀t ∈]0, 1[, inf
x∗
t ∈T (xt )

〈x∗
t , y − x〉 ≥ 0

)
⇒ sup

x∗∈T (x)
〈x∗, y − x〉 ≥ 0.

– A bifunction f : Rn × R
n → R is said to have the upper sign property on C if, for all

x ∈ C and for every y ∈ C , the following implication holds(
f (xt , x) ≤ 0, ∀ t ∈ ]0, 1[ ) ⇒ f (x, y) ≥ 0.
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Upper sign-continuity ([22]) is a very weak notion of continuity. For instance, any upper
semicontinuous set-valued map is upper sign-continuous. Moreover, any positive function
onR is upper sign-continuous. This notion plays an essential role in proving the existence of
solutions of variational inequalities and quasi-variational inequalities, see [1,5]. In a similar
spirit, the upper sign property plays a vital role to establish the existence of solutions of
equilibrium problems and quasi-equilibrium problems, see [3,9].

For the sake of completeness, let us recall also that a function h : Rn → R is said to be:

– convex if, for any x, y ∈ R
n and t ∈ [0, 1], we have
h(xt ) ≤ (1 − t)h(x) + th(y);

– quasiconvex if, for any x, y ∈ R
n and t ∈ [0, 1], we have

h(xt ) ≤ max{h(x), h(y)}.
– semistrictly quasiconvex if, it is quasiconvex and, for any x, y ∈ R

n such that h(x) 
=
h(y), the following holds

h(xt ) < max{h(x), h(y)}, for all t ∈]0, 1[.
Clearly, every convex function is semistrictly quasiconvex. An equivalent and useful charac-
terization of quasiconvexity is that the function f is quasiconvex if and only if, its sublevel
set Sλ = {x ∈ R

n : h(x) ≤ λ} is convex, for all λ ∈ R.

3 Canonical relations

John [25], characterized the proper quasimonotonicity of set-valued maps by the non-
emptiness of the solution set of Minty variational inequality problems associated with this
set-valued map on compact sets. Bianchi and Pini established a similar result for bifunctions
under lower semicontinuity and quasiconvexity, see [7, Theorem 2.1].

In a similar way to [25, Theorem 2 and Corollary of Theorem 1], the next result character-
izes quasimonotonicity and pseudomonotonicity. Denote by EP( f ,C) and MEP( f ,C) the
solution sets of the equilibrium problem and Minty equilibrium problem, respectively.

Proposition 2 Let f : Rn × R
n → R be a bifunction. Then, the following hold

1. f is quasimonotone if and only if,MEP( f , {x, y}) 
= ∅, for all x, y ∈ R
n.

2. f is pseudomonotone if and only if, EP( f ,C) ⊂ MEP( f ,C), for every subset C of Rn.
3. If − f is pseudomonotone, thenMEP( f ,C) ⊂ EP( f ,C), for every subset C of Rn. The

converse holds provided that f vanishes on the diagonal of Rn × R
n.

Proof 1. It follows from the fact that f is not quasimonotone if and only if, there exists x, y ∈
R
n such that f (x, y) > 0 and f (y, x) > 0, which is equivalent to MEP( f , {x, y}) = ∅.

2. It is a straightforward adaptation of [25, Theorem 2].
3. Let x ∈ MEP( f ,C), that means f (y, x) ≤ 0, for all y ∈ C . By pseudomonotonicity of

− f , we have f (x, y) ≥ 0. Hence, x ∈ EP( f ,C).
Conversely, let x, y ∈ R

n such that − f (x, y) ≥ 0. We take C = {x, y} and since
f (y, y) = 0,we have y ∈ MEP( f ,C). Thus, f (y, x) ≥ 0 or equivalently− f (y, x) ≤ 0.

��
The following example says that in part 3 of Proposition 2, the reciprocal does not hold

in general.
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Example 2 The bifunction f : R × R → R defined as follows

f (x, y) =
⎧⎨
⎩

−1, if (x, y) = (0, 1)
1, if (x, y) = (0, 0)
0, otherwise

satisfies that MEP( f ,C) ⊂ EP( f ,C), for every subset C of R. However, − f is not pseu-
domonotone.

It was shown in [3, Proposition 3.1] that under the upper sign property, the inclusion in
part 3 of Proposition 2 holds. The next two propositions show that pseudomonotonicity and
the upper sign property are related under suitable assumptions.

Proposition 3 Let C be a convex subset of Rn and f : Rn × R
n → R be a bifunction such

that one of the following assumptions holds

1. f (·, y) is lower semicontinuous, for all y ∈ C;
2. f (x, ·) is upper semicontinuous, for all x ∈ C;
3. f vanishes on the diagonal of C and − f (·, y) is semistrictly quasiconvex, for all y ∈ C;
4. f vanishes on the diagonal of C and f (x, ·) is semistrictly quasiconvex, for all x ∈ C.

If − f is pseudomonotone, then f has the upper sign property on C.

Proof Let x and y be two elements of C such that

f (xt , x) ≤ 0, for all t ∈]0, 1[. (2)

1. If f (·, y) is lower semicontinuous, then f (y, x) ≤ 0. Thus, the result follows from the
pseudomonotonicity of − f .

2. Since − f is pseudomonotone, condition (2) implies that f (x, xt ) ≥ 0, for any t ∈]0, 1[.
By upper semicontinuity of f (x, ·) we deduce that f (x, y) ≥ 0.

3. If f (x, y) < 0, then f (y, x) > 0 which in turn implies f (xt , x) > 0 for all t ∈]0, 1[,
due to semistric quasiconvexity of − f (·, x). However, this fact is a contradiction with
(2). Hence, f (x, y) ≥ 0.

4. Suppose that f does not have the upper sign property on C . Thus, there exist x and y
in C such that f (x, y) < 0 and (2) holds. Since f (x, x) = 0 and f (x, ·) is semistrictly
quasicovex, we have f (x, xt ) < 0, for all t ∈]0, 1[. Now, by pseudomonotonicity of− f ,
we obtain f (xt , x) > 0, for all t ∈]0, 1[, which is a contradiction. ��

An important consequence of the previous result is the following corollary.

Corollary 2 Let T : Rn ⇒ R
n be a set-valued map with compact and non-empty values. If

−T is pseudomonotone, then it is upper sign-continuous.

Proof It is enough to show that fT , defined in (1), has the upper sign property because from
the definition of fT , we have that T is upper sign-continuous if and only if, fT has the upper
sign property. So, by Proposition 1, we have that − fT is pseudomonotone. Thus, fT has the
upper sign property due to part 4 of Proposition 3. ��
Remark 2 The previous corollary is also true in Banach spaces. In that case, we can use
weak∗-compactness instead of regular compactness.

Proposition 4 Let f : Rn × R
n → R be a bifunction such that the following assumptions

hold
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1. f vanishes on the diagonal of Rn × R
n and

2. f (·, y) is quasiconvex for all y ∈ R
n.

If f has the upper sign property on R
n, then − f is pseudomonotone.

Proof Let x and y be two elements of Rn such that

f (x, y) ≤ 0 and f (y, x) < 0. (3)

By quasiconvexity we obtain f (xt , y) ≤ 0, for all t ∈]0, 1[. We now apply the upper sign
property of f and deduce that f (y, x) ≥ 0, which is a contradiction with (3). ��
Remark 3 A few remarks about the previous results are given below.

– A bifunction satisfying condition 3 in Proposition 3 is actually properly quasimonotone,
due to [7, Proposition 1.1].

– In general, the upper sign property of f and pseudomonotonicity of− f are independents.
Consider for instance the bifunctions f1, f2 : R × R → R, defined by

f1(x, y) =
⎧⎨
⎩
1, if x ∈ Q, y /∈ Q or x /∈ Q, y ∈ Q

0, if x = y
−1, otherwise

and

f2(x, y) =
⎧⎨
⎩

−x, if y = 0, x > 0
y, if x = 0, y > 0
0, otherwise.

Clearly, f1 has the upper sign property and − f2 is pseudomonotone, but neither − f1 is
pseudomonotone nor f2 has the upper sign property.

– The bifunction f2 also shows that the quasiconvexity assumption in Proposition 4 can
not be dropped.

4 Main results

Any solution of (QEP) (or (MQEP)) will be called a “classical solution”. From now on, we
denote the Euclidean norm of Rn by ‖ · ‖.
Definition 1 Given a non-empty subset C of Rn , a set-valued map K : C ⇒ R

n and a
bifunction f : Rn × R

n → R, a point x0 of C is called a projected solution of:

– the QEP if, there exists z0 ∈ EP( f , K (x0)) such that x0 ∈ PC (z0),
– the MQEP if, there exists z0 ∈ MEP( f , K (x0)) such that x0 ∈ PC (z0),

where PC denotes the projection onto C , that means

PC (z) = {x ∈ C : ‖z − x‖ ≤ ‖z − w‖ for all w ∈ C}.
Remark 4 It is clear that every classical solution is a projected solution. If additionally, K
is defined from C to C , then the set of classical solutions is equal to the set of projected
solutions.

On the other hand, we can see the projection as a set-valued map in general. Furthermore,
if C is a convex, closed and non-empty subset of Rn , then PC is a continuous function.
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In a similar way to [11,15], we now show the existence of projected solutions for
quasi-equilibrium problems without upper semicontinuity of the constraint map by using
Corollary 1. But before that, we need to introduce a few definitions.

Consider a non-empty set C ⊂ R
n , a set-valued map K : C ⇒ R

n , and a bifunction
f : Rn × R

n → R. Let Q : C × R
n ⇒ C × R

n be the set-valued map defined by

Q(x, z) = PC (z) × K (x),

F : Rn ⇒ R
n be defined by

F(z) = {y ∈ R
n : f (z, y) < 0},

and R : C × R
n ⇒ R

n be defined by

R(x, z) = F(z) ∩ K (x).

The following lemma is not difficult to check and it establishes a characterization of
projected solutions in terms of properties of the set-valued maps Q and R.

Lemma 1 Let C be a non-empty subset of Rn, K : C ⇒ R
n be a set-valued map with non-

empty values, f : Rn ×R
n → R be a bifunction, and x ∈ C. Then, x is a projected solution

of (QEP) if and only if, there exists z ∈ R
n such that (x, z) ∈ Fix(Q) and R(x, z) = ∅.

We are now ready for our first existence result.

Theorem 3 Let C be a non-empty, compact and convex subset of Rn, K : C ⇒ R
n be a

set-valued map and f : Rn × R
n → R be a bifunction. Assume that

1. Q is lsc with non-empty convex values;
2. Q(C × R

n) is relatively compact;
3. Fix(Q) is closed;
4. R is lsc with convex values on Fix(Q);
5. f (z, z) ≥ 0, for every z ∈ M, where

M = {w ∈ K (C) : there exists u ∈ C such that (u, w) ∈ Fix(Q)}.
Then, there exists a projected solution of (QEP).

In order to prove the previous result we need the following lemma, which can be found in
[28, Lemma 2.3].

Lemma 2 Let X , Y two topological spaces and A a closed subset of X. Consider two lsc
set-valued maps F : X ⇒ Y , Φ : A ⇒ Y such that, for every x ∈ A, one has Φ(x) ⊂ F(x).
Let G : X ⇒ Y be defined as

G(x) =
{
F(x), if x ∈ X\A
Φ(x), if x ∈ A.

Then, the set-valued map G is lsc.

Proof of Theorem 3 First notice that the non-emptyness of Fix(Q) is guaranteed by Corol-
lary 1. Let S : C × R

n ⇒ C × R
n be the set-valued map defined by

S(x, z) =
{
Q(x, z), if (x, z) ∈ C × R

m\ Fix(Q)

PC (z) × R(x, z), if (x, z) ∈ Fix(Q).
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Since S(x, z) ⊂ Q(x, z) for each (x, z) ∈ C × R
n , the lower semicontinuity of S follows

from Lemma 2 and the fact that Q is lsc. Moreover, S is convex valued. Since Q(C ×R
n) is

relatively compact, so it is S(C × R
n). Assuming that S has non-empty values, Corollary 1

implies that there exists (x0, z0) ∈ C×R
n such that (x0, z0) ∈ S(x0, z0). This in turn implies

(x0, z0) ∈ PC (z0) × R(x0, z0), that means z0 ∈ R(x0, z0), but this a contradiction because
z0 ∈ M . Thus, there exists some (x0, z0) ∈ C × R

n such that S(x0, z0) = ∅, which means
that (x0, z0) ∈ Fix(Q) and R(x0, z0) = ∅. The result follows then from Lemma 1. ��

Remark 5 Since PC is a continuous function, Q is lsc with non-empty and convex values,
provided that the set-valued map K is lsc with non-empty convex values. On the other hand,
if the bifunction f is quasiconvex with respect to its second argument, then F and R are
convex valued. Moreover, if f is continuous, then F has an open graph.

In order to show the lower semicontinuity of R we give sufficient conditions in the fol-
lowing result, which is inspired by [31, Lemma 4.2].

Proposition 5 Let X , Y , Z be topological spaces, and T1 : X ⇒ Y , T2 : Z ⇒ Y be
set-valued maps such that T1 has open graph and T2 is lsc. Then, the set-valued map T :
X × Z ⇒ Y , defined by

T (x, z) = T1(x) ∩ T2(z)

is lsc.

Proof Let V be an open subset of Y and (x0, z0) be an element of X×Z such that T (x0, z0)∩
V 
= ∅. For y0 ∈ T (x0, z0) ∩ V , since T1 has open graph, we deduce that there exist Vx0 and
Vy0 , open subsets of X and Y respectively, such that (x0, y0) ∈ Vx0 × Vy0 , where Vx0 × Vy0
is a subset of the graph of T1. By the lower semicontinuity of T2, there exists Vz0 , an open
subset of Z , such that z0 ∈ Vz0 and T2(z′) ∩ Vy0 
= ∅. Thus, taking Vx0 × Vz0 we have that

T (x ′, z′) ∩ V = T1(x
′) ∩ T2(z

′) ∩ V 
= ∅. ��

Thanks to Theorem 3, Remark 5 and Proposition 5 we have the following corollary.

Corollary 3 Assume that C is compact, convex and non-empty. If the following hold

1. K is closed and lsc with convex values;
2. K (C) is a compact subset of Rn;
3. f is continuous and quasiconvex with respect to its second argument;
4. f vanishes on the diagonal of Rn × R

n;

then, there exists a projected solution of (QEP).

We now present an alternative proof of the previous result, which does not follow from
Theorem 3 but it also works in Banach spaces. However, we need to introduce first a few
definitions.

The set-valued map S : C × R
n ⇒ R

n is defined by

S(x, z) = argminy∈K (x) f (z, y)
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and T : C × R
n ⇒ C × R

n is defined by

T (x, z) = PC (z) × S(x, z).

It is clear that T (C × R
n) ⊂ C × R

n .
We also need the following two lemmas to establish the proof of Corollary 3. The first

one characterizes projected solutions of (QEP) as fixed points of T .

Lemma 3 Let x0 ∈ C and assume that f vanishes on the diagonal of Rn × R
n. Then, x0 is

a projected solution of (QEP) if and only if, there exists z0 ∈ X such that (x0, z0) is a fixed
point of T .

Proof Since f (x, x) = 0 for all x ∈ R
n , the result follows from the fact that for any

(x, z) ∈ C × R
n , z ∈ EP( f , K (x)) if and only if, z ∈ S(x, z). ��

Remark 6 The equivalence in Lemma 3 does not hold if we assume f to be positive on the
diagonal ofRn ×R

n . Consider for instance the bifunction f : R×R → R and the constraint
set-valued map K : [0, 1] ⇒ R, both defined by

f (x, y) =
{
1, if x = y
0, if x 
= y

and K (x) = [0, 1 + x].

Clearly K is closed and lsc. Also, for each z ∈ R we have that S(x, z) = K (x)\{z}, for all
x ∈ [0, 1] and z ∈ R. So, T does not have fixed points. However, 0 is a projected solution of
(QEP) associated to f and K .

The second lemma is the following.

Lemma 4 Let C be a closed and non-empty subset of Rn and f be a continuous bifunction.
If K is closed and lsc, then the set-valued map S is closed.

Proof Let (xα, zα,wα)α∈A be a net in the graph of S converging to (x0, z0, w0). The closeness
of K implies w0 ∈ K (x0). Since K is lsc, for each u ∈ K (x0), there exists a subnet
(xϕ(β))β∈B and a net (uβ)β∈A converging to u such that uβ ∈ K (xϕ(β)) and f (zϕ(β), wϕ(β)) ≤
f (zϕ(β), uβ), for all β ∈ B. By continuity of f , we obtain f (z0, w0) ≤ f (z0, u). Therefore,
w0 ∈ S(x0, z0). ��
Proof of Corollary 3 By Lemma 4 and the quasiconvexity in the second argument of f , we
deduce that S is closed with compact and convex values. Moreover, since K (C) is compact,
S must be usc. Since PC is continuous, we deduce that T is usc with compact, convex and
non-empty values. Hence, by Theorem 1, there exists a fixed point of T . The result follows
from Lemma 3. ��
Remark 7 In Banach spaces, the projection PC is always usc with convex, compact and non-
empty values, provided that C is convex, compact and non-empty; and it is enough to obtain
the upper semicontinuity of T in the previous proof.

Remark 8 We note that

Fix(Q) = {(x, x) ∈ C × C : x ∈ Fix(K )},
when the constraint map is a self-map. Moreover, the set M in Theorem 3 coincides with
Fix(K ), and the set-valued map R restricted to Fix(Q) is

R(x, x) = {y ∈ K (x) : f (x, y) < 0}.
Moreover, if K (x) = C , for all x ∈ C , and f is upper semicontinuous with respect to its
first argument, then by Proposition 5, R is lsc.
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As a corollary of Theorem 3, Proposition 5 and Remark 4, we recover the following
existence result due to Cubiotti [15] by considering K to be a self-map.

Corollary 4 [15, Theorem 2.1] Let C be a non-empty compact convex subset ofRn, K : C ⇒
C be a set-valued map, and f : C × C → R be a bifunction. Assume that

1. K is lsc with non-empty convex values;
2. Fix(K ) is closed;
3. the set {(x, y) ∈ C × C : f (x, y) ≥ 0} is closed;
4. for each x ∈ C, f (x, ·) is quasiconvex on K (x);
5. for each x ∈ Fix(K ), f (x, x) ≥ 0.

Then, there exists a classical solution of (QEP).

As another corollary of Theorem 3, we recover the famous minimax inequality due to Ky
Fan on finite dimensional spaces, which can be found in [18].

Corollary 5 (Ky Fan) Let C be a non-empty compact and convex subset of Rn and f :
C × C → R be a bifunction. Assume that

1. f is upper semicontinuous with respect to its first argument,
2. f is quasiconvex with respect to its second argument, and
3. f is not negative on the diagonal of C × C.

Then, there exists a solution of (EP).

Now, we will establish the existence of projected solutions for Minty quasi-equilibrium
problems.

Theorem 4 Let C ⊂ R
n be a non-empty, compact and convex set, K : C ⇒ R

n be a
set-valued map and f : Rn × R

n → R be a bifunction. If the following assumptions hold

1. Q is lsc with non-empty convex values;
2. Q(C × R

n) is relatively compact;
3. Fix(Q) is closed;
4. the set-valued map G : Fix(Q) ⇒ R

n, defined by

G(x, z) = {y ∈ K (x) : f (y, z) > 0}
is lsc;

5. f is properly quasimonotone on co(K (C));

then, there exists a projected solution of (MQEP). Moreover, the set of projected solutions
of (QEP) is non-empty whether f has the upper sign property or − f is pseudomonotone.

In order to proof the previous result we need the following lemma, which can be found in
[30, Theorem 5.9].

Lemma 5 Let T : Rn ⇒ R
m be a set-valued map. If T is lsc, then so is the set-valued map

co(T ) : Rn ⇒ R
m defined by

co(T )(x) = co(T (x)).

Proof of Theorem 4 Due to Lemma 5, the set-valued map co(G) : Fix(Q) ⇒ R
n , which is

defined as

co(G)(x, z) = co(G(x, z)),
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is lsc too. Thanks to Lemma 2, the set-valued map Φ : C × R
n ⇒ C × R

n , defined as

Φ(x, z) =
{
Q(x, z), if (x, z) ∈ C × R

n\Fix(Q)

PC (z) × co(G)(x, z), if (x, z) ∈ Fix(Q)

is lsc. If G is non-empty valued then, by Corollary 1, there exists (x, z) ∈ Fix(Q) such that
x ∈ PC (z) and z ∈ co(G)(x, z). That means that there exist z1, z2, . . . , zn belonging to
G(x, z) such that z ∈ co({z1, z2, . . . , zn}). However, we get a contradiction with the proper
quasimonotonicity of f , because f (zi , z) > 0 for all i . Hence, there exists (x, z) ∈ C ×R

m

such that (x, z) ∈ Fix(Q) and G(x, z) = ∅. Therefore, x is a projected solution of (MQEP).
Finally, the existence of projected solutions for (QEP) is due to [3, Proposition 3.1] when

f has the upper sign property and part 3 of Proposition 2 if − f is pseudomonotone. ��
As a consequence of the previous result and Proposition 5 we obtain the following corol-

lary.

Corollary 6 Assume that C ⊂ R
n is compact, convex and non-empty set. If the following hold

1. K is closed and lsc with convex values;
2. K (C) is a compact subset of Rn;
3. f is properly quasimonotone;
4. f is quasiconvex with respect to its second argument;
5. {(x, y) ∈ K (C) × K (C) : f (x, y) ≤ 0} is closed;
then, there exists a projected solution of (MQEP). Moreover, the set of projected solutions
of (QEP) is non-empty, whether f has the upper sign property or − f is pseudomonotone.

As in Corollary 3, wewill present an alternative proof of the previous corollary, which also
works in Banach spaces. First, we define the following set-valued maps. Let M : C ⇒ R

n

be defined by

M(x) = MEP( f , K (x))

and let T ′ : C × X ⇒ C × X be defined by

T ′(x, z) = PC (z) × M(x).

In a similar way to Lemma 1, we characterize projected solutions of (MQEP) as fixed
points of T ′.

Lemma 6 A point x0 ∈ C is a projected solution of (MQEP) if and only if, there exists a
z0 ∈ X such that (x0, z0) ∈ Fix(T ′).

Finally, we need the following lemma which is a very straightforward adaptation of [13,
Proposition 2.2].

Lemma 7 If K is a closed and lower semicontinuous set-valued map, and the set {(x, y) ∈
K (C) × K (C) : f (x, y) ≤ 0} is closed; then, the set-valued map M is closed.

Proof of Corollary 6 By [3, Proposition 2.4], M is non-empty valued. Moreover, by Lemma 7
and the fact that M(C) is relatively compact, we deduce the upper semicontinuity of M . It
is also clear that T ′ is usc with convex and closed values. As T ′(C × X) ⊂ C × K (C),
by Theorem 1, T ′ admits at least one fixed point. Therefore, x0 is a projected solution of
(MQEP) by Lemma 6.

Finally, the existence of projected solution for (QEP) is due to [3, Proposition 3.1] when
f has the upper sign property and part 3 of Proposition 2 if − f is pseudomonotone. ��
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As a consequence of Theorem 4 we recover the following result.

Corollary 7 [3, Theorem 4.5] Let f : Rn ×R
n → R be a bifunction, C be a convex, compact

and non-empty subset ofRn, and K : C ⇒ C be a set-valuedmap. Suppose that the following
properties hold

1. the map K is closed and lsc with convex values, and int(K (x)) 
= ∅, for all x ∈ C;
2. f is properly quasimonotone;
3. f is semistrictly quasiconvex and lower semicontinuous with respect to its second argu-

ment;
4. for all x, y ∈ R

n and all sequence (yk)k ⊂ R
n converging to y, the following implication

holds

lim inf
k→+∞ f (yk, x) ≤ 0 ⇒ f (y, x) ≤ 0,

5. f has the upper sign property.

Then, the quasi-equilibrium problem admits a classical solution.

Proof Let the set-valued map G : Fix(K ) ⇒ R
n be defined by

G(x) = {y ∈ K (x) : f (y, x) > 0}.
It is enough to show that G is lower semicontinuous. Let V be an open subset such that
G(x) ∩ V 
= ∅ and let y ∈ G(x) ∩ V . Since int(K (x)) 
= ∅, there exists w ∈ int(K (x)) ∩ V
such that f (w, x) > 0, due to assumption 4. Now, by the lower semicontinuity of f in its
second variable, there exists U , an open subset, with x ∈ U such that f (w, x ′) > 0, for any
x ′ ∈ U , that means V ∩ G(x ′) 
= ∅. ��

As another direct consequence of Theorem 4, we have an existence result for Minty
equilibrium problems.

Corollary 8 LetC ⊂ R
n be a convex, compact and non-empty subset. Let also f : C×C → R

be a properly quasimonotone bifunction. If the set-valued map F : C ⇒ C, defined as

F(y) = {x ∈ C : f (x, y) > 0}
is lsc, then there exists a solution of (MEP).

We finish this section with Theorem 5, which is inspired by [17, Lemma 1].
Let C be a non-empty and convex subset of Rn . A set-valued map T : C ⇒ C is said to

be a KKM map if, for any x1, x2, . . . , xm ∈ C the following holds

co({x1, x2, . . . , xm}) ⊂
m⋃
i=1

T (xi ).

Given a set-valued map T : C ⇒ C , we define the set-valued map S : C ⇒ C as

S(y) = {x ∈ C : y /∈ T (x)}.
Clearly, it satisfies ∩x∈CT (x) = {y ∈ C : S(y) = ∅}.
Theorem 5 Let C be a non-empty and convex subset of Rn and T : C ⇒ C be a KKM map
such that S is lsc. If there exists K , a non-empty, convex and compact subset of C, such that
S(C) ⊂ K; then ⋂

x∈C
T (x) 
= ∅.

123



190 Journal of Global Optimization (2019) 75:177–197

Proof Due to Lemma 5, the set-valued map co(S) : C ⇒ C , which is defined as

co(S)(x) = co(S(x))

is lsc too. If S has non-empty values then, by Corollary 1, there exists x ∈ C such that
x ∈ co(S)(x). But this contradicts the fact that T is a KKM map. Hence, there exists y ∈ C
such that S(y) = ∅. ��

Notice that Theorem 5 cannot be deduced from [17, Lemma 1]. On the other hand, we
can see that Corollary 8 is also a consequence of Theorem 5.

Remark 9 It is important to notice that we can generalize the concept of projected solution
if we introduce a set-valued map P from R

n to C with similar properties of the projection.

5 Applications

In this section, as was mentioned earlier, we consider applications to the study of solutions
of three particular problems. The first one is a special optimization problem known as a
quasi-optimization problem, the second one is a quasi-variational inequality problem, and
finally, the third one is a generalized Nash equilibrium problem. We will establish sufficient
conditions to guarantee the existence of projected solutions for these problems, which were
introduced by Aussel et al. [6].

5.1 Quasi-optimization

Given a real-valued function h : Rn → R and a set-valued map K : C ⇒ C , where C is a
subset of Rn , the quasi-optimization problem (QOpt) is described as

find x0 ∈ K (x0) such that x0 ∈ argminz∈K (x0) h(z). (QOpt)

The terminology of quasi-optimization problem comes from [20] (see formula (8.3) and
Proposition 12) and has been recently used in [1,13,16]. It emphasizes the fact that it is not
a standard optimization problem since the constraint set depends on the solution, and it also
highlights the parallelism to quasi-equilibrium problems.

As in [6], a point x0 ∈ C is said to be a projected solution of the QOpt if there exists
z0 ∈ argminz∈K (x0) h(z) such that x0 ∈ PC (z0).

Using a reformulation as quasi-equilibrium problem, similar to the one in [13], we will
characterize the projected solutions of (QOpt). In that sense, associated to h, let us define
the bifunction f h : Rn × R

n → R as

f h(x, y) = h(y) − h(x).

Clearly, f h vanishes on the diagonal of Rn × R
n . The following lemma follows from the

definition of f h .

Lemma 8 Let x0 ∈ C. Then, x0 is a projected solution of (QOpt) if and only if, x0 is a
projected solution of (QEP) associated to f h and K .

We now show the existence of projected solutions for (QOpt) without the continuity nor
the quasiconvexity of h, which is a consequence of Theorem 4 and it generalizes [6, Theorem
4.1].
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Theorem 6 Let C be a closed, convex and non-empty subset of Rn, let h : Rn → R be a
function and let K : C ⇒ R

n be a set-valued map such that K (C) is relatively compact. If
the following assumptions hold

1. K is lsc with convex values;
2. the set D = {(x, z) ∈ C × R

n : z ∈ K (x) and x ∈ PC (z)} is closed;
3. the set-valued map H : D ⇒ R

n defined as

H(x, z) = {y ∈ K (x) : h(z) > h(y)}
is lsc with convex values;

then, there exists a projected solution of (QOpt).

Notice that under continuity of h and lower semicontinuity of K , the set-valued map H is
lsc too. However, the converse is not true in general as we can see in the following example.

Example 3 Let h : R → R be the function defined as

h(x) =
⎧⎨
⎩
x, x < 1
2, x = 1
x + 2, x > 1

which is clearly quasiconvex but not continuous. Now, consider the constraint map K : C ⇒
C defined as K (x) = C = [0, 2]. It is clear that K is lsc with convex values. Moreover, it is
not difficult to verify that the set-valued map H : C ⇒ C , defined by

H(x) = {y ∈ C : h(x) > h(y)} = [0, x]
is lsc.

We can see that under quasiconvexity of h, if K is convex valued, then H is convex valued
too. However, the following example shows us that the converse does not hold in general.

Example 4 Let h : R → R be a function and let K : [0, 2] ⇒ [0, 2] be a set-valued map
both defined by

h(x) =
{ |x − 1

2 |, x ≤ 1

|x − 3
2 |, 1 < x

and K (x) =
⎧⎨
⎩
[1/2, 1] ∪ {x}, 0 ≤ x < 1/2
[x, 1] , 1/2 ≤ x ≤ 1
[1, x] , 1 < x ≤ 2.

Figure 1 shows the graphs of h and K . It is clear that the map H : [0, 2] ⇒ [0, 2], defined
as

H(x) = {y ∈ K (x) : h(y) < h(x)}
has convex values. However, neither h is quasiconvex nor K is convex valued.

5.2 Quasi-variational inequalities

Let C be a non-empty subset of Rn and T , K two set-valued maps T : R
n ⇒ R

n and
K : C ⇒ R

n . As in [6], a point x0 ∈ C is said to be a projected solution of the quasi-
variational inequality if, there exists z0 ∈ X such that

1. x0 is a projection of z0 onto C , x0 ∈ PC (z0);
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Fig. 1 Graphs of h and K

2. z0 is a solution of the Stampacchia variational inequality associated to T and K (x0), that
is, z0 ∈ K (x0) and

there exists z∗0 ∈ T (z0) such that 〈z∗0, y − z0〉 ≥ 0, for all y ∈ K (x0).

Also, x0 ∈ C is said to be a projected solution of the Minty quasi-variational inequality
if, there exists z0 ∈ X such that

1. x0 is the projection of z0 onto C , x0 ∈ PC (z0);
2. z0 is a solution of the Minty variational inequality associated to T and K (x0), that is,

z0 ∈ K (x0) and

for all y ∈ K (x0) and for all y∗ ∈ T (y), 〈y∗, y − z0〉 ≥ 0.

It is clear that under pseudomonotonicity every projected solution of the Stampacchia
variational inequality is a projected solution of theMinty variational inequality. The converse
holds if we assume the upper sign-continuity, see for instance [2,5].

The following lemma establishes the relationship between the projected solution of a
(Minty) quasi-variational inequality and the projected solution of a (Minty) quasi-equilibrium
problem. The proof is a direct consequence of the definitions.

Lemma 9 Let C be a subset of Rn, T : Rn ⇒ R
n be a set-valued map with compact values

and K : C ⇒ R
n be a set-valuedmap. Any projected solution of the (Minty) quasi-variational

inequality associated to T and K is a projected solution of the (Minty) quasi-equilibrium
problem associated to fT and K , where fT is defined as (1). And conversely.

In [6], the authors established two results on the existence of projected solutions for
quasi-variational inequality problems on finite dimensional spaces. They used generalized
monotonicity, specifically pseudomonotonicity and quasimonotonicity, for their proof. In a
similar spirit, we present another existence result using proper quasimonotonicity.

Theorem 7 Let T : Rn ⇒ R
n be a set-valued map with compact values, C be a compact,

convex and non-empty subset of Rn, and K : C ⇒ R
n be a set-valued map. If the following

assumptions hold

1. K is closed and lsc with non-empty and convex values;
2. K (C) is compact;
3. T is properly quasimonotone;
4. {(x, y) ∈ K (C) × K (C) : supx∗∈T (x)〈x∗, y − x〉 ≤ 0} is closed;
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then, the Minty quasi-variational inequality admits at least one projected solution. More-
over, if T is upper sign-continuous, then the Stampacchia quasi-variational inequality has a
projected solution.

Proof Clearly, fT (defined as (1)) and K satisfy the conditions of Theorem 4. The result
follows from Lemma 9. ��

As a direct consequence of the previous theorem, we have the following result on the
existence of solutions to the quasi-variational inequality.

Corollary 9 Let T : Rn ⇒ R
n be a set-valued map with compact values, C be a compact,

convex and non-empty subset of Rn, and K : C ⇒ C be a set-valued map. If the following
assumptions hold

1. K is closed and lower semicontinuous with convex values;
2. T is properly quasimonotone;
3. T is upper sign-continuous;
4. {(x, y) ∈ C × C : supx∗∈T (x)〈x∗, y − x〉 ≤ 0} is closed;
then, the Stampacchia quasi-variational inequality admits at least one solution.

Remark 10 Here a few remarks are needed.

1. Theorem 7 is also a consequence of Corollary 6, and hence, it works in Banach spaces,
where T could be considered with weak∗-compact values.

2. An analogous result to the previous corollary was proved in [1, Proposition 3.5], where
they did not require our assumption 4. Instead, they assumed the following technical
condition: for all xα → x and all yα → y

lim inf sup
x∗
α∈T (xα)

〈x∗
α, yα − xα〉 ≤ 0 ⇒ sup

x∗∈T (x)
〈x∗, y − x〉 ≤ 0. (4)

This condition implies assumption 4 in Corollary 9, but it is stronger. Indeed, consider
for instance the set-valued map T : R ⇒ R, defined by

T (x) =
{ {x}, x 
= 0

{1}, x = 0
,

which satisfies assumption 4 in Corollary 9. However, for xn = 1/n and yn = 1, for all
n ∈ N, we have

lim inf〈xn, yn − xn〉 = 0 and 〈1, 1 − 0〉 > 0.

Thus, it fails to satisfy implication (4).

Another result on the existence of projected solutions for quasi-variational inequality
problems without generalized monotonicity is given below.

Theorem 8 Let C be a convex, compact and non-empty subset of Rn and consider the set-
valued maps K : C ⇒ R

n and T : Rn ⇒ R
n. Assume that

1. K is lsc with non-empty convex values;
2. K (C) is compact;
3. the set {(x, z) ∈ C × R

n : z ∈ K (x) and x ∈ PC (z)} is closed;
4. the set {(x, y) ∈ R

n × R
n : supx∗∈T (x) 〈x∗, y − x〉 ≥ 0} is closed.
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Then, the Stampacchia quasi-variational inequality has a projected solution.

Proof Clearly, fT (defined as (1)) and K satisfy the conditions of Theorem 3. The result
follows from Lemma 9. ��

The following examples show that Theorems 7 and 8 are independent.

Example 5 Let K : [−1, 1] ⇒ R be a set-valued map and T : R → R be a single-valued
map defined as

K (x) = [−3, 0] and T (x) =
{−1, x < 0
1, x ≥ 0

.

Clearly, K is closed and lsc with convex values, and T is properly quasimonotone. It is not
difficult to see that the set

{(x, y) ∈ [−3, 0] × [−3, 0] : 〈T (x), y − x〉 ≤ 0}
is closed. However the following set

{(x, y) ∈ R × R : 〈T (x), y − x〉 ≥ 0}
is not closed. Hence, we can use Theorem 7 in order to guarantee the existence of projected
solutions.

Example 6 Let K : [0, 1] ⇒ R and T : R ⇒ R be set-valued maps defined by

K (x) =
{ ](x + 1)/2, 2], x ∈ [0, 1[
[1, 2] , x = 1

and T (x) = {−1, 1}, for all x ∈ R. Clearly, T is not properly quasimonotone and K is lsc
with convex values, but it is not closed. On the other hand,

{(x, y) ∈ R × R : sup
x∗∈T (x)

〈
x∗, y − x

〉 ≥ 0} = R × R

and, as the projection onto C = [0, 1] is single valued and continuous, we have

{(x, z) ∈ [0, 1] × R : z ∈ K (x) and x ∈ PC (z)} = {1} × [1, 2].
Therefore, the existence of projected solutions is due to Theorem 8 and not Theorem 7.

5.3 GNEPs

AgeneralizedNash equilibriumproblem (GNEP) consists of p players. Eachplayerν controls
the decision variable xν ∈ Cν , where Cν is a non-empty convex and closed subset of Rnν .
We denote by x = (x1, . . . , x p) ∈ ∏p

ν=1 Cν = C the vector formed by all these decision
variables and by x−ν , we denote the strategy vector of all the players different from player
ν. The set of all such vectors will be denoted by C−ν . We sometimes write (xν, x−ν) instead
of x in order to emphasize the ν-th player’s variables within x . Note that this is still the
vector x = (x1, . . . , xν, . . . , x p), and the notation (xν, x−ν) does not mean that the block
components of x are reordered in such a way that xν becomes the first block. Each player ν

has an objective function θν : C → R that depends on all player’s strategies. Each player’s
strategy must belong to a set identified by the set-valued map Kν : C−ν ⇒ Cν in the sense
that the strategy space of player ν is Kν(x−ν), which depends on the rival player’s strategies
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x−ν . Given the strategy x−ν , player ν chooses a strategy xν such that it solves the following
optimization problem

min
xν

θν(x
ν, x−ν), subject to xν ∈ Kν(x

−ν), (5)

for anygiven strategyvector x−ν of the rival players. The solution set of problem (5) is denoted
by Solν(x−ν). Thus, a generalized Nash equilibrium is a vector x̂ such that x̂ν ∈ Solν(x̂−ν),
for any ν.

Suppose that n and nν are natural numbers that satisfy n = ∑p
ν=1 nν . For any ν ∈

{1, 2, . . . , p}, let Cν be a non-empty subset of Rnν , and let Kν : C−ν ⇒ R
nν and θν : Rn →

R, be set-valued maps. As in [6], a vector x̂ of C is said to be a projected solution of the
generalized Nash equilibrium problem if, there exists ẑ ∈ R

n such that:

1. x̂ is a projection of ẑ onto C ;
2. ẑ is a solution of the Nash equilibrium problem defined by all functions θν , where ν ∈

{1, 2, . . . , p}, and the constraint sets Kν(x̂), ν ∈ {1, 2, . . . , p}, that is, for any ν, ẑν ∈
Kν(x̂−ν) is a solution of the following optimization problem

min
zν

θν(z
ν, ẑ−ν), subject to zν ∈ Kν(x̂

−ν). (6)

Associated to a GNEP, there is a bifunction f N I : Rn × R
n → R, defined by

f N I (x, y) =
p∑

ν=1

{θν(y
ν, x−ν) − θν(x

ν, x−ν)},

which is called Nikaidô–Isoda bifunction and was introduced in [29]. This bifunction has
a simple interpretation. Suppose that x and y are two feasible points for the GNEP. Each
summand in the definition represents the improvement in the objective function of player ν

when he changes his action from xν to yν , while all the other players stick to the choice x−ν .
Additionally, we define the set-valued map K : C ⇒ R

n as

K (x) =
p∏

ν=1

Kν(x
−ν).

Now, we can characterize all projected solution of a GNEP in the following result.

Lemma 10 A vector x̂ is a projected solution of a GNEP if and only if, it is a projected
solution of (QEP) associated to f N I and K .

Proof Clearly, every projected solution of aGNEP is a projected solution of (QEP) associated
to f N I and K . Conversely, if x̂ ∈ C and there exists ẑ ∈ K (x) such that x̂ ∈ PC (ẑ), and

f N I (ẑ, y) ≥ 0, for all y ∈ K (x̂), (7)

then, for all zν ∈ Kν(x̂−ν), the vector (zν, ẑ−ν) ∈ K (x̂) and the inequality in (7) becomes

θν(ẑ
ν, ẑ−ν) ≤ θν(z

ν, ẑ−ν),

that is, ẑν is a solution of (6). ��
Thanks to Lemma 10, we can deduce fromTheorem 3 the following result on the existence

of projected solutions of a GNEP, which generalizes [6, Theorem 4.2].
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Theorem 9 For any ν ∈ {1, 2, . . . , p}, let Cν be a non-empty, closed and convex subset of
R
nν , θν : Rn → R be a function and Kν : C−ν ⇒ R

n−nν be a set-valued map. Then, the
GNEP admits a projected solution if

1. for each ν, θν is continuous and convex with respect to the xν variable;
2. for each ν, the map Kν is lsc with non-empty and convex values, and Kν(C) is relatively

compact;
3. the set D = {(x, z) ∈ C × R

n : x ∈ PC (z) and z ∈ K (x)} is closed.
Proof It is enough to see that the set-valued map R : D ⇒ R

n , defined as

R(x, z) = {y ∈ K (x) : f N I (z, y) < 0}
is lsc. The result follows from Theorem 3. ��
Remark 11 If in the previous theorem we add the closeness of the graph of each constraint
map, then assumption 3 holds. Moreover, it is true in Banach spaces. The existence results
for generalized Nash equilibrium problems for infinite dimensional spaces has been recently
studied, see for instance [4,10,14]

We finish this subsection with the following result, which is a consequence of Theorem 9.

Corollary 10 [15, Theorem 2.2] For any ν ∈ {1, 2, . . . , p}, let Cν be a non-empty, compact
and convex subset of Rnν , θν : Rn → R be a function and Kν : C−ν ⇒ Cν be a set-valued
map. Then, the GNEP admits a solution if

1. for each ν, θν is continuous and convex with respect to the xν variable;
2. for each ν, the map Kν is lsc with non-empty and convex values;
3. Fix(K ) is closed.
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