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Abstract
In this paper,we showhowa special class of inverse optimal control problemsof elliptic partial
differential equations can be solved globally. Using the optimal value function of the under-
lying parametric optimal control problem, we transfer the overall hierarchical optimization
problem into a nonconvex single-level one. Unfortunately, standard regularity conditions like
Robinson’s CQ are violated at all the feasible points of this surrogate problem. It is, however,
shown that locally optimal solutions of the problem solve a Clarke-stationarity-type system.
Moreover, we relax the feasible set of the surrogate problem iteratively by approximating the
lower level optimal value function from above by piecewise affine functions. This allows us
to compute globally optimal solutions of the original inverse optimal control problem. The
global convergence of the resulting algorithm is shown theoretically and illustrated by means
of a numerical example.
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1 Introduction

The aim of the inverse problem considered in this paper is the determination of finitely
many parameters in the cost function of a given optimal control problem of a linear (par-
tial) differential equation such that the resulting optimal state and control minimize a given
superordinate functional, e.g. the distance to given data functions, see Example 2.1. In the
context of human locomotion, similar inverse problems of ordinary differential equations are
considered in [2,3,28].

Due to their structure, the inverse problems of interest turn out to be so-called bilevel opti-
mal control problems, i.e. hierarchical optimization problems with two decision levels where
at least one decision maker has to solve an optimal control problem, see e.g. the monographs
[4,7,10,32] and [19,25,33,34] for detailed introductions to bilevel programming and optimal
control (of ordinary as well as partial differential equations), respectively. Some more appli-
cations of bilevel optimal control can be found in [12,17,22,24] while necessary optimality
conditions are the subject in e.g. [5,26,27,35,36]. First steps regarding inverse optimal control
of partial differential equations were carried out recently, see [16,20]. Therein, the authors
heavily exploit the uniqueness of the lower level solution for any fixed upper level variable
and the properties of the associated solution operator. Note that optimal control problems
with variational inequality constraints like the optimal control of the obstacle problem can be
interpreted as bilevel optimal control problems as well, see [15] and the references therein.

To the best of our knowledge, there mainly exist methods for the numerical handling
of inverse optimal control problems of ordinary differential equations, see e.g. [2,3,17,18].
These algorithms focus on the replacement of the lower level optimal control problem by
means of optimality conditions. This, however, is a delicate approach since the resulting
surrogate problem is not necessarily equivalent to the original bilevel programming problem
anymore, see [8], where the authors deal with this issue in the finite-dimensional situation.
Furthermore, there is an uncomfortable lack of convergence results.

In this paper, we will strike a different path to derive necessary optimality conditions and
to state an algorithm which can be used to solve a special class of inverse optimal control
problems of (partial) differential equations. For that purpose, the optimal value function of
the parametric optimal control problem (OC(x)) is used. The idea of utilizing value functions
in hierarchical programming dates back to [30]. Here, we first exploit the aforementioned
optimal value function in order to transfer the given hierarchical model (IOC) into an equiv-
alent single-level program. Although the resulting nonconvex surrogate problem does not
satisfy standard constraint qualification, see Lemma 5.1 and Example 5.1, necessary opti-
mality conditions of Clarke-stationarity-type can be derived via a relaxation approach, see
Theorem 5.2. In our setting, the lower level value function is convex which allows us to
compute an upper approximation which is piecewise affine. This idea is taken from [9].
Afterwards, we can decompose the obtained surrogate problem into finitely many convex
optimal control problems which enables us to solve the relaxed surrogate problem globally.
In an iterative way, the upper approximation of the lower level value function is improved,
see Algorithm 1 for details. Finally, it is shown that the proposed algorithm converges to a
global solution of the underlying inverse optimal control problem, see Theorem 6.1.

The remaining parts of the paper are organized as follows: In Sect. 2, the precise problem
statement is presented.Afterwards,we clarify our notation and comment on some preliminary
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results in Sect. 3. Section 4 is dedicated to the study of the properties of the lower level optimal
value function. In Sect. 5, we transfer the original inverse optimal control problem into an
equivalent single-level optimal control problem by exploiting the aforementioned optimal
value function. Furthermore, we discuss the properties of the resulting surrogate problem.
Using a relaxation approach, necessary optimality conditions for (IOC) are derived for the
special setting where Uad is a box-constrained set in L2(Ω). Finally, we present a solution
algorithm in Sect. 6. Its global convergence is shown theoretically. An illustrative example is
included in order to visualize the obtained theory. Some concluding remarks and perspectives
of future research are presented in Sect. 7.

2 Problem statement

We consider the parametric optimal control problem (also called lower level problem)

f (x, y, u) := 1
2 ‖C[y] − P[x]‖2M + σ

2 ‖u − Q[x]‖2U → min
y,u

A[y] − B[u] = 0

u ∈ Uad

(OC(x))

whose parameters x ∈ R
n have to be identified in the superordinate upper level optimization

problem

F(x, y, u) → min
x,y,u

x ∈ S

(y, u) ∈ Ψ (x).

(IOC)

Therein, Ψ : Rn ⇒ Y × U denotes the solution set mapping of the parametric optimization
problem (OC(x)) and S ⊂ R

n is a nonempty polytope, i.e. a compact polyhedron.
Before we comment on the inverse optimal control problem (IOC) in more detail, we state

the fundamental assumptions of this paper.

Assumption 2.1 Let Y , M, and U be Hilbert spaces. Furthermore, the objective functional
F : Rn × Y × U → R is assumed to be continuously Fréchet differentiable and convex.
The set S ⊂ R

n is a nonempty polytope. Moreover, we fix an isomorphism A ∈ L
[
Y,Y�

]

as well as continuous linear operators B ∈ L
[
U,Y�

]
, C ∈ L [Y,M], P ∈ L

[
R

n,M
]
, and

Q ∈ L
[
R

n,U
]
. The set of feasible controls Uad ⊂ U is assumed to be nonempty, closed, and

convex. Finally, the regularization parameter σ > 0 is fixed.

Due to these assumptions, the lower level objective function f : Rn × Y × U → R is
continuous and (jointly) convex.

Next, we present a specific setting of the data which shows the close relationship of (IOC)
and inverse control.

Example 2.1 Here, we comment on the inverse optimal control of Poisson’s equation. There-
fore, let Ω ⊂ R

d be a bounded domain and choose the spaces Y := H1
0 (Ω) as well as

M = U := L2(Ω). For some observed state yo ∈ L2(Ω) and some observed control
uo ∈ L2(Ω), we consider the tracking-type objective

∀(x, y, u)∈Rn × H1
0 (Ω) × L2(Ω) : F(x, y, u) := 1

2 ‖y − yo‖2L2(Ω)
+ 1

2 ‖u − uo‖2L2(Ω)
.
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We set S := Δn where Δn represents the standard simplex, i.e.

Δn :=
{

x ∈ R
n
∣
∣
∣
∣ x ≥ 0,

n∑

i=1

xi = 1

}

.

Furthermore, let C be the continuous embedding H1
0 (Ω) ↪→ L2(Ω) and let Q be the zero

operator. For fixed form functions f1, . . . , fn ∈ L2(Ω), we define P ∈ L
[
R

n, L2(Ω)
]
by

means of

∀x ∈ R
n : P[x] :=

n∑

i=1

xi fi ,

i.e. the objective of the lower level problem (OC(x)) takes the following form:

R
n × H1

0 (Ω) × L2(Ω) � (x, y, u) 	→ 1
2

∥
∥y − ∑n

i=1xi fi
∥
∥2

L2(Ω)
+ σ

2 ‖u‖2L2(Ω)
∈ R.

The operator B ∈ L
[
L2(Ω), H−1(Ω)

]
, where H−1(Ω) denotes the dual space of H1

0 (Ω),
is the canonical embedding, i.e., the adjoint of C. Finally, A ∈ L

[
H1
0 (Ω), H−1(Ω)

]
equals

the negative Laplace operator, i.e., we have 〈A[y], v〉H1
0 (Ω) = ∫

Ω
∇ y(ω) · ∇v(ω) dω for all

y, v ∈ H1
0 (Ω).

In [26], the author studies a bilevel programming problemwhich is closely related to (IOC)
in terms of necessary optimality conditions. Exploiting the fact that under the postulated
assumptions, (OC(x)) possesses a unique optimal solution for any instance of the parameter
x ∈ R

n , the bilevel program is transferred into a single-level problem by inserting the
solution mapping of the lower level problem into the upper level objective. It is shown that
the lower level solution mapping is directionally differentiable as long as Uad is polyhedric
or, more general, if the projection onto Uad is directionally differentiable in the sense of
Haraux, see [14]. Thus, the author is capable of deriving necessary optimality conditions
for the bilevel programming problem via its implicit reformulation. However, the necessary
constraint qualifications may fail to hold in the special setting (IOC) since the upper level
variable is finite dimensional while the lower level variables are in general not.

Here, we want to use the so-called optimal value function ϕ : Rn → R of the parametric
optimization problem (OC(x)) defined by

∀x ∈ R
n : ϕ(x) := min

{
1
2 ‖C[y] − P[x]‖2M + σ

2 ‖u − Q[x]‖2U
∣∣∣∣
A[y] − B[u] = 0

u ∈ Uad

}

in order to solve problem (IOC) globally. It is well known that the surrogate optimization
problem

F(x, y, u) → min
x,y,u

x ∈ S

f (x, y, u) − ϕ(x) ≤ 0

A[y] − B[u] = 0

u ∈ Uad,

(OVR)

is equivalent to the model problem (IOC), see [7]. Utilizing value functions in bilevel pro-
gramming dates back to [30].
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3 Notation and preliminaries

3.1 Notation

In this paper, we equip R
n , the space of all real vectors with n ∈ N components, with the

Euclidean norm |·|2. The Euclidean inner product of two vectors x, y ∈ R
n is denoted by x ·y.

The sets R+
0 and R

−
0 represent the nonnegative and nonpositive real numbers, respectively.

For some arbitrary Banach space X , ‖·‖X denotes its norm. The set Bε
X (x̄) is the closed

ε-ball around x̄ ∈ X w.r.t. the norm in X . Let X � be the (topological) dual of X . Then,
〈·, ·〉X : X � × X → R expresses the associated dual pairing. For some set A ⊂ X , conv A,
cone A, cl A, int A, and ∂ A denote the convex hull of A, the smallest cone containing A, the
closure of A, the interior of A, and the boundary of A, respectively. Furthermore, we define
the polar cone of A by means of

A◦ :=
{

x� ∈ X �

∣
∣
∣
∣∀x ∈ A : 〈

x�, x
〉
X ≤ 0

}
.

Note that A◦ is a nonempty, closed, convex cone. Now, assume that A is convex and fix a
point x̄ ∈ A. We define the radial cone, the tangent (or Bouligand) cone, and the normal cone
(in the sense of convex analysis) to A at x̄ via

RA(x̄) := cone(A − {x̄}), TA(x̄) := clRA(x̄), NA(x̄) := TA(x̄)◦.

Note that NA(x̄) = (A − {x̄})◦ holds.
For some other Banach space Y , L [X ,Y] is the Banach space of all bounded, linear

operators mapping from X to Y . For some operator F ∈ L [X ,Y], F� ∈ L
[
Y�,X �

]
denotes

its adjoint. If X and Y are Hilbert spaces, then F� ∈ L [Y,X ] can also denote the so-called
Hilbert space adjoint of F (which is obtained from the usual adjoint operator by identifying
the spacesX and Y with their respective dual spaces via the associated Riesz isomorphisms).
The operators O ∈ L [X ,Y] and IX ∈ L [X ,X ] represent the zero-operator (which maps
all elements of X to the zero in Y) and the identity operator of X , respectively. For Banach
spaces X1, . . . ,Xn and Y1, . . . ,Ym as well as operators Fi, j ∈ L

[
X j ,Yi

]
, i = 1, . . . , m,

j = 1, . . . , n,wedefine the associatedproduct operator inL [X1 × · · · × Xn,Y1 × · · · × Ym]
by

⎡

⎢
⎣

F1,1 . . . F1,n
...

...

Fm,1 . . . Fm,n

⎤

⎥
⎦

⎛

⎜
⎝

x1
...

xn

⎞

⎟
⎠ :=

⎛

⎜
⎝

∑n
j=1F1, j [x j ]

...
∑n

j=1Fm, j [x j ]

⎞

⎟
⎠

for all (x j )
n
j=1 ∈ X1 × · · · ×Xn . For a Hilbert spaceH, an operator G ∈ L

[
H,H�

]
is called

elliptic (or coercive) if there is a constant α > 0 such that

∀x ∈ H : 〈G[x], x〉H ≥ α ‖x‖2H
Recall that a mapping J : X → Y is called Fréchet differentiable at x̄ ∈ X if there exists

an operator J ′(x̄) ∈ L [X ,Y], which satisfies

lim‖d‖X ↘0

∥∥J (x̄ + d) − J (x̄) − J ′(x̄)[d]∥∥Y
‖d‖X = 0.

In case of existence, J ′(x̄) is called the Fréchet derivative of J at x̄ . If the mappingX � x 	→
J ′(x) ∈ L [X ,Y] is well-defined and continuous in a neighborhood of x̄ , then J is said to be
continuously Fréchet differentiable at x̄ .
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Finally, we would like to mention that for an arbitrary domain Ω ⊂ R
d , L2(Ω) is used to

represent the usual Lebesgue space of (equivalence classes of) measurable, square-integrable
functions. As usual, H1

0 (Ω) denotes the closure of C∞
0 (Ω), the set of all arbitrarily often

continuously differentiable functions with compact support in Ω , w.r.t. the common H1-
Sobolev norm, see [1] for details. We use H−1(Ω) := H1

0 (Ω)� for its dual.

3.2 Preliminary results

Now, we take a look at the optimization problem

j(x) → min
x

J (x) ∈ C
(P)

where j : X → R as well as J : X → Y are continuously Fréchet differentiable mappings
between Banach spaces X and Y while C ⊂ Y is a nonempty, closed, convex set. A feasible
point x̄ ∈ X of (P) satisfies the so-called Karush-Kuhn-Tucker (KKT for short) conditions
if the following holds:

∃λ ∈ NC (J (x̄)) : j ′(x̄) + J ′(x̄)�[λ] = 0.

If x̄ is a locally optimal solution of (P) which fulfills Robinson’s constraint qualification, i.e.
the condition

J ′(x̄)[X ] − RC (J (x̄)) = Y,

is satisfied, then the KKT-conditions are valid, see [6, Theorem 3.9]. In the absence of
Robinson’s constraint qualification, this result does not hold in general. Further information
on constraint qualifications and necessary optimality conditions addressing optimization
problems in Banach spaces can be found in [6,31,38].

In order to show the equivalence of certain constraint qualifications of Robinson-type in
the setting of product structures, the following lemma will be useful. Similar results can be
found in [26, Lemma 3.4, Corollary 3.5].

Lemma 3.1 Let Banach spaces X1, X2, Y1, and Y2 as well as sets U ⊂ X2 and V ⊂ Y1 be
given. Moreover, let A ∈ L [X1,Y1], B ∈ L [X2,Y1], C ∈ L [X1,Y2], and D ∈ L [X2,Y2] be
linear operators such that C is an isomorphism. We consider the following conditions:

[
A B
C D

](
X1

U

)
−

(
V
{0}

)
=

(
Y1

Y2

)
, (1a)

(
A ◦ C−1 ◦ (−D) + B

)[U ] − V = Y1. (1b)

Then, (1a) and (1b) are equivalent.

Proof We show both implications separately.
“�⇒”: Assume that (1a) is valid and choose y ∈ Y1. Then, we find x ∈ X1, u ∈ U , and v ∈ V
such thatA[x]−B[u]−v = y andC[x]+D[u] = 0 are valid. Observing x = (C−1◦(−D))[u],
we obtain (A ◦ C−1 ◦ (−D) + B)[u] − v = y. Consequently, (1b) holds.
“⇐�”: Next, we suppose that (1b) is valid and choose y1 ∈ Y1 as well as y2 ∈ Y2 arbitrarily.
Due to the validity of (1b), we find ũ ∈ U and ṽ ∈ V such that
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(A ◦ C−1 ◦ (−D) + B)[ũ] − ṽ = y1 − (A ◦ C−1)[y2]
holds true. Let us set x̃ := C−1[y2 − D[ũ]]. Then, we have C[x̃] + D[ũ] = y2 and

A[x̃] + B[ũ] − ṽ = (A ◦ C−1)[y2] + (
A ◦ C−1 ◦ (−D)

)[ũ] + B[ũ] − ṽ

= (A ◦ C−1)[y2] + y1 − (A ◦ C−1)[y2] = y1.

This shows that (1a) holds. ��

4 Properties of the lower level optimal value function

The following result follows by standard arguments which are, nevertheless, included for the
readers convenience.

Lemma 4.1 There are Lipschitz continuous functions ψ y : Rn → Y and ψu : Rn → U which
satisfy Ψ (x) = {(ψ y(x), ψu(x))} for all x ∈ R

n, i.e. the solution set mapping of (OC(x)) is
single-valued and Lipschitz continuous.

Proof Let us first introduce the control-to-observation operator S := C◦A−1 ◦B ∈ L [U,M]
of the lower level optimal control problem (OC(x)). Eliminating the state variable y, the so-
called reduced formulation of (OC(x)) is given by

1
2 ‖S[u] − P[x]‖2M + σ

2 ‖u − Q[x]‖2U → min
u

u ∈ Uad.

Observing that its objective function is continuous, convex, and coercive for any choice of
x while its feasible set is nonempty, closed, and convex, standard arguments show that the
reduced problem possesses a unique optimal solution ψu(x) for each x ∈ R

n . Defining
ψ y := A−1 ◦ B ◦ ψu , we can deduce Ψ (x) = {(ψ y(x), ψu(x))}.

It is easily seen that the globally optimal solution ψu(x) of the reduced problem is the
uniquely determined solution of the following variational inequality of the first kind:

find u ∈ Uad : 〈
(S� ◦ S + σIU )[u], v − u

〉
U ≥ 〈

(S� ◦ P + σQ)[x], v − u
〉
U ∀v ∈ Uad.

Noting that the operator S� ◦ S + σIU is elliptic with constant σ > 0 it follows that

∀x, x ′ ∈ R
n : ∥∥ψu(x) − ψu(x ′)

∥∥U ≤ σ−1
∥∥(S� ◦ P + σQ)[x − x ′]∥∥U

≤ σ−1
∥∥S� ◦ P + σQ

∥∥
L[Rn ,U]

∣∣x − x ′∣∣
2 ,

see [23, Theorem II.2.1]. Thus, ψu is Lipschitz continuous. Exploiting the representation
ψ y = A−1 ◦ B ◦ ψu , the Lipschitz continuity of ψ y follows immediately. ��

As a consequence of Lemma 4.1, the continuity of F , and the compactness of S ⊂ R
n ,

we obtain the following corollary from Weierstraß’ famous theorem.

Corollary 4.1 The inverse optimal control problem (IOC) possesses a globally optimal solu-
tion.

Note that in the remaining parts of the paper, we will exploit the notion of ψ y : Rn → Y
and ψu : Rn → U as introduced in Lemma 4.1.

In the following, we study the properties of the optimal value function ϕ in more detail.
First, we show that ϕ is a convex function. The essentials of the proof date back to [11,
Proposition 2.1].
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Lemma 4.2 The optimal value function ϕ is convex.

Proof Obviously, the function f is convex w.r.t. all variables. Defining

M := {(y, u) ∈ Y × Uad |A[y] − B[u] = 0} ,

we easily see that

∀x ∈ R
n : ϕ(x) = min

y,u
{ f (x, y, u) | (y, u) ∈ M}

is valid. Clearly, M is convex.
Choose x̃, x ′ ∈ R

n aswell asα ∈ [0, 1] arbitrarily. Let us fix the corresponding lower level
solutions (ỹ, ũ) := (ψ y(x̃), ψu(x̃)) and (y′, u′) := (ψ y(x ′), ψu(x ′)). The joint convexity
of f as well as the obvious fact αM + (1 − α)M = M lead to

ϕ(αx̃ + (1 − α)x ′) = min
y,u

{ f (αx̃ + (1 − α)x ′, y, u) | (y, u) ∈ M}
= min

y1,y2,u1,u2
{ f (α(x̃, y1, u1) + (1 − α)(x ′, y2, u2)) | (y1, u1), (y2, u2) ∈ M}

≤ min
y1,y2,u1,u2

{α f (x̃, y1, u1) + (1 − α) f (x ′, y2, u2) | (y1, u1), (y2, u2) ∈ M}

= α f (x̃, ỹ, ũ) + (1 − α) f (x ′, y′, u′)
= αϕ(x̃) + (1 − α)ϕ(x ′).

This completes the proof. ��

For later purposes, we formulate the KKT-system of the lower level problem (OC(x)) for
a feasible point (y, u) ∈ Y × U of (OC(x)) for fixed parameter x ∈ R

n :

f ′
y(x, y, u) + A�[p] = C�[C[y] − P[x]] + A�[p] = 0, (2a)

f ′
u(x, y, u) − B�[p] + λ = σ(u − Q[x]) − B�[p] + λ = 0, (2b)

λ ∈ NUad(u). (2c)

It is easily seen that for fixed x ∈ R
n , y := ψ y(x), and u := ψu(x), the Lagrange multipliers

p ∈ Y and λ ∈ U� are uniquely determined. Thus, we introduce mappings φ p : Rn → Y
and φλ : Rn → U� which assign to each x ∈ R

n the respective Lagrange multipliers p
and λ which characterize the associated lower level solution (y, u). Clearly, φ p and φλ are
Lipschitz continuous since ψ y and ψu are Lipschitz continuous, see Lemma 4.1.

The next lemma shows the differentiability of ϕ. We note that this result follows partially
from [6, Theorem 4.13]. However, we included a proof for the reader’s convenience.

Lemma 4.3 The optimal value function ϕ is continuously Fréchet differentiable. At a given
point x̄ ∈ R

n, the associated Fréchet derivative is given as follows:

ϕ′(x̄) = P�[P[x̄] − C[ψ y(x̄)]] + σQ�[Q[x̄] − ψu(x̄)].

Proof Fix a reference point x̄ ∈ R
n and choose x ∈ R

n arbitrarily. For brevity, we will use
the notation

ȳ := ψ y(x̄), ū := ψu(x̄), λ̄ := φλ(x̄),

y := ψ y(x), u := ψu(x), λ := φλ(x).
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We exploit that f is a quadratic functional and that the functions ψ y and ψu are Lipschitz
continuous. Thus, we obtain

ϕ(x) − ϕ(x̄) = f (x, y, u) − f (x̄, ȳ, ū)

= f ′
x (·) (x − x̄) + f ′

y(·) (y − ȳ) + f ′
u(·) (u − ū) + O(|x − x̄ |22).

Here, (·) abbreviates the argument (x̄, ȳ, ū). By utilizing the optimality conditions of
(OC(x)), we have

B�[(A−1)�[ f ′
y(·)]] + f ′

u(·) + λ̄ = 0.

Together with y − ȳ = A−1[B[u − ū]], this yields
ϕ(x) − ϕ(x̄) = f ′

x (·) (x − x̄) + 〈−λ̄, u − ū
〉
U + O(|x − x̄ |22).

Finally, we observe

0 ≤ 〈−λ̄, u − ū
〉
U ≤ 〈

λ − λ̄, u − ū
〉
U ≤ C |x − x̄ |22

due to the definition of the normal cone and the Lipschitz continuity of ψu as well as φλ.
Together with the straightforward computation of f ′

x (·), this yields
ϕ′(x̄) = f ′

x (·) = P�[P[x̄] − C[ψ y(x̄)]] + σQ�[Q[x̄] − ψu(x̄)]
and the proof is completed. ��

5 The optimal-value-reformulation

5.1 On the lack of regularity

Exploiting Lemma 4.3, we know that the optimal-value-reformulation (OVR) of (IOC) is an
optimization problem with continuously Fréchet differentiable data. However, (OVR) is still
a challenging problem due to the following observation.

Lemma 5.1 Robinson’s CQ is violated at each feasible point of (OVR).

Proof We fix an arbitrary feasible point (x̄, ȳ, ū) ∈ R
n ×Y × U of (OVR). In order to show

the lemma’s assertion, it is sufficient to construct a nontrivial singular Lagrange multiplier,
see [6, Proposition 3.16(i)].

Let us consider the smooth optimization problem

f (x, y, u) − ϕ(x) → min
x,y,u

A[y] − B[u] = 0

u ∈ Uad.

(3)

By definition of the optimal value function ϕ, its infimal value is given by 0. The feasibility of
(x̄, ȳ, ū) for (OVR) yields f (x̄, ȳ, ū)−ϕ(x̄) = 0, i.e. (x̄, ȳ, ū) is a globally optimal solution
of (3). Obviously, Robinson’s CQ is satisfied at each feasible point of problem (3). Thus, we
find p ∈ Y and η ∈ U� which satisfy

0 = f ′
x (x̄, ȳ, ū) − ϕ′(x̄),

0 = f ′
y(x̄, ȳ, ū) + A�[p],

0 = f ′
u(x̄, ȳ, ū) − B�[p] + η,

η ∈ NUad(ū).

123



306 Journal of Global Optimization (2019) 74:297–325

Thus, (0, 1, p, η) ∈ R
n × R × Y × U� is a nonvanishing singular Lagrange multiplier for

(OVR) at (x̄, ȳ, ū). Since (x̄, ȳ, ū) was an arbitrarily chosen feasible point of (OVR), the
proof is completed. ��

In [37], the authors try to overcome this well-known drawback of the optimal-value-
reformulation of finite-dimensional bilevel programming problems by penalizing the
violation of the constraint f (x, y, u) − ϕ(x) ≤ 0 in the objective function. There exist
several situations where this penalization is exact (e.g. if the lower level problem is fully
linear) and, consequently, the KKT-conditions of the optimal-value-reformulation may serve
as necessary optimality conditions for the original bilevel programming problem. However,
in our situation, the lower level problem (OC(x)) is quadratic (and possibly infinite dimen-
sional). In the following example, we show that even in the finite-dimensional setting, it is
not promising to rely on the KKT-conditions of (OVR).

Example 5.1 We consider the state-reduced bilevel programming problem

x2 − u → min
x,u

x ∈ [0, 1]
u ∈ argmin

u
{(u − x)2 | u ≥ 0}.

The lower level solution operator and the lower level optimal value function are given as
stated below:

∀x ∈ R : ψu(x) =
{
0 if x < 0

x if x ≥ 0
ϕ(x) =

{
x2 if x < 0

0 if x ≥ 0.

One can easily check that the globally optimal solution of the bilevel programming problem
is given by (x̄, ū) = ( 12 ,

1
2 ). On the other hand, the KKT-conditions of the associated optimal-

value-reformulation at (x̄, ū) are given by

0 = 1 + κ + 0 · ρ,

0 = −1 + 0 · ρ + η,

κ ∈ N[0,1]( 12 ) = {0},
ρ ≥ 0,

η ∈ N
R

+
0
( 12 ) = {0}

and cannot be satisfied.

5.2 Relaxing the optimal value constraint

The violation of Robinson’s CQ at all the feasible points of (OVR) is caused by the constraint
f (x, y, u) − ϕ(x) ≤ 0 which is, in fact, fulfilled with equality for all feasible points due to
the definition of the optimal value function. Thus, a nearby idea to overcome this problem is
given by considering the relaxed problem
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F(x, y, u) → min
x,y,u

x ∈ S

f (x, y, u) − ϕ(x) ≤ εk

A[y] − B[u] = 0

u ∈ Uad,

(OVR(εk))

for a sequence of positive relaxation parameters {εk}k∈N converging to zero as k → ∞. In
the results below, we discuss the features of this relaxation approach.

Lemma 5.2 Fix k ∈ N. Then, Robinson’s CQ is valid at each feasible point of (OVR(εk)).

Proof Let (x̄, ȳ, ū) ∈ R
n ×Y ×U be a feasible point of (OVR(εk)). We consider two cases.

Case 1 f (x̄, ȳ, ū) − ϕ(x̄) = εk . Suppose on the contrary that Robinson’s CQ is violated
at (x̄, ȳ, ū). Then, we have

[
f ′
x (x̄, ȳ, ū) − ϕ′(x̄) f ′

y(x̄, ȳ, ū) f ′
u(x̄, ȳ, ū)

O A −B

]
⎛

⎝
RS(x̄)

Y
RUad(ū)

⎞

⎠ −
(
R

−
0{0}
)

�=
(
R

Y�

)
.

Exploiting the fact that A is a bijection, this leads to

[
f ′
x (x̄, ȳ, ū) − ϕ′(x̄) f ′

y(x̄, ȳ, ū) ◦ S̄ + f ′
u(x̄, ȳ, ū)

] ( RS(x̄)

RUad(ū)

)
− R

−
0 �= R

where S̄ := A−1 ◦B ∈ L [U,Y] is the solution operator of the state equation, see Lemma 3.1.
The latter is only possible if

(
f ′
y(x̄, ȳ, ū) ◦ S̄ + f ′

u(x̄, ȳ, ū)
)[RUad(ū)] ⊂ R

+
0

is valid. Clearly, this is a first order optimality condition for the optimization problem

f (x̄, S̄[u], u) → min
u

u ∈ Uad.

Noting that f is convex while S̄ is linear, the objective function of this optimization problem
is convex in u. Consequently, ū solves this problem globally. Due to the definition of S̄, we
have ū = ψu(x̄) and S̄[ū] = ȳ = ψ y(x̄). As a result, f (x̄, ȳ, ū) − ϕ(x̄) = 0 is valid. This,
however, contradicts f (x̄, ȳ, ū) − ϕ(x̄) = εk > 0.

Case 2 f (x̄, ȳ, ū) − ϕ(x̄) < εk . The condition

[
f ′
x (x̄, ȳ, ū) − ϕ′(x̄) f ′

y(x̄, ȳ, ū) ◦ S̄ + f ′
u(x̄, ȳ, ū)

] ( RS(x̄)

RUad(ū)

)
− R = R

is trivially satisfied. Thus, Lemma 3.1 shows that

[
f ′
x (x̄, ȳ, ū) − ϕ′(x̄) f ′

y(x̄, ȳ, ū) f ′
u(x̄, ȳ, ū)

O A −B

]⎛

⎝
RS(x̄)

Y
RUad(ū)

⎞

⎠ −
(
R

{0}
)

=
(
R

Y�

)

is valid as well. However, the latter equals Robinson’s CQ for (OVR(εk)) at (x̄, ȳ, ū). ��
Lemma 5.3 For each k ∈ N, the surrogate problem (OVR(εk)) possesses an optimal solution.
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Proof Let {(xl , yl , ul)}l∈N be a minimizing sequence of (OVR(εk)), i.e.

lim
l→∞ F(xl , yl , ul) = αk

where αk ∈ R ∪ {−∞} denotes the infimal value of (OVR(εk)).
Obviously, {xl}l∈N ⊂ S is bounded. Using the feasibility of (xl , yl , ul) to (OVR(εk)), we

obtain

∀l ∈ N : ‖ul − Q[xl ]‖U ≤
√

2
σ
(ϕ(xl) + εk)

which yields

∀l ∈ N : ‖ul‖U ≤
√

2
σ
(ϕ(xl) + εk) + ‖Q[xl ]‖U .

Since {xl}l∈N is bounded while ϕ is continuous, see Lemma 4.3, {ul}l∈N is bounded as
well. Furthermore, we have yl = (A−1 ◦ B)[ul ] for each l ∈ N, i.e. the continuity of
A−1 ◦ B ∈ L [U,Y] and the boundedness of {ul}l∈N yield the boundedness of {yl}l∈N. Thus,
the sequence {(xl , yl , ul)}l∈N is bounded and, therefore, possesses a weakly convergent sub-
sequence (w.l.o.g. we do not relabel this sequence) with weak limit point (x̄, ȳ, ū) since
Y and U are Hilbert spaces while R

n is finite dimensional. Particularly, we have xl → x̄ .
The closedness of S and the convexity and closedness of Uad lead to x̄ ∈ S and ū ∈ Uad.
Furthermore, A[ȳ] − B[ū] = 0 follows from the linearity and continuity of the operators A
and B. Since f is convex and continuous, it is weakly lower semicontinuous. Furthermore,
ϕ is continuous. This yields

f (x̄, ȳ, ū) − ϕ(x̄) ≤ lim inf
l→∞ f (xl , yl , ul) − lim

l→∞ ϕ(xl)

= lim inf
l→∞

(
f (xl , yl , ul) − ϕ(xl)

) ≤ εk,

i.e. (x̄, ȳ, ū) is feasible to (OVR(εk)).
Finally, since F is convex and continuous, it is weakly lower semicontinuous as well and

we obtain

F(x̄, ȳ, ū) ≤ lim inf
l→∞ F(xl , yl , ul) = αk .

Combining this observation with the feasibility of (x̄, ȳ, ū) to (OVR(εk)), we obtain that it
is a global solution of this problem. This completes the proof. ��
Lemma 5.4 Fix k ∈ N. Let (x, y, u) ∈ R

n × Y × U be a feasible point of (OVR(εk)) and
set ȳ := ψ y(x) as well as ū := ψu(x). Then, we have

‖u − ū‖U ≤ √
2εk/σ , ‖y − ȳ‖Y ≤ C

√
2εk/σ

where C > 0 is a constant independent of k, x, y, and u.

Proof Exploiting the fact that U andM are Hilbert spaces while (y, u) is feasible to (OC(x))
and (ȳ, ū) is optimal for (OC(x)), we obtain

σ ‖u − ū‖2U = σ ‖u − Q[x]‖2U − 2 〈u − ū, σ (ū − Q[x])〉U − σ ‖ū − Q[x]‖2U
≤ σ ‖u − Q[x]‖2U − 2 〈u − ū, σ (ū − Q[x])〉U − σ ‖ū − Q[x]‖2U + ‖C[y] − C[ȳ]‖2M
= σ ‖u − Q[x]‖2U − 2 〈u − ū, σ (ū − Q[x])〉U − σ ‖ū − Q[x]‖2U

+‖C[y] − P[x]‖2M − 2 〈C[y − ȳ],C[ȳ] − P[x]〉M − ‖C[ȳ] − P[x]‖2M
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= 2
(

f (x, y, u) − ϕ(x)
) − 2

(
f ′
y(x, ȳ, ū)[y − ȳ] + f ′

u(x, ȳ, ū)[u − ū]
︸ ︷︷ ︸

≥0

)

≤ 2
(

f (x, y, u) − ϕ(x)
) ≤ 2εk

which yields the first formula. The second one follows from y − ȳ = (A−1 ◦ B)[u − ū] with
C := ∥

∥A−1 ◦ B
∥
∥
L[U,Y]. ��

Theorem 5.1 For each k ∈ N, let (x̄k, ȳk, ūk) ∈ R
n × Y × U be a globally optimal solution

of (OVR(εk)). Then, the sequence {(x̄k, ȳk, ūk)}k∈N possesses a convergent subsequence
whose limit point is a globally optimal solution of (OVR) and, thus, of (IOC). Moreover,
each accumulation point of {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).

Proof Since {x̄k}k∈N ⊂ S is bounded, it possesses a convergent subsequence (w.l.o.g. we use
the same index again) with limit point x̄ which lies in S since this set is closed. Let us set
ȳ := ψ y(x̄) and ū := ψu(x̄). Obviously, (x̄, ȳ, ū) is feasible to (OVR).

Using Lemma 5.4, we find a constant C > 0 such that

∀k ∈ N : ∥
∥ūk − ψu(x̄k)

∥
∥U ≤ √

2εk/σ
∥
∥ȳk − ψ y(x̄k)

∥
∥Y ≤ C

√
2εk/σ

holds. That is why we obtain

0 ≤ lim
k→∞ ‖ūk − ū‖U ≤ lim

k→∞
(∥∥ūk − ψu(x̄k)

∥∥U + ∥∥ψu(x̄k) − ψu(x̄)
∥∥U

)

≤ lim
k→∞

(√
2εk/σ + Lu |x̄k − x̄ |2

)
= 0

where Lu > 0 denotes the Lipschitz constant of ψu , see Lemma 4.1. Particularly, {ūk}k∈N
converges to ū. Similarly, we can show that {ȳk}k∈N converges to ȳ.

Now, let (x, y, u) ∈ R
n × Y × U be feasible to (OVR). Then, it is feasible to (OVR(εk))

for all k ∈ N which yields

∀k ∈ N : F(x̄k, ȳk, ūk) ≤ F(x, y, u).

Noting that {(x̄k, ȳk, ūk)}k∈N converges strongly to (x̄, ȳ, ū)while F is continuous, we obtain
F(x̄, ȳ, ū) ≤ F(x, y, u). Since (x̄, ȳ, ū) is feasible to (OVR), it must be a globally optimal
solution of this problem.

We can reprise the above arguments in order to show that each accumulation point of the
sequence {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR). ��

If, for some k ∈ N, a globally optimal solution of (OVR(εk)) is feasible to (IOC), then
it is a globally optimal solution of the latter problem as well since its feasible set is smaller
than the feasible set of (OVR(εk)).

In the upcoming Sect. 5.3, we show how the above theory can be used to derive necessary
stationarity conditions for local minimizers of the inverse optimal control problem (IOC).

5.3 Derivation of stationarity conditions

We intent to derive stationarity conditions for (IOC). However, we will only consider the
case where U := L2(Ω) holds for a bounded domain Ω ⊂ R

d equipped with Lebesgue’s
measure and Uad is given as stated below:

Uad := {u ∈ L2(Ω) | ua(ω) ≤ u(ω) ≤ ub(ω) f.a.a. ω ∈ Ω}.
Therein, ua, ub : Ω → [−∞,∞] are measurable functions such that Uad is nonempty.
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First, we will formulate the desired stationarity conditions.

Definition 5.1 We say that a feasible point (x̄, ȳ, ū) ∈ R
n ×Y × L2(Ω) of (OVR) is weakly

stationary, W-stationary for short, if there exist multipliers p̄ ∈ Y , λ̄ ∈ L2(Ω), z̄ ∈ R
n ,

w̄ ∈ L2(Ω), μ̄ ∈ Y , ρ̄ ∈ Y , and ξ̄ ∈ L2(Ω) which satisfy

F ′
x (x̄, ȳ, ū) − (

P� ◦ C
)[μ̄] − σQ�[w̄] + z̄ = 0, (4a)

F ′
y(x̄, ȳ, ū) + (

C� ◦ C
)[μ̄] + A�[ρ̄] = 0, (4b)

F ′
u(x̄, ȳ, ū) + σw̄ − B�[ρ̄] + ξ̄ = 0, (4c)

A[μ̄] − B[w̄] = 0, (4d)

z̄ ∈ NS(x̄), (4e)

C�[C[ȳ] − P[x̄]] + A�[ p̄] = 0, (4f)

σ(ū − Q[x̄]) − B�[ p̄] + λ̄ = 0, (4g)

λ̄ ≤ 0 a.e. on I b−(ū), (4h)

λ̄ ≥ 0 a.e. on I a+(ū), (4i)

ξ̄ = 0 a.e. on I a+(ū) ∩ I b−(ū), (4j)

w̄ = 0 a.e. on {ω ∈ Ω | λ̄(ω) �= 0}. (4k)

If these multipliers additionally satisfy the condition

ξ̄ w̄ ≥ 0 a.e. on Ω, (5)

then (x̄, ȳ, ū) is said to be Clarke-stationary, C-stationary for short.
Here, the measurable sets I a+(ū), I b−(ū) ⊂ Ω are given by

I a+(ū) := {ω ∈ Ω | ua(ω) < ū(ω)}, I b−(ū) := {ω ∈ Ω | ū(ω) < ub(ω)},
and these sets are well-defined up to subsets of Ω possessing measure zero.

Note that (4f)–(4i) are the KKT-conditions for the lower level problem (OC(x)) for the
fixed parameter x = x̄ . Obviously, these conditions are always satisfied for a feasible point
of (OVR). The remaining conditions (4a)–(4e), (4j), and (4k) can be interpreted as the weak
stationarity conditions of the equilibrium problem

F(x, y, u) → min
x,y,u,p,λ

x ∈ S

A[y] − B[u] = 0

C�[C[y] − P[x]] + A�[p] = 0

σ(u − Q[x]) − B�[p] + λ = 0

u ∈ Uad

λ ∈ NUad(u),

(6)

which results from (IOC) replacing the implicit constraint (y, u) ∈ Ψ (x) by the lower level
feasibility and optimality conditions.

We will derive the system of W-stationarity by using the KKT-conditions of (OVR(εk))
and observing the behaviour of the system as k tends to infinity. For a fixed k ∈ N, let
(xk, yk, uk) ∈ R

n × Y × L2(Ω) be a globally optimal solution of (OVR(εk)). Due to
Lemma 5.2, we know that the point (xk, yk, uk) satisfies the KKT-conditions of (OVR(εk)).
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Thus, there exist multipliers zk ∈ R
n , αk ∈ R, pk ∈ Y , and λk ∈ L2(Ω) which solve the

system

F ′
x (xk, yk, uk) + zk + αk

(
P�[P[xk] − C[yk]] + σQ�[Q[xk] − uk] − ϕ′(xk)

) = 0, (7a)

F ′
y(xk, yk, uk) + αkC

�[C[yk] − P[xk]] + A�[pk] = 0, (7b)

F ′
u(xk, yk, uk) + αkσ(uk − Q[xk]) − B�[pk] + λk = 0, (7c)

zk ∈ NS(xk), (7d)

λk ∈ NUad(uk), (7e)

0 ≤ αk ⊥ f (xk, yk, uk) − ϕ(xk) − εk ≤ 0. (7f)

Recall that ψ y : Rn → Y and ψu : Rn → L2(Ω) are the solution functions of the lower
level (OC(x)), while φ p : Rn → Y and φλ : Rn → L2(Ω) denote the associated Lagrange
multiplier mappings defined via the KKT-system (2), see Sect. 4 for details.

Lemma 5.5 For each k ∈ N, let (xk, yk, uk) ∈ R
n × Y × L2(Ω) be a global minimizer

of (OVR(εk)) and let (zk, αk, pk, λk) ∈ R
n × R × Y × L2(Ω) be the respective Lagrange

multipliers from (7). We assume w.l.o.g. that {(xk, yk, uk)}k∈N converges to a globally optimal
solution (x̄, ȳ, ū) ∈ R

n × Y × L2(Ω) of (IOC), see Theorem 5.1. Then, there exist z̄ ∈ R
n,

w̄ ∈ L2(Ω), ρ̄ ∈ Y , ξ̄ ∈ L2(Ω), and μ̄ ∈ Y such that the convergences

αk(uk − ψu(xk))⇀w̄, (8a)

αk(yk − ψ y(xk))⇀μ̄, (8b)

pk − αkφ
p(xk)⇀ρ̄, (8c)

λk − αkφ
λ(xk)⇀ξ̄, (8d)

zk → z̄ (8e)

hold along a subsequence. Moreover, the limits z̄, w̄, ξ̄ , μ̄, and ρ̄ satisfy the conditions
(4a)–(4e).

Proof Exploiting the introduced notation, we notice that

C�[C[ψ y(xk)] − P[xk]] + A�[φ p(xk)] = 0, (9a)

σ(ψu(xk) − Q[xk]) − B�[φ p(xk)] + φλ(xk) = 0, (9b)

φλ(xk) ∈ NUad(ψ
u(xk)) (9c)

is valid for each k ∈ N. Let us focus on (8a).Multiplying (9a) and (9b)withαk and subtracting
these equations from (7b) and (7c) yields

F ′
y(xk, yk, uk) + A�[pk] + αk(C

� ◦ C)[yk − ψ y(xk)] − αkA
�[φ p(xk)] = 0, (10a)

F ′
u(xk, yk, uk) − B�[pk] + λk + αkσ(uk − ψu(xk))

+ αk(B
�[φ p(xk)] − φλ(xk)) = 0. (10b)

Testing (10a) with yk − ψ y(xk) gives us
〈
F ′

y(xk, yk, uk) + A�[pk − αkφ
p(xk)], yk − ψ y(xk)

〉

Y
= −αk

〈
(C� ◦ C)[yk − ψ y(xk)], yk − ψ y(xk)

〉
Y = −αk

∥∥C[yk − ψ y(xk)]
∥∥2M ≤ 0,
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and, therefore, 〈
B�[pk − αkφ

p(xk)], uk − ψu(xk)
〉
L2(Ω)

= 〈
B[uk − ψu(xk)], pk − αkφ

p(xk)
〉
Y

= 〈
A[yk − ψ y(xk)], pk − αkφ

p(xk)
〉
Y

= 〈
A�[pk − αkφ

p(xk)], yk − ψ y(xk)]
〉
Y

≤
〈
−F ′

y(xk, yk, uk), yk − ψ y(xk)]
〉

Y

=
〈
−F ′

y(xk, yk, uk), (A
−1 ◦ B)[uk − ψu(xk)]

〉

Y
≤ C1

∥
∥uk − ψu(xk)

∥
∥

L2(Ω)

holds for a constant C1 > 0 that is independent of k. If we use this after testing (10b) with
uk − ψu(xk), we obtain

σαk
∥
∥uk − ψu(xk)

∥
∥2

L2(Ω)

= 〈
B�[pk − αkφ

p(xk)] − F ′
u(xk, yk, uk) + αkφ

λ(xk) − λk, uk − ψu(xk)
〉
L2(Ω)

≤ 〈
B�[pk − αkφ

p(xk)] − F ′
u(xk, yk, uk), uk − ψu(xk)

〉
L2(Ω)

≤ C1
∥∥uk − ψu(xk)

∥∥
L2(Ω)

+ 〈
Fu(xk, yk, uk), uk − ψu(xk)

〉
L2(Ω)

≤ C2
∥∥uk − ψu(xk)

∥∥
L2(Ω)

for a constant C2 > 0 that is independent of k. Here, the first inequality follows from αk ≥ 0,
φλ(xk) ∈ NUad(ψ

u(xk)), and λk ∈ NUad(uk). From above, it follows that αk(uk − ψu(xk))

is bounded in L2(Ω). Hence, we can extract a weakly convergent subsequence and denote
its weak limit by w̄ ∈ L2(Ω) in order to satisfy (8a).

Due to A[yk − ψ y(xk)] = B[uk − ψu(xk)], we obtain (8b) and (4d) from (8a). Since F is
continuously Fréchet differentiable, it follows from (10a) that A�[pk −αkφ

p(xk)] converges
weakly. Since A is continuously invertible, the sequence {pk − αkφ

p(xk)}k∈N is weakly
convergent as well. Thus, defining ρ̄ as its weak limit yields (8c) and (4b). Using the newly
obtained convergence in (10b), we get that λk − αkφ

λ(xk) converges weakly in L2(Ω). The
weak limit ξ̄ satisfies (8d) and (4c).

It remains to show the convergence of zk . Using Lemma 4.3, we obtain

P�[P[xk]−C[yk]]+σQ�[Q[xk]−uk]−ϕ′(xk) = (P� ◦C)[ψ y(xk)− yk]+σQ�[ψu(xk)−uk].
Then, the previous convergences and (7a) imply (8e) and (4a). Finally, (4e) follows from
xk → x̄ and zk → z̄ due to the properties of the normal cone. ��
Lemma 5.6 We consider the setting of Lemma 5.5. Then, the multipliers ξ̄ , w̄ ∈ L2(Ω) satisfy
(4j) and (4k).

Proof Westart with proving (4j).W.l.o.g., we assume that {uk}k∈N and {ψu(xk)}k∈N converge
pointwise almost everywhere to ū (otherwise, we select a subsequence with that property).
Due to λk ∈ NUad(uk) and φλ(xk) ∈ NUad(ψ

u(xk)), we have

λk − αkφ
λ(xk) = 0 a.e. on

{

ω ∈ Ω

∣∣∣∣
ua(ω) < uk(ω) < ub(ω)

ua(ω) < ψu(xk)(ω) < ub(ω)

}

for all k ∈ N. Thus, the pointwise convergence of {uk}k∈N and {ψu(xk)}k∈N implies that
λk −αkφ

λ(xk) → 0 holds almost everywhere on I a+(ū)∩ I b−(ū). Since {λk −αkφ
λ(xk)}k∈N
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converges weakly in L2(Ω) and pointwise almost everywhere on a subset, the limits must
coincide on that subset, i.e. ξ̄ = 0 holds almost everywhere on I a+(ū) ∩ I b−(ū).

We continuewith proving (4k). If {αk}k∈N has a bounded subsequence, this already implies
w̄ = 0 and (4k). Thus, we only need to consider the situation αk → ∞. The continuity of φλ

implies φλ(xk) → λ̄ in L2(Ω). Combining this with (8d) yields the convergence α−1
k λk → λ̄

in L2(Ω).
Now, let G ⊂ Ω be an arbitrary measurable set and let χG ∈ L∞(Ω) denote the corre-

sponding characteristic functionwhich equals 1 onG andvanishes otherwise. The inequalities
below follow immediately from the definition of the normal cone:

〈
α−1

k λk, αkχG(uk − ψu(xk))
〉

L2(Ω)
≥ 0,

〈
φλ(xk), αkχG(uk − ψu(xk))

〉
L2(Ω)

≤ 0.

Using the strong convergence to λ̄ and the weak convergence to w̄ yields
〈
λ̄, χGw̄

〉
L2(Ω)

= 0.

Since G ⊂ Ω was an arbitrary measurable set, this implies (4k). ��
In the next lemma, we show that condition (5) holds under an additional assumption.

Lemma 5.7 We consider the setting of Lemma 5.5. If one of the operators B or C is compact,
then the resulting multipliers ξ̄ , w̄ ∈ L2(Ω) additionally satisfy the condition (5).

Proof In this proof, we will only consider subsequences such that the convergences in
Lemma 5.5 hold. Let G ⊂ Ω be an arbitrary measurable set and χG ∈ L∞(Ω) the associated
characteristic function.

Our first goal is to show
〈
B�[pk − αkφ

p(xk)], αkχG(uk − ψu(xk))
〉
L2(Ω)

→ 〈
B�[ρ̄], χGw̄

〉
L2(Ω)

. (11)

If, on the one hand, B is compact, then (11) follows immediately from (8a), (8c), and the
definition of the adjoint. If, on the other hand, C is compact, then we obtain the strong
convergence αk(C� ◦ C)[yk − ψ y(xk)] → (C� ◦ C)[μ̄]. Using (10a), this implies the strong
convergence pk − αkφ

p(xk) → ρ̄ and (11) follow.
Now,we can combine (11)with (4c), (10b), and the sequential weak lower semi-continuity

of w 	→ 〈σw, χGw〉L2(Ω) which yields
〈−ξ̄ , χGw̄

〉
L2(Ω)

= 〈
F ′

u(x̄, ȳ, ū) + σw̄ − B�[ρ̄], χGw̄
〉
L2(Ω)

≤ lim
k→∞

〈
F ′

u(xk, yk, uk) − B�[pk − αkφ
p(xk)], αkχG(uk − ψu(xk))

〉
L2(Ω)

+ lim inf
k→∞

〈
σαk(uk − ψu(xk)), αkχG(uk − ψu(xk))

〉
L2(Ω)

= lim inf
k→∞

〈−(λk − αkφ
λ(xk)), αkχG(uk − ψu(xk))

〉
L2(Ω)

≤ 0.

Here, the last inequality follows from λk ∈ NUad(uk) and φλ(xk) ∈ NUad(ψ
u(xk)). Since

G ⊂ Ω is an arbitrary subset, the pointwise condition in the claim follows. ��
Now, we are in a position to state the final result of this section.

Theorem 5.2 Let (x̄, ȳ, ū) ∈ R
n ×Y × L2(Ω) be a locally optimal solution of (IOC). Then,

(x̄, ȳ, ū) is a W-stationary point of (IOC).
If, additionally, one of the operators B or C is compact, then (x̄, ȳ, ū) is already a C-

stationary point of (IOC).
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Proof First, we note that due to Lemma 4.1, x̄ is a locally optimal solution of

F(x, ψ y(x), ψu(x)) → min
x

x ∈ S.

Let ε > 0 be the associated radius of local optimality w.r.t. the 1-norm. Then, x̄ is the unique
globally optimal solution of the regularized problem

F(x, ψ y(x), ψu(x)) + 1
2 |x − x̄ |22 → min

x

x ∈ S ∩ B
ε
1(x̄)

where B
ε
1(x̄) := {x ∈ R

n | |x − x̄ |1 ≤ ε} is the closed ε-ball around x̄ w.r.t. the 1-norm.
Consequently, (x̄, ȳ, ū) is the unique global minimizer of

F(x, y, u) + 1
2 |x − x̄ |22 → min

x,y,u

x ∈ S ∩ B
ε
1(x̄)

(y, u) ∈ Ψ (x).

(12)

Now, we are in a position to apply Lemmas 5.5, 5.6, and 5.7 to (12) which allows us to infer
that (x̄, ȳ, ū) is a W- or even (under the additional compactness of B or C) C-stationary point
of (12).

Noting that the first-order derivative of x 	→ 1
2 |x − x̄ |22 vanishes at x̄ while x̄ is an interior

point of Bε
1(x̄), the W- and C-stationarity conditions of (12) and (IOC) at the point (x̄, ȳ, ū)

coincide. This shows the theorem’s assertion. ��
We finish this section with two brief remarks. First, we comment on the compactness of

B and C. Afterwards, the actual strength of the derived necessary optimality conditions is
discussed.

Remark 5.1 Let us consider the setting of Example 2.1. Therein, we fixed a bounded domain
Ω ⊂ R

d and set M = U := L2(Ω) as well as Y := H1
0 (Ω). Furthermore, C was chosen

to be the natural embedding of H1
0 (Ω) into L2(Ω) which is known to be compact, see [1,

Theorem 6.3].
Next, assume that A ∈ L

[
H1
0 (Ω), H−1(Ω)

]
is an elliptic operator while B is given by

∀u ∈ L2(Ω)∀z ∈ H1
0 (Ω) : 〈B[u], z〉H1

0 (Ω) :=
∫

Ω

u(ω)z(ω)dω.

Thus, B equals the natural embedding of L2(Ω) into H−1(Ω) which is compact since the
adjoint embedding H1

0 (Ω) ↪→ L2(Ω) is compact.
Consequently, in the standard setting of elliptic optimal control, the operators B and C are

compact. Thus, due to Theorem 5.2, each locally optimal solution of the associated program
(IOC) is a C-stationary point.

Remark 5.2 In the setting where Y := R
m and and U := R

p hold while the controls have
to satisfy standard box-constraints at the lower level stage, the equilibrium problem (6) is a
so-called mathematical program with complementarity constraints with affine data. Due
to [13, Theorem 3.9], each local minimizer of this optimization problem is a so-called
Mordukhovich-stationary point, and this is a stronger stationarity concept than Clarke-
stationarity, see [13, Sect. 2]. As a consequence, the locally optimal solutions of the associated
inverse optimal control problem are Mordukhovich-stationary points.
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It remains a question of future research whether it is possible to extend the results from
Theorem 5.2 to (pointwise)Mordukhovich-stationarity in the L2-setting. Related issues w.r.t.
other equilibrium-type optimal control problems are discussed in [15,16].

6 Computing globally optimal solutions

The major drawback of Theorem 5.1 w.r.t. its applicability is the fact that the optimal value
function ϕ is only implicitly known and, consequently, it is not clear how to solve the relaxed
problems (OVR(εk)) at any iterate of a potential algorithm.

Due to the convexity of ϕ, see Lemma 4.2, we note that the optimal-value-reformulation
(OVR) of (IOC) is a so-called DC-program where DC is the classical abbreviation for Dif-
ference of Convex Functions. This structure allows the construction of algorithms which can
be used to find the global minimizers of (IOC), see [21, Sect. 5] and the references therein.
However, the fact that ϕ is only implicitly knownmay induce some essential difficulties again
when trying to adapt those methods directly. On the other hand, we note that the concavity of
(OVR) only appears within the constraint f (x, y, u) − ϕ(x) ≤ 0 and only w.r.t. the variable
x .

In order to exploit this observation for the construction of a suitable solution algorithm,
we approximate the convex optimal value function ϕ from above using a piecewise affine
function ξ which exactly interpolates ϕ at an increasing number of points from S. Thus,
we formulate a relaxed surrogate problem associated with (OVR) which is different from
(OVR(εk)). Since ξ is piecewise affine, our approach allows us to decompose the resulting
surrogate problems into finitely many convex subproblems which are easy to solve. This idea
is used in [9, Sect. 4] and [10, Sect. 3.6.2] to solve finite-dimensional bilevel programming
problems with fully convex lower level problem.

6.1 The algorithm and its convergence properties

Let X := {x1, . . . , xm} ⊂ R
n be a nonempty set such that S ⊂ int conv X holds true. The

convexity of ϕ yields

∀x ∈ conv X : ϕ(x) ≤ min
μ

{
∑m

i=1μiϕ(xi )

∣∣∣∣μ ∈ Δm,
∑m

i=1μi x i = x

}
=: ξX (x).

Obviously, ξX : conv X → R is the optimal value function of a fully convex linear para-
metric optimization problem and, thus, convex and piecewise affine, see [29, Theorem 6.7,
Theorem 6.9]. These properties also follow from the observation

epi ξX = conv{(xi , ϕ(xi )) | i = 1, . . . , m} + {0} × R
+
0

where epi ξX represents the epigraph of ξX . Particularly, there exists a finite partition
{R j

X }r(X)
j=1 of conv X into so-called regions of stability such that ξX is affine on every

set R j
X , j = 1, . . . , r(X).

Note that for each i = 1, . . . , m, we have ξX (xi ) = ϕ(xi ), i.e. ξX interpolates ϕ exactly
at all the points in X . This observation gives rise to the formulation of Algorithm 1.

Below, we comment on some features of Algorithm 1.

Remark 6.1 Similar as in Lemma 5.3 it is possible to show that (OVR(Xk)) possesses a global
solution for each k ∈ N. As mentioned above, at each iteration k ∈ N, we can decompose S
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Algorithm 1 Computation of global solutions to (IOC)
S1 Let X1 ⊂ R

n be a finite set such that S ⊂ int conv X1 is valid and set k := 1.
S2 Compute a globally optimal solution (x̄k , ȳk , ūk ) of the optimization problem

F(x, y, u) → min
x,y,u

x ∈ S

f (x, y, u) − ξXk (x) ≤ 0

A[y] − B[u] = 0

u ∈ Uad.

(OVR(Xk))

S3 Compute ϕ(x̄k ). If f (x̄k , ȳk , ūk ) = ϕ(x̄k ) holds true, then (x̄k , ȳk , ūk ) is a globally optimal solution of
(OVR) (and, thus, of (IOC)) and the algorithm terminates. Otherwise, set Xk+1 := Xk ∪ {x̄k } as well as
k 	→ k + 1 and go to S2.

into r(k) ∈ N regions of stability on which ξXk is affine, respectively. Thus, (OVR(Xk)) can
be decomposed into r(k) convex subproblems which can be solved by exploiting standard
methods.

Remark 6.2 For arbitrarily chosen k, k′ ∈ N satisfying k ≤ k′, we have

∀x ∈ S : ϕ(x) ≤ ξXk′ (x) ≤ ξXk (x).

In order to analyze the qualitative properties ofAlgorithm1,we need the following lemma.

Lemma 6.1 Let X1 ⊂ R
n be a finite set satisfying S ⊂ int conv X1. Then, there is a constant

L > 0 such that ξX is Lipschitz continuous on the set S with modulus L for each set X ⊂ R
n

which is the union of X1 and some finite subset of S.

Proof By definition of ϕ, ξX , and ξX1 the following relations are obvious:

∀x ∈ conv X1 : 0 ≤ ϕ(x) ≤ ξX (x) ≤ ξX1(x).

Since ξX1 is continuous on the compact set conv X1, its maximal value M ≥ 0 is well-defined
and an upper bound for all the real numbers |ξX (x)| such that x ∈ conv X1 holds.

Since we have S ⊂ int conv X1, there is some ε > 0 such that S +B
ε
2(0) ⊂ conv X1 holds

true. Here, Bε
2(0) denotes the closed ε-ball in R

n around 0 w.r.t. the Euclidean norm.
For x, y ∈ S satisfying x �= y, we define

z := x + ε

|x − y|2
(x − y), α := |x − y|2

ε + |x − y|2
By construction, we have z ∈ S + B

ε
2(0) ⊂ conv X1 and x = (1 − α)y + αz. Noting that

ξX is convex, we obtain ξX (x) ≤ ξX (y) + α(ξX (z) − ξX (y)) which yields the estimate
ξX (x) − ξX (y) ≤ α|ξX (z) − ξX (y)| ≤ 2αM . Thus, we obtain

ξX (x) − ξX (y) ≤ 2M
|x − y|2

ε + |x − y|2
≤ 2M

ε
|x − y|2 .

Interchanging the roles of x and y yields that ξX is Lipschitz continuous on S with Lipschitz
modulus L := 2M

ε
. Note that neither M nor ε depend on the precise choice of X . Thus, the

proof is complete. ��

123



Journal of Global Optimization (2019) 74:297–325 317

The next example shows that the requirement S ⊂ int conv X1 in Lemma 6.1 cannot be
relaxed.

Example 6.1 Let us assume that n = 2 and ϕ(x) = x22 hold. Further, we set

X1 := {(1,−1), (1, 1), (0, 0)} , S := conv X1.

Now, we consider an increasing sequence {θk}k∈N ⊂ (0, 1) ⊂ Rwith θk → 1. For all k ∈ N,
let us define Xk := X1 ∪ ⋃k−1

i=1 {(θi , 0)} ⊂ R
2. Then, it can be checked that

ξXk (x) = max

{
x2,−x2,

x1 − θk−1

1 − θk−1

}

is valid. In particular, the Lipschitz constant of ξXk on S is given by (1 − θk−1)
−1. Clearly,

this term is not bounded as k → ∞.

Now, we are well prepared to study the qualitative properties of Algorithm 1.

Theorem 6.1 Either, Algorithm 1 terminates after a finite number of steps producing a
globally optimal solution, or it computes a sequence {(x̄k, ȳk, ūk)}k∈N of globally optimal
solutions of (OVR(Xk)). This sequence possesses a convergent subsequence whose limit
point (x̄, ȳ, ū) is a globally optimal solution of (OVR) and, thus, of (IOC). Moreover, each
accumulation point of {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).

Proof The feasible set of (OVR(Xk)) is larger than the feasible set of (OVR) for each k ∈ N,
Thus, if (x̄k, ȳk, ūk) is feasible to (OVR) for some k ∈ N, then this point must be a globally
optimal solution of this problem.

Suppose that the algorithm does not terminate. Clearly, the sequence {x̄k}k∈N is bounded.
The feasibility of (x̄k, ȳk, ūk) to (OVR(Xk)) and Remark 6.2 yield

∀k ∈ N : ‖ūk‖U ≤
√

2
σ
ξX1(x̄k) + ‖Q[x̄k]‖U .

Since {x̄k}k∈N is boundedwhile ξX1 is continuous on S, {ūk}k∈N is bounded. From the relation
ȳk = (A−1 ◦ B)[ūk] for each k ∈ N and the continuity of A−1 ◦ B ∈ L [U,Y], {ȳk}k∈N is
bounded as well. Consequently, {(x̄k, ȳk, ūk)}k∈N is bounded and, therefore, possesses a
weakly convergent subsequence (without relabeling) with weak limit (x̄, ȳ, ū). Particularly,
we have x̄k → x̄ . The closedness of S and the closedness and convexity of Uad yield x̄ ∈ S
and ū ∈ Uad. Furthermore,A[ȳ]−B[ū] = 0 follows from the linearity and continuity ofA and
B. Let L > 0 be the Lipschitz constant of ξXk on S which, due to Lemma 6.1, does not depend
on k. Since f is convex and continuous, it is weakly lower semicontinuous. Furthermore, ϕ
is continuous by means of Lemma 4.3. Due to the construction of the algorithm, we have
ξXk (x̄k−1) = ϕ(x̄k−1) for each k ∈ N which yields

ϕ(x̄) ≤ f (x̄, ȳ, ū) ≤ lim inf
k→∞ f (x̄k, ȳk, ūk)

≤ lim sup
k→∞

f (x̄k, ȳk, ūk)

≤ lim sup
k→∞

ξXk (x̄k)

≤ lim sup
k→∞

(
ξXk (x̄k−1) + L |x̄k − x̄k−1|2

)

= lim sup
k→∞

(
ϕ(x̄k−1) + L |x̄k − x̄k−1|2

) = ϕ(x̄).
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Therefore, (x̄, ȳ, ū) is feasible to (OVR). Moreover, the sequence of lower level function
values { f (x̄k, ȳk, ūk)}k∈N converges to f (x̄, ȳ, ū). Combining this with the weak lower
semicontinuity of the functionals given by Rn ×Y � (x, y) 	→ 1

2 ‖C[y] − P[x]‖2M ∈ R and
R

n × U � (x, u) 	→ 1
2 ‖u − Q[x]‖2U ∈ R yields

f (x̄, ȳ, ū) = 1
2 ‖C[ȳ] − P[x̄]‖2M + σ

2 ‖ū − Q[x̄]‖2U
≤ lim inf

k→∞
1
2 ‖C[ȳk] − P[x̄k]‖2M + lim inf

k→∞
σ
2 ‖ūk − Q[x̄k]‖2U

≤ lim inf
k→∞

1
2 ‖C[ȳk] − P[x̄k]‖2M + lim sup

k→∞
σ
2 ‖ūk − Q[x̄k]‖2U

= lim
k→∞

( 1
2 ‖C[ȳk] − P[x̄k]‖2M + σ

2 ‖ūk − Q[x̄k]‖2U
)

= f (x̄, ȳ, ū).

That is why we have ‖ūk − Q[x̄k]‖U → ‖ū − Q[x̄]‖U . Recalling ūk − Q[x̄k]⇀ū − Q[x̄] and
the fact that U is a Hilbert space, we already have uk −Q[x̄k] → ū −Q[x̄]. Since x̄k → x̄ and,
thus, Q[x̄k] → Q[x̄] holds true, we obtain the strong convergence ūk → ū in U . Applying
the operator A−1 ◦ B, the convergence ȳk → ȳ in Y follows.

Pick an arbitrary feasible point (x, y, u) ∈ R
n × Y × U of (OVR). By construction, we

have

∀k ∈ N : F(x̄k, ȳk, ūk) ≤ F(x, y, u).

Since F is continuous while {(x̄k, ȳk, ūk)}k∈N converges strongly to (x̄, ȳ, ū), we obtain

F(x̄, ȳ, ū) = lim
k→∞ F(x̄k, ȳk, ūk) ≤ F(x, y, u).

This shows that (x̄, ȳ, ū) is a globally optimal solution of (OVR) and, consequently, for
(IOC).

The above arguments can be reprised in order to show that each accumulation point of the
sequence {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR). ��

Next, we present a counterexample which shows that Theorem 6.1 will not necessarily
hold if we only require S ⊂ conv X1 in Algorithm 1.

Example 6.2 We consider a finite-dimensional version of (IOC). In particular, we investigate
the upper level problem

F(x, u) := 100
2

(
x1 − u + 1√

2

)2 + x1 + 1
2 x22 → min

x,u

x ∈ S := conv X1

u ∈ Ψ (x),

(13)

in which Ψ : R2 ⇒ R is the solution map of the (state-reduced) lower level problem

f (x, u) := x22 + (x1 − u)2 → min
u

u ∈ [0, 2].
(14)

The set X1 is chosen as in Example 6.1. It is clear that Ψ (x) = {x1} and ϕ(x) = x22 hold for
all x ∈ S. Thus, the unique global solution of (13) is given by x̄ := (0, 0) and ū := 0.
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Now, we will check that the sequence {(x̄k, ūk)}k∈N generated by Algorithm 1 (adapted
to the problem at hand, cf. [9]) is recursively given by

x̄k =
(

1002 (1 − (x̄k−1)1)

2 (100 + 2 (1 − (x̄k−1)1))2
+ (x̄k−1)1, 0

)
, ūk = (x̄k)1 +

√
(x̄k)1 − (x̄k−1)1

1 − (x̄k−1)1

with initial data x̄0 = 0. The convergences x̄k → (1, 0) and ūk → 1 +
√
2
2 can be checked.

This limit point is not a feasible point of (13).
In order to check that the algorithm produces the above iterates, we consider the subprob-

lem
100
2

(
x1 − u + 1√

2

)2 + x1 + 1
2 x22 → min

x,u

x ∈ S := conv X1

u ∈ [0, 2]
x22 + (x1 − u)2 ≤ ξX (x)

(15)

with X := X1 ∪ {(α, 0)} where α ∈ [0, 1). As in Example 6.1, we find

ξX (x) =

⎧
⎪⎨

⎪⎩

x1−α
1−α

if x ∈ conv{(α, 0), (1,−1), (1, 1)},
x2 if x ∈ conv{(α, 0), (0, 0), (1, 1)},
−x2 if x ∈ conv{(α, 0), (0, 0), (1,−1)}.

Thus, (15) can be decomposed into three convex problems and, due to symmetry, we have to
solve two of them. The first problem is

100
2

(
x1 − u + 1√

2

)2 + x1 + 1
2 x22 → min

x,u

x ∈ conv{(α, 0), (1,−1), (1, 1)}
u ∈ [0, 2]

x22 + (x1 − u)2 ≤ x1 − α

1 − α
.

It can be checked (e.g. via the KKT-conditions) that its unique solution is given by

x̃(α) :=
(

1002 (1 − α)

2 (100 + 2 (1 − α))2
+ α, 0

)
, ũ(α) := x̃(α)1 +

√
x̃(α)1 − α

1 − α
. (16)

Moreover, the objective value can be bounded from above by

F
(( 1+α

2 , 0
)
, 1+α

2 + 1√
2

)
= 1+α

2 < 1.

The second subproblem for (15) is

100
2

(
x1 − u + 1√

2

)2 + x1 + 1
2 x22 → min

x,u

x ∈ conv{(α, 0), (0, 0), (1, 1)}
u ∈ [0, 2]

x22 + (x1 − u)2 ≤ x2.

The last constraint implies

u ≤ x1 +
√

x2 − x22 ≤ x1 + 1
2 .
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Thus, for a feasible point (x, u) of this second subproblem, we can bound the objective by

F(x, u) ≥ 100
2

(
x1 − u + 1√

2

)2 ≥ 100
2

(
1√
2

− 1
2

)2 ≥ 100
2

( 1
5

)2 = 2.

Hence, the global solution of (15) is given by (16).
Now, the problem solved by Algorithm 1 in step k is precisely (15) with α = (x̄k−1)1, see

also the calculation in Example 6.1.

Finally, we mention that Example 6.2 shows that [9, Theorem 4.3] does not hold as stated.
In the proof, the authors claim that ξXk possesses the same Lipschitz constant as ϕ on S, but
this is not true, see also Example 6.1.

6.2 A numerical example

Now, we are going to present a numerical example of an inverse optimal control problem
with a PDE constraint. This will illustrate the performance of Algorithm 1. We will use an
example where the reduced upper level objective function x 	→ F(x, ψ y(x), ψu(x)) has
multiple local minimizers and is not differentiable at the global minimum.

The problem under investigation is very similar to Example 2.1. First, we fix the domain
Ω := (−1, 1) × (−1, 1) and set n := 2, Y := H1

0 (Ω), and M = U := L2(Ω). Moreover,
we define f1, f2 ∈ L2(Ω) via

f1(ω) := 10 exp(−5(ω1 − 0.7)2 − 5 (ω2 − 0.3)2),

f2(ω) := 10 exp(−10(ω1 + 0.4)2 − 10 (ω2 − 0.5)2)

for all ω = (ω1, ω2) ∈ Ω and choose σ := 0.01 for the regularization parameter. Let us set

S := conv{(0, 0), (1, 0), (0, 1)}.
In order to construct a nonsmooth and nonconvex example, we first set x̃ := (0.3, 0.3) and

define ũ ∈ L2(Ω) to be the unique solution of the optimal control problem without control
constraints

1
2 ‖y − x̃1 f1 − x̃2 f2‖2L2(Ω)

+ σ
2 ‖u‖2L2(Ω)

→ min
y,u

−Δy − u = 0 on Ω

y = 0 on ∂Ω.

(17)

Actually, we do not solve (17) but its finite element discretization. For the discretization, we
use piecewise linear finite elements (with mesh size 0.1) for the state y and the control u. In
order to obtain a coefficientwise projection formula (for problem (19) below), we use mass
lumping for the control variables.

Next, we define the lower and upper bounds ua, ub ∈ L2(Ω) by

∀ω ∈ Ω : ua(ω) := min{ũ(ω), 2}, ub(ω) := max{ũ(ω), 3}
These bounds will be used in the lower level problem in order to get a nonsmooth and
nonconvex example.

Now, we consider the inverse optimal control problem

1
2 ‖y − 0.2 f1 − 0.3 f2‖2L2(Ω)

+ (0.1, 0.3)�x → min
x,y,u

x ∈ S

(y, u) ∈ Ψ (x)

(18)
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whereΨ : R2 ⇒ H1
0 (Ω)×L2(Ω) denotes the solutionmap of the parametric optimal control

problem
1
2 ‖y − x1 f1 − x2 f2‖2L2(Ω)

+ σ
2 ‖u‖2L2(Ω)

→ min
y,u

−Δy − u = 0 on Ω

y = 0 on ∂Ω

ua ≤ u ≤ ub a.e. on Ω.

(19)

For problem (19), we use the same discretization as for (17).
We give some comments concerning the construction of this problem. Since ũ is the

optimal solution of problem (17), and since ua ≤ ũ ≤ ub holds almost everywhere on Ω

(by choice of the bounds), it is also the solution of the lower level problem (19) for x = x̃ .
Moreover, since ũ is even the solution of (17), the bounds in (19) are only weakly active,
i.e., the multipliers corresponding to these bounds are zero. Thus, we could expect that the
function x 	→ ψu(x) is only directionally differentiable in x̃ . Finally, the objective function
in the upper level problem (18) is chosen such that x̃ really becomes a global minimizer.

For convenience, we denote the reduced objective function of the upper level problem by

γ (x) := F(x, ψ y(x), ψu(x)).

We can see in Fig. 1 that this construction yields a nonsmooth reduced objective function
γ with a global minimizer at x̄ = x̃ = (0.3, 0.3). Moreover, γ is nonsmooth at x̄ and has
further local minimizers at (0, 0) and approximately (0.36, 0).

We initialize the algorithm with the choice

X1 := {(− 1
2 ,− 1

2

)
,
( 3
2 , 0

)
,
(
0, 3

2

)}

in order to guarantee S ⊂ int conv X1. Then, we run 1000 iterations of Algorithm 1. Because
we solve a relaxed optimization problem in each iteration, we obtain (increasing) lower
bounds on the optimal value of the bilevel problem (18). On the other hand, calculating
γ (x̄k) yields upper bounds. Since x̄k is the solution of the relaxed problem, the true value
γ (x̄k) can be quite large. Therefore, we denote by x̂k the best known point of γ in iteration
k, i.e.,

x̂k := argmin
x∈{x̄1,...,x̄k }

γ (x).

This yields a decreasing upper bound γ (x̂k).

0 0.2 0.4 0.6

0.65

0.7

0.75

0.8

t

γ(.3, t)
γ(t, .3)

Fig. 1 The reduced objective function γ (left) and cross sections of γ (right). (Color figure online)
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(a) Errors of lower and upper bounds on function values. (b) Errors of  x̄k (blue crosses) and x̂k (red line).

Fig. 2 Errors. (Color figure online)
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Fig. 3 Triangulation given by X50

The convergence of these lower and upper bounds, as well as the difference between both
bounds can be seen in Fig. 2a.Moreover, we present the triangulation of conv X1 given by the
regions of stability at iteration k = 50 in Fig. 3. Recall that the nodes of this triangulation are
given by the set Xk := X1 ∪⋃k−1

j=1{x̄ j }. Finally, we record the Euclidean distances |x̄k − x̄ |2
and

∣∣x̂k − x̄
∣∣
2 in Fig. 2b, and one can believe that x̄k → x̄ holds as predicted by Theorem 6.1.

From these results, we can see that the convergence of the algorithm is comparatively
slow. Particularly, we have to solve several auxiliary convex problems in each iteration [to
obtain the global solution of (OVR(Xk))]. This is, however, the expectable price we have to
pay for the guaranteed convergence towards a global minimizer.

It is possible to improve the performance of the algorithm by reducing the curvature of
the value function ϕ. This can be done by using the modified function

f̃ (x, y, u) := f (x, y, u) − 1
2 x�Hx
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(a) Errors of lower and upper bounds on function values.
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Fig. 4 Errors with curvature reduction. (Color figure online)

instead of f as the objective function of the lower level problem (OC(x)). Here, we exploit
the matrix

H := P� ◦ P + σ Q� ◦ Q − (P� ◦ S + σ Q�) ◦ (S� ◦ S + σ IU )−1 ◦ (S� ◦ P + σ Q)

where S := C ◦ A−1 ◦ B is the control-to-observation operator of (OC(x)). Note that this
transformation does neither change the lower level solution mappingΨ nor the overall (local
and global) solutions of the superordinate bilevel optimization problem. Although f̃ is no
longer (jointly) convex on Rn × Y × U , it can be shown that it is convex on the subspace

{
(x, y, u) ∈ R

n × Y × U
∣∣ A[y] − B[u] = 0

}
.

Since the feasible set of the lower level problem is contained in this subspace, this is sufficient
for our purposes. Due to the reduced curvature of the resulting optimal value function ϕ̃, its
approximation by piecewise affine functions is much simpler. In Fig. 4a, we can see that the
error of the upper and lower bounds converges faster compared to the case without curvature
reduction in Fig. 2a. Likewise, the distances |x̄k − x̄ |2 and

∣∣x̂k − x̄
∣∣
2 converge faster as well,

see Fig. 4b (cf. Fig. 2b).

7 Conclusions

In this paper, a certain class of inverse optimal control problems has been studied. Using the
optimal value function ϕ of the associated parametric optimal control problem, we were able
to derive necessary optimality conditions of Clarke-stationarity-type in the setting where
the controls are chosen from a standard box-constrained set in L2(Ω). At the moment, it
is not clear whether this result can be extended to (pointwise) Mordukhovich-stationarity.
Afterwards, a global solution algorithm for the problem class of interest which exploits
an iteratively refined piecewise affine upper approximation of ϕ has been suggested. Its
convergence properties have been investigated theoretically and illustrated by means of an
example from PDE control. Finally, we demonstrated that it is possible to speed up our
algorithm by reducing the curvature of ϕ.
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Clearly, the computational realization of Algorithm 1 heavily exploits the finite-
dimensional setting of the upper level variable x . In the future, it needs to be investigated if
some of our ideas can be carried over to the infinite-dimensional situation. The most diffi-
cult part in Algorithm 1 is the global solution of the nonconvex relaxed surrogate problems.
While this can be done by decomposing the problem into finitely many convex optimization
problems in the presence of a finite-dimensional upper level variable, it is not clear how this
issue can be handled in the infinite-dimensional situation. Thus, it seems to be a nearby topic
of future research to study the settings where these surrogate problems are solved only locally
or to some kind of stationarity.
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