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Abstract

We consider the problem of minimizing the difference of two nonsmooth convex functions
over a simple convex set. To deal with this class of nonsmooth and nonconvex optimization
problems, we propose new proximal bundle algorithms and show that the given approaches
generate subsequences of iterates that converge to critical points. Trial points are obtained by
solving strictly convex master programs defined by the sum of a convex cutting-plane model
and a freely-chosen Bregman function. In the unconstrained case with the Bregman function
being the Euclidean distance, new iterates are solutions of strictly convex quadratic programs
of limited sizes. Stronger convergence results (d-stationarity) can be achieved depending on
(a) further assumptions on the second DC component of the objective function and (b)
solving possibly more than one master program at certain iterations. The given approaches
are validated by encouraging numerical results on some academic DC programs.

Keywords DC programming - Nonsmooth optimization - Bundle methods

1 Introduction

In this work, we are concerned with local optimization methods to address the following
class of nonsmooth and nonconvex problems:

min f(x) with f(x) = fi(x) = falx), ey

where ¥ = X C R”" is a simple closed convex set (typically, but not necessarily a polyhedral
one) contained in an open set 2 C R", and f] : 2 — Rand f, : £ — R are both
convex and possibly nonsmooth functions. The mapping f is the difference of two convex
Sfunctions and it is called a DC function while f; and f5 are its DC components. Accordingly,
problem (1) is a convex-constrained DC program.

The past few years have witnessed a substantial development in the area of DC pro-
gramming. This class of problems forms an important sub-field of nonconvex programming
and has been receiving much attention from the mathematical programming community
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[14,15,22,27,31,32,38,41-43]. We refer to [43, Part II] for a comprehensive presentation of
several algorithms designed to find global solutions. Yet, local optimization methods play
an important role in global optimization because algorithms of the latter class typically
employ local methods to find stationary/critical points that feed a certain search strategy for
global solutions. A non-exhaustive list of applications of DC programming fitting the above
formulation includes production—transportation planning problems [23], location planning
problems [43, Chapter 5], physical layer based security in a digital communication systems
[38], cluster analysis [3,29], sensor covering [1], and engineering problems [15,43].

A well-known method for dealing with the optimization problem (1) is the DC Algorithm—
DCA—of [31,42], which iteratively linearizes the second DC component yielding convex
optimization subproblems that are solved to define trial points. Another important algorithm
for DC programming is the Proximal Linearized Method—PLM—[7,38,41], which can be
seen as a regularized variant of DCA: the convex optimization subproblem is augmented
with a Bregman function to prevent tailing-off effect that makes calculations unstable as the
iteration process progresses.

The main disadvantage of both DCA and PLM is the need of solving exactly a convex
nonsmooth program per iteration. As an attempt to overcome this issue, the recent work
[41] investigates an inexact version of PLM by requiring the convex subproblems to be
asymptotically solved up to optimality and subgradients of f] satisfying a certain proximity
property with respect to the previously computed subgradient of f> [41, Equation (15)].

In this work, we propose more sophisticated and implementable variants of PLM for
handling problem (1). The new algorithms belong to the bundle method family [21, Chapter
XV], a class of methods proposed by C. Lemaréchal in the 70s [33]. Bundle methods are
among the most efficient algorithms for solving nonsmooth convex optimization problems.
This class of methods constitutes a very active area of research in the nonsmooth optimization
community [8-10,12,13,30,48]. Extensions of proximal bundle algorithms to nonsmooth
nonconvex programs have been investigated by different authors in [14,17,18,36,37] and
references therein.

As far as the DC setting is concerned, the insightful paper [27] proposes a proximal
bundle method for finding critical points of unconstrained DC programs, i.e., problem (1)
with X = R". The authors consider a DC piecewise linear model approximating the objective
function f and compute trial points by globally minimizing such a model over R": this task
amounts to solving a fixed number of quadratic programs (QPs) per iteration. In general
terms, the number of QPs solved per iteration increases with the DC model’s size [27, p.
514].

The recent paper [16] also proposes a bundle method employing a DC piecewise model
to deal with unconstrained DC programs. Differently from [27] that globally minimizes the
DC model to define new iterates, the DC model in [16] is tackled by means of two auxiliary
QPs that have different local approximation properties. These quadratic programs must be
solved at every iteration to compute descent directions in which a line-search is performed
to define trial points.

Inspired by these methods for unconstrained DC programs, we propose in this work
two proximal bundle methods for finding critical and d(irectional)-stationary points (see
definitions in Sect. 2 below) of DC problems (1). The given variants relate to both proximal
linearized methods of [7,41] and proximal bundle algorithms of [16,27]. In contrast to a
more difficult (but possibly better) nonconvex approximation of f, we employ a simple
convex piecewise linear model. No line-search nor estimates of Lipschitz constants of the DC
component are required. Moreover, both variants employ a reliable straightforward stopping
test. We care to mention that the master program defining trial points in our algorithms is
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not necessarily a QP problem but a more general strictly convex program exploiting possible
compelling structures of the feasible set X. This is computationally useful when X has
a particular structure (for instance a ball, a simplex, a spectahedron, and other domains [4,
Sect. 2.3]) and a specialized solver for handling the master problem is at disposal. We assume
throughout this paper that such a specialized solver is available.

As standard in the DC literature, our first algorithm is shown to generate a subsequence
of points that converges to a critical point of (1). Under the hypothesis that f, in (1) is the
pointwise maximum of N known differentiable functions our second algorithm is ensured to
compute a d-stationary point, which is the sharpest stationarity definition in DC programming
[38, Sect. 3.2]. The price to obtain this stronger result is the solution of possibly several (but
no more than N) master programs at certain iterations. We care to mention that the bundle
method of [26] is ensured to compute Clarke stationary points of unconstrained DC programs.
To this end, the authors of [26] assume that the subdifferentials of the DC components at
any point x € R” are polytopes. This is, for instance, the case when both f; and f> are
the pointwise maximum of finitely many differentiable functions. Clarke stationarity is a
stronger property than criticality, but weaker than d-stationarity [38].

The remainder of this work is organized as follows: some well-known results and proper-
ties of DC programming are recalled in Sect. 2. The first proximal bundle method algorithm
for finding critical points is presented in Sect. 3. Its convergence analysis is given in Sect. 4.
The second proximal bundle algorithm for finding d-stationary points of a particular class of
problem (1) is introduced in Sect. 5 together with its convergence analysis. We report some
numerical experiments in Sects. 6, and 7 closes the paper with some final remarks.

2 Basic concepts and properties of DC programming

As mentioned in [31], DC programming is an extension of convex programming that is vast
enough to cover almost all nonconvex optimization problems, but still allows the use of
powerful tools from convex analysis and convex optimization. As in nonconvex nonsmooth
optimization, many definitions of stationary points exist. Below we list some of them.

A point x € X is called a local minimizer of problem (1) if there exists a neighborhood
V C X of x such that f(x) < f(x) for all x € V. As convex functions are directionally
differentiable in the interior of their domains [6, Proposition 2.2.7], the directional derivative

fitsia) =t filx + tdt) — fix)
for the DC component f;, i = 1, 2, is well defined for all x in the open set £2 C dom f; and
all d € R". Tt is well known that f/(x; d) = maxgej f,(x) (g, d), Where
Afix):={geR": fi(y) = filx) +(g,y —x) Vye 2}
is the subdiferential of f; at point x. For € > 0, the inexact subdiferential is denoted by
defitx) :={geR": fi(» = fi)+(g.y—x)—€ Vye R}

Since DC components are locally Lipschitz continuous, DC functions satisfy also local
Lipschitz continuity. Thus, the directional and Clarke directional derivatives of a DC function
are well defined for all x € £2:

(directional derivative) flxsd) = flxid) — f(x;d)

(Clarke directional derivative) f°(x:d) = limsup,_,  LOHD=LO),
110
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It can be shown that if x € X C £ is a local minimizer of f over X, then x € X is a
d(irectional)-stationary point, i.e., f'(x; (x — X)) > 0 for all x € X. For DC programs this
definition is equivalent to

A@ (x = %) = (& (x — %) VYxeX.

The above inequality is equivalent to f{(¥; (x —X)) > maXg,ej f,(x) (g2, ¥ —X) forall x € X.
In other words, X € X is a d-stationary point of (1) if for all g € 9 f>(X)

AG (x = %) = (g2,x —X) VxeX.
It follows from convexity of f; that X € X satisfies the above inequality if and only if
X e afg;réi)r(l[fl (x) — (82, x)] Vg2 €0faX).

This shows that x € X is a d-stationary point of (1) if
df2(x) €9 /1(X) + Nx(x) (=0[f1(%) +ix(X)D, (@)

where Nx(x) is the normal cone of X at x and iy is the indicator function of set X. The
equality 0 f1(xX) + Nx (x) = 9[ f1(X) +ix(x)] follows from convexity of X C £2 C dom(f1)
and the convexity of f; [40]. Notice that verifying the above characterization of d-stationarity
is impossible in many cases of interest. Hence, one generally employs a weaker notion of
stationarity: a point X € X is called a critical point of problem (1) if

B #0f(x)NIA[f1(x) +ix(x)], orequivalenty @ # 9 f2(x) N{dfi(x)+ Nx(x)}. (3)
Another useful notion is Clarke stationarity: a point x € X is a c(larke)-stationary point
of problem (1) if
O (x—%)>0Vx e X.
It follows from the inequality f°(x;d) > f’(x: d) that every d-stationary point is also c-
stationary. The reverse implication is not always true [38, Example 2]. The following sequence

of implications related to problem (1) can be found in the DC programming literature (see
for instance [16,22,26,31,38,43]):

local minimizer ~=- d — stationarity = ¢ — stationarity = criticality.
If f1 is a continuously differentiable function on £2, then
c — stationarity & criticality.
If £ is a continuously differentiable function on £2, then
d — stationarity < ¢ — stationarity < criticality.

If f, is a polyhedral function f>(x) = max;=1 __ n{{a;,x) + b;} (where q; € R" and
b; € R), then X € X is a local minimizer if and only if x is d-stationary point [31, Theorem
1]. Moreover,

Ecneijf(l[fl x) = f2(x)] = f{réi)r(l[ﬂ (x) — l,:??f[\]{(“iv x) + b;}]

= E{réi)r(l[fl (x) + i=r1ninN —{{ai, x) + bi}]

.....

= ':r]ninN[)rCnei)r(l{fl (x) = (a;i, x) — bi}l,

.....

showing that a global solution of the DC program min,cx[ f1(x) — f2(x)] can be obtained
by solving N convex programs minycx|[ f1(x) — (a;, x)] — b;.
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3 Proximal bundle method for convex constrained DC programming

Let w : £2 — R be a twice differentiable and strongly convex function on X with parameter
p >0, wrt thenorm || - ||, (p € [1, 00]), that is

0
w(x) Zw(y)—i-(Vw(y),x—y)—%illx—ylli Vx,yeX. “
We can rewrite the DC function f = fi — f2 in (1) for a given w as

f@) = filx) + o) - [f2(x) + ox)].

Lety € X, g2 € 0 f2(y) and Vw(y) be given. We can then overestimate f by the following
convex function

f) < i) +o@) —[LO0)+o(k)+{(g2+ Vo), x —y)]
= fix) = f2(y) — (g2, x — y) + D(x, y),

where D(-, -) is the Bregman function
D(x.y) = 0() = [00) + (Vom.x =01 (= Sl —yI2). )

It is shown in [7] that the following Proximal Linearized Method generates a sequence of
trial points x**! whose cluster points (if any) are critical to problem (1).

PROXIMAL LINEARIZED ALGORITHM WITH A BREGMAN FUNCTION

Initialization: choose x? € X and compute gg €df (xo)
Repeat: fork =0,1,2...

o = arg min [ f1(x) — (g5, x —x%) + D(x, x%)) (6)
glzc-H c sz(ka)

Stopping test: If Xk = xk stop.

The work [41] studies the above algorithm with the standard choice w(:) = || - ||% /2
(Euclidean norm). With this same regularizing function the authors of [38] propose two
algorithms (akin to the above one) to find d-stationary points of (1). Both results in [41] and
[38] can be extended to a more general strongly convex function w without much difficulty
[7].

Notice that the above proximal algorithm requires solving exactly a constrained convex
nonsmooth program per iteration. This can be a difficult task when dealing with real-life
DC programs, mainly if f is only assessed via a black-box/oracle. In order to accelerate the
optimization process, the authors of [41] investigate an inexact version of the above algorithm
with w(-) = || - ||§ /2. In what follows we propose two proximal bundle algorithms that do
not require solving exactly subproblem (6) and differently from [41] no assumption on the
computed subgradient g11<+1 € 8 f1(x¥*1) is made. The first of these methods yields critical
points whereas the second algorithm presented in Sect. 5 finds d-stationary points under
the more restrictive assumption that f> is the pointwise maximum of finitely many convex
differentiable functions.
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3.1 A proximal bundle method for DC programs

Let k denote an iteration counter and let g{ € 9 fi(x7) and gg € 3 f2(x7) be subgradients of
the DC components calculated during an iteration j € {0, 1, 2, .. .}. Convexity of f] implies
that the linearization

7o) = fied) + (g], x —x)

approximates fi(x) from below. As a result, we can construct a cutting-plane model

Mo =max fif) < fi) Vxe®, @)
jeBt
where B’f C {0, 1, ..., k} is the index set containing the bundle of information of fi. By

following the general ideas of bundle methods we replace fi in the master program (6) with
its cutting-plane model f]k . Since flk can be a rough approximation of f] at certain iterations
k, the trial point x**! obtained from (6) with f; replaced by flk can be far away from the
solution of (6). In order to diminish the impact of coarse approximations of f; along the
iterative process, we shall regularize the resulting master program by keeping trial points
near to a certain stability center x*¥® ¢ X, where the index ¢ counts the number of times
that such a center has been updated and k(¢) is the iteration in which the center is obtained.
The stability center x¥(©) is some previous iterate, usually the “best” point generated by the
iterative process so far. Accordingly, we replace subproblem (6) with

. X k
min £ (x) - (65 x — x*O) 4 1 D(x, XK, ®)

where px > 0 is a prox-parameter determining the influence of the Bregman function D on
the next trial point x¥*!. In terms of optimal solution x**! subproblem (8) is equivalent to

min_ 7+ o () = (85" + u Vo (k0). x)

xeX,re . )
st.  fleoy<r, jeBh
Notice that if X is a polyhedron and @ (-) = | - [|3/2, then D(x, x¥®) = ||x — x*¥®) /2 and

subproblem (9) is a convex quadratic problem (QP).

Proposition 1 Given a stability center x*©' € X and a prox-parameter py > 0, let x**1 be
the unique solution of subproblem (9). Assume that either X is polyhedral or an appropriate
constraint qualification [21] holds in (9), then there exist skl e Ny (xk'H) and aj > 0 with

ZJ-EBIl( oj = 1 such that Zjelec otjg{ = pktl ¢ Bflk(xk“) and
p/(+1 + Sk+1 _ g];([) + 1k (Va)(xk'H) _ Vw(xk(ﬁ))) = 0. (10)
Moreover, the aggregate linearization
Fik) = fRGEY 4+ (pF x — XM sarisfies fi ¥ (x) < fi(x) forall x e R". (11)

Proof The assumption on X ensures the existence of Lagrange multipliers o; > 0 associated
to the constraints f{ (x) = fi(x/) + (g],x — x/) < r, j € B}. Hence, the optimality
conditions of (9) read as:

_ <_g12((£) + wk (Va)(karl) — Vw(xk(i)))) B Z o (f{1> . (Nx(karl)) .

1 0
jeBt
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The above inclusion implies that ZjeB’f o; = 1 and that there exists s* ! € Ny (x**!) such

that 71 = 5@ — 1) (Vo (xFH1) = Vo (k) — 1 jest @ ¢}, which is exactly (10) with

prtl = e Bk j&]. Note that p**! is a convex combination of active subgradients of fX

at x*+1. As aresult, ptt! e § fF(x**+!) [5, Lemma 10.8]. The inequality f;*(x) < f1(x)
holds because p**! € 8 fF(x¥*1) and fF() < fi(). o

If X = R" and w(x) = ||x||3/2 then the solution x**! of (8) is, from Eq. (10), x**1 =
xR0 4 i(glzc([) - jeBk @ g{ ). Furthermore, the Lagrange multipliers c; (with j € Bll‘)
can be obtained by solving the dual QP of (8), that has dimension |BI]‘ | (see [5, Lemma 10.8]).
Therefore, by keeping the size of B’l‘ bounded we also keep the method’s memory (number
of elements in the bundle) limited.

Once the trial point x**! is computed by a specialized solver (for QP, quadratically
constrained QP, conic programming, etc.) a classification rule decides when to update x*(©).
For a given k € (0, 1) and a lower bound p > 0 of the prox-parameter (i, a possible rule is

as follows: if
FORHY < FGRO) —kep DR XO) (12)

then a serious step is performed and we set x¥(+D .= x*¥+1 and ¢ := ¢ + 1. Otherwise,
a null step is performed and both stability center and counter ¢ remain unchanged. A more
economical rule in terms of evaluations of f5 is to test the condition

AGEHD) < AEEO) 4 (@59 M — kO —euD (kT A, (13)

If it holds we do a serious step. Otherwise we perform a null step. Note that (13) takes into
account only the first DC component f; and not the DC function f. Moreover, the above
inequality does not necessarily imply that f; (x**1) < f;(x*®) due to term (glzc((), Xkt
xk(z)). However, when (13) holds the DC function is decreased by an amount of at least
KD (RED | k(0.

Lemma 1 If (13) holds then f(x*©) > f (kD) 4 i p D(FEFD kO,

Proof When inequality (13) is satisfied we obtain x*(‘+1) = xk+1 and thus
f (xk(e)) > fi (xk(f-i—l)) _ <g12€(f)7 k) xk(e)) + K&D(xk(u_l), xk(f))'

Convexity of f3 yields fo(xK(HD) > £ (xkF©O) 4 (5@ xkW+D _ xk®) By summing these
two inequalities we obtain

ACEO) + D) > [ D) 4 H O e DEFEED KO),
ie., fi(xk®O) — H (KDY > 1 (KEFDY — ) (xkEFDy 4 K&D(xk(“'l),xk([)) as stated. O

‘We are now in the position to present our first algorithm, which makes use of (13) to update
stability centers. As a result, there is no need to evaluate f> at xKt1: only subgradients of f
are computed during serious steps, i.e., when (13) is satisfied. During null steps (when (13)
does not hold) only the first DC component f| needs to be assessed through an oracle that
returns at x** the value of the function and one of its subgradients. A similar algorithm can

be stated with rule (12) instead, but with evaluations of f, at every iteration.
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Algorithm 1 PROXIMAL BUNDLE ALGORITHM FOR DC PROGRAMMING

> Initialization
1: Letx0 e X,k €(0,1),0 < M=o S| <00 and a tolerance 81, > 0 be given.
2: Compute (f1(x9), g(]) € 3 f1(x%), gg € 3 f>(xY), and define B(l) = {0} and k(0) := £ :=0.
> Loop
3:fork=0,1,2,... do

4:  Solve (9) to obtain xk

*1 and the Lagrange multipliers o; > 0
> Stopping test
50 if lxk L — XKy < 1) then
Stop and return x
7:  endif

a

> Oracle for f]
8:  Call the oracle to compute ( f] (xk+1), glfH €9 f1 (xk"'l))

9: if (13) holds true then

10: Compute glzﬁLl € afz(xk‘H) > Serious step
11: Define x¥(+1D) = xk+1 kg 4+ 1):=k+land ¢ := £+ 1

12: Choose Blf"'] D {k+ 1} and pgyy € (@, pil

13: else

14: Choose BT 5 {—k, k(6), k + 1) with —k given in (11) and 41 € [1tk, 7] > Null step
15: end if

16: end for

After a null step, the bundle of information B’l‘ can have as few as three linearizations: the
new linearization calculated at x¥*1, the linearization formed at the current stability center
x¥(® and the aggregate linearization fl_k defined in Proposition 1. Right after a serious step
the bundle size can be reset to only one linearization, as is standard in proximal bundle
methods for convex optimization. Notice also that the proximal parameter (i is forbidden
to decrease after a null step. This is crucial to prove convergence of the algorithm, which
stops when the next iterate approximately coincides with the current stability center. This is
a cheap and reliable stopping test as shown in Theorem 1 below.

4 Convergence analysis

Let £ C {0, 1,2,...} denote the index set gathering the serious steps: £ € £ implies that
xK(© is the ¢th stability center. Throughout this section we will use the notation i(f) =
k(€ + 1) — 1 to refer to the algorithm’s iteration yielding a serious step. Then for such
iterations subproblem (8) reads as

. Xi (¢ k(¢
D = argmin f{9@) — (6 x =) 4 i DO ).,

Our goal is to show that any cluster point ¥ € X of the sequence of stability centers {x*©},
generated by Algorithm 1 is a critical point of (1), i.e., a point satisfying (3).

We start with the following result showing that if the algorithm performs only finitely
many steps, then the last stability center is a critical point if §1o; = 0.

Lemma 2 Assume that 5101 = 0 and suppose that Algorithm 1 stops at iteration k. Then the
last stability center x*© is a critical point of (1).
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Proof Convexity of fi and feasibility of x*( imply that
min FR@) = (65, x = KOy 4 e D(x, 4O <
min f1(x) = (g5 x —2*O) £ D0 ) < /1A, (14)

In addition, the point xk+1 solves the first subproblem (8) and the optimal value of this

problem is flk(xk“) — (gg(e), XKL — Xk Oy 4 DR x%©) Hence, if the algorithm
stops at iteration k we have that x¥*1 = x*¥© and

. e .
FRaRy — (@b, K+ — KOy oy DR KOy = fRGROY = £y (FO),

where the last equality follows from the assumption that k(¢) € B]f. We have thus shown
that

0

. k
AGHD) < min f100) (g3 x =20+ D@ M) < fiGH),

i.e., the point x5 = x*® 3150 solves minyex filx) — (glzc(z), x — xk®y 4 we D (x, xK©),
The optimality condition of this reads as

0e 8f1(xk+1) _ glzf(z) + [ (vw(xk+l) _ vw(xk(e))) + NX(karl).

Since xk*t1 = xk® the above inclusion is equivalent to g12<(e) € 41 (KO 4 Ny (x¥©®),
which gives (3) because g5 € 8 f2(xk(®), o

From now on we assume that 61, = 0 and that the algorithm loops indefinitely.

4.1 Infinitely many serious steps

In what follows we assume that the algorithm generates infinitely many serious steps, i.e.,
|£| = oo. The following result shows that p*(+1) 4 ¢¥E+D defined in Proposition 1 is an
approximate subgradient of the function fi(x) + iy (x) at the point x = x¥(¢+1),

Lemma 3 Let k(£+ 1) be the iteration index of the (£+ 1)th stability center and i (£) = k(£ +
1) — 1 be the iteration index in which x*“*V s determined. Assume p; < < oo and that
(xk©O} e £ is a bounded sequence. Let p*¢+) ¢ 3];11'“) (KDY gpd sKEFD e Ny (xk D)
be as in (10), and denote BFE+D .= pkC+D) 4 k+D Thep there exist constants M, L > 0
such that

1B“Olla < M and gVl < L forall ¢ L.
Moreover; fi(xH 4Dy = i@ (kD) = £ (kO — Lk D — xKO))5 and
BHD € 04y LAGHD) +ix O] with iy = (M + L)1 — 2KV,
Proof 1t follows from (10) and the triangular inequality that
| pFEHD kD), = ||g12<(£) o (Vw(ka)) _ Vw(xk(€+1))> I < IIglﬁ(Z)llz
+ Vo) = Vo o D) .
Since {)ck(‘g)}ge ¢ 1is bounded and the DC components f; and f, are finite-valued convex

functions on £2 D X, then [20, Theorem 3.1.2] ensures that {g]f(l)}geg and {glzc(z)}gel; are
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bounded sequences as well. In particular, there exists L > 0 such that || gll‘(z) 2 < L for all
£ € L. Moreover, the existence of a finite constant M > 0 bounding | pFEHD 4 gkE+D 5 s
ensured because & < oo and Vw is a continuous map.

Recall that Nx(xFHD) = §iy (xkFD) because x¥¢+D e X. Then sKHD ¢
dix (x*FD) and therefore ix(x) > iy (x*“FD) 4 (sKEFD x — xkEED) for all x € R”.
Since pk+D ¢ Bfli(z)(xk(”l)) we get

A +ix(0) = fO0 +ix@)
S [F1O REFD) | (pREED [y  ckrDy)
[ KDY (kO k(DY
 FIO KDY | (D) 4 (ghEFD ¢ kD)
As xF© ¢ X for all ¢, then iy (x¥“+D) = 0. By utilizing this in the above inequality we
obtain
£ +ix() > JZ]i(Z)(xk(KH)) + (,Bk(“l),x _ xk(z+1)>
= £ O) o (BRERD kO
+ (ﬂk(€+1)’ kO _ xk(/i+l)> + f]i(f)(xk(zﬂ)) - fi (xk(l))7

which gives by the Cauchy—Schwarz inequality

f1e) +ix@) = fiedO) + (1D, x —2KO)
_M”xk([) _ xk(l+1)”2 + fli(g)(xk@‘i’l)) _ fl (xk([)). (15)

Note that Algorithm 1 keeps in the bundle the index k(£) of the current stability center.
Therefore,

Xi(L i j j k(£
f]l( )(xk([-i-l)) — ma_)((/){fl(x]) + <g{’xk(ﬁ+l) _ x])} > fl(xk(é)) + <g1( )’xk(f-‘rl) _ xk(ﬁ)>.
JjeBy”

Again by the Cauchy—Schwarz inequality we get fli(z) (KDY > £ (K O) — LY pkEED —
x5 ||5. Thus it follows from (15) that (because ix (x¥©) = 0)

f100) 4 ix(x) = fi*O) 4 (BHED KOy (M 4 L)) KO — kD,
= fi(FO) 4 ix KOy 4 (BFEED - KOy gy .

Since x € R" is an arbitrary point we conclude that ﬂk([“) € 0e;) LS1 (K OY4ix (xk©)]. The
inequalities f; (xk(EHD) > f1O kD) > g (kO _ L]k ED _ kO, follow trivially
from the already shown inequality f]l(z) (KDY > £ (K Oy — L xkED k@), 0

Suppose that {xK®1,. - is bounded, ¥ € X is one of its cluster points, and [kt —
x¥® 1, — 0.Then the_above lemma ensures that { pk(zz—i-sk(@ }eer 1s abounded sequence and
that any cluster point 8 of {pk“) + sk“)}geg satisfies B € d[ f1(x) +ix(x)] as a consequence
of [21, Proposition 4.1.1]. This crucial property is employed in the following proposition to
establish that any cluster point x € X of {xk®} e is a critical point of (1).

Proposition 2 Assume that the level set {x € X : f(x) < f(x°)} is bounded and that

Algorithm 1 performs infinitely many serious steps, i.e., |L| = 0o and £ — oo. Then any
cluster point X € X of the sequence {x*©Y, is a critical point of problem (1).
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Proof Lemma 1 shows that f(x*®) — fF(x*X Dy > o DxFED | kO and therefore
the sequence { f KOy e r is strictly decreasing, which in turn implies that (xkOY,crisa
bounded sequence by the assumption of having a bounded level set. Continuity of f ensures
that the level set is also closed, and hence compact. The Weierstrass theorem implies that the
optimal value of (1) is finite. Therefore, by summing the above inequality with respect to £
we get

00 > f(HO) —min f(x) > fGHO) — lim FEHED) =B L GHO) - F D))

=0

o0
KEZ DA (kO
=0

%

Then it follows from the definition of D in (5) and the equivalence of norms in R" that
oo
o0 > Z ||xk(z+1) — xk“)H%, and consequently  lim ||xk(z+1) - xk(g)||2 =0.
P {—o00

Lemma 3 ensures that gF(EHD = pk(E+D 4 ok(E+D) ¢ deyry L1 (KDY + ¢ (x*OY)] with
eiqy = (M + L)||xk(€+” — xk© |l for two (possibly unknown) constants M, L > 0. Note
also that limy_, o €j(ry = O because limg_, [xkE+HD — xk@), = 0. Thus, there exist
subsets £/ C £/ C £ = {0,1,...} such that {x*®},. converges to a point ¥ € X
(because {x¥©},c, is bounded and X is closed), {,Bk(e“‘l)}gey converges to a point 8 €
[ f1(x) +ix(x)] (see Proposition 4.1.1 in [21] for more details). In order to show that x is a
critical point of problem (1), we only need to prove that limg¢ o~ g§ © B. This latter result
follows directly from Eq. (10), continuity of Ve and inequality pux < it < oo:

B = lim [pFEHD 4 kD] = |im g12<(€)

tel” tel”
— lim Mi(f) (Va)(xk(e)) _ vw(xk(iﬂ))) = lim glzc([)’
Lel” el
showing that f also belongs to 8 f>(¥). This concludes the proof. O

4.2 Finitely many serious steps (infinitely many null steps)

In this section, we assume that after the éth-stability center x¥© = % only null steps are

performed. Notice that in this case glzc(e) = g is fixed and therefore Algorithm 1 behaves
exactly as a convex bundle algorithm with the master program given by

min "% (x) + w D(x, £),
xeX

where f,i“Odel x) := flk (x) — (g2, x) is a cutting-plane model for the convex function
Sf1(x) — (&2, x). Thus it follows from the convergence analysis of convex bundle methods
that the sequence of iterates generated after the last serious step converges to the last stability
center: limy_, oo x*T! = %. Indeed, if D(x, y)=|x — y||% this claim follows directly from
[45, Proposition 4.4]. For the more general setting of a Bregman function D(, -) but with
X = R”, the result limg_, o0 x*T! = % can be justified by [12, Theorem 5.8] if the prox-
parameter i > 0 is fixed after finitely many steps of the algorithm. Overall, we have the
following result.
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Lemma4d Ler £ = x*© pe the last stability center generated by Algorithm I and assume
that {ig}, k) is a nondecreasing sequence contained in [, j1]. Then

lim x*! = %,

k—o00

Since Algorithm 1 does not consider the same assumptions of either [45, Proposition 4.4]
nor [12, Theorem 5.8]), we provide for the sake of completeness the proof of Lemma 4 at
“Appendix”. The following result is a version of Lemma 3 for the sequence of null iterates.

Lemma 5 I:etJ? = xk(z) be the last stability center generated by Algorithm 1, and fork > k(f)
pk+1 c Bflk(xk+l) and st e Ny (xkth. If{/«Lk}k>k(2) is nondecreasing, then there exist

constants M, L > 0 such that || p*™' + st < M and | p**Y|l, < L for all k > k(0).
Moreover, Bl = pkHl 4 k1 ¢ 5, [ A1R) + ix(R)], where ey = (M + L)||x*1 — %
forall k > k(£).

Proof It follows from (10) that [P + 54 < (182012 + ZI Vo (F) — Vo (xX 1], for
k > k(£). Since {“k}k>k(2) is nondecreasing, Lemma 8 (in the “Appendix”) ensures that

{xF} k>k(d) is a bounded sequence (therefore {x*}« is bounded itself). Then there exists a finite

constant M > 0 bounding || p¥*! + s¥*1||, (because Vw is continuous). As fj is a finite-
valued convex function on £2 D X, its subdifferential is locally bounded [20, Theorem 3.1.2].
Then there exists a constant L > 0 such that || g’l‘ |l < L forall k. We recall the subdifferential
of flk at x is the convex hull of the set {gf : flk(x) = i) + (g{, x — x7)}. Thus every
subdifferential of fvlk is also bounded by L, which in turn implies that fv]k (regardless the
iteration k) has L as a Lipschitz constant.

Recall that Nx (x¥t1) = 9ix(x*t1) because x¥*! € X. Then st € iy (x**!) and
therefore ix (x) > ix(x*T1) 4+ (s¥T1 x — x¥*1) for all x € R”. Since p**! ¢ Bflk(xk"'l)
and iy (x*) = 0 for all k we get (for k > k(f))

[iG) +ix(x) = fF@) +ix ()

> ﬂk(xk+l) + <pk+l’ x — xk-‘rl)] + [lX(xk+l) + <Sk+1,x _ xk+1)]

= fEEE (B x =2

=A@ + (B x = &)+ (B E - 4 R - A

> fi®) + (BT x = %) =M% — T — [AG) — fFeEH
Since by construction k() e B’l‘ for all k > k(), we have that flk()?) = f1(x). Then
AG) = FRar = fRE) — fEEk) < L& — x¥+1)5. This shows that

A +ix(x) =A@ +ix@) + (BT x—%) —e YxeR",

because iy (%) = 0. Therefore, B5t! € 9., [ f1 (%) 4 ix (%)] for all k > k(f). o

We are now in the position to prove that the last stability center x is a critical point of
problem (1).

Proposition 3 Let x = x5 pe the last stability center generated by Algorithm I and assume

that {{ii}y - k@) is a nondecreasing sequence contained in [, @] Then the sequence {xkty,
converges to X and X = X is a critical point of problem (1).
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Proof Lemma 4 gives limj_, o x¥*! = 2. It follows from (10), continuity of the mapping
Vw and py < @ that

lim g = Tim [pF! 4+ 51 = 6 — lim g (Va)(xk'H) - Vw()%)) — %2 € 0 (%)
k— 00 k—00 k—o00

Lemma 5 ensures that 851 € 8, [ f1(X) + ix(%)] with ey = (M + L)||x**! — £||5. Since
limy 00 ex = 0 due to limy_, oo X! = %, then g» = limy_, oo B! € 3[ f1(X) +ix(X)] and
(3) is satisfied with ¥ = X. |

4.3 Convergence analysis: main result

Convergence analysis of Algorithm 1 is summarized in the following theorem.

Theorem 1 Consider Algorithm I and suppose that the level set {x € X : f(x) < f(x0)}is
bounded. If the stopping-test tolerance 81y = 0, then any cluster point x of the sequence of
stability centers {x*©Y o o generated by the algorithm satisfies (3). Moreover, if the stopping-
test tolerance dto1 > 0 then the algorithm stops after finitely many steps with an approximate
critical point ¥ = x*©_ In addition, if Vo (-) is a locally Lipschitz continuous map, then the
approximate critical point ¥ = x*® satisfies

Asy8101 LS1(X) +ix (D) N [3 f2(X) + B(0; s28101)] # ¥,

where s1, so > 0 are two constants and B(0; s28101) is the closed ball in R™ with center at
zero and with radius s28To].

Proof First, suppose that 8o = 0. If Algorithm 1 stops at iteration k then Lemma 2 ensures
that the last stability center is a critical point of (1). Suppose now that Algorithm 1 does
not stop. If infinitely many serious steps are generated, then Proposition 2 gives the result.
Otherwise there will be a finite number of serious steps and Proposition 3 ensures that the
last stability center is a critical point.

Moreover, suppose that 8, > 0. If infinitely many stability centers are generated then
Proposition 2 shows that lim,_, lxkEED — 3k, = 0. Otherwise, if there is only finitely
many stability centers, then Proposition 3 ensures that limy_, « lx¥+t — %|l» = 0 where
% = x*® is the last stability center. In any case, the stopping test of Algorithm 1 will be
triggered after finitely many iterations if 8o > 0. In this case, ||xk‘H — xk® 2 < 8101 and
therefore Lemma 5 gives

P4 S € Bn g Ly LA GRO) + ix (O,
Furthermore, Eq. (10) and assumption on Vo yield
k(e
1P+ 5 — Oy = Vo (5 = Vo (FO) |y < sy kT — x5Oy < 528701,

These properties show that ¥ = x*© is an approximate critical point of problem (1) with
s1 = M + L and s» = L, where L, is the Lipschitz constant of Vw on the bounded
sequence {xF . O

4.4 Some comments on convex and DC models

Algorithm 1 employs the convex model flk (x) — fzk ©® (x), with

k(e k(€
RO = RO + (0 x = x40,
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to approximate the DC function f, where flk is a cutting-plane model of fi. Instead of
considering only one linearization for the second DC component, one could also gather a
bundle of information Blz‘ Cc {1,2,...,k} for f> and define a cutting-plane model

fzk(x) 1= max fz](x).

- 13k
Jj€B;

This provides a DC model flk - fzk for f that is expected to be better than the convex one
flk (x) — fzk(g) (x). Both publications [16] and [27] consider the DC model flk(-) — fzk(~) in

their proximal bundle algorithms for unconstrained DC programs. For instance, the method
of [27] defines trial points by solving globally the following DC subproblem

X e arg min FR@) = @) + e — x*O)13. (16)

Since fzk is a polyhedral function, a global solution to the above subproblem can be obtained
by solving IBIQ‘ | strictly convex QPs

min {min FEe) = f 00+ mllx = x4 ||%} :
je B/2< xeX

As aresult, if the bundle of information B’z‘ is large then each iteration of the algorithm in [27]
can be too time consuming. For this reason, the size of the bundle B’z‘ should be kept small. The
proximal bundle method of [27] is shown to converge to a critical point of an unconstrained
DC program even when 812‘ has only two indexes, i.e., only two QPs are needed to be solved
per iteration. In contrast, Algorithm 1 requires solving only one convex subproblem (a QP if
w()=1- ||§ /2 and X is a polyhedron) per iteration, which results in taking B§ = {k(0)} for
all k. This is a feature of practical interest if X contains some conic/quadratic constraints.

5 A proximal bundle method for finding d-stationary points

In this section, we consider a particular case of problem (1) in which the second DC compo-
nent is the pointwise maximum of finitely many differentiable convex functions ¥; : £2 — R:

min (). with f(0) = fi(x) = L) and fo() = max i) (A7)

Inspired by the work [38], the following modification of Algorithm 1 may solve several
subproblems of type (8) at certain iterations to generate a subsequence of stability centers
{x*©} ¢ that converges to a d-stationary point ¥ of problem (17), i.e., X satisfying (2). To
this end, we explore the structure of f>. It is well known that the subdifferential of f> at any
given point x € X C £2 is the convex hull of gradients of functions ; that are active:

0 f2(x) = conv({Vy; (¥)}icaw)), Wwith A(x):={1 <i <N : ¥;(x)
= fr(x)} forall x € X. (18)

As aresult, if x € X satisfies
Vi (%) € d[f1(X) +ix(X)] forall i € A(X),

then (2) holds from the convexity of 9[ fi(X) + ix(x)] and thus X is a d-stationary point
of (17). For technical reasons, Algorithm 2 below makes use of the following relaxation of
A(x):
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Ac(X)={1 <i <N: ¥i(x) > fo(x) —€}, withe > 0.

To avoid critical points that are not d-stationary the parameter € above must be strictly positive
[38, Example 4].

Algorithm 2 A PROXIMAL BUNDLE ALGORITHM FOR COMPUTING d- STATIONARY POINTS

> Initialization
1: Letx0 e X,k e€(0,1),0< LS pp S <00 and tolerances d1,] > 0 and € > 0 be given.

2: Compute (f1(x%), g9 € 3 f1(x%), f2(x0), and Vi; (x0) for all i € Ae(x0).
3: Define BY := {0} and k(0) := € := 0.

> Loop
4: fork =0,1,2,... do
5. for alli € Ac(x¥() do
Bk
6: Compute the unique solution (r;, y;) and the multipliers «; € RL il of
min 7 — (Vi (KO) x — xKO) 4y D(x, xKO)
xeX,reR (19)

s.t. flj(x)fr, jeB’l‘.

7:  end for
8: Define xkt! := yi*, where

i*earg min [r = (Vg KO,y = FO) 1 DGy, HO)]
i€Ae (xk(©)

> Stopping test
9: if [xk 1 — xkO ), < §1) then

10: Stop and return x
11: end if
> Oracles
12:  Call the oracle to compute (f; (¥*t1), g5 € 9 i (&% +1)) and fo(x*+1)
13:  if (12) hods true then
14: Compute V; (xk“) foralli € Ae (xk“) > Serious step
15: Define xK+D) .= xk+1 g4 1) :=k+1and€:= €+ 1
16: Choose B\ > {k + 1) and pppy =
17: else n
18: Choose BT o {—k, k(0), k + 1} and jug41 € [pg, 7] > Null step
19: end if
20: end for

Note that if the number N of functions ¥; in (17) is equal to one (i.e., f» = V), then
Algorithm 2 becomes essentially Algorithm 1 (with the only difference in the descent test).
However, if N > 1 then Algorithm 2 solves | A (x¥)| subproblems per iteration.

Moreover, some vectors Vi (xK) with i € A (xk®) may not belong to 9 o (xKO)
because € > 0. As a result, the new trial point x¥*1 solution of (19) for some i* € A, (xk©)
may not be issued by a true subgradient Vi« (x¥(©) of f> at x*©. Since Lemma 1 relies on
the fact that g]; ©ed F2(x*®) we cannot employ the descent test (13) with g]; © replaced
with V= (x¥©): even if

fl (xk+l) < fl(xk([)) + <le_*, xk-‘rl _ xk(f)) _ KED(-X/(-FI, Xk(Z))
holds true, nothing ensures that f (x**1) < f(x*®) — kuD (1, x*©)_ This is why we

have replaced the descent test (13) with the more direct one given in (12). A downside of
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such replacement is that we need to call an oracle for f> at every trial point, in contrast to
Algorithm 1 that never evaluates f> (but computes one of its subgradients at serious steps).

In order to analyze the convergence of Algorithm 2, we rely on the convergence analysis
of Algorithm 1. We start with the following lemma.

Lemma6 Let x**! and i* as be defined in Algorithm 2. Then for all i € A (x*(®©)
f]k(ka) (Ve (KO, KL KOy 4 Dk k)
= min fi(x) = (Vi "), x =) + T D@, ) < AGHO). 0)
Xe

Proof 1t follows from the definition of x**! that flk (xk Dy — (Wifrje (KO, xkF1 — KOy 4
e DK K O) = ming ey fR(x) = (Vi (KO, x — x5Oy 4 1y D(x, x4©), which is
in turn less than or equal to

R = (Vi RO,y — x*O) 4 i D@y, x4 O) Vi e A (xFO)

due to the definition of i* and y; given in Algorithm 2. Again, the definition of y; and the
inequalities flk (x) < fi(x) and g < 1w ensure the first inequality in (20). The last one
follows from feasibility of x¥(©). O

Theorem 2 Consider Algorithm 2 applied to problem (17) and suppose that §to) = 0 and
the level set {x € X : f(x) < f(x°)} is bounded. Then any cluster point X of the sequence
of stability centers {x*©},c, generated by the algorithm is a d-stationary point, i.e., X
satisfies (2).

Proof We split the proof in three main parts: the first part considers the case in which Algo-
rithm 2 stops with d1,; = 0, the second one analyzes the case of infinitely many serious
steps, and finally the last part assumes that after a last serious step the algorithm loops
forever generating only null steps.

1

First part Suppose that Algorithm 2 stops at iteration k. Then x**! = x*® and Lemma 6

gives
FrEk®) < min fi(x) = (Vi RO, x — KOy 4 e D(x, x5O
XeE
< AG*O) Vi e A (x*O),

As k(¢) € B¥, then flk (xk®y = f1(x¥®) and the above relation ensures that XKL = xk©
solves

min fi (x) = (Vi (1), x = 25O) 4 g D, 24O) i e AQHD) C AGHD), e,
Xe
0€ 8 /i) = Vi (FO) 4 g (Vo) = Vo)) + Nx (1) Vi e A,

Since x¥T1 = x¥® then Vi; (x*©) € 8 f1 2k D) + Nx (x*©®) for all i € A(x*®), which
by (18) implies that ¥ = x¥(® satisfies (2). In what follows we suppose that the algorithm
does not stop.

Second part Let us suppose that Algorithm 2 generates an infinite sequence of serious
steps. By summing the inequality FOHREDY < £ KO — e D(xKEED XK Oy gyer £
L = {0,1,2...} and using the fact that {x € X : f(x) < f(xo)} is a bounded set, we
conclude that {x¥©},c~ is a bounded sequence. Moreover, Z}’io |k EHD — k(O ||% < o0
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by (5) and the equivalence of norms in R”. Boundedness of {x*©},c, ensures that there
exists an index set £ C L such that the sequence {xk(e)}ge £/ converges to a point x € X.
Continuity of f> and the assumption that € > 0 yield the inclusion A(X) C A (x*®) for
all £ € £’ large enough. In what follows, let i (£) = k(£ 4 1) — 1. The definition of x¥(‘+1
(= x*1 = y;+) and (20) give

»
flt( )(xk(e+1)) _ (Vl//,-*(xk([)),xk(““l) . xk(z)> + wice) D(x"(“l), xk(z))
< i) — (Vi KOy, x — x*Oy 1 D(x, x5O Q1)

forall x € X,i € A(X) and £ € £’ large enough. Algorithm 2 keeps in the bundle the index
k(£) of the last serious step. As a result,

Xi(¢ i j i k(¢
fll( )(xk(€+1)) — ma_)((é){fl(xj) + (g.1/7xk(5+1) _ xj)} > fl (xk(é)) 4 <g1( )’xk(€+1) _ xk(f))_
jeB;

By the Cauchy—Schwarz inequality (and remembering that {x¥®Y,c £ is bounded and f;

. Xi( k(¢
is convex) we get fi @ (KDY > £ (xk©) — || KO kD — kO, > g (kO —
L||xkED — k). Combining this inequality with (21) yields

1ROy — LY FED kO (T (RO, K EED KOy 4y DEREED | (KO
< fix) = (Vi KOy, x — x*Oy 1 7T D(x, x4 O) (22)

forallx € X, i € A(X) and £ € £ large enough. By going to the limit with £ € £’ tending
to infinity (and recalling that limy_, oo [|x¥“+D — xk(O |, = 0 because 52, [xFE+D —
xk© ||% < 00) we obtain

NG = fil) =(VYi(X), x =x) + 1 D(x, %), VxeX, VieAX).

This shows that x solves all the |A(x)| subproblems minyecy f1(x) — (Vi/;i(x),x — x) +
u D(x, x), ie., Vii(x) € 0f1(X) + Nx(x) for all i € A(x), implying thus that X is a
d-stationary point of (17).

Third part  Let us consider the case of finitely many serious steps. Accordingly, there exists
a last stability center £ = x*© and f(%) < f(x**t1) + K&D(xk"'l, %) forall k > k(0). As
mentioned right before Lemma 6 in page 13, this implies that a point x**! for k > k(€) does
not satisfy test (13) with g5 = Vy; (%) forany i € A(£) [although (13) may hold for some
g];(z) = Vy;(X) with j € Ac(X)\A(X)]. Hence, by seeing the null iterates K1 =y with
i* € A¢(X)\A(X) as mere points enriching the bundle B’l‘ , Lemma 8 and Proposition 3 apply:
limg—, oo f1 (6K ) — flk (x**1)] = 0, limg_, oo x¥*1 = % and £ is a critical point. It remains
to show that X is indeed a d-stationary point of (17). To this end, consider the following
inequality extracted from (20):

FRORY) — (Ve (B), Y = ) 4+ e DGAHY B
< filx) — (V¥i(R), x — £) + E D(x, %),

forall x € X and all i € A(x). By passing to the limit with k tending to infinity we obtain

fid) = lim [FFGRD) — (Vs (B), 24D — %) + e DGAFL, 2]
< fix) = (VYi(R), x — X) + T D(x, §)
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forall x € X and i € A(X). This shows that x solves all the |A(X)| subproblems
mi)r} f1(0) = (Vi (X), x — ) +w D(x, %) fori e A(®),
Xe

implying thus that X = X is a d-stationary point of (17) (see 18).
In all the cases, if é1o; > O the algorithm stops after finitely many steps. O

6 Numerical experiments

We assess the numerical performance of Algorithms 1 and 2 on some academic DC problem:s.
For comparison reasons, we consider two variants of Algorithm 1 with the Bregman function
D(x,y) = ||lx — yII% /2, two implementations of the classic DC algorithm (DCA) of [42],
one implementation of the proximal linearized algorithm [41, Algorithm 1], the DC proximal
bundle method of [27] and an algorithm for nonsmooth and nonconvex optimization [35].
We also compare the computational behavior of Algorithm 1 against the results reported in
the paper [16]. The considered solvers are as follows:

— PBM1: Algorithm 1.

— PBM-d: Algorithm 2.

— PBM3: Algorithm 1 with subproblem (9) replaced with the DC subproblem (16), where
the model for f> has three pieces: three linearizations computed with the last three stability
centers.

— DCA-CPM: this is an implementation of the DCA algorithm of [42], with trial points
defined as

e argmin f1(x) — (g5, x)  with g5 € 8 f2(x). (23)
X
The convex subproblem (23) is solved by an implementation of the Kelley’s cutting-plane
method [28]. We have made use of warm start, meaning that when a new subgradient
g§+l € 3 f>(x**1) is computed the solver re-uses the cutting-plane model for f] con-
structed at the previous iteration.

— DCA-LBM: as DCA-CPM, but with the convex subproblem (23) solved by an implemen-
tation of the level bundle method of [34].

— PLM: this is an implementation of the proximal linearized algorithm in [41, Algorithm
1], with trial points defined as in (6). The convex subproblem (6) is solved by replacing
J1 with its cutting-plane approximation, which is iteratively improved the same way as
the classical proximal bundle method does. As in DCA-CPM, we have employed warm
start.

— HANSO: Hybrid Algorithm for Non-Smooth Optimization [35]. This is a MATLAB pack-
age based on the BFGS and gradient sampling methods for nonsmooth and nonconvex
unconstrained optimization problems. The package (version 2.2) is freely available by
its developers at the link: www.cs.nyu.edu/overton/software/hanso.

— PBDC: the proximal bundle method of [27], whose Fortran code is freely available by
its developers at the link: http://napsu.karmitsa.fi/pbdc/.

Except for solver HANSO and PBDC that are open source packages, we have implemented
the considered solvers in MATLAB (version 2017a) using the Gurobi (version 7.5.1, www.
gurobi.com) solver for LP, QP and quadratically-constrained problems. Solver HANSO was
employed with its default parameters, except the memory of its BFGS algorithm that was
set to 50 for problems where dimension is greater or equal to 1000. Solver PBDC was used
with its default parameters, except its stopping-test tolerance (user_crit_tol) that was
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increased to 0.06 - n. The other solvers employ the stopping test ||x*T! — x|, < 81,1, with
tolerance 81o; = 10~%. In our implementation, the solvers PBM1 and PBM3 consider the test
(12) with k = 0.1 and . = 10~ for updating stability centers. This implies that the number
of evaluations of fi is the same as for f>. The maximum size of the bundle of information for
solvers PBM1, PBM3 and PBM-d was set to max{100, min{n + 5, 1000}}. Moreover, only
active indexes were kept in the bundle after a serious step. The MATLAB codes as well as the
considered test problems are freely available at the link: http://www.oliveira.mat.br/solvers.

Numerical experiments were performed on a computer with Intel(R) Core(TM), i7-
6820HQ, CPU @ 2.70 GHz, 32G (RAM), under Windows 7, 64Bits. The Fortran code
of PBDC was compiled and executed in a Virtual Machine running Linux Ubuntu. The total
CPU time allowed for each solver on each test problem was set to 3600s.

For the sake of comparison, we also present some results from the paper [16]. Since we
have not ran the solver DCPCA, it does not make sense to compare CPU time. However, the
solution quality and number of subgradients evaluations can be compared, keeping in mind
that DCPCA, PBDC and the MATLAB solvers employ different stopping tests.

6.1 Unconstrained DC programs

We consider all the unconstrained DC programs reported in [2,16,27]. Their formulation,
optimal values and initial points are given in [27].

Since the inner algorithms employed by solvers DCA-CPM and DCA-LBM require the
feasible set to be compact, we have added the bounds —100 < x < 100 to the test problems
when running these two solvers (the other solvers did not consider this change).

Table 1 reports numerical experiments on several instances of the considered unconstrained
DC problems. The first column indicates the problem, the second states the dimension of
the problem and the third column reports the optimal value. The remaining columns present
the obtained function value f (x*©), number of subgradient evaluations for DC components
and CPU time (in seconds) for all the considered solvers. We emphasize that:

— PBM1 and PBM3 The number of subgradient evaluations #g; is equal to the number of
function evaluations of fi. It also coincides with the number of iterations performed by
the algorithm. The number of subgradient evaluations #g; of the second DC component
coincides with the number of serious steps of the algorithm.

— DCA-CPM, DCA-LBM and PLM The number of subgradient evaluations #g is equal to
the number of function evaluations of f;. Moreover, #g> coincides with the number of
iterations.

— HANSO The number of subgradient evaluations is equal to the number of function eval-
uations. The solver does not exploit the DC decomposition of the objective function.

— PBDC The number of function f evaluations can be slightly bigger than #g.

— DCPCA The number of evaluations of f] is greater than that number of subgradient
evaluations due to the line-search.

Notice that the solution quality of solvers PBM1 and PBM3 is comparable to solvers PBDC
and DCPCA. These four DC bundle solvers provided more precise solutions than the solvers
DCA-CPM, DCA-LBM, PLM and the nonconvex solver HANSO. Moreover, the bundle solvers
were successful in computing a critical point of problem (1) in all instances (expect solver
PBDC that exceeded the CPU time limit when dealing with problem 4, n = 750). Except
for problem 10 with n = 5, solvers PBM1, PBM3 and DCPCA found the best known function
values of the considered problems.
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Fig. 1 Performance profile of the results presented in Table 1

Solver HANSO (for general nonconvex optimization problems) was the only solver that
could solve globally problem 3 with n = 5. Overall, this solver performed a larger number
of function/subgradient evaluations than the other solvers that exploited the DC structure of
the objective function. Solver DCPCA required less subgradient evaluations of g; than solver
PBM1 did, however the former needed more subgradient evaluations of g>.

Notice also that when employing a convex cutting-plane model (solver PBM1) the total
number of iterations and computation burden do not necessary increase when compared to
PBM3, PBDC and DCPCA. Moreover, the quality of final solution candidates is not deterio-
rated.

We sumarize Table 1 in Fig. 1 by employing performance profiles [11]. For example, let
the criterion be CPU time. For each solver, we plot the proportion of problems that is solved
within a factor y of the time required by the best algorithm. More specifically, denoting by
t;(p) the time spent by solver s to solve problem p and by 7*(p) the best time for the same
problem among all the solvers, the proportion of problems solved by s within a factor y is

number of problems p such that 7, (p) < y t*(p)

ps(y) = total number of problems

Therefore, the value pg(1) gives the probability of the solver s to be the best by a given
criterion. Furthermore, unless #; (p) = oo (which means that solver s failed to solve problem
p), it follows that lim,, _, o; p5(y) = 1. Thus, the higher is the line the better is the solver (by
this criterion).

Figure 1 shows that the four proximal bundle solvers perform better than the other solvers
in both number of subgradient evaluations of f; and robustness. However, in terms of subgra-
dient evaluations of f> the DCA solvers DCA-CPM and DCA-LBM performed better. Overall,
solver PBM1 presents a good compromise between CPU time and robustness.
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6.2 Linearly-constrained DC programs

In this subsection, we consider two convex constrained DC programs obtained by approxi-
mating chance-constrained problems of the form

miny (g, x)

st. Ax=b
Ple(x. £) < 0] > p o
x<x=<x,

where £ € & C R™ is arandom vector having probability measure P, A € R**" and b € R*.
Parameter p € (0, 1) is a confidence level and ¢ : R” x & — R is a given DC function
(not necessary differentiable). It is well known that the above problem may fail to be convex
even when c(+, -) is convex in both arguments. Moreover, evaluating the probability function
for a given point involves computing a multidimensional integral. This is a difficult task
when random variables have large dimension [47], and therefore Monte-Carlo simulation
is an important alternative to approximate IP. We refer to [19,39,44,46] for more details on
chance-constrained programming.

Asdiscussed in [25], if ¢(-, &) is a DC function the probability constraint P[c(x, §) < 0] >
p can be approximated by the DC constraint E[c(x, £) +¢]T —E[c(x, £)]* < t(1— p), where
t ~ 0 is a positive parameter, [a]T := max{a, 0} and E[-] is the expected value operator
w.rt. P. By penalizing this constraint with! p > 0 we get the following approximation of
(24):

min (g..x) + p[Ele(x, &) + 11 ~ Ele(x, )1 —1(1— p)]”

st. Ax=bh (25)
x<x=x,

that can be written as a DC program

min f1(x) = f2(x)
s.t. Ax=5>b
X <x=x,

with fi(x) = (g,x) + pmax (E[c(x, §) + 11t —1(1 = p), E[c(x, §)]*) and fo(x) =
pE[c(x, £)]T. The expectations E[c(x, &) + ¢]T and E[c(x, £)]* can be approximated by
Monte-Carlo simulation [25]: in our numerical experiments we have used a fixed sample of
10,000 scenarios randomly generated accordingly to the distribution of &.

6.2.1 PlanToy: an academic chance-constrained planning problem

We consider a small example of a management problem coming from the industry of energy.
The problem consists of planing two fictitious refineries for producing two types of fuel to
meet a demand that is deterministic in the first month of planning, but uncertain in the second
one. The decision maker wishes to make an optimal decision on the amount of processed
petrol by the two refineries (x; and x; for the first month, and x5 and x¢ for the second
one), storing petrol (x3 and x7), and importation (x4 and xg). The storage and importation
decisions must ensure that the second-month demand is satisfied with probability p. The
fictitious planning problem (PlanToy) reads as

' We have used p = 10* x n in our numerical experiments.
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mig 2x1 4+ 3x2 + 0.5x3 + 12x4 + 2x5 + 3x6 + 0.5x7 + 12.5x3
x>

s.t. 2x; + 6x2 = 190
3x1 4+ 2.8xp = 168
X1 +x2+x3 — x4 =60 (26)
—x3 4+ x5 + x6 + x7 — xg = 47.16
Ple(x,8) <0l = p
x3<10,x7 <10,

where c(x, &) = max{&; — 2x5 — 6x¢, & — 3x5 — 2.8x6}, and & = (&1, &) is a random
vector (of fuel demand) following a normal distribution with mean E[£] = (193, 178) and
covariance matrix

(9 Cov(él, &2)
=\ cov(g, &) 1024 :

Under this assumption the probability constraint P[c(x, §) < 0] > p can be replaced with
the convex one ¢(x) < 0 with ¢(x) := log(p) — log(P[c(x, &) < 0]) [39]. For compari-
son purposes, the resulting convex optimization problem was solved by using the MATLAB
optimization routine fmincon. We employed the Matlab’s statistical function mvncdf to
evaluate the probability function:

Ple(x,£) <0] = IF’|:$1 < 2xs5 + 6x¢ ]

& < 3x5+2.8x¢

Such a convex reformulation is possible thanks to the assumption on the probability distri-
bution of the random vector &. For more general (and possibly more realistic) distributions,
the PlanToy cannot be recast into a convex formulation. We refer the interested reader to
textbook [39] for a comprehensive discussion on convexity of chance-constrained programs.

Regardless convexity, evaluating the probability function is a difficult task in general.
Therefore, the Monte-Carlo approach and DC approximation discussed above become attrac-
tive in the large-scale setting.

By varying the confidence level p € {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and the covariance
coefficient Cov := Cov(&y, &) € {—4.8, 0, 4.8} we ended up with 18 variants of PlanToy.
Table 2 reports the results obtained by applying the solvers PBM1, PBM3 and PLM on these
instances. As PLM, both solvers DCA-CPM and DCA-LBM had a similar and unsatisfactory
performance on these instances. Solvers HANSO and PBDC were not applied because they
do not handle constrained problems.

As starting points for these solvers, we have considered the solution of the simpler indi-
vidual chance-constrained program obtained from (26) by replacing the joint probability
constraint P[c(x, &) < 0] > p with the individual ones Pi[§] < 2x5 + 6x6] > p and
P& < 3x5 + 2.8x¢] > p, where & ~ N(193,9) and & ~ N(178,10.4) due to the
assumptions on the joint distribution of & = (&1, &2). By making use of p-quantiles (that can
be easily computed by several statistical softwares), the above constraints are in fact linear
ones:

2x5 + 6x6 > Pfl[p] and 3xs5 4 2.8x > IED271[17]-

Therefore, problem (26) with P[c(x, §) < 0] > p replaced with the these two linear con-
straints is a mere linear programming problem approximating the nonlinear one (26) (see
[39] for more details). This is why we consider such an approximation only for computing
an initial point for our solvers.
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Solver PLM failed to globally solve all the considered instances of PlanToy: the method
stopped with a critical point of the penalized DC program (25), which is not even a feasible
one. On the other hand, the proximal bundle solvers were successful.

We care to mention that the obtained function value has three sources of inaccuracy:
(1) the approximation of the probability distribution by a sample of 10,000 scenarios, (2)
approximation of the characteristic function 19 ) (z) by ([z + t1T — [z]7)/t, and (3) the
solvers tolerance. As a result, one cannot expect that the obtained function values coincide
with the (approximate) optimal value f. Nevertheless, the function values computed by
solvers PBM1 and PBM3 are very close to the optimal values and the obtained solutions are
(nearly) feasible: the columns 7-9 of Table 2 report the probability of the computed point
X to satisfy the random constraint c(x, §) < 0.

Once again, PBM1 (with a convex model) was as precise as PBM3 (with a DC model) but
faster than the latter on these instances of PlanToy.

6.2.2 A norm optimization problem with chance constraints
We now consider a DC approximation of the chance-constrained program

{ min,err — || X[l 27)

s.t P[I§ x]l2 = 10] = p

.....

100}, where é;; i = 1,...,nand j =1, ..., 10) are independent and identically distributed
standard normal random variables. The DC reformulation of this problem is

xﬂelﬁ S1(x) = foa(x),

with fi(x) = = 37 xi + p max(E[c(x, §) + 117 — (1 — p), E[c(x, £)]") and fo(x) =
pEle(x, )17

In order to approximate the expectation [E, we have used Monte-Carlo simulation with
N = 10,000 scenarios. As discussed in [25], when &;; are independent and identically
distributed standard normal random variables the global solution and optimal value of (27)
are, respectively,

10 ~ 10
Xi=—, i=1,...,n, and f = "

/F;r%l(pl/lo) /F);,%l(pl/lo)

where FX_Z1 denotes the inverse distribution function of a Chi-square distribution with n
degrees of freedom. Table 3 reports some results obtained by applying the six solvers on 18
instances of (27).

Since computing exactly the constraint P[c(x, §) < 0] is a difficult task, we do not report
in Table 3 the probability value P[c(x, §) < 0] at the obtained candidate solutions. However,
we estimated this probability by the DC approximation mentioned above. We observed that
in all the considered instances the value (E[c(x, &) + ¢]T — E[c(x, £)]*/t) coincides with
the given confidence level p for the solvers PBM1 and PBM3. This ensures that the provided
candidate solutions are feasible for the DC formulation above and, therefore, nearly feasible
for the considered norm optimization problem with chance-constraints.

2 Probability computed by using the mvncdf Matlab’s function.
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Once again, we cannot expect that the obtained function values coincide with the optimal
value f due to the reasons previously mentioned. However, we can see from Table 3 that the
bundle solvers provided good estimates of the optimal values. Solvers DCA-LBM and PLM
computed critical points for all problem instances, however they failed to compute global
solutions. In order to apply HANSO, we dropped the (inactive) constraint x > 0. After this
solver HANSO could solve up to optimality only the smaller instances and find a critical point
for the medium size ones, but could not solve the larger instances in a time limit of 1h. The
reason is that HANSO requires many function evaluations: the considered function requires
Monte-Carlo simulation and is therefore difficult to evaluate. Table 4 reports the number of
subgradient evaluations.

6.3 Quadratically-constrained DC programs
We now consider the following quadratically-constrained DC program (QCDC)

1 .
- min  min {Enx—c/ng}

f =9 xeRr jefl,...m} (28)
s.t. %ZLI ocixl.2 < %Kz ,
with given data K € Ry, @ € R} and ¢/ e R, j =1,...,m. The optimal value (and

a solution) of the above QCDC can be found by solving individually the m quadratically-
constrained QP programs (QCQP)

Table 4 Norm optimization problem with chance constraint: number of subgradients evaluations

n PBM1 PBM3 DCA-CPM DCA-LBM PLM HANSO
#g1  #gy  #g1 #g  #g #22 #g1 #g2 #g1 #g2 #f
32 8 33 8 33 2 44 3 2372 463 3239
49 10 49 10 88 2 38 3 69 2 6399
41 10 36 8 118 2 81 2 131 5 6008
10 37 6 37 6 348 2 71 2 300 3 16,125
20 49 10 49 10 1413 2 95 2 934 2 39,672
50 47 6 47 6 T T 119 2 2306 4 37,020
100 41 5 41 5 T T 138 2 2116 2 -
150 53 9 50 9 T T 196 2 2317 2 -
200 53 10 53 10 T T 244 2 2626 2 -
27 7 27 7 33 2 44 3 2699 535 4309
57 15 60 15 88 2 38 3 69 2 7116
45 7 51 9 122 2 81 2 108 2 8253
10 52 9 52 9 358 2 69 2 252 2 17,158
20 64 10 96 11 1397 2 95 2 1501 9 41,973
50 62 15 43 9 T T 121 2 1887 3 35,239
100 51 7 51 7 ¥ T 152 2 2125 2 -
150 45 5 45 5 ¥ T 173 2 2299 2 -
200 53 9 45 6 T T 326 2 2628 2 -

The symbol “—” means that the considered algorithm failed to compute a critical point in 1 h of processing, and
“+”” means that the considered solver failed in computing a critical point. The first eight results were obtained
with p = 0.8 and the last eight with p = 0.9
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1 I
min 5||x — ¢
vj = {XER" ?“ ”22 1 2
n
S.t. 3 Zi:l O{,’xi < EK ,

and taking f = r}lin v;. Problem (28) has the following DC representation

Jell, .., m}
min fi(x) — fo(x)
xeR"l . 5 _—
st 3> aix; < 5K°,
with

1 12 1 in2
fit) =33 Ix=c/lI3 and fo00) =5 max ;Hx—cjnz

,,,,,

j=1

Several instances of problem (28) were generated by the following scheme: we set K = 10,

m = 5 and «; drawn randomly and uniformly from [0, 1] for alli = 1, ..., n. Vectors ¢/,
j =1,...,m, were constructed in such a way that no ¢’ is feasible for (28):
. &
= +sj)K7_2,
Y Do (Eij )
where Eij ,i=1,...,n,j=1,...,m, wasrandomly generated following a standard normal

distribution and s; uniformly from the set {1, 2, 3, 4, 5}.

For the QCDC problem (28), the proximal bundle method subproblem (9) becomes a
QCQP (once again with the choice D(x, X) := ||x — X|| % /2) that can be solved by specialized
algorithms. In this study we applied GUROBI. Table 5 reports some numerical results obtained
by applying solvers PBM1, PBM3, DCA-CPM and PLM to some instances of (28).

Solver DCA-CPM (respectively PLM) solves # g linear (respectively quadratic) optimiza-
tion subproblems with quadratic constraints per iteration. Solver PBM1 (respectively PBM3)
requires solving # g1 (respectively three times # g1) QCQPs. This explains why PBM1 is faster
than the other considered solvers. Once again, the proximal bundle solvers were successful
in computing global solutions.

6.4 Computing d-stationary points

In this section, we illustrate the performance of Algorithm 2 on two additional test problems
whose second DC component is the pointwise maximum of finitely many differentiable
functions. We start with the following two-dimensional problem

min fi(x) — fa(x) st —x;+x <1, (29)
xeR?

with £ (x) = 1.2max{0.1x7+0.005x3, 0.005x7+0.1x3} and f>(x)= max{—x;, —0.3x2, O}.
Note that the point x = (0, 0) is critical for this problem, however X is not d-stationary
since small negative perturbations of its components yield smaller function values. Figure 2a
presents eight different sequences obtained by PBM1 initialized with eight different starting
points. In Fig. 2b we consider PBM-d with the same initial points. Notice that PBM-d does
not stop at the critical point X = (0, 0), since near to X the algorithm solves two QPs (19)
and can escape from x.

A comparison of PBM-d with other solvers is given in Table 6. We do not report CPU
time because all the solvers computed a critical point in less than half a second. As PBM-d,
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X1 X1
(a) Results of Algorithm 1 (solver PBM1) initialized with (b) Results of Algorﬁthm 2 (solver PBM—.d)‘ ipitial{zed with
eight different starting points: three initial points lead eight different starting points: all the initial points lead
to the critical point (0,0) that is not d-stationary, to d-stationary points, which are the local and global
three initial points lead to the local minimum (0, —1.25) solutions.

and two initial points lead to the global solution Z =~
(—4.01582, —3.01582).

Fig.2 Level curves of f(x) = f1(x) — fo(x), with f1(x) = 1.2 max{0.1x12 + 0.00SX%, 0.005)cl2 + O.IX%}
and f>(x) = max{—x, —0.3x7, 0}

solver DCA-LBM also computed d-stationary points for problem (29) regardless the initial
point.

We have also considered an unconstrained variant of problem (29). For the same starting
points the obtained results are similar to the ones presented in Table 6, with the difference that
the global solution is X &~ (—4.1667, 0.000) (with optimal value approximately —2.08333).
In this setting, we have also considered the solver PBDC that succeed in computing the
global solution for every starting point of Table 6. However, if one starts nearly zero [e.g.
x% = (0.001, 0.001)] then PBDC converges to the critical point (0, 0), whereas PBM-d always
converges to a d-stationary point (either the global or the local solution of the problem).

Finally, we consider the following test problem

n
min ;oc, + (=D +2, min (i), (30)

which has the DC decomposition

n

£@ =3+ D) +23 5 and fo(x) = 21‘6{{1’12%"}{ 3 x,»}.

i=1 i=1 j=1, j#i

Its optimal value is —4 obtained with x; = (=1)*! for all but an even index Jj such that
Xj = —3. Acritical point (but not a d-stationary one) is X; = (—1 )i+ for all but an odd index
J with X; = —1. At this point, the function value is zero. Table 7 reports some numerical
experiments obtained by applying seven solvers to problem (30).

Note that solvers PBM1, PBM3 and DCA-LBM computed critical points that are not
d-stationary for problem (30). On the other hand, the solvers PBM-d, PLM and HANSO suc-
ceeded in computing global solutions for all instances. A very good performance of solver
PBDC is highlighted: PBDC succeeded in computing global solutions in six out of nine cases.
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7 Concluding remarks

Inspired by Proximal Linearized Methods, this work proposes and analyzes two proximal bun-
dle algorithms for dealing with convex constrained nonsmooth DC programs. No line-search
nor estimates of Lipschitz constants of the DC components are required by the algorithms,
which possess a reliable and straightforward stopping test. Moreover, the given algorithms
consider convex models of the underlying DC function. The first algorithm is shown to gen-
erate a subsequence of points that converges to a critical point of the underlying DC problem.
The second algorithm is proved to generate a sequence of descent steps converging to a
d-stationary point, which is the sharpest stationary definition in DC programming. However,
this requires us to assume that the second DC component f> is the pointwise maximum of
N differentiable functions. The price to obtain this stronger result is the solution of possibly
several (but no more than N) master programs at certain iterations.

Numerical experiments on approximately one hundred instances of different academic
DC programs indicate that employing a convex model for approximating the DC objective
function can be a simpler alternative to DC models for dealing with DC problems via proximal
bundle methods.

Acknowledgements The author is grateful to the reviewers for their remarks and constructive suggestions
that considerably improved the original version of this article.

A Appendix

A.1 A self-contained analysis of the sequence of infinitely many null steps generated
after a last serious step

We assume that after the fth—stability center xk( = % only null steps are performed, i.e.,

AT > A1) + (2. T = 3) —keuDMH B,

where g, = gg(l) is the last subgradient computed for f>. Notice that in this case the
sequence {fk}; -, @ is nondecreasing. In what follows we present some auxiliary results to
prove Lemma 4. We start by defining the following two useful functions:

Fax) == ff () — (@2, x — &) + e D(x, %) 31
F7R) = FRGAD) 4 (pF 4 55 x — XM — (60, x — £) + e D(x, §). (32)
Notice that F ¥ is twice differentiable (because w defining D is so):
VF ) = p" 4551 — g 4+ i (Vo (v) — Voo () and V2F ¥ (x) = i Vo (x),

where V2w (x) € R"™ " is the Hessian of the function w. Since w is strongly convex then
V2w (x) is positive definite for all x € R". It follows from (10) that VFE Rkl = o,
i.e., the point x**1 is the unique minimizer of F~*(x) over R". The Taylor and mean value
Theorems [5, Sect. 13] give, for some z = axktl 4 (1 —M)xand A € [0, 1],

1
F_k(x) — F_k(xk+l) + (VF_k(xk+l),x _ xk+1) + E(VZF_]((Z)(X _ xk+l),x _ Xk+1)

=

= FEOM 4 (0,0 =6 + ZH(V20 @) (x - 2D, x — )
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Wk P

\

—k o k+1 k412
= FH k) B e k2

= PR+ B e b (33)

where the inequality is due to the assumption that w is strongly convex with parameter p > 0
andnorm || - ||, in (5) (V2@ (2) (x —x*F1), x —x**1) > pllx —x**1| ,), and the last equality
follows from (31) and (32). The above development is crucial to show the following lemma,
which is essentially a reformulation of [10, Lemma 6.3] to our setting.

Lemma7 Let £ = x*© bpe the last stability center generated by Algorithm 1 during the
iteration k(f) after which only null steps are performed. Assume also that for k > k(f) the
function F¥ is the model given in (31) and x**" is an iterate obtained from a null step. If
{r} k>k(b) is nondecreasing, then

(i) the sequence {F k(xkt1yy k>k(d) is nondecreasing and satisfies
FR k) 4 NSP [k+2 —xk“llf, < FM k) forall k > k()
(i) the sequence {F k(xkt1y) k=k(l) is bounded from above:
FEA) + BE 1 =2 < 1@ forall k= k(D

(iii) the following inequality holds true for all k > k(é)
SR = FE ) = FEOR = FETOR 4 e DG £)
—DGFL ] = (g, xf = M,

Proof Algorithm 1 ensures that the aggregate index —k enters the bundle in every null step.
In particular —k € B]]‘Jrl for all k > k(£). Then for all x € X and all k > k(¢) we have that

F*x) = [flk(ka) + (pk+1,x —xk+1)] + (sk+1,x —xk+]) B x — )+ D, 2)
= F7F00 + (58 = M) — (g0 x = £) + i D, D)
< 750 = (g2, x — &) + e D(x, ©)
< @) = (g2, x — &) + 1 D(x, §)
< PG = (820 x — £) + e D(x, £) = FF (),

where the first inequality is due to s**! € Ny (x**1), the second follows from inequality
fl_k(-) < flkJrl () ensured because —k € Bll““l, and the last inequality follows from the
assumption fij 1 > pux. Set x = xk+2 in (33) to obtain (i), and x = ¥ to obtain Fr(eAh 4+
BLYR —x 2 < PR < FEL () = FEFLR) < fi(®). To show (i), note that for all
k > k(f)
Fk (xk+1 ) _ fvlk (xk+])

—(&2, A = %) + e DG B
> —(&, X = 8) + e DO R

—(82, X" = ) + 1 DO R) + e [DEET ) — DK, B)]

= (82, x* — &) + pp—1 DG, R) + o [DEER) — DK, )] — (8, 24T — XK
= FF1OR) — FETO0 4 e DGR £) — DK, £)]— (8, x4 — xh),
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where the inequality is due to ux > pr—; and the last equality follows from (31) (with k
therein replaced with k — 1). The result thus follows. O

Given the above properties, the following lemma shows that the cutting-plane model f]k
asymptotically approximates the DC component f on the sequence of null iterates.

Lemma 8 Under the assumptions of Lemma 7, Algorithm I ensures that {x*}; is a bounded
sequence and

Jim [ o - M1 =0.

Proof Lemma 7(i) ensures that the sequence {F K (xkt1 s k@) is nondecreasing. Thus, there

exists a constant C > 0 such that F¥(x**1) > —C forall k > k(f). Using Lemma 7(ii) we
conclude that

E1 =0 < i@ - Pt = i+ € Y=k, G4

showing that the sequences {|| — x¥|| P}k>k(2) is bounded because {/Lk}k>k(2) is nondecreas-

ing. Accordingly, {x*}; is also bounded. It follows from Lemma 7(ii) that the sequence
(Fk (xk“)}k>k(é) is bounded from above by f| (). Lemma 7(i) shows that { F (xk+l)}k>k(é)
is nondecreasing and hence -

lim [F () — FA D] =0 and lim 1672 = "2 =0, (35)
k—00 k—00
where the second limit follows from Lemma 7(i) and the assumption that {u}, .. k() is
nondecreasing. Note that, by (5), -
DG, %) = DML B) = [0(") — 0 @) — (Vo@), x* — )]
— (") —0®@) — (Vo @), ¥ - 2)]
_ ky _ k+1y _ ~ k _ k+l
=w(x") —ox"") —(VoX), x x5

Since {ux}x is a bounded sequence and w is a continuous function, we conclude that

Jim e [P $) = DA B =0. (36)

—>00

The inclusion k € Bk implies F1xk) + (gl, - f1 x) < f]k(X) forall x € R".
k+1

Setting x = x**1in thls inequality yields f; (x¥) = f k (xk'H) + g X . Therefore,

for k > k(Z)
AR = FER = FFeR) + (gf xF = — fE TR
< Jxlk(xk+1) + <g11c’ ok xk+1> _ flk—l(xk)
< FEGRY — FRHGR) 4 e [DGF, 2)
— DR DT+ (gF — 8o, xF — KT

where the last inequality is due to Lemma 7(iii). Applying the limit with k — oo in the
above inequalities and taking into account (35) and (36), remembering that {xK Y, and { glf e

are bounded sequences, we conclude that lim sup;_, o[ f1 (xk) — flk_l(x")] < 0. Since f] is
convex we have f(xF) > flk_l (x¥) and the result follows. O
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Proof of Lemma 4

Suppose that % is not a cluster point of {x**1} k=k(b)" Then there would exist € > 0 and an
index k > k(lG) such that

. d=r)pp .
(= op DO 8 2 —— =" = 2| >

for all index k + 1 > k. It follows from Lemma 8 that there exists an index k > k(f) such
that

fiFYy — fRkY < e forall k + 1 > k.
Definition of x¥*1, feasibility of £ and inequality flk () < f1(-) yield the inequality
G = (g M = 8) + e DELD < A1)
As by assumption k € (0, 1), ux > 1 and assuming that k + 1 > max{lg, Ig} we get

A = AT = (g, XM = 2) +ep DA R)
+ (1 =D B + fFaET — Ak

> A — (g, T = R) +epDFL R +e—e,

showing that x¥*1 satisfies the descent test (13), i.e. x¥*! becomes the new stability cen-
ter. But this contradicts the fact that X is the last stability center. Hence, the sequence
{xk*1}; has a subsequence that converges to x, i.e., limgeic xk = % for some index set
K C {k(f) + 1, k(é) +2,...}. We now proceed to show that indeed the whole sequence
converges to X: it follows from (31) that

FElby = 1k — (g2, 5K = 2) 4+ e DGR, %)

and, therefore, limgex F¥~1(xF) = f1(x) from Lemma 8. Lemma 7(i) shows that
{Fk_l(xk)}kzk(é) is nondecreasing and hence limy_, Fk (xk+1) = limgex Fk=l(xky =
f1(X). This property combined with (34) shows that the whole sequence (K converges to
X. O
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