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Abstract
In this paper, we study the completely positive (CP) tensor program, which is a linear opti-
mization problem with the cone of CP tensors and some linear constraints. We reformulate
it as a linear program over the cone of moments, then construct a hierarchy of semidefinite
relaxations for solving it. We also discuss how to find a best CP approximation of a given
tensor. Numerical experiments are presented to show the efficiency of the proposed methods.
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1 Introduction

For given positive integers m and n, an m-way, n-dimension tensor A is a multidimensional
array indexed by integer tuples (i1, . . . , im) with 1 ≤ i1, . . . , im ≤ n, i.e.,

A = (Ai1i2...im )1≤i1,...,im≤n .

Let R be the set of real numbers and Tm(Rn) be the set of all such real-valued tensors. A
tensorA ∈ Tm(Rn) is called symmetric if each entryAi1i2...im is invariant with respect to all
permutations of (i1, . . . , im). Let Sm(Rn) be the subspace of all symmetric tensors in Tm(Rn).
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For a vector u ∈ R
n , denote u⊗m the m-way n-dimensional symmetric outer product tensor

such that

(u⊗m)i1,...,im = ui1 · · · uim .

A tensor in Sm(Rn) is called rank-1 if it has the form λu⊗m where λ ∈ R and u ∈ R
n . Clearly,

if m is odd or λ > 0, then the mth real root of λ always exists, so we can rewrite the tensor
as

λu⊗m = v⊗m with v = m
√

λu.

For the other case, the scalar λ cannot be absorbed into the vector v. Comon et al. [5] showed
that every symmetric tensor A ∈ Sm(Rn) can be decomposed as

A =
r∑

k=1

λk(u
k)⊗m, (1.1)

where λk ∈ R and uk ∈ R
n for k = 1, . . . , r . Interested readers are referred to [4,6,14,16–

18,25,26] for numerical methods for computing real eigenvalues of symmetric tensors, tensor
decompositions, as well as applications.

Let Rn+ be the nonnegative orthant of Rn . A symmetric tensorA ∈ Sm(Rn) is completely
positive (CP), if there exist vectors v1, . . . , vr ∈ R

n+ such that

A =
r∑

k=1

(vk)⊗m, (1.2)

where r is called the length of the decomposition (1.2) (cf. [30,31]). The smallest r in the above
is called the cp-rank of A. If A is CP, (1.2) is called a CP decomposition (or nonnegative
decomposition) of A. The CP tensor is a natural extension of the CP matrix. We refer to
[1,2,21,35,36] for work on CP matrices and tensors.

For B ∈ Sm(Rn), we define

Bxm :=
∑

1≤i1,...,im≤n

Bi1i2...im xi1 · · · xim .

If Bxm ≥ 0 for all x ∈ R
n+, we call B a copositive tensor (cf. [31]). The copositive tensor

is an extension of the copositive matrix. Obviously, both symmetric nonnegative tensors and
positive semidefinite tensors are copositive tensors.

For A,B ∈ Sm(Rn), the inner product of A and B is defined as

A • B =
∑

1≤i1,...,im≤n

Ai1i2...imBi1i2...im ,

and the norm of a tensor A is the square root of the sum of squares of its entries, i.e.,

‖A‖ :=
√ ∑

1≤i1,...,im≤n

A2
i1i2...im

.

For a cone C ⊆ Sm(Rn), the dual cone of C is defined as

C∗ := {B ∈ Sm(Rn) : A • B ≥ 0 for all A ∈ C}.
Denote by CPm,n and COPm,n the sets of m-way, n-dimension CP tensors and copositive
tensors, respectively. Both CPm,n and COPm,n are proper cones, and they are dual to each
other [30].
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CP tensor and nonnegative decomposition have wide applications in statistics, computer
vision, exploratorymultiway data analysis and blind source separation [3,32,33]. Generally, it
is hard to check whether a tensor is CP or not. The problem is NP-hard even for the CPmatrix
case [8]. Kolda [18] assumed the length of the CP decomposition is known and formulated
the CP tensor decomposition problem as a nonnegative constrained least squares problem,
then solved it by a nonlinear optimization software. Qi et al. [30] showed that a strongly
symmetric hierarchically dominated nonnegative tensor is CP and presented a hierarchical
elimination algorithm for checking this. For a general symmetric tensor, we transformed
the problem of checking whether it is CP to a truncated moment problem, then proposed a
semidefinte algorithm for solving it [9].

Recently, Penã et. al [28] showed that under certain conditions a general polynomial
optimization problem (POP), which are not necessarily quadratic, can be formulated as a
linear optimization problemwith the cone of CP tensors and some linear equality constraints.
In [15], Kuang and Zuluaga gave the CP tensor relaxation for the POP and showed that it
provides a better bound than the Lagrangian relaxation. They also proved that the CP tensor
relaxation yields a better bound than the CP matrix relaxation for quadratic reformulations
of some class of polynomial optimization problems. Since the checking of CP tensors is
NP-hard, it is difficult to deal with the cone of CP tensors directly. A general way is to
approximate it by some tractable cones, such as the cones of nonnegative tensors, the positive
semidefinite tenors and thedoublynonnegative tensors [15].However, this approachgenerally
only provides a bound for the original problem and gives an approximate solution of the
problem.

The aim of this paper is to develop a new method for the CP tensor program, which is
stated as:

min
X

A • X
s.t. Ai • X = bi , i = 1, . . . , l1,

Ai • X ≥ bi , i = l1 + 1, . . . , l,

X ∈ CPm,n,

(1.3)

where A,Ai ∈ Sm(Rn), bi ∈ R, i = 1, . . . , l. We formulate it as a linear optimization
problem with the cone of moments, then construct a hierarchy of semidefinite relaxations
for solving it. If (1.3) is infeasible, we can get a certificate for that. If it is feasible, a
CP decomposition of the optimal solution can also be obtained. We also discuss the best
CP tensor approximation problem, which is to find a tensor in the intersection of a set
of linear constraints and the cone of CP tensors such that it is close to a given tensor
as much as possible. It is an extension of the CP-matrix approximation problem [10].
We transform the problem to a conic linear program over the cone of moments and the
second-order cone. A hierarchical semidefinite relaxation algorithm is also presented for
it.

The paper is organized as follows. In Sect. 2, we characterize the CP tensor as a moment
sequence. In Sect. 3, we formulate the CP tensor program as a linear optimization problem
with the cone of moments, then propose a smidefinite algorithm for solving it. The conver-
gence properties of the algorithm are also studied. In Sect. 4, we show how to solve the
best CP tensor approximation problem. Some computational experiments are presented in
Sect. 5.
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2 Moments and outer approximations

In this section, we characterize a CP tensor as a truncated moment sequence, then give some
necessary and sufficient conditions for a symmetric tensor to be CP. A hierarchy of outer
approximations of the cone of CP tensors is also introduced.

2.1 Moments and flat extension

As we know, a symmetric matrix can be identified by a vector that consists of its upper
triangular entries. Similarly, a symmetric tensor A ∈ Sm(Rn) can also be identified by a
vector vech(A) that consists of its upper triangular entries, i.e. the entries

Ai1i2...im with 1 ≤ i1 ≤ · · · ≤ im ≤ n.

Let N be the set of nonnegative integers. For α = (α1, . . . , αn) ∈ N
n , denote |α| :=

α1 + · · · + αn . Let
T := {α ∈ N

n : |α| = m}. (2.1)

Then, there is a one-to-one correspondence between the index pair (i1, . . . im) and the vector

α = ei1 + ei2 + · · · + eim ∈ T,

where ei is the i-th unit vector in Rn . Hence, the identifying vector of A ∈ Sm(Rn) can also
be written as

a = (aα)α∈T ∈ R
T with aα = Ai1i2...im , if α = ei1 + ei2 + · · · + eim ,

where R
T denotes the space of real vectors indexed by α ∈ T. We call a a T-truncated

moment sequence (T-tms).
Let

K = {x ∈ R
n : xT x − 1 = 0, x ≥ 0}. (2.2)

Note that every nonnegative vector is a multiple of a vector in K . By (1.2), A ∈ CPm,n if
and only if there exist λ1, . . . , λr > 0 and u1, . . . , ur ∈ K such that

A = λ1(u
1)⊗m + · · · + λr (u

r )⊗m . (2.3)

We say a T-tms a admits a K -measure μ, i.e., a nonnegative Borel measure μ supported
in K such that

aα =
∫

K
xαdμ, ∀ α ∈ T,

where xα := xα1
1 · · · xαn

n . A measure μ satisfying the above is called a K -representing
measure for a. A measure is called finitely atomic if its support is a finite set, and is called
r -atomic if its support consists of at most r distinct points. We refer to [22] for representing
measures of truncated moment sequences.

Hence, by (2.3), a tensor A ∈ Sm(Rn), with the identifying vector a ∈ R
T, is CP if and

only if a admits an r -atomic K -measure, i.e.,

a = λ1[u1]T + · · · + λr [ur ]T, (2.4)

where each λi > 0, ui ∈ K and

[u]T := (uα)α∈T.
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Denote

MT,K = {a ∈ R
T : a admits a K -measure}. (2.5)

Then, MT,K is the CP tensor cone. So,

A ∈ CPm,n if and only if a ∈ MT,K . (2.6)

Denote

R[x]T := span{xα : α ∈ T}.
For a polynomial p ∈ R[x]T, p|K ≥ 0 (resp., p|K > 0) denotes p ≥ 0 (resp., p > 0) on K .
Then the dual cone of MT,K is

PT,K = {p ∈ R[x]T : p|K ≥ 0}, (2.7)

which is the copositive tensor cone COPm,n (cf. [20,23]). We say R[x]T is K -full if there
exists a polynomial p ∈ R[x]T such that p|K > 0 (cf. [11]). It is easy to check that R[x]T
is K -full.

For a T-tms a ∈ R
T, define a linear Riesz functional La acting on R[x]T as

La

(
∑

α∈T
pαx

α

)
:=

∑

α∈T
pαaα. (2.8)

We also denote 〈p, a〉 := La(p) for convenience. Let

N
n
d := {α ∈ N

n : |α| ≤ d},
and

R[x]d := span{xα : α ∈ N
n
d}.

For s ∈ R
N
n
2k and q ∈ R[x]2k , the k-th localizing matrix of q generated by s is the symmetric

matrix L(k)
q (s) satisfying

Ls(qp
2) = vec(p)T (L(k)

q (s)) vec(p), ∀p ∈ R[x]k−
deg(q)/2�, (2.9)

where vec(p) denotes the coefficient vector of p in the graded lexicographical ordering, and

t� denotes the smallest integer that is not smaller than t . In particular, when q = 1, L(k)

1 (s)
is called a k-th order moment matrix and denoted as Mk(s).
In fact, we have

L(k)
q (s) =

(
∑

α

qαsα+β+γ

)

β,γ∈Nn
k−
deg(q)/2�

,

and

Mk(s) = L(k)
1 (s) = (sβ+γ )β,γ∈Nn

k
.

We refer to [19,20,22] for more details about localizing matrices and moment matrices.
Denote the polynomials:

h(x) := xT x − 1, g0(x) := 1, g1(x) := x1, . . . , gn(x) := xn .

Note that K given in (2.2) is nonempty compact. It can also be described equivalently as
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K = {x ∈ R
n : h(x) = 0, g(x) ≥ 0}, (2.10)

where g(x) = (g0(x), g1(x), . . . , gn(x)). As shown in Nie [22], for s ∈ R
N
n
2k , if

L(k)
h (s) = 0 and L(k)

g j
(s) � 0, j = 0, 1, . . . , n, (2.11)

rank(Mk−1(s)) = rank(Mk(s)), (2.12)

then s admits a unique K -measure, which is rankMk(s)-atomic (cf. Curto and Fialkow [7]).
We say s is flat if both (2.11) and (2.12) are satisfied.

Given two tms’ y ∈ R
N
n
d and z ∈ R

N
n
e , we say z is an extension of y, if d ≤ e and yα = zα

for all α ∈ N
n
d . We denote by z|T the subvector of z, whose entries are indexed by α ∈ T.

For convenience, we denote by z|d the subvector z|Nn
d
. If z is flat and extends y, we say z is a

flat extension of y. It is shown in [22] that a T-tms a ∈ R
T admits a K -measure if and only

if it is extendable to a flat tms z ∈ R
N
n
2k for some k. So, by (2.6),

A ∈ CPm,n if and only if a has a flat extension. (2.13)

2.2 Outer approximations

We call a subset I ⊆ R[x] an ideal if I+ I ⊆ I and I ·R[x] ⊆ I . For a tupleχ = (χ1, . . . , χl)

of polynomials in R[x], denoted by I (χ) the ideal generated by χ1, . . . , χl . The smallest
ideal containing all χi is the set χ1R[x] + · · · + χlR[x]. A polynomial f ∈ R[x] is called a
sum of squares (SOS) if there exist f1, . . . , ft ∈ R[x] such that f = f 21 + · · · + f 2t .

Let h and g be as in (2.10). Denote

I2k(h) = {h(x)φ(x) : deg(hφ) ≤ 2k} , (2.14)

and

Qk(g) =
⎧
⎨

⎩

n∑

j=0

g jϕ j : each deg(g jϕ j ) ≤ 2k and ϕ j is SOS

⎫
⎬

⎭ . (2.15)

Then, I (h) = ⋃
k∈N I2k(h) is the ideal generated by h, and Q(g) = ⋃

k∈N Qk(g) is the
quadratic module generated by g (cf. [23]). We say I (h) + Q(g) is archimedean if there
exists a number N > 0 such that N −‖x‖2 ∈ I (h)+Q(g). Clearly, if f ∈ I (h)+Q(g), then
f |K ≥ 0. Conversely, if f |K > 0 and I (h) + Q(g) is archimedean, then f ∈ I (h) + Q(g).
This is due to Putinar’s Positivstellensatz (cf. [29]).

For each k ∈ N and k ≥ 
m/2�, denote
	k = {p ∈ R[x]T : p ∈ I2k(h) + Qk(g)} . (2.16)

Recall that R[x]T is K -full, T is finite and I (h) + Q(g) is archimedean because 1− ‖x‖2 =
−h(x) ∈ I (h) + Q(g). By Nie [23, Propositions 3.5], we have

	
m/2� ⊆ · · · ⊆ 	k ⊆ 	k+1 ⊆ · · · ⊆ PT,K . (2.17)

Moreover,

cl

⎛

⎝
∞⋃

k=
m/2�
	k

⎞

⎠ = PT,K , (2.18)

where cl(·) denotes the closure of a set.
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Correspondingly, for each k ∈ N and k ≥ 
m/2�, denote

k =

{
s ∈ R

N
n
2k : L(k)

h (s) = 0, L(k)
g j

(s) � 0, j = 0, 1, . . . , n
}

, (2.19)

and
�k = {s|T : s ∈ 
k} . (2.20)

Since T is finite, R[x]T is K -full and I (h) + Q(g) is archimedean, by Nie [23, Proposition
3.3], we have

�
m/2� ⊇ · · · ⊇ �k ⊇ �k+1 ⊇ · · · ⊇ MT,K , (2.21)

and ∞⋂

k=
m/2�
�k = MT,K . (2.22)

Moreover, 	k and �k are dual to each other.
As shown above, the hierarchy of 	k provides inner approximations of PT,K and con-

verges monotonically and asymptotically to PT,K , while the hierarchy of �k provides outer
approximations ofMT,K and converges monotonically and asymptotically toMT,K . So,	k

and �k can approximate PT,K and MT,K , arbitrarily well, respectively.

3 The CP tensor program

In this section, we reformulate the CP tensor program as a linear optimization problem with
the cone of moments, then construct a hierarchy of semidefinite relaxations for solving it.
The convergence properties of the semidefinite algorithm are also discussed.

3.1 Reformulation and semidefinite relaxations

Denote by

x = vech(X )

the identifying vector of X . Denote by c ∈ R
T a constant vector with the element cα =√

m!
α1!···αn ! for each α ∈ T. For x, y ∈ R

T, x ◦ y denotes their Hadamard product. For

convenience, we denote c ◦ c by c2. Then, (1.3) can be formulated as the linear optimization
problem:

(P1) :
ϑP1 = min

x
(c2 ◦ vech(A))T x

s.t. (c2 ◦ vech(Ai ))
T x = bi , i = 1, . . . , l1,

(c2 ◦ vech(Ai ))
T x ≥ bi , i = l1 + 1, . . . , l,

x ∈ MT,K ,

where MT,K is given by (2.5). The dual problem of (P1) is

(D1) :

ϑD1 = max
λ,s

bT λ

s.t. λi ≥ 0, i = l1 + 1, . . . , l,

c2 ◦ vech(A) −
l∑

i=1
λic2 ◦ vech(Ai ) − s = 0,

s ∈ PT,K ,
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where PT,K is given by (2.7). Denote by F(P) the feasible set of the problem (P). By weak
duality, for all feasible points x ∈ F(P1) and (λ, s) ∈ F(D1), we have ϑP1 ≥ ϑD1 .

By (2.19) and (2.20), for each k ∈ N and k ≥ 
m/2�, the k-th order relaxation of (P1)
can be defined as

(Pk
1 ) :

ϑk
P1

= min
x,x̃

(c2 ◦ vech(A))T x

s.t. (c2 ◦ vech(Ai ))
T x = bi , i = 1, . . . , l1,

(c2 ◦ vech(Ai ))
T x ≥ bi , i = l1 + 1, . . . , l,

x = x̃|T, x̃ ∈ 
k .

The dual problem of (Pk
1 ) is

(Dk
1) :

ϑk
D1

= max
λ,s

bT λ

s.t. λi ≥ 0, i = l1 + 1, . . . , l,

c2 ◦ vech(A) −
l∑

i=1
λic2 ◦ vech(Ai ) − s = 0,

s ∈ 	k .

Clearly, ϑk
P1

≤ ϑP1 and ϑk
D1

≤ ϑD1 for all k. Suppose that (x∗,k, x̃∗,k) is a minimizer of

(Pk
1 ) and (λ∗,k, s∗,k) is a maximizer of (Dk

1). If x
∗,k = x̃∗,k |T ∈ MT,K , then ϑk

P1
= ϑP1 and

x∗,k is a minimizer of (P1), i.e., the relaxation (Pk
1 ) is exact for solving (P1). In this case, if

ϑk
P1

= ϑk
D1
, then ϑk

D1
= ϑD1 and (λ∗,k, s∗,k) is a maximizer of (D1). If the relaxation (Pk

1 )
is infeasible, then (P1) is also infeasible.

3.2 A semidefinite algorithm

Based on the above, we propose a semidefinite algorithm for solving the CP tensor program
(1.3).

Algorithm 3.1

Step 0. Input A,Ai ∈ Sm(Rn), bi ∈ R, i = 1, . . . , l and K as (2.2). Let k := 
m/2�.
Step 1. Solve the relaxation problem (Pk

1 ). If (P
k
1 ) is infeasible, stop and output that (P1)

is infeasible; otherwise, compute an optimal solution (x∗,k, x̃∗,k) of (Pk
1 ). Let t := 1.

Step 2. Let x̂ := x̃∗,k |2t . If the rank condition (2.12) is not satisfied, go to Step 4.
Step 3. Compute ρi > 0, vi ∈ K and r = rank(Mt (x̂)). Output the CP decomposition
of X ∗ as

X ∗ =
r∑

i=1

ρi (v
i )⊗m .

Step 4. If t < k, set t := t + 1 and go to Step 2; otherwise, set k := k + 1 and go to Step
1.

We use Step 2 to checkwhether x̃∗,k |2t is flat or not.We useHenrion andLasserre’smethod
in [12] to get an r -atomic K -measure for x̂, which can further produce the CP decomposition
of the optimal solution.

We say (D1) has a relative interior, if there exists a feasible point pair (λ, s) ∈ F(D1)

such that s ∈ int(PT,K ) and λi > 0, i = l1 + 1, . . . , l. The asymptotic convergence of
Algorithm 3.1 is given as below.
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Theorem 3.2 Let T and K be as in (2.1) and (2.10), respectively. Suppose (P1) is feasible
and (D1) has a relative interior point. Algorithm 3.1 has the following properties:

(i) For all k sufficiently large, (Dk
1) has a relative interior point and (P

k
1 ) has a minimizer

(x∗,k, x̃∗,k).
(ii) The sequence {x∗,k} is bounded, and each of its accumulation points is a minimizer of

(P1). The sequence {ϑk
P1

} converges to the minimum of (P1).

Proof (i) Let (λ0, s0) ∈ F(D1) with s0 ∈ int(PT,K ) and λ0i > 0(i = l1 + 1, . . . , l). Then,
s0|K > 0 (cf. [23, Lemma 3.1]). Note that since K is compact, there exist ε > 0 and
δ > 0 such that

s|K − ε > ε, ∀ s ∈ B(s0, δ).

By Nie [27, Theorem 6], there exists N0 > 0 such that

s − ε ∈ I2N0(h) + QN0(g), ∀ s ∈ B(s0, δ).

So, (Dk
1) has a relative interior point for all k ≥ N0. Thus, the strong duality holds for

(Pk
1 ) and (D

k
1). As (P1) is feasible, the relaxation problem (Pk

1 ) is also feasible.
So, (Pk

1 ) has a minimizer (x∗,k, x̃∗,k).
(ii) We first show that {x∗,k} is bounded. Let (λ0, s0) and ε be as in the proof of (i). The set

I2N0(h) + QN0(g) is dual to 
N0 . For all k ≥ N0, we have x̃∗,k ∈ 
N0 and

0 ≤ 〈s0 − ε, x̃∗,k〉 = 〈s0, x̃∗,k〉 − ε〈1, x̃∗,k〉,
〈s0, x∗,k〉 ≤ ϑk

P1 − bT λ0.

Since ϑk
P1

≤ ϑP1 and 〈s0, x̃∗,k〉 = 〈s0, x∗,k〉, it holds that
〈s0, x̃∗,k〉 ≤ V0 := ϑP1 − bT λ0.

So,

0 ≤ 〈s0 − ε, x̃∗,k〉 ≤ V0 − ε(x̃∗,k)0,

(x̃∗,k)0 ≤ V1 := V0/ε.

Note that I (h) + Q(g) is archimedean, following the line of the proof of [23, Theorem 4.3
(ii)], we can obtain that the sequence {x∗,k} is bounded.
Suppose x∗ is an accumulation point of {x∗,k}. Without loss of generality, we assume

x∗,k → x∗, k → ∞.

Since x∗,k ∈ �k , by (2.21) and (2.22), we have x∗ ∈ ⋂∞
k=
m/2� �k = MT,K . Note that

x∗,k ∈ F(Pk
1 ), we further have x∗ ∈ F(P1). Denote by ϑ∗

P1
the objective function value of

(P1) at x∗. Then,
ϑP1 ≤ ϑ∗

P1 . (3.1)

Since (Pk
1 ) is a relaxation problem of (P1) and x∗,k is a minimizer of (Pk

1 ), we have

ϑP1 ≥ ϑk
P1 , k = 
m/2�, 
m/2� + 1, . . . .

Taking k → ∞, we get
ϑP1 ≥ lim

k→∞ ϑk
P1 = ϑ∗

P1 . (3.2)
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This, together with (3.1), implies that

ϑP1 = ϑ∗
P1 .

So, x∗ is a minimizer of (P1), and the sequence {ϑk
P1

} converges to the minimum of (P1). ��
Remark 3.3 By Theorem 3.2, we know that Algorithm 3.1 can solve the CP tensor program
(1.3). If it is feasible, a CP decomposition of the optimal solution can also be obtained. In
particularly, under some general conditions, Algorithm 3.1 converges within finitely many
steps (cf. [23,24]).

4 The best CP tensor approximation problem

In this section, we study the best CP tensor approximation problem, which approximates a
given symmetric tensor by a CP tensor under linear constraints. We show that the problem
can be transformed to a linear program over the cone of moments and the second order cone.
A semidefinite algorithm is also presented for it.

Consider the best CP tensor approximation problem, stated as:

min
X

‖X − A‖
s.t. Ai • X = bi , i = 1, . . . , l1,

Ai • X ≥ bi , i = l1 + 1, . . . , l,
X ∈ CPm,n,

(4.1)

whereA,Ai ∈ Sm(Rn), bi ∈ R, i = 1, . . . , l. Compared to the CP tensor program (1.3), the
objective function of (4.1) is nonlinear on the variable X .

If there are no linear constraints, (4.1) is reduced to the CP tensor projection problem:

min
X

‖X − A‖
s.t. X ∈ CPm,n .

(4.2)

Clearly, (4.2) is always feasible and has a solution. If theminimum is zero, then the projection
of A onto CPm,n is itself, which implies that A is CP. If the minimum is nonzero, then A is
not CP. So, solving the CP tensor projection problem also provides a way to check whether
a tensor is CP or not.

In the following, we show how to solve (4.1). Introducing a nonnegative variable γ ∈ R,
we transform (4.1) to the following problem:

min
X ,γ

γ

s.t. ‖X − A‖ ≤ γ,

Ai • X = bi , i = 1, . . . , l1,
Ai • X ≥ bi , i = l1 + 1, . . . , l,
X ∈ CPm,n .

(4.3)

Let Y = X − A. Denote by

x = vech(X ), y = vech(Y),

the identifying vectors of X and Y , respectively. It is easy to check that ‖X −A‖ ≤ γ if and
only if (c ◦ y, γ ) ∈ SOCT, where

SOCT = {(w, γ ) ∈ R
T × R : ‖w‖2 ≤ γ }
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is the second-order cone and is self-dual. Then, (4.3) can be formulated as the following
conic linear program:

(P2) :

ϑP2 = min
x,y,γ

γ

s.t. x − y = vech(A),

(c2 ◦ vech(Ai ))
T x = bi , i = 1, . . . , l1,

(c2 ◦ vech(Ai ))
T x ≥ bi , i = l1 + 1, . . . , l,

(x, (c ◦ y, γ )) ∈ MT,K × SOCT,

where MT,K is given by (2.5). The dual problem of (P2) is

(D2) :

ϑD2 = max
λ,s,z

bT λ + (c2 ◦ z)T vech(A)

s.t.
l∑

i=1
λic2 ◦ vech(Ai ) + s + c2 ◦ z = 0,

λi ≥ 0, i = l1 + 1, . . . , l,
(s, (c ◦ z, 1)) ∈ PT,K × SOCT,

where PT,K is given by (2.7). By weak duality, for all (x, y, γ ) ∈ F(P2) and (λ, s, z) ∈
F(D2), we have ϑP2 ≥ ϑD2 .

By (2.19) and (2.20), for each k ≥ 
m/2�, the k-th order relaxation of (P2) can be defined
as

(Pk
2 ) :

ϑk
P2

= min
x,y,γ,x̃

γ

s.t. x − y = vech(A),

(c2 ◦ vech(Ai ))
T x = bi , i = 1, . . . , l1,

(c2 ◦ vech(Ai ))
T x ≥ bi , i = l1 + 1, . . . , l,

x = x̃|T,

(x̃, (c ◦ y, γ )) ∈ 
k × SOCT.

The dual problem of (Pk
2 ) is

(Dk
2) :

ϑk
D2

= max
λ,s,z

bT λ + (c2 ◦ z)T vech(A)

s.t.
l∑

i=1
λic2 ◦ vech(Ai ) + s + c2 ◦ z = 0,

λi ≥ 0, i = l1 + 1, . . . , l,
(s, (c ◦ z, 1)) ∈ 	k × SOCT.

Clearly, ϑk
P2

≤ ϑP2 and ϑk
D2

≤ ϑD2 for all k. Suppose that (x∗,k, y∗,k, γ ∗,k, x̃∗,k) is a

minimizer of (Pk
2 ) and (λ∗,k, s∗,k, z∗,k) is a maximizer of (Dk

2). If x
∗,k = x̃∗,k |T ∈ MT,K ,

then ϑk
P2

= ϑP2 and (x∗,k, y∗,k, γ ∗,k) is a minimizer of (P2), i.e., the relaxation (Pk
2 ) is

exact for solving (P2). In this case, if ϑk
P2

= ϑk
D2
, then ϑk

D2
= ϑD2 and (λ∗,k, s∗,k, z∗,k) is a

maximizer of (D2). If the relaxation (Pk
2 ) is infeasible, then (P2) is also infeasible.

A semidefinite algorithm for solving the best CP tensor approximation problem (4.1) is
presented as follows.

Algorithm 4.1

Step 0. Input A,Ai ∈ Sm(Rn), bi ∈ R, i = 1, . . . , l and K as (2.2). Let k := 
m/2�.
Step 1. Solve the relaxation problem (Pk

2 ). If (P
k
2 ) is infeasible, stop and output that (P2)

is infeasible; otherwise, compute an optimal solution (x∗,k, y∗,k, γ ∗,k, x̃∗,k) of (Pk
2 ). Let

t := 1.
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Step 2. Let x̂ := x̃∗,k |2t . If the rank condition (2.12) is not satisfied, go to Step 4.
Step 3. Compute ρi > 0, vi ∈ K and r = rank(Mt (x̂)). Output the CP decomposition
of X ∗ as

X ∗ =
r∑

i=1

ρi (v
i )⊗m .

Step 4. If t < k, set t := t+1 and go to Step 2; otherwise, set k := k+1 and go to Step 1.

We say (D2) has a relative interior, if there exists a feasible point pair (λ, s, z) ∈ F(D2)

such that (s, (c ◦ z, 1)) ∈ int(PT,K ×SOC) and λi > 0, i = l1 + 1, . . . , l. The convergence
properties of Algorithm 4.1 is similar to those of Algorithm 3.1.

Theorem 4.2 Let T and K be as in (2.1) and (2.10), respectively. Suppose (P2) is feasible
and (D2) has a relative interior point. Algorithm 4.1 has the following properties:

(i) For all k sufficiently large, (Dk
2) has a relative interior point and (P

k
2 ) has a minimizer

(x∗,k, y∗,k, γ ∗,k, x̃∗,k).
(ii) The sequence {(x∗,k, y∗,k, γ ∗,k)} is bounded, and each of its accumulation points is a

minimizer of (P2). The sequence {γ ∗,k} converges to the minimum of (4.1).

Proof (i) Let (λ0, s0, z0) ∈ F(D2) with λ0i > 0(i = l1 + 1, . . . , l), and (s0, (c ◦ z0, 1)) ∈
int(PT,K × SOC). Then, s0|K > 0. Since K is compact, there exist ε > 0 and δ > 0
such that

s|K − ε > ε, ∀ s ∈ B(s0, δ).

By [27, Theorem 6], there exists N0 > 0 such that

s − ε ∈ I2N0(h) + QN0(g), ∀ s ∈ B(s0, δ).

So, (Dk
2) has a relative interior point for all k ≥ N0. Thus, the strong duality holds for

(Pk
2 ) and (Dk

2). As (P2) is feasible, the relaxation problem (Pk
2 ) is also feasible. So,

(Pk
2 ) has a minimizer (x∗,k, y∗,k, γ ∗,k, x̃∗,k).

(ii) We first show {(x∗,k, y∗,k, γ ∗,k)} is bounded. Let (λ0, s0, z0) and ε be as in the proof of
(i). The set I2N0(h) + QN0(g) is dual to 
N0 . For all k ≥ N0, we have x̃∗,k ∈ 
N0 and

0 ≤ 〈s0 − ε, x̃∗,k〉 = 〈s0, x̃∗,k〉 − ε〈1, x̃∗,k〉,
〈(s0, (c ◦ z0, 1)), (x∗,k, (c ◦ y∗,k, γ ∗,k))〉 ≤ γ ∗,k − bT λ0 − (c2 ◦ z0)T vech(A).

Because γ ∗,k ≤ ϑP2 and

〈s0, x̃∗,k〉 = 〈s0, x∗,k〉 ≤ 〈(s0, (c ◦ z0, 1)), (x∗,k, (c ◦ y∗,k, γ ∗,k))〉,
we have

〈s0, x̃∗,k〉 ≤ U0 := ϑP2 − bT λ0 − (c2 ◦ z0)T vech(A).

So,

0 ≤ 〈s0 − ε, x̃∗,k〉 ≤ U0 − ε(x̃∗,k)0,

(x̃∗,k)0 ≤ U1 := U0/ε.
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Note that I (h) + Q(g) is archimedean, we can further prove that the sequence {x∗,k} is
bounded. By the definitions of x, y and γ , we know {(x∗,k, y∗,k, γ ∗,k)} is bounded.

Suppose (x∗, y∗, γ ∗) is an accumulation point of {(x∗,k, y∗,k, γ ∗,k)}. Without loss of
generality, we assume

(x∗,k, y∗,k, γ ∗,k) → (x∗, y∗, γ ∗), k → ∞.

Since x∗,k ∈ �k , by (2.21) and (2.22), we have x∗ ∈ ⋂∞
k=
m/2� �k = MT,K . Note that

(x∗,k, y∗,k, γ ∗,k) ∈ F(Pk
2 ), we further have (x∗, y∗, γ ∗) ∈ F(P2). So,

ϑP2 ≤ γ ∗. (4.4)

Because (Pk
2 ) is a relaxation problem of (P2) and (x∗,k, y∗,k, γ ∗,k) is a minimizer of (Pk

2 ),
we get

ϑP2 ≥ γ ∗,k, k = 
m/2�, 
m/2� + 1, . . .

Taking k → ∞, we obtain
ϑP2 ≥ lim

k→∞ γ ∗,k = γ ∗. (4.5)

This, together with (4.4), implies that

ϑP2 = γ ∗.

So, (x∗, y∗, γ ∗) is a minimizer of (P2), and the sequence {γ ∗,k} converges to the minimum
of (P2). ��

Remark 4.3 It is worth to point out that, though the objective function of (4.1) is nonlinear,
we can transform it to a linear optimization problemwith the cone ofmoments and the second
order cone. So, it is essentially a conic linear program.

If (P2) is feasible, Algorithm 4.1 generally converges within finitely many steps (cf.
[23,24]).

5 Numerical experiments

In this section, we present some numerical experiments for solving the CP tensor program
(1.3) and the best CP tensor approximation problem (4.1) by Algorithms 3.1 and 4.1, respec-
tively. The CP decompositions of the optimal solutions are also given. We use the softwares
GloptiPoly 3 [13] and SeDuMi [34] to solve the semidefinite relaxation problems (Pk

1 ) and
(Pk

2 ). The experiments are implemented on a laptop with an Intel Core i5-2520M CPU
(2.50GHz) and 8GB of RAM, usingMatlab R2014b.We display 4 decimal digits for numer-
ical numbers.

5.1 CP tensor programs

We use Algorithm 3.1 to solve the CP tensor programs (1.3).

Example 5.1 Consider the tensor A ∈ S3(R10) given as:

Ai, j,k = sin(i + j + k).
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Case 1. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),
where

(A1)i, j,k = (−1)i

i
+ (−1) j

j
+ (−1)k

k
, (A2)i, j,k = i + j + k

i × j × k
,

b1 = −1, b2 = 1.

We apply Algorithm 3.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 2 with
ϑk
P1

= −12.5084. The optimal solution is X ∗ = ∑2
i=1 ρi (v

i )⊗3, where

ρ1 = 12.2876, v1 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0314, 0.9995)T ,

ρ2 = 6.3969, v2 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.7535, 0.0000, 0.6574, 0.0000)T .

The computation takes about 7 s.
Case 2. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b2 are the same as in Case 1 and

b1 = 1.

We apply Algorithm 3.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 2 with
ϑk
P1

= −16.2281. The optimal solution is X ∗ = ∑2
i=1 ρi (v

i )⊗3, where

ρ1 = 5.1872, v1 = (0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.7535, 0.0000, 0.6574, 0.0000)T ,

ρ2 = 15.9174, v2 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0314, 0.9995)T .

It takes about 6 s.
Case 3.Consider (1.3) with the CP cone and the linear constraintsA1 •X ≥ b1,A2 •X =

b2, where Ai , bi (i = 1, 2) are the same as in Case 2. We apply Algorithm 3.1 and choose
d = 4 and k = 2 in Step 0. It terminates at k = 2 with ϑk

P1
= −32.9344. The optimal

solution is X ∗ = ρ(v)⊗3, where ρ = 33.3333 and

v = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000)T .

It takes about 5 s.
Case 4. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b1 are the same as in Case 1 and

b2 = 1

10
.

We apply Algorithm 3.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 2 and
the relaxation problem (Pk) is infeasible, so the problem (1.3) is infeasible. It takes about
5 s.

Example 5.2 Consider the tensor A ∈ S5(R5) given as:

Ai1,i2,i3,i4,i5 = cos(i1 + i2 + i3 + i4 + i5).
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Case 1. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),
where

(A1)i1,i2,i3,i4,i5 = log

(
i1
5

)
+ log

(
i2
5

)
+ log

(
i3
5

)
+ log

(
i4
5

)
+ log

(
i5
5

)
,

(A2)i1,i2,i3,i4,i5 = sin(i1 + i2 + i3 + i4 + i5)/(cos(i1 + i2 + i3 + i4 + i5) + 1),

b1 = −1, b2 = 1.

We apply Algorithm 3.1 and choose d = 6 and k = 3 in Step 0. It terminates at k = 3 with
ϑk
P1

= −0.2992. The optimal solution is X ∗ = ρ(v)⊗5, where ρ = 0.3858 and

v = (0.0000, 0.0000, 1.0000, 0.0075, 0.0000)T .

It takes about 2 s.
Case 2. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b1 are the same as in Case 1 and

b2 = −1.

We apply Algorithm 3.1 and choose d = 6 and k = 3 in Step 0. It terminates at k = 3 with
ϑk
P1

= −0.3175. The optimal solution is X ∗ = ∑2
i=1 ρi (v

i )⊗5, where

ρ1 = 0.0091, v1 = (0.0000, 0.0000, 0.0000, 0.7914, 0.6113)T ,

ρ2 = 0.3091, v2 = (0.0000, 0.0000, 0.9917, 0.1283, 0.0000)T .

It takes about 2 s.
Case 3.Consider (1.3) with the CP cone and the linear constraintsA1 •X ≥ b1,A2 •X =

b2, where A1,A2, b2 are the same as in Case 1 and

b1 = −10.

We apply Algorithm 3.1 and choose d = 6 and k = 3 in Step 0. It terminates at k = 3 with
ϑk
P1

= −3.1521. The optimal solution is X ∗ = ∑2
i=1 ρi (v

i )⊗5, where

ρ1 = 0.0227, v1 = (0.0000, 0.0000, 0.0000, 0.7912, 0.6116)T ,

ρ2 = 3.1225, v2 = (0.0000, 0.0000, 0.9917, 0.1283, 0.0000)T .

It takes about 2 s.
Case 4. Consider (1.3) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b2 are the same as in Case 1 and

b1 = 1.

We apply Algorithm 3.1 and choose d = 6 and k = 3 in Step 0. It terminates at k = 3 and
the relaxation problem (Pk) is infeasible, so the problem (1.3) is infeasible. It takes about
2 s.
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5.2 CP projection problems

We compute the CP projection of a given tensor by applying Algorithm 4.1 to (4.2).

Example 5.3 Consider the tensor A ∈ S4(R5) given as:

Ai1,i2,i3,i4 = sin(i1 + i2 + i3 + i4).

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 4 with
γ ∗,k = 17.3001. The optimal solution is X ∗ = ∑5

i=1 ρi (v
i )⊗5, where

ρ1 = 0.9230, v1 = (0.0000, 0.0000, 0.0000, 0.0448, 0.9990)T ,

ρ2 = 0.1135, v2 = (0.9082, 0.0000, 0.0000, 0.0000, 0.4185)T ,

ρ3 = 2.3795, v3 = (0.0000, 0.0254, 0.6951, 0.7153, 0.0674)T ,

ρ4 = 0.0067, v4 = (0.0033, 0.0817, 0.5878, 0.7758, 0.0387)T ,

ρ5 = 2.4899, v5 = (0.4513, 0.8000, 0.3947, 0.0002, 0.0000)T .

It takes about 45 s.

Example 5.4 Consider the tensor A ∈ S5(R5) given as:

A =
7∑

k=1

(uk)⊗5, (5.1)

where uk is generated randomly as follows:

(u1, u2,u3, u4, u5, u6, u7)

=

⎛

⎜⎜⎜⎜⎝

−0.3627 0.3481 −0.2680 0 0 0.5319 −0.3411
0.8941 −0.0326 0 0 −0.0996 −0.0122 −0.7011

−0.4760 0 −0.2260 −0.3299 0.1715 0.2673 −0.3013
−0.1280 0.8290 0.2555 0 0 0.6222 0
−0.2392 0.0860 0 0.0009 −0.8341 0.4437 −0.6253

⎞

⎟⎟⎟⎟⎠
.

We apply Algorithm 4.1 and choose d = 6 and k = 3 in Step 0. It terminates at k = 5
with γ ∗,k = 2.1140. The optimal solution is X ∗ = ∑3

i=1 ρi (v
i )⊗5, where

ρ1 = 0.3601, v1 = (0.3131, 0.0000, 0.0000, 0.9497, 0.0000)T ,

ρ2 = 0.9694, v2 = (0.5285, 0.0000, 0.1938, 0.7357, 0.3767)T ,

ρ3 = 0.4020, v3 = (0.0000, 1.0000, 0.0000, 0.0000, 0.0000)T .

It takes about 30 s.

Example 5.5 Consider the tensor A ∈ S3(R10) given as (cf. [30]):

A2,2,2 = 4,A2,2,3 = 1,A2,2,4 = 1,A2,2,5 = 1,A2,2,8 = 1,A2,3,3 = 1,
A2,3,8 = 1,A2,4,4 = 1,A2,4,5 = 1,A2,5,5 = 1,A2,8,8 = 1,A3,3,3 = 6,
A3,3,4 = 1,A3,3,5 = 1,A3,3,7 = 1,A3,3,8 = 2,A3,4,4 = 1,A3,4,5 = 1,
A3,5,5 = 1,A3,7,7 = 1,A3,7,8 = 1,A3,8,8 = 2,A4,4,4 = 7,A4,4,5 = 2,
A4,4,7 = 1,A4,4,9 = 1,A4,4,10 = 1,A4,5,5 = 2,A4,7,7 = 1,A4,7,9 = 1,
A4,9,9 = 1,A4,10,10 = 1,A5,5,5 = 4,A7,7,7 = 4,A7,7,8 = 1,A7,7,9 = 1,
A7,8,8 = 1,A7,9,9 = 1,A8,8,8 = 6,A8,8,9 = 1,A8,8,10 = 1,A8,9,9 = 1,
A8,9,10 = 1,A8,10,10 = 1,A9,9,9 = 4,A9,9,10 = 1,A9,10,10 = 1,A10,10,10 = 3,
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and the other entries are zero, except permutations of the above indices. A is a strongly
symmetric hierarchically dominated nonnegative tensor, so it is completely positive. A CP
decomposition of length 15 of A is also given in [30].

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 3
with γ ∗,k = 3.2576 × 10−7. Thus A is CP. The optimal solution is X ∗ = ∑14

i=1 ρi (v
i )⊗3,

where

ρ1 = 1.9999, v1 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 1.0000)T ,

ρ2 = 1.0000, v2 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000,

0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ3 = 1.0000, v3 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 1.0000, 0.0000, 0.0000)T ,

ρ4 = 2.5647, v4 = (0.0000, 0.4015, 0.9158, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ5 = 5.1962, v5 = (0.0000, 0.5774, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.5774, 0.0000, 0.5774)T ,

ρ6 = 3.0406, v6 = (0.0000, 0.9768, 0.2141, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ7 = 1.0000, v7 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

1.0000, 0.0000, 0.0000, 0.0000)T ,

ρ8 = 2.8284, v8 = (0.7071, 0.0000, 0.0000, 0.0000, 0.7071, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ9 = 5.1961, v9 = (0.0000, 0.0000, 0.5774, 0.5774, 0.5773, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ10 = 2.5647, v10 = (0.0000, 0.0000, 0.0000, 0.0000, 0.9158,

0.0000, 0.0000, 0.0000, 0.4015, 0.0000)T ,

ρ11 = 1.0000, v11 = (0.0000, 0.0000, 0.0000, 1.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ12 = 5.1961, v12 = (0.0000, 0.5774, 0.0000, 0.0000, 0.0000,

0.5774, 0.0000, 0.0000, 0.5774, 0.0000)T ,

ρ13 = 5.1962, v13 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.5774, 0.0000, 0.5774, 0.5774)T ,

ρ14 = 3.0406, v14 = (0.0000, 0.0000, 0.0000, 0.0000, 0.2141,

0.0000, 0.0000, 0.0000, 0.9768, 0.0000)T .

We get a different CP decomposition from the one given in [30]. It takes about 4369s.
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5.3 Best CP approximation problems

In the following, we use Algorithm 4.1 to solve the best CP approximation problems (4.1).

Example 5.6 Consider the tensor A ∈ S4(R5) given as:

Ai1,i2,i3,i4 = tan(i1) + tan(i2) + tan(i3) + tan(i4).

Case 1. Consider (4.1) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),
where

A1 = I, (A2)i1,i2,i3,i4 = sin(i1 + i2 + i3 + i4),

b1 = 3, b2 = 10.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. k = 4 with γ ∗,k = 108.2775.
The optimal solution is X ∗ = ∑3

i=1 ρi (v
i )⊗4, where

ρ1 = 6.0525, v1 = (0.0000, 0.0000, 0.6694, 0.7429, 0.0000)T ,

ρ2 = 28.0878, v2 = (0.5717, 0.0666, 0.4256, 0.6983, 0.0000)T ,

ρ3 = 0.8052, v3 = (0.0000, 1.0000, 0.0000, 0.0000, 0.0000)T .

It takes about 21 s.
Case 2.Consider (4.1) with the CP cone and the linear constraintsA1 •X ≥ b1,A2 •X =

b2, where Ai , bi , (i = 1, 2) are the same as in Case 1. We apply Algorithm 4.1 and choose
d = 4 and k = 2 in Step 0. It terminates at k = 3 with γ ∗,k = 107.7770. The optimal
solution is X ∗ = ∑3

i=1 ρi (v
i )⊗4, where

ρ1 = 0.2832, v1 = (0.0000, 1.0000, 0.0000, 0.0000, 0.0000)T ,

ρ2 = 9.6388, v2 = (0.0000, 0.0000, 0.6396, 0.7687, 0.0000)T ,

ρ3 = 31.6701, v3 = (0.6973, 0.0778, 0.3804, 0.6025, 0.0000)T .

It takes about 18 s.
Case 3. Consider (4.1) with the CP cone and the linear constraintsAi •X ≥ bi (i = 1, 2),

where A1,A2, b2 are the same as in Case 1 and

b1 = 8.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 3 with
γ ∗,k = 107.7815. The optimal solution is X ∗ = ∑3

i=1 ρi (v
i )⊗4, where

ρ1 = 0.2632, v1 = (0.0000, 1.0000, 0.0000, 0.0000, 0.0000)T ,

ρ2 = 32.0446, v2 = (0.7069, 0.0783, 0.3765, 0.5937, 0.0000)T

ρ3 = 9.9369, v3 = (0.0000, 0.0000, 0.6376, 0.7704, 0.0000)T .

It takes about 3 s.
Case 4. Consider (4.1) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b2 are the same as in Case 1 and

b1 = −3.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 2 and
the relaxation problem (Pk) is infeasible, so the problem is infeasible. It takes about 2 s.
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Example 5.7 Consider the tensor A ∈ S3(R6) given as:

A =
6∑

k=1

(uk)⊗3, (5.2)

where uk is generated as:

(u1, u2,u3, u4, u5, u6) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Case 1. Consider (4.1) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),
where

(A1)i, j,k = (−1)i

i
+ (−1) j

j
+ (−1)k

k
, (A2)i, j,k = i + j + k

i × j × k
,

b1 = 5, b2 = 10.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 3 with
γ ∗,k = 3.2829. The optimal solution is X ∗ = ∑9

i=1 ρi (v
i )⊗3, where

ρ1 = 1.5410, v1 = (0.3416, 0.9398, 0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ2 = 1.6540, v2 = (0.3656, 0.0000, 0.0000, 0.0000, 0.0000, 0.9308)T ,

ρ3 = 2.4480, v3 = (0.0000, 0.0000, 0.6431, 0.7658, 0.0000, 0.0000)T ,

ρ4 = 2.6323, v4 = (0.0000, 0.0000, 0.0000, 0.7372, 0.6757, 0.0000)T ,

ρ5 = 2.4737, v5 = (0.0000, 0.7412, 0.6713, 0.0000, 0.0000, 0.0000)T ,

ρ6 = 0.1779, v6 = (0.0000, 0.6077, 0.5324, 0.5892, 0.0000, 0.0000)T ,

ρ7 = 2.4998, v7 = (0.0000, 0.0000, 0.0000, 0.0000, 0.7107, 0.7035)T ,

ρ8 = 0.7884, v8 = (0.0000, 0.5992, 0.0000, 0.5593, 0.2090, 0.5336)T ,

ρ9 = 0.0660, v9 = (0.0000, 0.6189, 0.0000, 0.0000, 0.3647, 0.6956)T .

It takes about 8 s.
Case 2. Consider (4.1) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b2 are the same as in Case 1 and

b1 = −5.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 3 with
γ ∗,k = 2.8225. The optimal solution is X ∗ = ∑7

i=1 ρi (v
i )⊗3, where

ρ1 = 0.8638, v1 = (0.5276, 0.8495, 0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ2 = 2.1761, v2 = (0.5882, 0.0000, 0.0000, 0.0000, 0.0000, 0.8088)T ,

ρ3 = 2.6494, v3 = (0.0144, 0.0000, 0.0000, 0.0000, 0.7504, 0.6608)T ,

ρ4 = 2.5492, v4 = (0.0000, 0.0000, 0.0000, 0.6849, 0.7286, 0.0000)T ,

ρ5 = 2.0366, v5 = (0.0000, 0.5931, 0.8051, 0.0000, 0.0000, 0.0000)T ,

123



436 Journal of Global Optimization (2019) 75:417–437

ρ6 = 0.0612, v6 = (0.0000, 0.0000, 0.7018, 0.0001, 0.7123, 0.0000)T ,

ρ7 = 2.5081, v7 = (0.0000, 0.0000, 0.7285, 0.6850, 0.0000, 0.0000)T .

It takes about 8 s.
Case 3.Consider (4.1) with the CP cone and the linear constraintsA1 •X ≥ b1,A2 •X =

b2, where Ai , bi (i = 1, 2) are the same as in Case 2. We apply Algorithm 4.1 and choose
d = 4 and k = 2 in Step 0. It terminates at k = 3 with γ ∗,k = 2.6451. The optimal solution
is X ∗ = ∑6

i=1 ρi (v
i )⊗3, where

ρ1 = 1.2712, v1 = (0.4401, 0.8979, 0.0000, 0.0000, 0.0000, 0.0000)T ,

ρ2 = 2.2492, v2 = (0.0000, 0.6644, 0.7474, 0.0000, 0.0000, 0.0000)T ,

ρ3 = 2.6408, v3 = (0.0000, 0.0000, 0.0000, 0.7128, 0.7014, 0.0000)T ,

ρ4 = 2.5398, v4 = (0.0000, 0.0000, 0.6976, 0.7165, 0.0000, 0.0000)T ,

ρ5 = 2.6490, v5 = (0.0000, 0.0000, 0.0000, 0.0000, 0.7342, 0.6789)T ,

ρ6 = 2.0055, v6 = (0.5197, 0.0000, 0.0000, 0.0000, 0.0000, 0.8543)T .

It takes about 8 s.
Case 4. Consider (4.1) with the CP cone and the linear constraintsAi •X = bi (i = 1, 2),

where A1,A2, b1 are the same as in Case 2 and

b2 = 1

10
.

We apply Algorithm 4.1 and choose d = 4 and k = 2 in Step 0. It terminates at k = 2 and
the relaxation problem (Pk) is infeasible, so the problem is infeasible. It takes about 0.5 s.
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