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Abstract
The nonsmooth semi-infinite programming (SIP) is solved in the paper (Mishra et al. in
J Glob Optim 53:285–296, 2012) using limiting subdifferentials. The necessary optimality
condition obtained by the authors, as well as its proof, is false. Even in the case where the
index set is a finite, the result remains false. Two major problems do not allow them to have
the expected result; first, the authors were based on Theorem 3.2 (Soleimani-damaneh and
Jahanshahloo in J Math Anal Appl 328:281–286, 2007) which is not valid for nonsmooth
semi-infinite problems with an infinite index set; second, they would have had to assume
a suitable constraint qualification to get the expected necessary optimality conditions. For
the convenience of the reader, under a nonsmooth limiting constraint qualification, using
techniques from variational analysis, we propose another proof to detect necessary optimality
conditions in terms of Karush–Kuhn–Tucker multipliers. The obtained results are formulated
using limiting subdifferentials and Fréchet subdifferentials.

Keywords Nonsmooth semi-infinite optimzation · Extremal principle · Fréchet
subdifferential · Limiting subdifferential · Fréchet normal cone · Limiting normal cone ·
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1 Introduction

Semi-infinite programming problems have been investigated by many authors [2–6,9]. In
the paper [6], the authors investigated the following nonsmooth semi-infinite programming
problem

(SIP) :
{
Minimize
s.t.

f (x)

gi (x) ≤ 0 ∀i ∈ I ,
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where I is an index set which is possibly infinite, f and gi , i ∈ I , are locally Lipschitz
functions from R

n to R∪ {+∞}.
Using limiting subdifferentials [7], they established necessary and sufficient optimality

conditions for (SIP) and gave some duality results. The main theorem, Theorem 3.1 [6],
where the authors give necessary optimality conditions, is based on Theorem 3.2 [10] (see
Theorem 1 below) obtained by Soleimani-damaneh and Jahanshahloo [10] in the case where
I is a finite index set. For what follows, let I = {1, ..., p} , p ∈ N

∗, and let (P) be the
nonsmooth optimization problem where one minimizes the function f over the set

S = {
x ∈ R

n : gi (x) ≤ 0, ∀i ∈ I
}
.

Theorem 1 [10] Let x ∈ S be an optimal solution of (P). Suppose that gi (x) for i ∈ I (x)

is Lipschitz near x and gi (x) for i /∈ I (x) is continuous at x. Also suppose that there exists
a d ∈ R

n such that ηt d < 0 for all η ∈ ∪
i∈I (x)

∂L gi (x). Then

d ∈ Dx = {
d ∈ R

n : d �= 0 and ∃δ > 0 such that x + λd ∈ S, ∀λ ∈ ]0, δ[
}
, (1)

where

I (x) = {i ∈ I : gi (x) = 0} .

Looking closely at the proof of Theorem 3.2 [10], we note that it is neither valid nor
usable for the infinite case; one can not guarantee that δ �= 0 is not zero, and as a result
one can not deduces (1). As Theorem 1 is an integral part of the proof of Theorem 3.1
[6], the result obtained by the authors, as well as its proof, is false (setting f (x) = x and
gn (x) = exp (−nx) − 1, n ∈ N, yields a simple counterexample). Furthermore, since the
authors have not assumed any constraint qualification, Theorem 3.1 [6] remains false even
in the finite case (Example 4.2.10 [1] yields a simple counterexample). To overcome all
those problems, under a nonsmooth limiting constraint qualification and using techniques
from variational analysis, we propose another proof to detect necessary optimality conditions
of (SIP) in terms of Karush–Kuhn–Tucker multipliers. The obtained results are formulated
using limiting subdifferentials [7] and Fré chet subdifferentials [7]. Theorem 8 and Theorem
10 are actually two corrected versions of Theorem 3.1 [6].

For all the sequel, unless otherwise stated, BRn denotes the closed unit ball of Rn and
‖(x, y)‖ := ‖x‖ + ‖y‖ is the l1-norm of (x, y). For a multifunction F : R

n ⇒ R
n , the

expressions

lim sup
x→x

F (x) := {
x∗ ∈ R

n | ∃xk → x, ∃x∗
k → x∗ : x∗

k ∈ F (xk) ∀k ∈ N
}

and

lim inf
x→x

F (x) := {
x∗ ∈ R

n | ∀xk → x, ∃x∗
k → x∗ : x∗

k ∈ F (xk) ∀k ∈ N
}

signify, respectively, the sequential Painlevé-Kuratowski upper/outer and lower/inner limits
in the norm topology in R

n .
The rest of the paper is organized in this way: Sect. 2 contains basic definitions and

preliminary material from nonsmooth variational analysis. Section 3 addresses main results
(optimality conditions ).
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2 Preliminaries

For a subset D ⊆ R
n, cl D, co D and cone D stand for the closure, the convex hull and the

convex cone generated by D, repectively. For a function f : Rn → R∪ {+∞}, the graph of
f is the set of points in Rn+1 defined by

gr f = {
(x, y) ∈ R

n × R : y = f (x)
}
.

The following definitions are crucials for our investigation.

Definition 2 [7] Let �1 and �2 be nonempty closed subsets of Rn . We say that {�1,�2} is
an extremal system inRn if these sets have at least one (locally) extremal point x̄ ∈ �1∩�2;
that is, there exists a neighborhoodU of x̄ such that for every ε > 0 there is a vector a ∈ εBRn

with

(�1 + a) ∩ �2 ∩ U = ∅.

In this case, {�1,�2, x̄} is said to be an extremal system in Rn .

Definition 3 [7] Let � ⊂ R
n be locally closed around x̄ ∈ �. Then the Fréchet normal cone

N̂ (x̄;�) and the Mordukhovich normal cone (limiting normal cone) N (x̄;�) to � at x̄ are
defined by

N̂ (x̄;�) :=
⎧⎨
⎩x∗ ∈ R

n : lim sup
x

�→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

⎫⎬
⎭ , (2)

N (x̄;�) := lim sup
x

�→x̄

N̂ (x;�), (3)

where x
�→ x̄ stands for x → x̄ with x ∈ �.

Definition 4 [7] Let ϕ : Rn → R∪ {+∞} be lower semicontinuous around x̄ .

1. The Fréchet subdifferential of ϕ at x̄ is

∂̂ϕ(x̄) :=
{

x∗ ∈ R
n : lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
.

2. The Mordukhovich (limiting) subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) := lim sup
x

ϕ→x̄

∂̂ϕ(x), (4)

where x
ϕ→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄).

One clearly has

N̂ (x̄;�) = ∂̂δ(x̄;�), N (x̄;�) = ∂δ(x̄;�),

where δ(·;�) is the indicator function of �.
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Remark 5 [8]

1. For any closed set � ⊂ R
n and x ∈ � one has

Nc(x̄;�) = cl coN (x̄;�) (5)

and for any Lipschitz continuous function ϕ : Rn → R around x̄ , one has

∂cϕ(x̄) = cl co∂ϕ(x̄) (6)

where Nc(x̄;�) and ∂cϕ(x̄) denote respectively theClarke’s normal cone and theClarke’s
subdifferential.

2. The Fréchet normal cone N̂ (x̄;�) is always convex while the Mordukhovich normal
cone N (x̄;�) is nonconvex in general.

Definition 6 [7] Let {�1,�2, x̄} be an extremal system in R
n . {�1,�2, x̄} satisfies the

approximate extremal principle if for every ε > 0 there are x1 ∈ �1 ∩ (x + εBRn ),
x2 ∈ �2 ∩ (x + εBRn ) and x∗ ∈ R

n such that ‖x∗‖ = 1 and

x∗ ∈ (
N̂ (x1;�1) + εB∗

Rn

) ∩ (−N̂ (x2;�2) + εB∗
Rn

)
.

Remark 7 Acommonpoint x of sets is locally extremal if these sets canbe locally pushed apart
by a (linear) small translation in such a way that the resulting sets have empty intersection
in some neighborhood of x .

3 Necessary optimality conditions

Let S be the feasible set of (SIP) defined by

S = {
x ∈ R

n : gi (x) ≤ 0, ∀i ∈ I
}
.

Theorem 8 Assume that f is locally Lipschitz with constant k around the local optimal point
u ∈ S. Then, for any ε > 0, there exist u1, u2 ∈ u + εBRn , v1, v2 ∈ ( f (u) − ε, f (u) + ε)

and β∗
ε ∈ R+\ {0} such that u1 ∈ S, v1 ≤ f (u) , v2 = f (u2) and

0 ∈ ∂̂
(
β∗

ε f
)
(u2) + N̂ (u1; S) + εBRn .

Proof Since u is a local optimal solution of (SIP), there exists a neighborhood V of u such
that for all u ∈ V ∩ S

f (u) ≥ f (u) .

• Take

�1 := S × (−∞, f (u)] and �2 := gr f .

Then, it is easy to show that (u, f (u)) is an extremal point of the system (�1,�2).
Indeed, suppose that is not the case, i.e., for any neighborhood U of (u, f (u)) there is
ε > 0 such that for all a ∈ εBRn×R one has

(�1 + a) ∩ �2 ∩ U �= ∅.

Let a =
(
0,− ε

2

)
and (u, v) ∈ (�1 + a) ∩ �2 ∩ U . Thus,

u ∈ S and f (u) ∈
]
−∞, f (u) − ε

2

]
.
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Hence f (u) < f (u), which contradicts the fact that u is a local optimal solution of
(SIP).

• Since f is locally Lipschitz, one has

| f (u) − f (̂u)| ≤ k‖u − û‖ for u, û sufficiently close to u.

Let 1/4 > ε > 0. Since {�1,�2, (u, f (u))} is an extremal system, due to [7, Theorem

2.10], the approximate extremal principle holds at (u, v). Choosing θ = ε

4 (k + 1)
, there

exist u1, u2 ∈ u + θBRn , v1, v2 ∈ ( f (u) − θ, f (u) + θ) and (x∗, y∗) ∈ R
n ×R

n such
that u1 ∈ S, v1 ∈ (−∞, f (u)] , v2 = f (u2) , ‖(x∗, y∗)‖ = 1 and(

x∗, y∗) ∈ [
N̂ ((u1, v1) ;�1) + θBRn×R

] ∩ [−N̂ ((u2, v2) ;�2) + θBRn×R

]
. (7)

Hence we can find (u∗, v∗) ∈ N̂ ((u2, v2) ;�2) and
(
a∗

i , b∗
i

) ∈ BRn×R, i = 1, 2, and(
α∗

ε , β∗
ε

) ∈ N̂ ((u1, v1) ;�1) such that(
u∗, v∗) = − (

α∗
ε , β∗

ε

) + θ
(
a∗
2 , b∗

2

) − θ
(
a∗
1 , b∗

1

)
,

and (
α∗

ε , β∗
ε

) + θ
(
a∗
1 , b∗

1

) = (
x∗, y∗) . (8)

• Since (u∗, v∗) ∈ N̂ ((u2, v2) ;�2), one has for all (u, v) ∈ gr f sufficiently close to
(u2, v2) : 〈

u∗, u − u2
〉 + 〈

v∗, v − v2
〉 − 2θ ‖(u − u2, v − v2)‖ ≤ 0.

Since the definition of Fréchet normals (2) implies that

inf
δ>0

sup
(u,v)∈Bδ(u2,v2)∩�2

〈u∗, u − u2〉 + 〈v∗, v − v2〉
‖(u − u2, v − v2)‖ ≤ 0,

thus there exists δ > 0 such that for all (u, v) ∈ Bδ (u2, v2) ∩ �2,

〈u∗, u − u2〉 + 〈v∗, v − v2〉
‖(u − u2, v − v2)‖ ≤ 2θ,

or 〈
u∗, u − u2

〉 + 〈
v∗, v − v2

〉 − 2θ ‖(u − u2, v − v2)‖ ≤ 0.

Consequently,

0 ≥ 〈−α∗
ε , u − u2〉 + 〈−β∗

ε , f (u) − f (u2)〉
+ θ

〈
a∗
2 − a∗

1 , u − u2
〉 + θ

(
b∗
2 − b∗

1

)
( f (u) − f (u2))

− 2θ‖(u − u2, f (u) − f (u2))‖
for (u, v) ∈ gr f sufficiently close to (u2, v2).

• The locally Lipschitz property of f together with the fact that
(
a∗

i , b∗
i

) ∈ BRn×R for
i = 1, 2, gives us for each u sufficiently close to u2,

〈α∗
ε , u − u2〉 + β∗

ε ( f (u) − f (u2)) ≥ −4θ [‖u − u2‖ + | f (u) − f (u2)|]
≥ −4θ (k + 1) ‖u − u2‖
≥ −ε ‖u − u2‖ .
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for θ = ε

4 (k + 1)
and u sufficiently close to u2. Then, u2 minimizes locally the function

� (u) := 〈α∗
ε , u − u2〉 + β∗

ε ( f (u) − f (u2)) + ε‖u − u2‖.
Using [7, Proposition 1.107] together with the fuzzy sum rule [7, Theorem 2.33], we can
find a point ũ2 ∈ u2 + ε

2BRn such that

0 ∈ α∗
ε + ∂̂

(
β∗

ε f + ε ‖. − u2‖
)
(u2) (9)

⊆ α∗
ε + ∂̂

(
β∗

ε f
)
(̃u2) + εBRn . (10)

• β∗
ε �= 0. Indeed, from (9), there exist s∗ ∈ ∂̂

(
β∗

ε f
)
(̃u2) and e∗ ∈ BRn such that

0 = α∗
ε + s∗ + εe∗.

Then, ∥∥(
α∗

ε , β∗
ε

)∥∥ = ∥∥α∗
ε

∥∥ + ∥∥β∗
ε

∥∥ = ∥∥s∗ + εe∗∥∥ + ∥∥β∗
ε

∥∥ ≤ ∥∥s∗∥∥ + ε + β∗
ε .

Moreover,∥∥(
x∗, y∗)∥∥ = ∥∥(

α∗
ε , β∗

ε

) + θ
(
a∗
1 , b∗

1

)∥∥ ≤ ∥∥(
α∗

ε , β∗
ε

)∥∥ + θ
∥∥(

a∗
1 , b∗

1

)∥∥ .

Since
(
a∗
1 , b∗

1

) ∈ BRn+1 , ‖(x∗, y∗)‖ = 1 and θ = ε

4 (k + 1)
< ε < 1/4, one gets

3

4
≤ 1 − θ ≤ ∥∥(

α∗
ε , β∗

ε

)∥∥ .

Thus,

3

4
≤ ∥∥s∗∥∥ + ε + β∗

ε .

Using the Lipschitz property of f , one deduces that

3

4
≤ β∗

ε k + ε + β∗
ε .

Consequently,

0 <

3

4
− ε

k + 1
≤ β∗

ε .

Hence, β∗
ε > 0. This implies part 1 by (9). ��

The following constraint qualification will be used to get necessary optimality conditions
in terms of limiting subdifferentials and Karush–Kuhn–Tucker multipliers.

Definition 9 We say that the nonsmooth limiting constraint qualification holds at u ∈ S if

N (u, S) ⊆ cl

⎛
⎝ ∑

i∈I (u)

cone ∂gi (u)

⎞
⎠ ,

where

I (u) = {i ∈ I : gi (u) = 0}.
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Theorem 10 gives exact optimality conditions for our nonsmooth semi-infinite program-
ming problem.

Theorem 10 Assume that f is locally Lipschitz at u ∈ S with Lipschitz constant k and
that u is a local optimal solution of (SIP). Suppose that the nonsmooth limiting constraint
qualification holds at u. Then,

0 ∈ ∂ f (u) + cl

⎛
⎝ ∑

i∈I (u)

cone ∂gi (u)

⎞
⎠ .

Proof Fix arbitrary ε > 0. Since u is a local optimal solution of (SIP), there exist u1, u2 ∈
u + εBRn , v1, v2 ∈ ( f (u) − ε, f (u) + ε) and β∗

ε ∈ R+\ {0} such that u1 ∈ S, v1 ≤
f (u) , v2 = f (u2) and

0 ∈ ∂̂
(
β∗

ε f
)
(u2) + N̂ (u1; S) + εBRn .

Using the Lipschitz property of f , from (9), there exist s∗
ε ∈ ∂̂

(
β∗

ε f
)
(u2) , α∗

ε ∈ N̂ (u1; S)

and e∗
ε ∈ BRn such that

0 = α∗
ε + s∗

ε + εe∗
ε ,∥∥s∗

ε

∥∥ ≤ β∗
ε k,

and (
s∗
ε ,−β∗

ε

) ∈ N̂ ((u2, f (u2)) , gr f ) .

Since ‖(x∗, y∗)‖ = 1,
∥∥(

a∗
1 , b∗

1

)∥∥ ≤ 1 and

∥∥α∗
ε

∥∥ + ∥∥β∗
ε

∥∥ = ∥∥(
α∗

ε , β∗
ε

)∥∥ =
∥∥∥∥(

x∗, y∗) − ε

4 (k + 1)

(
a∗
1 , b∗

1

)∥∥∥∥
≤ ∥∥(

x∗, y∗)∥∥ + ε

4 (k + 1)

∥∥(
a∗
1 , b∗

1

)∥∥
one gets

0 < β∗
ε ≤ 1 + ε

4 (k + 1)
.

Letting ε → 0, u2 → u and f (u2) → f (u), there exist s∗ ∈ −N (u; S) and 0 < β∗ ≤ 1
such that (

s∗,−β∗) ∈ N ((u, f (u)) , gr f ) .

Thus, {
s∗ ∈ ∂ (β∗F) (u) ,

−s∗ ∈ N (u, S) .

Then,

0 ∈ ∂
(
β∗ f

)
(u) + N (u, S) = β∗∂ f (u) + N (u, S) .

Consequently,

0 ∈ ∂ f (u) + N (u, S) .
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The nonsmooth limiting constraint qualification implies that

0 ∈ ∂ f (u) + cl

⎛
⎝ ∑

i∈I (u)

cone ∂gi (u)

⎞
⎠ . ��

Example 11 Consider the following optimization problem :

(
SIP∗) :

{
Minimize
s.t.

f (x, y) = −3x + 2 |y|
gi (x, y) = x + e−i y ≤ 0, ∀i ∈ N∪ {0} .

We remark that u = (0, 0) ∈ S is an optimal solution of (SIP∗) with

I (u) = N∪ {0} and S = {
(x, y) ∈ R

2 : x ≤ 0 and x + y ≤ 0
}
.

The nonsmooth limiting constraint qualification holds at u. It is easy to show that

N (u, S) = {
(d1, d2) ∈ R

2 : 0 ≤ d2 ≤ d1
} = cl

⎛
⎝ ∑

i∈I (u)

cone ∂gi (u)

⎞
⎠

On the other hand, ∂ f (u) = {−3} × [−2, 2], hence we get

(−3,−1) ∈ ∂ f (u) ∩
⎛
⎝−cl

⎛
⎝ ∑

i∈I (u)

cone ∂gi (u)

⎞
⎠

⎞
⎠ .
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