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Abstract

The nonsmooth semi-infinite programming (SIP) is solved in the paper (Mishra et al. in
J Glob Optim 53:285-296, 2012) using limiting subdifferentials. The necessary optimality
condition obtained by the authors, as well as its proof, is false. Even in the case where the
index set is a finite, the result remains false. Two major problems do not allow them to have
the expected result; first, the authors were based on Theorem 3.2 (Soleimani-damaneh and
Jahanshahloo in J Math Anal Appl 328:281-286, 2007) which is not valid for nonsmooth
semi-infinite problems with an infinite index set; second, they would have had to assume
a suitable constraint qualification to get the expected necessary optimality conditions. For
the convenience of the reader, under a nonsmooth limiting constraint qualification, using
techniques from variational analysis, we propose another proof to detect necessary optimality
conditions in terms of Karush—Kuhn—-Tucker multipliers. The obtained results are formulated
using limiting subdifferentials and Fréchet subdifferentials.
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1 Introduction

Semi-infinite programming problems have been investigated by many authors [2-6,9]. In
the paper [6], the authors investigated the following nonsmooth semi-infinite programming
problem

Minimize f(x)

(SIP) - {s.t. gG(x)<0 Viel,
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where [ is an index set which is possibly infinite, f and g;, i € I, are locally Lipschitz
functions from R” to RU {+o00}.

Using limiting subdifferentials [7], they established necessary and sufficient optimality
conditions for (SIP) and gave some duality results. The main theorem, Theorem 3.1 [6],
where the authors give necessary optimality conditions, is based on Theorem 3.2 [10] (see
Theorem 1 below) obtained by Soleimani-damaneh and Jahanshahloo [10] in the case where
I is a finite index set. For what follows, let I = {1, ..., p}, p € N*, and let (P) be the
nonsmooth optimization problem where one minimizes the function f over the set

S={x€R”:gi(x)§0, Vie[}.

Theorem 1 [10] Let x € S be an optimal solution of (P). Suppose that g; (x) fori € I (X)
is Lipschitz near X and g; (x) fori ¢ I (x) is continuous at X. Also suppose that there exists
ad € R" such that n'd < O foralln € %7)3Lgi (x). Then

el (x

deD"={deR":d #0and 38 > Osuchthat + id € S, YA €10, 8[}, (1)
where
[(@) ={iel:gix)=0}.

Looking closely at the proof of Theorem 3.2 [10], we note that it is neither valid nor
usable for the infinite case; one can not guarantee that § # 0 is not zero, and as a result
one can not deduces (1). As Theorem 1 is an integral part of the proof of Theorem 3.1
[6], the result obtained by the authors, as well as its proof, is false (setting f (x) = x and
gn (x) = exp(—nx) — 1, n € N, yields a simple counterexample). Furthermore, since the
authors have not assumed any constraint qualification, Theorem 3.1 [6] remains false even
in the finite case (Example 4.2.10 [1] yields a simple counterexample). To overcome all
those problems, under a nonsmooth limiting constraint qualification and using techniques
from variational analysis, we propose another proof to detect necessary optimality conditions
of (SIP) in terms of Karush—Kuhn-Tucker multipliers. The obtained results are formulated
using limiting subdifferentials [7] and Fré chet subdifferentials [7]. Theorem 8 and Theorem
10 are actually two corrected versions of Theorem 3.1 [6].

For all the sequel, unless otherwise stated, Br» denotes the closed unit ball of R" and
e, I == llxIl + Iyl is the /;-norm of (x, y). For a multifunction F : R" = R”", the
expressions

lim supF (x) := {x* eR" |3 > X, Ixf > x":1x] € F(xp) Vhke N}
xX—>X

and

liminfF (x) := {x* € R" | Va — ¥, 3xj — x* 1 x{ € F () Vk € N}
X—>X
signify, respectively, the sequential Painlevé-Kuratowski upper/outer and lower/inner limits
in the norm topology in R”.
The rest of the paper is organized in this way: Sect. 2 contains basic definitions and
preliminary material from nonsmooth variational analysis. Section 3 addresses main results
(optimality conditions ).
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2 Preliminaries

For asubset D C R", ¢l D, co D and cone D stand for the closure, the convex hull and the
convex cone generated by D, repectively. For a function f : R" — RU {400}, the graph of
f is the set of points in R"*! defined by

grf:{(x,y)eR"xR:y:f(x)}.

The following definitions are crucials for our investigation.

Definition 2 [7] Let ©2; and 2, be nonempty closed subsets of R". We say that {21, 2»} is
an extremal system in R” if these sets have at least one (locally) extremal point X € Q1N Q0;
that is, there exists a neighborhood U of x such that for every ¢ > 0 there is a vectora € eBgn
with

Q+a)N2wNU=49.
In this case, {21, 27, x} is said to be an extremal system in R”.

Definition 3 [7] Let @ C R” be locally closed around x € 2. Then the Fréchet normal cone
N (x; ) and the Mordukhovich normal cone (limiting normal cone) N (x; 2) to Q at x are
defined by

.-
NG Q) =1x*eR": limsupwfo , 2)
. llx—x]

X—>X
N(¥; Q) := limsupN (x; ), A3)
xgi

Q _ -
where x — x stands for x — x with x € Q.

Definition 4 [7] Let ¢ : R" — RU {400} be lower semicontinuous around x.

1. The Fréchet subdifferential of ¢ at x is

p(E) = {x* €R": liminf £X 9O Z O x =% 0} _

X% lx — x|
2. The Mordukhovich (limiting) subdifferential of ¢ at x is defined by

d(%) = lim sup dg(x), “)

9 _
X=X

where x ~ ¥ means that x — ¥ with ¢ (x) = p(X).
One clearly has
N Q) =08(%;Q), NE; Q) =05; Q).

where §(-; 2) is the indicator function of 2.
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Remark 5 [8]
1. For any closed set 2 C R" and X € 2 one has
N.(x; Q) =cl coN(x; Q) 5)
and for any Lipschitz continuous function ¢ : R” — R around X, one has
dcp(x) = cl codp(x) 6)

where N, (x; ©2) and d.¢(x) denote respectively the Clarke’s normal cone and the Clarke’s
subdifferential.

2. The Fréchet normal cone N (x; ) is always convex while the Mordukhovich normal
cone N (x; 2) is nonconvex in general.

Definition 6 [7] Let {21, €23, X} be an extremal system in R”. {Q], Q, X} satisfies the
approximate extremal principle if for every ¢ > O there are x; € Q1 N (X 4 eBgn),
xp € Qo N (X + €Brn) and x* € R” such that || x*| = 1 and

x*e (ﬁ(xl; Q1) + eBga) N (—ﬁ(xg; Q) + eBn) -

Remark 7 A common point x of sets is locally extremal if these sets can be locally pushed apart
by a (linear) small translation in such a way that the resulting sets have empty intersection
in some neighborhood of x.

3 Necessary optimality conditions

Let S be the feasible set of (SIP) defined by
S={xeR":g(x) <0, Viel}.

Theorem 8 Assume that f is locally Lipschitz with constant k around the local optimal point
u € S. Then, for any ¢ > 0, there existuy, uy € u + eBprn, vi,v2 € (f (W) —¢, f (u) +¢)
and B € Ry\ {0} such thatuy € S, vi < f (), vo = f (u2) and

0€d(Brf) (u2) + N(ur; S) + eBo.

Proof Since u is a local optimal solution of (SIP), there exists a neighborhood V of u such
that forallu e VN S

fu) = f@).
o Take
Q=8 x (—o0, f ()] and 2y := grf.

Then, it is easy to show that (u, f (1)) is an extremal point of the system (€21, €22).
Indeed, suppose that is not the case, i.e., for any neighborhood U of (u, f («)) there is
& > 0 such that for all a € £ Brnyr one has

Q1 +a)NNU # 0.

Leta = (0, —%) and (u,v) € (1 +a) N NU. Thus,
u eSandf(u)e]—oo,f(ﬁ)—%].
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Hence f (u) < f (u), which contradicts the fact that u is a local optimal solution of
(SIP).
e Since f is locally Lipschitz, one has

| f () — f @) <k|lu—"1u| for u, u sufficiently close to u.

Let 1/4 > ¢ > 0. Since {2}, Q2, (u, f (1))} is an extremal system, due to [7, Theorem

2.10], the approximate extremal principle holds at (i, v). Choosing 6 = ﬁ, there

existuy, up € u+60Bprn, vy, v2 € (f (W) — 6, f (W) +0) and (x*, y*) € R" x R” such
that u; € S, vy € (=00, f @], v = f (u2), Ix*, y*)| = 1 and

(x*, ") € [ﬁ((ul, v1); Q1) + 6Bgraxr] N [—ﬁ((uz, 1) )+ 0Brixr]. (7)

Hence we can find (u*, v*) € ﬁ((uz, v2); ) and (al?*, bl*) € Broxr, § = 1, 2, and
(oc:, ,B;‘) € N ((u1, v1); 1) such that

(u*,v*) = = (af, BE) + 0 (a5, b3) — 6 (a, b}) .

and
(af, BY) + 0 (af, b]) = (x*, ¥"). (8)
e Since (u*, v*) € N ((u2, v2) ; 22), one has for all (u,v) € grf sufficiently close to
(U2, v2) :

<u*, u— u2>+<v*, v— U2> —20 |(u — uz, v —vp)|| <O.
Since the definition of Fréchet normals (2) implies that

. w*,u—uy) + (v, v—1vy
inf sup { )+ ) <0,
8>0 (4, 0)eBs (12, v2) N2 [l —uz, v —w2)ll

thus there exists § > 0 such that for all (u, v) € Bs (uz, v2) N 2,

(u*,u —u2) + (v*, v —12)

<20,
[(u —uz, v —v2)ll

or

<u*, u— u2>+<v*, v — vz) —20||(u —uz, v — )| <O.
Consequently,

0= (—ag,u—uz) + (=B, f () — f (u2))

+0 (a3 —af,u—us)+0 (b —b7) (f @) — f (u2))
—201|(u — ua. f @) — f )|

for (u, v) € grf sufficiently close to (u2, v2).
e The locally Lipschitz property of f together with the fact that (a;, bf) € Bgnxr for
i =1, 2, gives us for each u sufficiently close to u»,
(g, u —uz) + B2 (f () — f (u2)) = =40 [llu — uall + | f (u) — f (u2)l]
> =40 (k+ 1) lu — uzll
Z

—¢ |lu —uzll.
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forf = ﬁ and u sufficiently close to u». Then, u; minimizes locally the function

W () = (o, u —uz) + B (f () — f (u2)) + ellu — uz.

Using [7, Proposition 1.107] together with the fuzzy sum rule [7, Theorem 2.33], we can
find a point > € up + 5BRr» such that

0€af +3 (B +ell.— ) (w2) ©)
C af +3 (B f) @) + eBro. (10)

e B* # 0. Indeed, from (9), there exist s* € 5(;3; f) (i12) and e* € Bgn such that

0=a} +s*+ee".

Then,
(e, B = ez | + 2] = [|s* +ee*| + [B2] < 5" | + &+ Bz
Moreover,
G ) = (e, B2) + 0 (af. b7) | < [ (e, B2) ] + 6 || (. B7) ] -
. €
Since (af, bf) € Bpa+1, |(x*, y*)| =1and 6 = YOE) < & < 1/4, one gets
3
iooswal.
Thus,
S R
7= .

Using the Lipschitz property of f, one deduces that

3
Zsﬁ:k+8+ﬁ:.

Consequently,
3
- —¢
4 *
0 < B;.
Skl Pe
Hence, 8} > 0. This implies part 1 by (9). O

The following constraint qualification will be used to get necessary optimality conditions
in terms of limiting subdifferentials and Karush—Kuhn—Tucker multipliers.

Definition 9 We say that the nonsmooth limiting constraint qualification holds at u € S if

NG, S)<el| Y conedgi @ |,
iel (i)

where

T@=1liel: g =0}
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Theorem 10 gives exact optimality conditions for our nonsmooth semi-infinite program-
ming problem.

Theorem 10 Assume that f is locally Lipschitz at u € S with Lipschitz constant k and
that u is a local optimal solution of (SIP). Suppose that the nonsmooth limiting constraint
qualification holds at u. Then,

Oedf@+cl| Y  conedgi()
iel ()

Proof Fix arbitrary ¢ > 0. Since u is a local optimal solution of (SIP), there exist u1, up €
U+ eBrn, vi,v2 € (f(w) —e, f(u)+e) and B € Ry\{0} such that u; € S, vy <
S @), va = f(u2)and

0€d(Brf) (u2) + N(ur; S) + eBo.

Using the Lipschitz property of f, from (9), there exist s* € 8 (B f) u2), af € N S)
and e} € Bgrn such that

0=oa)+s;+eel,
2] = B2k,
and
(s2.=B2) € N (w2, f w2)), grf)
Since [|(x*, y*)|| = 1, |(a},b})| < 1 and

o+ 1821 = ez £2)] = | 6°0°) = 5y (@60

£
< "y + YT | (at. 67)|
one gets
* &
O0<B =<1+ m

Letting e — 0, up — wand f (up) — f (), there exist s* € —N (u; S) and 0 < B* < 1
such that

(s*,—B*) € N (@, f @), grf).

Thus,
{feawﬂﬁﬁx
—s*eN®@,S).
Then,
0€d (B f)@+N @ S)=p"df@~+N®@S).
Consequently,

0edf@+N@@S).
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The nonsmooth limiting constraint qualification implies that

0edf (m)+cl Z cone dg; (1)
iel ()

Example 11 Consider the following optimization problem :

(SIP*) ) Minimize f (x,y) = —3x+ 2 [y]
’ s.t. gi(x,y)=x+e'y<0, VieNU{0}.

We remark that u = (0, 0) € S is an optimal solution of (SIP*) with
I (@) =NU{0} and S = {(x,y) e R* :x < Oandx +y < 0}.

The nonsmooth limiting constraint qualification holds at . It is easy to show that

N@ ) ={(d.d)eR*:0<dy<di}=cl| > conedg()
iel(u)

On the other hand, d f (1) = {—3} x [—2, 2], hence we get

(=3, -DHedf@n| —cl Z cone 0g;(u)
iel ()
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