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Abstract
We present and solve a new computational geometry optimization problem in which a set
of circles with given radii is to be arranged in unspecified area such that the length of the
boundary, i.e., the perimeter, of the convex hull enclosing the non-overlapping circles is
minimized. The convex hull boundary is established by line segments and circular arcs. To
tackle the problem, we derive a non-convex mixed-integer non-linear programming formula-
tion for this circle arrangement or packing problem. Moreover, we present some theoretical
insights presenting a relaxed objective function for circles with equal radius leading to the
same circle arrangement as for the original objective function. If we minimize only the sum
of lengths of the line segments, for selected cases of up to 10 circles we obtain gaps smaller
than 10−4 using BARON or LINDO embedded in GAMS, while for up to 75 circles we are
able to approximate the optimal solution with a gap of at most 14%.

Keywords Global optimization · Non-convex nonlinear programming · Circular packing
problem · Convex hull · Perimeter minimization · Non-overlap constraints · Computational
geometry · Isoperimetric inequality

1 Introduction

Observing the loading process of trucks led us to an interesting, but to our surprise, not studied
problem neither in the Operations Research nor in the Computational Geometry community.
In the logistics industry, circular items like drums or pipes are packed and secured with
lashing straps. In order to save straps and the space usage of such circle shaped items on a
truck’s loading area, the perimeter of the used lashing strap should be as small as possible.
Given this real-world situation, we can transfer the observation into mathematical language
and define the following novel arrangement problem: A finite set of 2-dimensional (2D)
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circular discs with given and, possibly, different radii has to be arranged such that the length
of the boundary of the convex hull enclosing these circular discs is minimized. The circular
discs are placed freely and they must not overlap each other. In the following, we use the
terms circular discs and circles synonymously. In the mathematical literature the term circle
is only used for the boundary or perimeter of the circular discs (e.g., see [16]).

A general overview on arrangements, packing or covering of geometric objects can be
found in [3,4] or [6] . In [16], an algorithm with a running time of O(n log n) derives the
minimal convex hull of possibly overlapping circles which are fixed in a plane. [1] studies
different approximation algorithms to place two arbitrary convex sets in a plane such that
the surrounding perimeter is minimized. Polygonal convex hulls are computed in [2]. The
authors formulate the optimal clustering problem with a wide range of applicable problems
including minimal containment of a pair given free translated and rotated shapes (bounded
by circular arcs and line segments) in a rectangle, circle, convex polygon or convex hull,
which supports applications in packing irregular objects, selecting or designing containers,
and hole filling. The paper presents non-linear programs (NLP) and solution algorithms and
provides new benchmark instances of finding the containing region that has either minimal
area, perimeter or homothetic coefficient of a given container, as well as finding the convex
polygonal hull (or its approximation) of a pair of objects. In contrast to [1] and [2], we
consider the minimization of the perimeter of the convex hull of multiple circles of different
size which can be moved freely in a certain sub-area of the 2D plane, e.g., a rectangle, but
must not overlap each other. Thus, with the change of the position of circles, the shape and
structure of the surrounding convex hull can also be changed.

Due to the possibility of changing the position of circles, the stated problem is closely
related to the well-known circular packing problems (CPP), in which a given set of circles
of arbitrary size have to be placed inside a container without overlapping each other. The
container can either be rectangular or circular and the circles can arbitrarily be placed hori-
zontally as well as vertically (cf. [5,7,17,18] and [19]). Due to the importance for logistical
problems, balancing conditions for circular packing problems are considered in the CPP. To
answer the NP-hard decision problemwhether the circles fit into the given container (see [8]),
the circles are packed such that their total radii (if the container is circular) or the area of
the required container (if the container is rectangular) is minimized. In this paper, we do not
minimize the target domain, i.e., surrounding circle or rectangle, instead we minimize the
perimeter of the convex hull enclosing the circular discs, or circles for short, fitting into the
target domain. We thus do not pack circles in a given container of known shape, but rather
arrange them in a sub-part of the 2D plane, and find their arrangement by minimizing the
length of the perimeter of the convex hull. The convex hull, of course, has to fit within the
given target domain. In the following, we will denote the problem as the minimal perimeter
problem (MPP).

From a packing perspective, the length of the ribbon required to hold circular objects
together should be as small as possible, e.g., in order to save material costs. However, the
applications of the MPP are not restricted to the packing field. By solving the problem we
can also find important answers for cutting problems. Given a block with a convex structure,
the MPP provides an answer to the question of how many circles with given and arbitrary
radii can be cut out. The assumption that the block is convex represents generalization of the
circular cutting problem in which the circles are cut out from a circular block (see [9]).

Among the major contributions of this paper are:

1. novelmathematical programmingmodels, i.e., closedmixed-integer non-linear program-
ming (MINLP) models for the MPP;
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2. proofs related to the structure of the boundary of the convex hull;
3. analytic solutions for smaller cases and special configurations;
4. polylithic1 approaches for computing near optimal configurations for larger sets of circles

for which the nonlinear and global solvers do not find feasible points in several hours.

The remainder of the paper is structured as follows: In Sect. 2wederive themodel formulation
for theMPP. In Sect. 2.2we describe the correspondence betweenminimal perimeter and area
of the surrounding convex hull of packed circles. Analytic solutions are derived in Sect. 3.
Numerical experiments are defined and presented in Sect. 4. Conclusions in Sect. 5 complete
this paper.

2 Model formulation for theMPP

In this section we derive the mathematical model for the MPP. In Sect. 2.1, we present the
required terminology and state the mathematical problem. The calculation of the convex hull
of a set of circles is given in Sect. 2.3.

2.1 Problem definition

Within the paper we use column vectors in R
2, e.g., x ∈ R

2. Vector xT is the transposed
vector of x and is, thus, a row vector. The two dimensions of the plane are referenced by
d ∈ D = {1, 2}, where 1 and 2 represents the first (x-axis) and second dimension (y-axis),
respectively. Given two points v1 = (v11, v21) and v2 = (v12, v22) in the 2D plane, we
calculate the distance between both points by means of the 2-norm with

‖v1 − v2‖2 =
√∑

d∈D
(vd1 − vd2)

2 .

Afinite set I of n circles i ∈ I, i.e. |I| = n, with radii Ri > 0 is to be placed in a 2D plane.
The position of each circle i ∈ I is described by the coordinate vector x0i . The boundary or
perimeter ∂S of the convex hull S hosting the circles consists of line segments and circular
arcs of a subset Iout ⊆ I of arc-contributing circles; see Sect. 2.3.1. Circles contributing to
the convex hull will be denoted by outer circles, while all other circles are inner circles. Note
that circles in most cases contribute at most one arc, but in special cases they can contribute
up to four arcs as displayed in Fig. 12.

Set J = {1, . . . , N J
}
contains directed line segments required to construct the boundary

∂S of the convex hull S. If Iout = {i1, . . . , ik} ⊂ I is the subset of outer circles contributing
an arc to ∂S, then n − k circles are either in the interior of S or just touch ∂S. As ∂S has
the homotopic type of a topological circumference, there have to be exactly m < N J line
segments j ∈ J if we have m ≥ 2 outer circles contributing arcs to ∂S. In the following
indices i and j refer to the circles and line segments involved in the MPP.

Each line segment j ∈ J is defined by outgoing and ingoing vertices valj and vlaj , respec-

tively. The vertices valj and v
la
j are points on two adjacent circles where the vertices v

la
j−1 and

valj establish the tangential points one the same circle’s arc segment being part of ∂S. An arc
for circle i is therefore defined by the circle’s center, x0i , as well as vertices v

la
j−1 and v

al
j for

1 The term polylithic has been coined by Kallrath [10], [12] to refer to tailor-made modeling and solution
approaches to solve optimization problems exploiting several models and their solutions.
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Fig. 1 A configuration of four circles with two outgoing vertices val1 and val2 and ingoing vertices vla1 and vla2
defining the line segment j1 and j2 (red). Together with the arc segments (blue) of i1 and i2, going from vla2
to val1 and from vla1 to val2 the convex hull ∂S is constructed. Circles i1 and i2, containing the ingoing and
outgoing vertices and contributing to the convex hull, are outer circles. (Color figure online)

j = 2, . . . ,m − 1 and vlam and val1 . We define vla0 to be vlam . The arc of the circle containing
vertex valj is denoted by outgoing arc while the arc containing vertex v

la
j is denoted by ingoing

arc. Figure 1 shows the arrangement of four circles i1 to i4 with the two outgoing val1 and val2
as well as two ingoing vertices vla1 and vla2 . The vertex tuples val1 , v

la
1 and val2 , v

al
2 define line

segments j1 and j2, respectively. The line segments together with the arcs of circle i1 and
i2, going from vertex vla2 to val1 and from vla1 to val2 , respectively, construct the convex hull
∂S of that arrangement. Although, circle i3 is touching the line segment, the circle does not
contribute to the convex hull and is therefore not an outer circle like circles i1 and i2.

When arranging the circles, three major constraint types have to be satisfied:

1. Ensure that circles do not overlap.
2. Fit all circles into the target domain, a rectangle of length L and width W in our case;

E = (L,W ).
3. Structure of S and calculating the length � of ∂S, which is the sum �L of the lengths of

all line segments and the sum �A of the length of the arcs.

As the structure and shape of S depends on the arrangement of circles, we can also see the
system of line segments touching the circles i ∈ Iout as a tour between circles contributing
an arc to ∂S. A feasible tour can serve as the basis for the definition of the convex hull (see
Sect. 2.3).

2.2 Minimal perimeter and area of the convex hull

To demonstrate the correlation between length of the perimeter � of ∂S and area A of S, let
us inspect the arrangement of circles with equal unit radii 1 in Fig. 2. The packing of unit
circles shown in Fig. 2a leads to a perimeter of length � = 12 + 2π , while the perimeter of
the packed circles in Fig. 2b is � = 8+ 2π . The area A of S in both arrangements is equal to
12+π , which is equal to the minimal area of the convex hull surrounding all four circles. To
derive the area for both arrangements, we calculate the area of the minimal area rectangles
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(a) (b)

Fig. 2 Two arrangements of circles both with minimal area 12 + π of the convex hull but different perimeter
lengths: 12 + 2π in case a, and 8 + 2π in case b a minimal convex hull area, b minimal perimeter

hosting the circles and subtract the four difference areas of a unit square minus a quarter
circle. In case (a) this yields

Aa = 8 · 2 − 4

(
1 − 1

4
π

)
= 12 + π ,

which equals the result

Ab = 4 · 4 − 4

(
1 − 1

4
π

)
= 12 + π

obtained in case (b). The example shows that minimizing the area of S does not imply that
also the length of the perimeter is minimized. It remains unclear whether the minimization
of � unconditionally leads to a convex hull with minimal area. For non-circular convex hull
we can only rely on the isoperimetric inequality

2π A ≤ �2 . (2.1)

Thus, if we want to store and bind circular objects with a strap such that the minimal area
on the loading area is required, we just have to minimize the perimeter of the surrounding
convex hull.

2.3 The convex hull and the perimeter of its boundary

In the following sections, we describe howwe construct ∂S and how to calculate its length, �.
In Sect. 2.3.1, we show the construction of ∂S . The relevant relations for calculating ∂S are
derived in Sect. 2.3.2. The constraints required to place all circles within S are also contained
in Sect. 2.3.2.

2.3.1 Characterization of the convex hull and the perimeter of its boundary

The convex hull S is the minimal convex set enclosing all circles i ∈ I. In the MPP the
position of circles are never given as, for instance, in Rapport (1992) – the positions of the
circles are free in our case. To show the construction of the convex hull, let us, for now, assume
that an arrangement of n non-overlapping circles placed in the plane is given. Since ∂S has
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Fig. 3 Five circles, in which four circles i = 1, . . . , 4, are on the boundary of the convex hull (outer circles)
while one circle, i = 5, is in the interior of the convex hull. The dotted lines show the direction for the
construction of the convex hull. The start vertex is given by val1

minimal length, there are circles contributing an arc to ∂S (outer circles), or touching ∂S in
one point only, and circles in the interior of S (inner circles), i.e., circles disjunctive to ∂S.
Moreover, as each point in a convex hull is part of a line segment which is also part of the
convex hull S, and as the convex hull is closed, the boundary ∂S consists also of straight line
segments connecting the arc segments of boundary ∂S with each other. The line segments
belonging to ∂S and connecting two outer circles are tangential to the arc segments being
part of the boundary ∂S. In Fig. 3, for example, we have an arrangement of five circles in
which four circles are on the boundary of the convex hull, while one circle is in the interior
of S.

Let us assume that the circles as well as the line segments defining outgoing and ingoing
vertices are placed in the 2D plane. The boundary ∂S of S surrounding the circles is a planar
simple closed curve (or a non-self-intersecting continuous loop in the plane, called a Jordan
curve). We construct it in the following way. We start with vertex val1 having the smallest
dimension-1 and -2 coordinates (the x- and y-axis). The vertex is the outgoing vertex, and is
tangential to the arc of that circle from which line segment j = 1 leaves. Line segment j = 1
ends in ingoing vertex vla1 , which is the extreme vertex of the arc of the adjacent outer
circle. The arc ends in vertex val2 , which is then the outgoing vertex of line segment j = 2.
The line segment ends in ingoing vertex vla2 , being the one extreme point for the arc of the
directly neighbored outer circle. We continue the construction in anti-clockwise order until
line segment j = m ends in vertex vlam , which is the start vertex of the arc ending in vertex
val1 . This construction closes S.

Given the construction above, the length � of ∂S is given by the sum of the lengths of line
segments �L and arcs �A. The length of outer circle i’s arc is given by the radius of circle i
and the sector angle αi j depending on the center of the circle x0i and the arc defining extreme
points vlaj−1 and v

al
j . Therefore, the length � of the perimeter is calculated as
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� = �L + �A , (2.2)

with

�L =
∑
j

∥∥∥vlaj − valj
∥∥∥
2

=
∑
j

√∑
d

[
vald j − vlad j

]2

�A =
∑
i j

Riαi j , (2.3)

where �L represents the length of the line segments while �A is the sum of the lengths of all
arcs. Hence, to minimize the surrounding convex hull of placed circles, we have tominimize (
2.2).

As proven in “Appendix B.3.1”, the sum of angles
∑

i j αi j of the circular sectors con-
tributed to ∂S equals to 360◦. Therefore, in the special case of equal radii circles, the minimal
perimeter length configuration is obtained by just minimizing �L as �A is constant.

For two circles, we require four vertices to close the convex hull, while for m > 2 outer
circles, the number of circular arc vertices is at most 2m , i.e., where we require at most m
vertices valj and vlaj , respectively. Since the angle of some circular arc can be also zero, we
have between 2 ≤ max{m, n} circular arcs in general.

2.3.2 The construction of the convex hull and its boundary

In this section we show the construction of the convex hull, if the arrangement of circles is
not given a priori. As the position of the circles is not known, we know neither the set of
outer circles Iout, the number of line segments m, nor the position of line segments.

The position of each circle i ∈ I is given by circle i’s center x0i which represents the first
main decision variable. To form the convex hull ∂S by means of the line segments j ∈ J and
arcs of all outer circles (see Sect. 2.3.1), we have to set our secondmain decision variables, the
outgoing- and ingoing vertices valj and vlaj , respectively (see Sect. 2.1). To indicate whether

a circle i is an outer circle and establish outgoing vertex valj of line segment j ∈ J we apply

binary decision variable δSi j , which is equal to one if line segment j is an outgoing tangential

for source circle i , and zero otherwise. Likewise, we introduce binary variable δDi j , which
is equal to one if line segment j is an ingoing tangential for destination circle i , and zero
otherwise. Finally, we use binary variable δi j , which is equal to one if circle i is either a
source or a destination circle of line segment j , and zero otherwise.

The length of the perimeter is calculated by the length of the line segments and arcs that
form ∂S (see (2.2)). The length of an arc is dependent on the sector angle αi j of arc (i j) on
circle i . Sector angle αi j of circle i is given by vectors vlaj−1 − x0i and valj − x0i for j ∈ J .
Since inner circles do not contribute an arc to ∂S, and are not source of any line segment j ,
i.e., δSi j = 0, sector angle αi j satisfies the two equations

R2
i cosαi j =

(
vlaj−1 − x0i

) (
valj − x0i

)
, ∀{i, j} ∧ δSi j = 1

αi j = 0 , ∀{i, j} ∧ δSi j = 0 .

However, at the end of this section we find an easier way to compute sin αi j . Note that we
use ∀{i, j} as an abbreviation for ∀{i ∈ I, j ∈ J }.
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Each active line segment activates a source and a destination circle, i.e., two circles
contributing an arc to ∂S: ∑

i∈I
δi j = 2δAj , ∀ j , (2.4)

where binary variable δAj indicates whether vertices valj and v
la
j are active, i.e., line segment j

is used. Note that this works pair-wise as each line segment j has an outgoing and a ingoing
arc. Line segment j + 1 can only be activated if line segment j has been activated, i.e.,

δAj+1 ≤ δAj , ∀{ j | j ≤ N J − 1} , (2.5)

whichwe do to break symmetry degeneration.Activation takes place if any circle i contributes
an arc to ∂S, i.e.,

δAj ≥ δi j , ∀{i, j} . (2.6)

Note that equality (2.4) implies inequality (2.6). Therefore, (2.6) is not strictly necessary; we
mention (2.6) here only for better understanding of the model.

Each line segment has a source circle arc and a destination circle arc (seen anti-clockwise).
The binary variables δSi j and δDi j trace whether line segment j is connected to circle i as source
or destination, i.e., ∑

i∈I
δSi j = δAj , ∀ j , (2.7)

and ∑
i∈I

δDi j = δAj , ∀ j . (2.8)

As motivated in “Appendix B.3.2”, we enforce that each circle has at most N ls
i incoming or

outgoing line segment, i.e., ∑
j∈J

δSi j ≤ N ls
i , ∀i , (2.9)

and ∑
j∈J

δDi j ≤ N ls
i , ∀i . (2.10)

For cases in which N ls
i cannot be specified a priori based on geometric reasoning, we set

N ls
i = 4 as argued in “Appendix B.3.2”.
Each circle i is source or destination of a specific line segment j but not both, i.e.

δSi j + δDi j ≤ δAj , ∀{i, j} . (2.11)

Now we need to ensure that all circles are contained in S. Our idea is: Place circle i above
or below hyperplane H j induced by the segment j established by the vertices valj and vlaj .

In Hessian normal form plane H j is defined by the set of all vectors x ∈ R
2 obeying the

scalar equation nHj x = dHj , where the normal vector nHj and distance dHj to the origin of the

coordinate system become additional variables as they are functions of valj and v
la
j . In our 2D

case, H j is just the straight line connecting the vertices valj and vlaj . Therefore, we have the
two equations

nHj v
al
j = nHj v

la
j = dHj , ∀ j .

This implies that the normal vector nHj obeys

nHj ·
(
valj − vlaj

)
= 0 , ∀ j
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which confirms our intuitive understanding that nHj is orthogonal to the connecting line.

Furthermore, we require that nHj is normalized∥∥∥nHj ∥∥∥2 = 1 , ∀ j . (2.12)

In the special case of our 2D geometry, we can proceed somewhat easier: Each line segment
touches two circles in the vertices valj and vlaj in such a way that the normal vector points to
the centers of those circles. The (minimal) distances of the line segments to the centers are
the radii Ri of those circles. Therefore, for the circle from which the line segment origins,
we obtain a normal vector pointing from valj to x0i

nHj = −
∑
i∈I

x0i − valj
Ri

δSi j , ∀ j , (2.13)

and for the circle to which it leads

nHj = −
∑
i∈I

x0i − vlaj
Ri

δDi j , ∀ j .

In addition we have
dHj = nHj v

al
j = nHj v

la
j , ∀ j . (2.14)

As derived in [13] we obtain the half-space separation inequalities (circle i is located on that
side or half-space of H j into which the normal vector nHj points)

dHj ≥ nHj x
0
i + Riδ

A
j , ∀{i, j} , (2.15)

if
∥∥∥nHj ∥∥∥2 = 1 as in (2.12).

What remains to do is to model that the first m vertices out of the maximal set of N J

vertices become active and are really used to establish the convex hull, and that ∂S is closed,
i.e., line segment j connects back to circle i1. For two or three circles, we noticed that the
model above can produce a “fake” solution in which the two line segments become identical
with different directions, i.e., one of the two directed line segment goes from valj to v

la
j , while

the other one goes from vlaj to valj . To avoid this undesirable situation we require

∥∥∥vlaj − valj++1

∥∥∥2
2

≥ ε
(
δAj + δAj++1 − 1

)
, ∀{ j ∈ J } (2.16)

with ε ≈ 0.125. Note that j + +1 is to be understood as a circular lead operator, i.e.,

j →
{
l j + 1,
1,

j < N J

j = N J ,∀{ j ∈ J }

For two circles, and other situations in which we know the numberm of active line segments,
(2.16) works fine, as m = N J holds. Unfortunately, we need to exclude fake solutions also
for cases in which we do not know the number of active line segments a priori, i.e.,m ≤ N J.
To cover these more general cases, we introduce binary variables δLj indicating whether line

segment j is the last active one. Binary variable δLj follows from

δLj = δAj − δAj+1 , ∀{ j ∈ J } . (2.17)
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Furthermore, we introduce vertices vanj on circular arcs which are the source of line segment
j + 1 defined as

vanj = valj+1 + val1 δLj , ∀{ j ∈ J } . (2.18)

As for non-active line segments the vertex variables are zero, δLj = 1 implies valj+1 = 0, i.e.,

( 2.18) selects either valj+1 or v
al
1 as the source of line segment j + 1. Finally, we require

∥∥∥vlaj − vanj δAj

∥∥∥2
2

≥ εδAj , ∀{ j ∈ J } (2.19)

to avoid an outer circle with zero length arc.
To close ∂S we need – at least in some instances – additional half space constraints

established by the two touching points vlaj and vanj of an active circle i . Note there might be

several pairs
(
vlaj , vanj

)
on a circle. BymH

i j we denote the orthogonal vector to the circle line

segment connecting vlaj and vanj constructed as

mH
i j =

(
−van2 j + vla2 j , v

an
1 j − vla1 j

)T
, ∀{i, j} ∧ δDi j = 1

mH
i j = 0 , ∀{i, j} ∧ δDi j = 0 ,

or equivalently

mH
1i j =

(
−van2 j + vla2 j

)
δDi j , ∀{i, j} (2.20)

and
mH

2i j =
(
van1 j − vla1 j

)
δDi j , ∀{i, j} . (2.21)

As the scalar product of
(
vanj − vlaj

)
andmH

i j works out to be zero,

(
vanj − vlaj

)
mH

i j =
(
van1 j − vla1 j , v

an
2 j − vla2 j

)(−van2 j + vla2 j
van1 j − vla1 j

)
= 0 , ∀{i, j} ,

Hyperplane Hi j – a straight line in our 2D problem – is given by

Hi j := {x ∈ R
2|mH

i jx = mD
i j } , ∀{i, j}

with

mD
i j = 1∥∥∥mH

i j

∥∥∥
2

mH
i jv

la
j δDi j , ∀{i, j} ,

or

mD
i j = 1∥∥∥mH

i j

∥∥∥
2

mH
i jv

an
j δDi j , ∀{i, j} .

The half-space separation inequalities (circle i is located on that side of Hi j into which
normal vectormH

i j points)

mD
is , j ≥ 1∥∥∥mH

is , j

∥∥∥
2

mH
is , jx

0
i + Ri , ∀{i, is} (2.22)

enforce that all circles i are on that half-space side of circle segment is directed towards the
center of S.
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Knowing
∥∥∥mH

is , j

∥∥∥
2
enables us to derive αi j by exploiting

sin
αi j

2
=
∥∥∥mH

i j

∥∥∥
2

2Ri
, ∀{i, j} .

To get αi j , we have to specify in advance whether we are expecting a major sector with αi j ≥
180◦ (Si j = 1) or a minor sector with αi j < 180◦ (Si j = 0). In the case of two circles,
we have S11 = 1 and S2 j = 0, if we assume with out loss of generality that R1 ≥ R2 and
arbritrarily assign line segment j = 1 to circle 1 as the the outgoing line segment. In cases
with one large circle and many small ones, we may also have S11 = 1 and Si j = 0 for all
other circles i . In most cases, we have Si j = 0 for all circles i . Using this selector flag, we
obtain the sector angle αi j in radian

αi j = 2π Si j + 2(1 − 2Si j ) arcsin

⎛
⎜⎝
∥∥∥mH

i j

∥∥∥
2

2Ri

⎞
⎟⎠ , ∀{i, j} .

2.4 Deriving theMINLPmodel

Based on the model constraints for the convex hull in Sect. 2.3, we introduce the final
constraints for arranging circles in the plane. In Sect. 2.5 we start with the modeling of
the circle packing problem irrespectively of the convex hull. An alternative formulation is
presented in Sect. 2.6. In both formulations, the objective function minimizes the length of
the perimeter of ∂S hosting the circles.

2.5 Packing circles

The non-overlap constraints for circles i1 and i2 with arbitrary radii Ri1 and Ri2 read∥∥x0i1 − x0i2
∥∥2
2

≥ (Ri1 + Ri2

)2
, ∀{i1, i2|i1 < i2} , (2.23)

with (decision variable) x0id modeling the center of circle i in dimension d . Constraints (2.23)
are non-convex constraints (the left hand side constitutes a convex function). Note that for n
circles we have n(n − 1)/2 inequalities of type (2.23).

Fitting the circles inside the enclosing rectangles requires fit-the-rectangle inequalities
would

x0id ≥ Ri , ∀{i, d} (2.24)

and
x0id + Ri ≤ Ed , ∀{i, d} , (2.25)

where Ed specifies the length (d = 1) and width (d = 2) of the rectangle. Inequality (2.24)
assumes that the rectangular container has its lower-left corner at the origin.

2.6 Alternative formulation

Assume a fictitious point xc inside the convex hull, for instance, the radius-weighted center

xc :=
∑
i

Rix0i
/∑

i

Ri . (2.26)
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Let set JL have the line segments and set JC the circle segments. Each line segment is
followed by a circle segment – we assume that counting is anti-clockwise. To each segment
we assign a normal vector nHj establishing the half-place H j

nHj x = dHj , ∀{ j ∈ J } .

The normal vectors are assumed to point outside the convex hull. The normal vectors nHj
associated with the line segments are normalized.∥∥∥nHj ∥∥∥2 = 1 , ∀{ j ∈ JL} (2.27)

as they are constructed according to (2.13).
The angle between line segments j and j + 1, or the vectors nHj and nHj+1, is in the range

[π
2 , π]. Let xhj , j ∈ J , denote the half point of segment j . The angle between vectors xhj −xc

and nHj is in the range [π
2 , π ]. Vertex vlaj of the last active circle j segments equals val1 , i.e.,

val1 =
∑
j

vlaj δLj , ∀{ j ∈ J } .

It might also help to exploit that each circle center is located in the triangle established by the
three vertices, xc, the averaged center of all circles, vlaj , the vertex arriving at some circle, and

vanj = valj+1, the vertex leaving that circle. Therefore, we could represent each circle center
by the convex combination

xi = λci x
c +
∑
j

[
λlai jv

la
j + λani j v

an
j

]
+
∑
j

[
λali jv

al
j + λlai jv

la
j

]
, ∀{i ∈ I} . (2.28)

with λci j , λ
la
i j , λ

an
i j ≥ 0 and the equality

λci + λlai j + λani j = δt1i j + δt2i j , ∀{i, j} .

Note that for at most one j we have λci + λlai j + λani j = 1; this is controlled by the binary

variables δt1i j and δt2i j subject to

δt1i j + δt2i j ≤ 1 , ∀{i, j}
λlai j + λani j ≤ δt1i j , ∀{i, j}
λali j + λlai j ≤ δt2i j , ∀{i, j}

and ∑
j

[
λlai j + λani j

]
+
∑
j

[
λali j + λlai j

]
= 1 − λci , ∀i .

The case xi = xc is covered by λci = 1 and all other λ having a value zero. Therefore, only one
summand in (2.28) takes a non-negative value. Our hope was that this convex representation
would help us to have all circles inside the convex hull or to find an easier way to construct the
half-space condition of the circle segments. However, the implementation of this formulation
and the results did not encourage us to follow this path further on.
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2.7 Comments on the structure of the problem

The MINLP problem separates into a combinatorial, i.e., discrete part related to tours, and
an NLP part if a tour has been specified and fixed. Note that a given tour also specifies the
number of line segments. If no tour is specified the problem is structurally very difficult as
the number of active line segments is free. Even if we would know the number m of line
segments, there exist m! permutations of how to sequence them, i.e., tours. In addition to
these challenges, we have to be concerned with symmetry as discussed below. A study of
the convex hull for two circles is given in [15]. For a general analysis of circles in a plane
see [20].

2.8 Symmetry breaking constraints

Inherent to the problem is translational and rotational symmetry. If we translate and rotate
the convex hull S, the length of ∂S does not change. Therefore, it would help, if we could fix,
for instance, the center of the largest circle with radius R, and one line segment. Fixing the
center eliminates the translational symmetry while fixing a whole line segment eliminates
the rotational symmetry. In this sense, the symmetry of this optimization problem can be
easier broken than in the case of circle packing when the area of the enclosing area is to
be minimized; see the discussion in [11]. However, some care is necessary to fix a center
and a line segment due to the rectangle fitting constraint. The cases DC03 and DC04 in the
numerical experiment section allow us to fix the center coordinates and the origin vertex of
the first line segment

x1 = R1(1, 1) , val1 = R1(1, 2) ,

where R1 is the radius of the largest circle. In this case, the largest circle is placed in the
lower left corner. The first segment leaves this circle at val1 upwards. By doing so, we fix the
orientation of the convex hull. This step is only valid if the other circles are so small that they
fit above the largest circle and do not exceed the width W of the rectangle.

For target rectangles of width W and instances with one largest circle, the fixations

x1 = R1(1,W − 1) , val1 = R1(1,W )

work fine. Note that in this case the largest circle is fixed to the lower right corner of the
rectangle and the first line segment is on the right side of the rectangle leaving the circle.

However, for congruent circle instances which barely fit into the target rectangle, this
fixation could lose some configurations, possibly the optimal ones. One should keep in mind
that this fixation fixes the orientation of the convex hull while the rectangle can reduce the
possible orientations – it is always a good idea to inspect the geometry of the solution. We
have exploited this fixation mainly to investigate whether we can prove global optimality
faster.

2.9 Brief summary of the complete minperimmodel

Here we summarize the completeMinPerim model without length explanations to allow the
reader to quickly grasp all the constraints. The presentation of the constraints in this section
is also closer to the implementation.

123



736 Journal of Global Optimization (2019) 73:723–759

2.9.1 Packing non-overlapping circles into the rectangle

The non-overlap constraints for circles i1 and i2 with arbitrary radii Ri1 and Ri2 read∥∥x0i1 − x0i2
∥∥2
2

≥ (Ri1 + Ri2

)2
, ∀{i1i2|i1 < i2} , (2.29)

with (decision variable) x0id modeling the center of circle i in dimension d .
Fitting the circles inside the enclosing rectangles is ensured by

x0id ≥ Ri , ∀{i, d} (2.30)

and
x0id + Ri ≤ Ed , ∀{i, d} , (2.31)

where Ed specifies the length (d = 1) and width (d = 2) of the rectangle.

2.9.2 Boundary of the convex hull: line segments

The objective function to be minimized is the length � of the perimeter of the convex hull

� =
∑
j∈J

√∑
d∈D

[
vald j − vlad j

]2 +
∑
i∈I

∑
j∈J

Riαi j . (2.32)

Each line segment has a source circle arc and a destination circle arc (seen anti-clockwise).
The binary variables δSi j and δDi j trace whether line segment j is connected to circle i as source
or destination, i.e., ∑

i∈I
δSi j = δAj , ∀ j , (2.33)

and ∑
i∈I

δDi j = δAj , ∀ j . (2.34)

Each circle i is source or destination of a specific line segment j but not both, i.e.

δSi j + δDi j ≤ δAj , ∀{i, j} . (2.35)

Note that in connection with (2.35), (2.33) and ( 2.34), assign an active line segment j to two
circles, a source circle and a destination circle.

We enforce that each circle has at most N ls
i incoming or outgoing line segment, i.e.,∑

j∈J
δSi j ≤ N ls

i , ∀i , (2.36)

and ∑
j∈J

δDi j ≤ N ls
i , ∀i . (2.37)

Integer variable μ counts the number of active line segments

μ =
∑
j∈J

δAj . (2.38)

Each active line segment activates two circles contributing an arc to ∂S:∑
i∈I

δi j = 2δAj , ∀ j . (2.39)
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Line segment j + 1 can only be activated if line segment j has been activated, i.e.,

δAj+1 ≤ δAj , ∀{ j | j ≤ N J − 1} , (2.40)

which breaks symmetry degeneration. Activation takes place, if any circle i contributes an
arc to ∂S, i.e.,

δAj ≥ δi j , ∀{i, j} . (2.41)

To avoid zero length arcs we require∥∥∥vlaj − valj++1

∥∥∥2
2

≥ ε
(
δAj + δAj++1 − 1

)
, ∀ j (2.42)

with ε ≈ 0.125. Note that j + +1 is to be understood as a circular lead operator, i.e.,

j →
{
j + 1,
1,

j < N J

j = N J , ∀ j .

Binary variables δLj indicating whether line segment j is the last active one follows from

δLj = δAj − δAj+1 , ∀ j . (2.43)

Furthermore, we introduce vertices vanj on circular arcs which are the origin of line segment
j + 1 defined as

vanj = valj+1 + val1 δLj , ∀ j . (2.44)

Note that δLj = 1 implies valj+1 = 0, i.e., (2.18) selects either valj+1 or v
al
1 as the origin of line

segment j + 1. Finally, we require∥∥∥∥∥vlaj −
∑
i

vanj δDi j

∥∥∥∥∥
2

2

≥ εδAj , ∀ j . (2.45)

The normal vector nHj on line segment j follows from

nHd j = −
∑
i∈I

x0id − vald j

Ri
δSi j , ∀{d, j} . (2.46)

It is normalized to unity if the line segment j is activated∑
d∈D

(
nHd j

)2 = δAj , ∀ j . (2.47)

The outgoing and ingoing vertices valj and vlaj of line segment j are on hyperplane H j , i.e.,
on the line connecting both vertices

dHj = nHj v
al
j , ∀ j , (2.48)

dHj = nHj v
la
j , ∀ j . (2.49)

The vertices are set to zero, if line segment j ist not active

vald j ≤ Edδ
A
j , ∀{d, j} , (2.50)

vlad j ≤ Edδ
A
j , ∀{d, j} . (2.51)

Note that the size Ed of the rectangle in direction d provides the smallest valid upper bound.
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Half-space separation inequalities (circle i is located on that side or half-space ofH j into
which the normal vector nHj points)

dHj ≥ nHj x
0
i + Riδ

A
j , ∀{i, j} . (2.52)

2.9.3 Constraints for computing the circle segments

By mH
i j we denote the orthogonal vector onto the circle line segment of circle i connecting

vlaj and vanj constructed as

mH
1i j =

(
−van2 j + vla2 j

)
δDi j , ∀{i, j} (2.53)

mH
2i j =

(
van1 j − vla1 j

)
δDi j , ∀{i, j} . (2.54)

Its norm
∥∥∥mH

i j

∥∥∥
2
follows from the quadratic equality

∥∥∥mH
i j

∥∥∥2
2

=
(
mH

1i j

)2 +
(
mH

2i j

)2
, ∀{i, j} . (2.55)

The right-hand side value of the Hessian normal formmH
i jx = mD

i j is computed as

∥∥∥mH
i j

∥∥∥
2
mD

i j =
∑
d

mH
di jv

la
d jδ

D
i j , ∀{i, j} . (2.56)

The half-space separation inequalities (circle i is located on that side or half-space of Hi j

into which normal vectormH
i j points)

mD
is , j ≥ 1∥∥∥mH

is , j

∥∥∥
2

mH
is jx

0
i + Ri , ∀{i, is, j} (2.57)

enforce that all circles i are on that half-space side of circle segment (is, j) directed approx-
imately towards the center of S.

2.9.4 Constraints for computing the lengths of the circular arcs

Computing the lengths of the circular arcs requires all constraints listed in Sect. 2.9.3 and in

addition the following equalities. Knowing
∥∥∥mH

is , j

∥∥∥
2
enables us to derive αi j by exploiting

sin
αi j

2
=
∥∥∥mH

i j

∥∥∥
2

2Ri
, ∀{i, j} (2.58)

and

αi j = 2π Si j + 2(1 − 2Si j ) arcsin

⎛
⎜⎝
∥∥∥mH

i j

∥∥∥
2

2Ri

⎞
⎟⎠ , ∀{i, j} . (2.59)
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2.9.5 Cut: valid inequalities

To improve the numerical performance, we considered the following valid inequalities. If
line segment j enters circular arc i , then line segment j + 1 will leave circle i , i.e.,

δSi, j+1 + δSi1 ≥ δDi j , ∀{i, j | j < N J} , (2.60)

δSi1 ≥ δDi j , ∀{i, j | j = N J} . (2.61)

Unfortunately, in our numerical experiments they did not turn out to be useful.

3 Analytic solutions

Analytical solutions are computed for the unrestricted case only, i.e. fit-the-rectangle inequal-
ities (2.24) and (2.25) are relaxed. As in this case, each circle contributes at most one arc
to the boundary of the convex hull, for simplicity of reading, in this section we neglect the
index of the angles referring to line segments.

3.1 Two circles

As displayed in Fig. 4, active line segments touch the circles in points which form a right
angle between the line segment and the line towards the center of the circle. Therefore, the
line segment connecting two touching circles can be described by a right-angled trapezium
(trapezoid) which yields by Pythagoras’ theorem

�tc =
√

(R1 + R2)2 − (R1 − R2)2 = 2
√
R1R2 . (3.1)

Thus both line segments contribute a length of

�L2 = 2�tc = 4
√
R1R2 (3.2)

to ∂S. For the case R1 ≥ R2 (see Fig. 4), the center coordinates of both circles are

x1 = R1(1, 1) ,

x2 = x1 + (R1 + R2, 0) = (2R1 + R2, R1) ,

while the angles, α1 and α2, of the circular sectors are

α1 = 2π − 2 arccos
R1 − R2

R1 + R2
, α2 = 2 arccos

R1 − R2

R1 + R2
(3.3)

or, alternatively,

α1,2 = π ± 2 arccos
2
√
R1R2

R1 + R2
,

and thus, the length �2 of ∂S of two touching circles is given by

�2 = �L2 + �A2 = 4
√
R1R2 + R1α1 + R2α2 . (3.4)

Note that R2 = R1 = R implies α2 = α1 = π , i.e. , the contributed length �A2 of the arcs is
2πR as geometrically expected.

Let us now find the vertex points, vi = (vi1, vi2) , i ∈ {1, 2}, on two circles with center
coordinates xi = (xi1, xi2). Note that we currently do not assume that both circles touch
each other. The line segment connecting circle 1 and circle 2 is part of the outer tangent.
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Fig. 4 Arrangement of two circles for R1 ≥ R2 with connecting line segment �tc

The touching points vi can be expressed as a function of xi and angle α

vi1 = xi1 + Ri cos
(π

2
− α
)

vi2 = xi2 + Ri sin
(π

2
− α
)

with

α = γ − β , γ = arctan

(
x12 − x22
x21 − x11

)
, β = arcsin

(
R1 − R2

d

)
,

where d denotes the distance between the circular centers, i.e.,

d =
√

(x21 − x11)2 + (x22 − x12)2 ; (3.5)

cf. [3] or [14].

3.2 Three circles

For three circles with R1 ≥ R2 ≥ R3 we have to distinguish two cases: A) Circle 3 with
radius R3 is so small that it fits into the gaps between the two larger circles. In that case, the
sum of the lengths of the line segments is again �L2 as in the case of two circles. B) Circle 3
does not fit into a gap: Then the minimal sum of the lengths of the line segments is given by

�L3 = 2
[√

R1R2 +√R2R3 +√R3R1

]
. (3.6)

To derive the center coordinates, let us place circle 1 with the largest radius at position

x1 = (R1,W − R1) ,

where W denotes the width of the target rectangle (see Fig. 5).
The other centers follow from the touching conditions∥∥xi1 − xi2

∥∥
2 = Ri1 + Ri2 , ∀{i1, i2|i1 < i2} . (3.7)

Thus, we know three sides

a = R2 + R3
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Fig. 5 Arrangement of circle 1
with x1 = (R1,W − R1) in the
target box with dimension
E = (L,W ).

b = R3 + R1

c = R1 + R2

in the triangle established by the three circle centers and can derive the angles

α = arccos

(
b2 + c2 − a2

2bc

)
= arccos

(
(R3 + R1)

2 + (R1 + R2)
2 − (R2 + R3)

2

2(R3 + R1)(R1 + R2)

)

= arccos

(
R1R2 + R1R3 − R2R3 + R2

1

(R3 + R1)(R1 + R2)

)

β = arccos

(
a2 + c2 − b2

2ac

)

γ = arccos

(
a2 + b2 − c2

2ab

)
.

To break rotational symmetry of the configuration, we fix line segment j = 1 at (R1,W ) at
circle 1, which leads to the following position for the center of circle 2 at

x2 =
(
x11 +

√
(R1 + R2)

2 − (x22 − x12)2,W − R2

)

=
(
R1 +

√
(R1 + R2)

2 − (W − R1 − (W − R2))
2,W − R2

)

=
(
R1 + 2

√
R1R2,W − R2

)
.

We can try to derive x3 from the conditions

‖x3 − x2‖22 = (x31 − x21)
2 + (x32 − x22)

2 = (R2 + R3)
2

‖x3 − x1‖22 = (x31 − x11)
2 + (x32 − x12)

2 = (R1 + R3)
2

leading to

x221 − 2x22x32 − 2x21x31 + x222 + x231 + x232 = (R2 + R3)
2 (3.8)

x211 − 2x12x32 − 2x11x31 + x212 + x231 + x232 = (R1 + R3)
2 . (3.9)
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Unfortunately, taking the difference of (3.8) and (3.9) leads to only one linear equation for
the two unknown variables x31 and x32

2(x11 − x21)x31 +2(x12 − x22)x32 − x211 − x212 + x221 + x222 = 2R2R3 −2R1R3 + R2
2 − R2

1 .

Therefore, we take a different route exploiting various trigonometric relations. Identify the
vertices A, B, and C, of the triangle with the center of the circles 1, 2 and 3. The coordinates
of x1 and x2 are known from above. With respect to a coordinate system with origin x1 and
x2 on the positive x-axis, C, i.e., the center of the coordinates of circle 3, has coordinates

x′
3 = (R1 + R3)

(
cosα

sin α

)
.

With

cosϕ3 := (1, 0)(x2 − x1)
‖x2 − x1‖2 = x22 − x12

R1 + R2

we, finally, get the coordinates of the center of circle 3

x3 = x1 +
(

cosϕ3 sin ϕ3

− sin ϕ3 cosϕ3

)
x′
3 = x1 +

(
cosϕ3

√
1 − cos2 ϕ3

−√1 − cos2 ϕ3 cosϕ3

)
x′
3 .

Note that we exploit this result also in the next section deriving the analytic solution for four
circles.

To answer the question of the maximal size of R3 which allows circle 3 to fit in the
interior of S, we solve (3.7) for a slightly different placement of the spheres. Without loss of
generality, we place

x01 = (x11, x12)
T = (R1, R1)

T (3.10)

x02 = (x21, 2R1 − R2)
T . (3.11)

This placement implies: If x32 + R3 > 2R1, circle 3 does not fit in the interior of S. In this
configuration, circle 3 just touches the line segment connecting circle 1 and circle 2; the line
segment is parallel to the x1-axis. For all configurations R1 ≥ R2 ≥ R3 and R3 ≤ 2R1, circle
3 fits in the interior of S . As we will see, the limit case x32 = 2R1 − R3 requires

R3 = 1

4
R1 ∨ R3 = R1R2

R1 + 2
√
R1R2 + R2

.

This follows from the three equations to be solved for x21, x31 and x32 = 2R1 − R3:

‖x2 − x1‖22 = (x21 − x11)
2 + (x22 − x12)

2 = (R1 + R2)
2

‖x3 − x2‖22 = (x31 − x21)
2 + (x32 − x22)

2 = (R2 + R3)
2

‖x3 − x1‖22 = (x31 − x11)
2 + (x32 − x12)

2 = (R1 + R3)
2

or

‖x2 − x1‖22 = (x21 − R1)
2 + (2R1 − R2 − R1)

2 = (R1 + R2)
2 (3.12)

‖x3 − x2‖22 = (x31 − x21)
2 + (x32 − 2R1 + R2)

2 = (R2 + R3)
2 (3.13)

‖x3 − x1‖22 = (x31 − R1)
2 + (x32 − R1)

2 = (R1 + R3)
2 . (3.14)

The first equation (3.12) gives us

x21 =
√

(R1 + R2)
2 − (2R1 − R2 − R1)2 = R1 + 2

√
R1R2 .
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We solve the other two equations, (3.13) and (3.14), for x31 and obtain

x31 = x21 −
√

(R2 + R3)
2 − (x32 − 2R1 + R2)2

x31 = x11 +
√

(R1 + R3)
2 − (x32 − R1)2

and finally

x31 = x21 − 2
√
R2R3 = R1 + 2

√
R1R2 − 2

√
R2R3

x31 = x11 + 2
√
R1R3 = R1 + 2

√
R1R3 ,

which leads to the condition √
R1R2 −√R2R3 = √R1R3 ,

and is generally true for R3 = 1
4 R1. In all other cases we obtain

R3 = R1R2

R1 + 2
√
R1R2 + R2

.

If x32 < 2R1 − R3, the three circles can still touch each other but we have to obtain x32 from
the equation

2
√
R1R2 −

√
(R2 + R3)

2 − (x32 − 2R1 + R2)2 =
√

(R1 + R3)
2 − (x32 − R1)2 .

2
√
R1R1 −

√
(R1 + R3)

2 − (x32 − 2R1 + R1)2 =
√

(R1 + R3)
2 − (x32 − R1)2 .

A general solution independent of R2 is

x32 = R1 −
√
2R1R3 + R2

3 .

For R1 > R2, the solution is

x32 = 2R3
1 − 2R1R2R3 + 2R2

1R2 + R2
1R3 + R2

2R3 − 4
√
R1R2

√
R1R2R3 (R1 + R2 + R3)

(R1 + R2)2

Without loss of generality, we can fix the x2-coordinates x12, x22 = 0 for circles 1 and 2. We
further fix x11 = 0, i.e. , circle 1 is placed at (0, 0, 0). This leaves us with three unknown
variables x21, x31, and x22 leading to the somewhat simpler looking solution

x01 = (x11, x12)
T = (R1, R1)

T (3.15)

x02 = (2R1 + R2, R1)
T (3.16)

x03 =
(
R1 + R1R2 + R1R3 − R2R3 + R2

1

R1 + R2
, R1 + 2

√
R1R2R3 (R1 + R2 + R3)

R1 + R2

)T

, (3.17)

but it is not easy to see whether circle 3 is located in the interior of S.

3.3 Four circles

For four circles, the minimal configuration is connected to one of the tour formula

�
(1)
L4 = 2

[√
R1R2 +√R2R3 +√R3R4 +√R4R1

]
, (3.18)
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�
(2)
L4 = 2

[√
R1R2 +√R2R4 +√R4R3 +√R3R1

]
, (3.19)

or
�
(3)
L4 = 2

[√
R1R3 +√R3R2 +√R2R4 +√R4R1

]
. (3.20)

Note that each of them represents a tour. Without loss of generality, we start tours at circle
1. This gives 3! = 6 tours from which we can neglect half, as they just represent the tours in
reversed order, i.e., it is sufficient to consider just these three tours 1-2-3-4-1, 1-2-4-3-1, and
1-3-2-4-1.

If circle 4 is so small that it fits into the interior of S, we obtain �L4 = �L3, and if circles
3 and 4 both fit into the interior of S, we can even have �L4 = �L2.

To derive the center coordinates, let us assume that R1 ≥ R2 ≥ R3 ≥ R4 with the largest
circle placed at

x1 = (R1,W − R1) .

If all circles contribute an arc to ∂S, numerically we find that for our example case DC04
the optimal tour providing minimal � is given by 1-3-2-4, i.e., we travel counter-clockwise
from circle 1, to circle 3, to 2, to 4 and back to 1. If minimal �L is necessary for minimal �,
we could select the minimal tour from one of the formula (3.18) to (3.20). As we have not
proven this, we numerically evaluate all three tours using the MinPerim model to select the
tour with minimal �.

Similar as in the case of three circles, we break rotational symmetry of the configuration
by fixing line segment j = 1 at (R1,W ) at circle 1, which leads to the following position for
the center of circle 3 at

x3 =
(
x11 +

√
(R1 + R3)

2 − (x32 − x12)2,W − R3

)

=
(
R1 + 2

√
R1R3,W − R3

)
.

Following the same procedure as for three circles, we obtain for circle 2 the following center
coordinates

x′
2 = (R1 + R3)

(
cosα1

4
sin α1

4

)

α1
4 = arccos

(
b2 + c2 − a2

2bc

)
= arccos

(
(R2 + R1)

2 + (R1 + R3)
2 − (R3 + R2)

2

2(R2 + R1)(R1 + R3)

)

= arccos

(
R1R2 + R1R3 − R2R3 + R2

1

(R3 + R1)(R1 + R2)

)
.

Exploiting

cosϕ1
4 := (1, 0)(x3 − x1)

‖x3 − x1‖2 = x32 − x12
R1 + R3

we get

x2 = x1 +
(

cosϕ1
4 sin ϕ1

4− sin ϕ1
4 cosϕ1

4

)
x′
2 = x1 +

⎛
⎝ cosϕ1

4

√
1 − cos2 ϕ1

4

−
√
1 − cos2 ϕ1

4 cosϕ1
4

⎞
⎠ x′

2 .
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With known x1 and x2, we apply the procedure of three circles again to the triangle obtained
by the centers of circles 1, 2 and 4.

α2
4 = arccos

(
R1R2 + R1R4 − R2R4 + R2

1

(R4 + R1)(R1 + R2)

)

x′
4 = (R1 + R4)

(
cosα2

4
sin α2

4

)
.

With

cosϕ2
4 := (1, 0)(x2 − x1)

‖x2 − x1‖2
= x22 − x12

R1 + R2

we get

x4 = x1 +
(

cosϕ2
4 sin ϕ2

4− sin ϕ2
4 cosϕ2

4

)
x′
4 = x1 +

⎛
⎝ cosϕ2

4

√
1 − cos2 ϕ2

4

−
√
1 − cos2 ϕ2

4 cosϕ2
4

⎞
⎠ x′

4 .

The formulae for four circles can also be derived, by applying the 3-circle formulae anti-
clockwise to the circle tours 1-2-3, and then 1-3-4. Note that circles 1 and 3 in 1-3-4 are not
computed but just fixed to the results obtained by 1-2-3. This idea can be extrapolated to n
circles if circles 2 . . . n touch circle 1.

3.4 Congruent circles

If all circles have the same radius R, the length � of ∂S is given by

� = �A + �L = 2πR +
∑
i1∗i2

�i1i2 , (3.21)

where �i1i2 = di1i2 , if a line segment originates on circle i1 and destinates on circle i2 (this
is indicated by the notation i1 ∗ i2; thus, the sum is only over all pairs of connected circles
counted anti-clockwise) and where di1i2 denotes the distance between the centers of the
circles. Note that this property �i1i2 = di1i2 also holds when the circles do not touch each
other.

4 Numerical experiments

The monolith formulation (non-convex MINLP) as well as the polylithic approaches are
implemented in GAMS 24.8.3. The computations are executed on a 64 bit machine with an
Intel(R) Core(TM) i7 CPU 3.33 GHz, 16 GB RAM running Windows 7. The time limit is
set to 24 hours. All numerical experiments in this section have been performed with N ls

i = 1
, i.e., we allow for each circle at most one incoming and one outgoing line segment. We use
the two global solvers BARON (with CPLEX for the LP relaxation and MINOS for the NLP
problem) and LINDO using a single core processor. We have performed the followings sets
of algorithmic experiments:

1. Monolith (M): The MINLP problem as it is. For examples containing up to five circles,
we can close the gap � between the upper and lower bound and prove global optimality.
We distinguish between the two settings
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(a) Tour (MT): We fix the binary variables δAj , δSi j , δDi j , and δi j to unity to enforce the
specified tour. This eliminates most of the binary variables; essentially, it reduces the
original MINLP problem to an NLP problem.

(b) No tour (MnT): No variable is fixed or bound a priori.

2. Polylithic 1 (P1): A polylithic approach which uses a homotopy approach. At first, we
solve the circle packing problem minimizing the area or the perimeter of the rectangle
hosting all circles. From these initial arrangement of circles, we derive initial values for
the binary variables δAj , δ

S
i j , δ

D
i j , and δi j and follow up with the MinPerim model.

3. Polylithic 2 (P2): Similar to Polylithic 1, but we apply a local improvement heuristic by
means of a 2-opt swap procedure in which the position of two circles are swapped. If the
swap leads to improvement we keep the swap, else we select other two circles.

4. Complete enumeration: For instances with up to five circles, the complete sets of tours
can be constructed. We solve the remaining NLP problems and pick the best solution.

We perform our computational tests on a set of two different instance types Cx or Dx .
Instances with congruent circles start with the prefix “C” while instances with non congruent
circles start with “D”. Parameter x stands for the number of circles considered in each
instance, e.g., D03 represents an instance with three non congruent circles. If the final gap
for minimizing is smaller than 10−4, the instance is labeled with an ∗.
Congruent circles Table 1 shows the results for congruent circles of radius 0.5. For each
instance, we minimize the lengths of the line segments only which is sufficient to minimize
the perimeter according to Sect. 2.3.1 (see also Appendix B.3.1). For each instance we have
tested all algorithmic settings, e.g., MnT or P1, described above. While in our computational
pretests, we test each of the algorithmic settings described above, column “AS” reports
the algorithmic settings leading to the best solution in terms of the objective function or
obtained lower bound for each instance. The lower bounds obtained from the isoperimetric
inequality (2.1) and the LP relaxation for the MINLP are given in columns “zie” and “zlp

”, respectively. The gap, �, in % between the best solution obtained for total perimeter,
� = �L + �A within the time limit and the best lower bound max

{
zie, zlp

}
is given in column

“�”, i.e., � = (�−max
{
zie,zlp

}
)

�
. The absolute length for the line segments, the arcs and the

total perimeter obtained are shown in columns �L, �A and �, respectively.
The results in Table 1 reveal that for instances containing up to 20 circles the lower bound

obtained by the isoperimetric inequality (2.1) is better than the lower bound obtained from
the LP relaxation for the MINLP. For instances with more than 20 circles, however, the
MINLP’s lower bound becomes better and significantly outperforms the lower bound of the
isoperimetric inequality (2.1) the more circles are considered.We also can see that the setting
P1 leads to the best solution over all instances. Only for instance C06 the algorithmic setting
MnT leads to the best result. The solution for the instance C85 with 85 congruent circles is
shown in Fig. 6.
Non-congruent circles

As the consideration of the arcs in the model is computationally expensive, we compare
the results to a model version with a relaxed objective function in which the sum of lengths
of the line segments �L is minimized only. The model formulation minimizing line segments
only will be denoted as relaxed model formulation.

Table 2 shows the results with the objective function minimizing line segments and arcs,
�L + �A, while Table 3 depicts the results for minimizing �L only. The columns have the
similar meaning as in Table 1; note column � reports the gap in % between the obtained
length of the perimeter, �, and the best lower bound found.
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Table 1 Results for congruent circles in which the line segments are minimized

Instance AS zie zlp � �L �A �

C06* MnT 8.3267 5.0000 6.1632 5.7321 π 8.8736

C11* P1 11.2372 5.5000 10.8562 9.4641 π 12.6057

C13* P1 12.2017 6.5000 5.2192 9.7321 π 12.8736

C17* P1 12.9531 1.0000 11.3208 11.4651 π 14.6067

C19* P1 14.7208 11.5792 11.3509 13.4641 π 16.6057

C20* P1 15.0860 11.9444 11.9919 14.0000 π 17.1416

C30 P1 17.2072 18.5895 13.6208 18.3792 π 21.5208

C40 P1 21.2201 23.8326 11.7246 23.8564 π 26.9980

C50 P1 23.6991 28.4590 9.9652 28.4673 π 31.6089

C75 P1 28.9469 40.9402 7.1596 40.9558 π 44.0974

C85 P1 30.7967 21.0789 37.2226 45.9154 π 49.0570

C90 P1 31.6811 27.4992 38.2160 48.1356 π 51.2772

The table reports the instance (“Instance”), the algorithmic setting (“AS”), the lower bound for the isoperimetric
inequality (“zie”) and the LP relaxation (“zlp”), the gap in % (“�”) to the best lower bound found as well
as the length of the line segments (“�L ”), arcs (“�′′

A) and of the perimeter (“�”). Instances for which, if we

minimize only �L, the gap becomes less than 10−4 are labeled by ∗

Fig. 6 Arrangements of circles for instance C85 with 85 congruent circles with radius 1 (the figure is turned
90◦)

For the non-relaxedmodel formulation algorithmic settingP1 leads inmost of the instances
to the best solution found (see Table 2), which is similar to the observation for congruent
circles. Only for the two instances DC03 to DC04 we reach gaps smaller than 10−4. In
contrast, If we minimize line segments only, we reach this gap for instances with up to
five circles (see Table 3). For the relaxed model formulation, the best algorithmic setting
for instances with up to 8 circles was obtained with MT. For greater instances, algorithmic
setting P1 becomes superior.

Further comparing the results of Table 2 and Table 3, we observe that the length of line
segments as well as the length of the arcs differ for 7 out of 9 instances. For example, in
instance DC10 the line segment length of the solution for the relaxed model is less than
that for the non-relaxed model formulation, while in the non-relaxed solution the total arc
length is less. For instance DC09 and instance DC28 the relaxed model even lead to a slightly
smaller objective value than the non-relaxed one. Overall instances, both objective function
values, for relaxed and non-relaxed, differ by 1% only on average.
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Table 2 Non-congruent circles minimizing line segments and arcs

Instance AS Circles zie zlp � �L �A �

DC03* MT 2 × 0.50 3.7939 2.05954 42.672 3.0939 3.524 6.6179

1 × 0.75

DC04* P1 2 × 0.50 4.1363 3.34206 46.0998 3.2484 3.6206 6.8690

2 × 1.0

DC05 MT 3 × 0.50 6.234 3.05318 9.244 3.2484 3.6206 6.8690

2 × 0.75

DC06 P2 3 × 0.50 2.145 6.20000 11.2536 3.4931 3.4931 6.9862

3 × 0.75

DC07 P1 4 × 0.50 17.3557 11.8520 15.089 12.3116 8.1262 20.4378

2 × 0.75

1 × 1.0

DC08 P2 5 × 0.50 21.4274 16.1916 22.987 16.6570 11.1663 27.8233

2 × 0.75

1 × 1.0

DC09 P1 6 × 0.50 22.3432 19.2275 27.323 19.2284 11.5138 30.7433

2 × 0.75

1 × 1.0

DC10 P1 7 × 0.50 23.3495 7.37564 27.3233 21.0485 11.3874 32.435

2 × 0.75

1 × 1.0

DC28 P1 7 × 0.50 25.832 17.4813 39.336 25.737 16.862 42.5991

7 × 0.75

7 × 1.0

7 × 1.25

The table reports the instance (“Instance”), the algorithmic setting (“AS”), the circles (“Circles”) considered
in the instance where n× R shows the number of circles n with radius R, the lower bound for the isoperimetric
inequality (“zie”) and the LP relaxation (“zlp”), the gap (“�”) to the best lower bound found as well as the
length of the line segments (“�L”), arcs (“�

′′
A) and of the perimeter (“�”). Instances for which the gap become

less than 10−4 are labeled by ∗

4.1 Interesting findings

For congruent circles, we were expecting point-symmetric solutions. In contrast to our
expected results, the minimal length configuration of C06 consists of five line segments
displayed in Fig. 7, and not the symmetric and hexagonal triangle-shaped configuration con-
sisting of three line segments.

C07 has a very symmetric optimal solution with one circle in the center surrounded by
the other six contributing a 60◦ arc to ∂S. The center coordinates, for general radius R, are
given by

xi = R(3, 1 + 2(i − 1) , i = 1, 2, 3

x4 = R(3 − √
3, 1)

x5 = R(3 − √
3, 2)
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Table 3 Non-congruent circles minimizing line segments only

Instance AS Circles zie zlp � �L �A �

DC03* MT 2 × 0.50 3.7464 3.79390 42.67 3.0939 3.524 6.6179

1 × 1.0

DC04* MT 2 × 0.50 7.1363 3.95546 7.136 3.2484 4.4256 7.674

2 × 1.0

DC05* MT 3 × 0.50 6.234 2.99795 9.8077 3.2484 3.6635 6.9119

2 × 0.75

DC06 MT 3 × 0.50 6.6765 4.36643 4.962 3.4931 3.532 7.0251

3 × 0.75

DC07 MT 4 × 0.50 17.3557 12.3104 9.6765 12.3116 8.1262 20.4378

2 × 0.75

1 × 1.0

DC08 MnT 5 × 0.50 21.4274 16.5272 21.4274 16.5442 11.3879 27.9321

2 × 0.75

1 × 1.0

DC09 P1 6 × 0.50 22.3432 28.6682 28.6882 17.4904 11.3153 28.8057

2 × 0.75

1 × 1.0

DC10 P1 7 × 0.50 23.3495 21.3737 28.2681 21.01 11.5415 32.5515

2 × 0.75

1 × 1.0

DC28 P1 7 × 0.50 25.932 26.8321 36.8716 25.572 19.932 42.504

7 × 0.75

7 × 1.0

7 × 1.25

The table reports the instance (“Instance”), the algorithmic setting (“AS”), the circles (“Circles”) considered
in the instance where n× R shows the number of circles n with radius R, the lower bound for the isoperimetric
inequality (“zie”) and the LP relaxation (“zlp”), the gap (“�”) to the best lower bound found (“�”) as well
as the length of the line segments (“�L ”), arcs (“�′′

A) and of the perimeter (“�”). Instances for which the gap

become less than 10−4 are labeled by ∗

Fig. 7 Solution representation of
instance C06
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x6 = R(3 + √
3, 1)

x7 = R(3 + √
3, 2) .

This configuration with six line segments of size 2R follows from the optimal configuration
of C06 with five line segments by adding one circle in the free position of the optimal C06
configuration display in Fig. 7. The optimal length of C07 is 6 + π ≈ 9.1416. Note that
the lower bound for seven identical circles of radius R = 0.5 derived from the isoperimetric
inequality (2.1) and Wegner inequality (page 109 in [4]) is 9.0033, i .e., a small gap of only
1.5%.

The optimal solution for C06 is

xi = R(3, 1 + 2(i − 1) , i = 1, 2

x3 = R(3 − √
3, 1)

x4 = R(3 − √
3, 2)

x5 = R(3 + √
3, 1)

x6 = R(3 + √
3, 2)

with optimal length 5.7321+π ≈ 8.8736 and the lower bound is 8.3267, i.e., a gap of 6.2%.
The gap is larger as ∂S deviates more from a circle when compared to C07.

5 Conclusions

This paper studies the problemof arranging circleswith possibly different radii in a plane such
that the length � of the boundary’s perimeter of the surrounding convex hull is minimized. To
solve the problem, we have developed a non-convex MINLP model and provided interesting
theoretical insights.

While we have shown by a counter example that it is generally not sufficient to minimize
the line segments �L only to obtain a configurationminimizing the total perimeter � = �L+�A,
for instances considering congruent circles with equal radii only, it is sufficient. A still open
question is whether there is also a counter example for the following conjecture: Minimal �
implies that �L is minimal, i.e., minimal �L is necessary for minimal �.

We exploited the isoperimetric inequality (2.1) to get a tighter lower bound for the perime-
ter than the lower bound obtained by the relaxation of the MINLP. As we could show in our
numerical experiments, problem instances with only congruent circles are computational bet-
ter tractable than non-congruent instances, as for congruent instances only the line segments
have to be minimized. For small instances with up to five non-congruent circles, and mini-
mizing only �L the MINLP problems we obtained gaps smaller than 10−4 with the current
state-of-the art global solvers BARON and LINDO available in GAMS. For larger problems
of up to 90 circles, the relative gap between the upper and lower bound provided by the
global solvers remains larger than 7 percent. The computational speed is enhanced if the line
segments are only minimized. Although this leads to a relaxation of the original problem
with a different circle configuration, the difference to the results obtained by minimizing
line segments and arcs is small. The other advantage is that the gap can be closed at least in
smaller problem instances.
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A Notation

We start with the symbols introduced in the derivation of the model; they are not used in the
MINLP model directly.

� the difference between the upper and lower bound from the LP relaxation for theMINLP
provided by the solver.

∂S the perimeter of the convex hull hosting all circles.
Hi j hyperplane induced by the circular line segment of circle i connecting a pair of ingoing

and outgoing vertices vlaj and valj++1 located on that circle. In our 2D problem,Hi j is a
straight line.

H j hyperplane induced by line segment j connecting and tangential to two adjacent circles.
In our 2D problem, H j is a straight line.

m the number of circles touching the convex hull; m ≤ n.
n the number of circles to be placed.

N ls
i for circle i , the maximal number of incoming or outgoing line segments.

nHj the normal vector onto hyperplaneH j induced by line segment j connecting two circles.
S the convex hull hosting all circles.
Si j specifying whether arc on circle i induced by line segment j is a major (Si j = 1) or

minor sector (Si j = 0); Si j ∈ {0, 1}.
valj vertex connecting a source arc to line segment j ; valj = (val1 j , v

al
2 j )

vanj vertex connecting a source arc line segment j + 1; vanj = (van1 j , v
an
2 j ).

vlaj vertex connecting line segment j to a destination arc; vlaj = (vla1 j , v
la
2 j ).

xc radius-weighted center of all circles.

The symbols used in the MINLP model are summarized in the following subsections.

A.1 Indices and sets

d ∈ {1, 2} index for the dimension; d = 1 represents the length, and d = 2 the width of
the rectangle.
i ∈ I := {1, . . . , n} objects (circles) to be packed.
j ∈ J := {1, . . . ,m ≤ N J ≤ n} line segments potentially connecting circles and
tangential to the convex hull. Note that the number m of active line segments is identical
to the number of circular arcs contributed to ∂S.

A.2 Data

Ed length (d = 1) and width (d = 2) of the rectangle.
L length of the rectangle.
Ri radius of circle i to be packed.
Si indicator specifying to use a major (Si = 1) or minor (Si = 0) sector of circle i con-

tributing an arc to the boundary of the convex hull.
W width of the rectangle.
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A.3 Decision variables

dHj distance of hyperplane H j induced by line segment j to the origin of the coordinate
system.

mD
i j distance of hyperplaneHi j induced by circle segment i to the origin of the coordinate

system.
mH

di j a specific orthogonal vector onto the circle line segment of circle i connecting vlaj and
vanj .

nHd j the normal vector onto hyperplane H j induced by line segment j connecting two
circles (direction d).

xRd (continuous) extension of the rectangle in dimension d .

x0id (continuous) coordinates of the center vector of circle i to be packed.
αi j (continuous) sector angle of circle i induced by line segment j .
δi j (binary) indicates whether circle i has incoming or outgoing line segment j .
δAj (binary) indicates whether vertices valj and vlaj are active, i.e., line segment j is used.

δDi j (binary) indicates whether circle i is the destination of line segment j .

δLj (binary) indicates whether line segment j is the last active one used.

δSi j (binary) indicates whether circle i is the origin of line segment j .
� (continuous) length of the convex hull perimeter.
μ (integer) the number of active line segments.

B Detailed derivations

In this section we provide various derivations in detail.

B.1 Segment and angle

For a given circle of radius R and angleα,measured in radians, the length of the corresponding
circular arc is given by

b = Rα .

The length s of a circular segment is related to angle α by

s = 2R sin
α

2
⇐⇒ α = 2 arcsin

s

2R
,

and thus
b = 2R arcsin

s

2R
,

where s =
∥∥∥mH

i j

∥∥∥
2
if circle i contributes a circular arc induced by line segment j to the

boundary of the convex hull. We have exploited this in (2.59).
Unfortunately, the strong global solver BARON available to us, does not support trigono-

metric functions. Therefore, we approximate the arcsin -function. We could approximate
arcsin x by its Taylor series expansion

arcsin x =
∞∑
n=0

(2n)!
4n(n!)2(2n + 1)

x2n+1
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= x + 1

6
x3 + 3

40
x5 + 5

112
x7 + 35

1152
x9 + 63

2816
x11 + O

(
x13
)

,

but as convergence is very slow near x = 1, we take a different approximation. For x ∈ [0, 1]
we use

arcsin x ≈ π

2
−
√

−1

c
ln

(
1 + x − 1

e

)

with

c = 4

π2 [1 − ln(e − 1)] .

This approximation is accurate up to 0.35%, and it is exact in x = 0 and x = 1. For the full
range, x ∈ [−1, 1], we use

arcsin x ≈ sign(x)

[
π

2
−
√

−1

c
ln

(
1 + x − 1

e

)]
.

Note that BARON supports the logarithmic function ln. Although the approximation is
very good, after the computations using BARON, we use the solution as initial point to
LINDOGLOBAL which supports arcsin.

B.2 Useful inequalities

We exploit Theorem 4.3.1 (Wegner inequality, page 109) in [4] to obtain a lower bound of the
area of the convex hull enclosing n unit discs. If Dn is the convex hull of n non-overlapping
unit discs (R = 1) then

A(Dn) ≥ √
12(n − 1) +

(
2 − √

3
) ⌈√

12n − 3 − 3
⌉

+ π . (B.83)

For R = 0.5, divide both sides of (B.83) by 4. If we also use the reverse isoperimetric
inequality

4π A ≤ L2 ,

we get a lower bound L lb on L , the length of the boundary ∂S of the convex hull S. For
instance, for n = 14 and R = 0.5, we get

L lb =
√

π
[√

12(n − 1) +
(
2 − √

3
) ⌈√

12n − 3 − 3
⌉

+ π
]

≈ 12.64 .

The best solution we found for n = 14 is 13.6057, i.e., a gap of 7.6 percent.
On page 99 in [4] we find the somewhat weaker inequality

A(Dn) ≥ √
12n ,

which for R = 0.5 gives a lower bound of L lb ≈12.34. The closer ∂S to a circle, the tighter
these lower bounds become.

B.3 Proofs

B.3.1 The sum of the angles

Consider any set of circles with radii Ri enclosed by its convex hull S. Note that here we do
not require the S is minimal in its area or length of the perimeter of its boundary ∂S , i.e., no
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Fig. 8 Four circles i = 1, i = 2, i = 3 and i = 4 arranged in the plane where each arc has an angle of 90◦
(a). The shift of circle i = 2 to the position of circle i = 1 (b). a Arrangement of four circles in the plane, b
shift the position of circle i = 2 to i = 1, c re-scale circle i = 2 to match the size of i = 1

restrictions on whether the circles are detached or touching each other. The sum of the angles
αi (Note: For simplicity, we consider here only the case of circles contributing at most one
arc to ∂S, which allows us to neglect the index j . The idea of the proof works likewise for
considering several arcs contributed by the same circle.) of the circular sectors contributing
an arc to ∂S equals to 360◦. Proof : If circle i does not contribute an arc to ∂S, we set αi = 0
. Consider circles i = 1 and i = 2 with centers x0i , a corresponding circular sector, C1,
contributing an arc to ∂S, the origin val1 ∈ C1 of the outgoing line segment connecting to its
adjacent circular segment, C2, C2 itself, and the destination point vla1 ∈ C2 of the line segment
as displayed in Fig. 8a. Since val1 and vla1 are touching points on C2 and C1, they are orthogonal
on the connecting line segment and the vectors val1 − x02 and vla1 − x01 are parallel. We now
perform a parallel shift of C2 to C1 along the line segment (see Fig. 8b and scale-down the
larger circle so that the radii become equal.

As the vectors val1 − x02 and v
la
1 − x01 are parallel, C2 matches C1. After a parallel shift of the

center of C2 it matches exactly the center of C1 if the smaller circle is increased so that both
radii are identical. After scaling C2 to match radius R1, the union circular sector C1 ∪ C2 has
an angle of α1 +α2. Note that neither the parallel shifts nor the scaling change the individual
angles. If we apply this procedure now to C1 ∪ C2 and C3, we obtain C1 ∪ C2 ∪ C3 with
α1 + α2 + α3. If we continue to apply this procedure to all circles whose sectors contribute
an arc to ∂S, we obtain a circle with radius R = R1 and thus

∑
i αi = 360. (q.e.d.)

In other words, we reduce ∂S to its scaled arcs with line segments eliminated and thus
finally obtaining a circle.

B.3.2 Limit on the number of incoming and outgoing line segments

The number nlsi of incoming or outgoing line segments is identical to the maximal number
of arcs which circle i can contribute to ∂S. If we have one circle only, ∂S is identical to
the circumference of that single circle, and thus N ls

1 = 0. In Figs. 1, 2 and 3, we observe
maxi {N ls

i } = 1, and in the non-minimal configurations displayed in Figs. 10a and 11 we have
circles with N ls

i = 2 , i.e., maxi {N ls
i } = 2. To derive reasonable value for N ls

i for minimal
configurations, we consider two cases:

1. Unrestricted problem: L = W = ∞, i.e., the fit-the-rectangle inequalities (2.24) and
(2.25) are relaxed.

2. Restricted problem: The fit-the-rectangle inequalities (2.24) and (2.25) can be become
active and need to be considered, especially, if the circles are large when compared to
the size of the rectangle.
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Fig. 9 Configuration with two incoming and outgoing line segments for the large circle i = 2

Unrestricted problem
For three or more circles, there exist arrangements such that a circle contributes two arcs

to the convex hull boundary ∂S, and thus has two incoming and two outgoing line segments.
In Fig. 9, for example, the circle in the middle contributes one arc in the Northern, and one
on its Southern hemisphere to ∂S. But we will show that these arrangements are not minimal
regarding the length of ∂S. The optimal property that each outer circle contributes exactly
one arc to the convex hull boundary ∂S will be denoted as property P in the following.
Property P also is equivalent to the property that each outer circle has exactly one incoming
and one outgoing line segment, i.e., N ls

i = 1 for all circles outer circles i .
In the case of two circles, both circles are outer circles and P is obviously fulfilled. For

three circles the minimum length of ∂S is given by cluster solution, (3.6)

�L3 = 2
[√

R1R2 +√R2R3 +√R3R1

]
with one incoming and outgoing line segment. Now consider a generalized sausage con-
figuration (by this, we mean a configuration with circles lined-up along a straight line, or
deviate only slightly from this virtual straight line) under the assumption that circle i = 2
is the largest circles placed in the middle with circle i = 1 on the left and circle i = 3 on
the right side. Note that we have an outgoing line segment from circle 2 to circle 1, and an
incoming line segment from circle 1 to circle 2, and a similar situation for the pair of circles
2 and 3. The total length �scL3 of all line segments from the exact solutions ( 3.2) is

�scL3 = 4
[√

R1R2 +√R2R3

]
= 2

[√
R1R2 +√R2R3

]
+ 2

[√
R1R2 +√R2R3

]
≥ 2

[√
R1R2 +√R2R3

]
+ 2
√
R3R1 = �L3 .

To provide a motivation for property P for the general case with n > 3 circles, let i∗ be
the circle contributing two arcs to ∂S. Due to the convexity property of ∂S circle i∗ has to
be larger than or to the surrounding circles sharing a line with circle i∗. Note, since we have
four lines leaving circle i∗ the number of circles sharing a line segment with i∗ are at most
four and at least two. W.l.o.g. assume that one circle sharing a line segment with circle i∗ is
placed on circle i∗ ’s left, denoted by i left, and all other circles on its right side. For example,
Fig. 10a shows a configuration in which the largest circle i∗ = 2 contributes two arcs and
circle i left = 1 is placed on its left side. According to the conjecture in Section 5, minimal �
implies minimal �L. Thus, assuming the conjecture is true, the configuration with one circle
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Fig. 10 In a we see a configuration with one circle contributing two arcs. For this configuration, property P
does not hold—and it has a large convex hull. In b we see an improved configuration which has property P
and somewhat smaller length of ∂S. Finally, c has minimal length of ∂S. a Far from minimal configuration,
b improved configuration, c minimal configuration

on the left site and the all other circles on the right side cannot lead to minimal value of �

for the following reason: By moving circle i left from the left site to the right side of circle
i∗, we reduce the number of required line segments by one and the total length �L of all line
segments. The last statement is true due to the following proposition

Proposition 1 Given two circles. The smaller the radii of one of two circles, the smaller the
length of the line segment required to connect both circles with each other.

Proposition 1 is true as the length of the line segment between two circles depends on their
radii (see Section 2.9.2). Thus, circle i left can be connected with any of the other circles on
the right side of circle i∗ with a line segment having a length smaller or equal to the length of
the previous line segment which connected circle i∗ with i left. If we move the smallest circle
i = 1 in Fig. 10a to the right position as shown in Fig. 10b, i = 2 contributes one arc only
to ∂S. The total number of required line segments is reduced by one and the total length �

of ∂S as well as the length of the line segments and arcs become smaller. If we now move
circle 1 to the lower position as shown in Fig. 10c, we obtain the configuration with minimal
value of �.

For the four-circle case with R2 > R3 = R4 > R1 displayed in Fig. 10, we can explicitly
prove that the sum �

(a)
L of line segment lengths of ∂S in configuration (a) is not minimal.

According to (3.1), if we proceed counter-clockwise to consider the line segments of ∂S, we
obtain

�
(a)
L = 2

[√
R1R2 +√R2R4 +√R4R3 +√R3R2 +√R2R1

]
2
[√

R1R2 +√R2R4 +√R3R4 +√R2R3 +√R1R2

]
.

Nowwe compare �
(a)
L to the minimal length �L4 = min

{
�
(1)
L4 , �

(2)
L4 , �

(3)
L4

}
of four circles given

by one of the tours with lengths �
(1)
L4 , �

(2)
L4 and �

(3)
L4 calculated by (3.18), (3.19) and (3.20).

Exploiting R2 > R3 = R4, we obtain

�
(a)
L = �

(1)
L4 + 2

[√
R1

(√
R2 −√R4

)]
> �

(1)
L4 ,

�
(a)
L = �

(2)
L4 + 2

[√
R1

(√
R2 −√R3

)]
> �

(2)
L4 ,

and
�
(a)
L = �

(3)
L4 + 2

[√
R1

(√
R2 −√R3

)
+√R1

(√
R2 −√R4

)]
> �

(3)
L4 ,
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i.e., �(a)
L > �L4.

Restricted case The fit-the-rectangle inequalities (2.24) and (2.25) can force the minimal
length convex hull into generalized sausage configurations. This is illustrated by Fig. 11.
Three circles with radii R1 = R2 = 2 and R3 = 1.5 have to be placed in a rectangle
specified by L = 12 and W = 4. The minimal length �∗ = �L + �A is given by

�L = 2
[
2R2 + 2

√
R2R3

]
= 8 + 4

√
3 ≈ 14. 9282

and

�A = πR1 + R2

[
2 arccos

2
√
R2R3

R2 + R3

]
+ R3

[
π − 2 arccos

2
√
R2R3

R2 + R3

]

= 7

2
π + arccos

2
√
R2R3

R2 + R3
= 7

2
π + arccos

4
√
3

7
≈ 11.1389

leading to an approximate value of �∗ ≈ 26.0671 realized by the center coordinates x01 =
(2, 2), x02 = (6, 2) and x03 = (9.5, 2). In this example, that circle 2 has two incoming and
outgoing line segments.

As expected, when computing a solution with one incoming and one outgoing line seg-
ment, we obtain the configuration as displayed in Fig. 11bwith � ≈ 27.5486 > �∗. Therefore,
for the restricted case, N ls

i = 1 is too tight and we may lose the optimal solution. N ls
i = 2

would be sufficient for this case.
Let us now consider a large circle with radius R and four small circles with radius r which

touch the square (L = W = 2R) on two adjacent sides of the square. From the condition

R +
√
2

2
(R + r) + r = 2R

we derive

r = 2 − √
2

2 + √
2
R =

(
3 − 2

√
2
)
R ≈ 0.17157 · R .

This configuration has no degrees of freedom. All circles just fit into the square if we place
the small circles into the corners of the square just touching the large circle. The large circle
is not even an outer circle as the four line segments connecting the small circles are parts of
the side of the rectangle. Only the small circles contribute arcs with equal angles

αi = π

2
, i ∈ Is = {2, 3, 4, 5}

or 90◦; therefore, we do not mention index j in this context.
If we now slightly decrease the small circles to radius r = 0.15, we obtain the minimal

configuration with eight line segments as displayed in Fig. 12. All circles are outer circles,
but now the large circle contributes four small arcs of angle 5.135◦ to ∂S, and thus has four
outgoing and four ingoing line segments. Due to the symmetry, the small circles contribute
arcs with equal angles

αi = π − 2 arccos
2
√
0.15

1.15
≈ 1. 478 , i ∈ Is = {2, 3, 4, 5}

or 84. 685◦; again we neglect index j in this context. Thus, in this case we have N ls
1 = 4

and N ls
i = 1 for i ∈ Is, as the arcs contributed by the large circle touch all four sides of the

rectangle. Therefore, in the restricted case, it is worthwhile to think about the appropriate
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(a) (b)

Fig. 11 Three circles with radii R1 = R2 = 2 and R3 = 1.5 have to be placed in a rectangle specified by
L = 12 and W = 4. a shows the configuration for the minimal length (� ≈ 26.0671), if two arcs per circle
are allowed. Note that circle 2 contributes two tiny arcs (α2 ≈ 8.2132◦). In b we allow one arc only resulting
in length (� ≈ 27.5486). a N ls

i = 2, ∀i , b N ls
i = 1, ∀i .

Fig. 12 Minimal length
configuration of five outer circles.
The large circle with radius
R = 1 contributes four equal arcs
to ∂S, each with a small angle of
5.135◦. Each small circle with
radius r = 0.15 adds one arc of
84. 685◦. The thin blue lines
indicate show the rectangle, a
square in this case. (Color figure
online)
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values for N ls
i ∈ {0, 1, 2, 3, 4}. If the circles are small compared to the size of the rectangle,

N ls
i = 1 works fine.
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