
Journal of Global Optimization (2019) 73:431–446
https://doi.org/10.1007/s10898-018-0713-3

Mixed integer quadratic optimization formulations for
eliminating multicollinearity based on variance inflation
factor

Ryuta Tamura1,2 · Ken Kobayashi3 · Yuichi Takano4,5 · Ryuhei Miyashiro6 ·
Kazuhide Nakata7 · Tomomi Matsui7

Received: 7 October 2017 / Accepted: 11 October 2018 / Published online: 22 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Multicollinearity exists when some explanatory variables of a multiple linear regression
model are highly correlated. High correlation among explanatory variables reduces the reli-
ability of the analysis. To eliminate multicollinearity from a linear regression model, we
consider how to select a subset of significant variables by means of the variance inflation
factor (VIF), which is the most common indicator used in detecting multicollinearity. In
particular, we adopt the mixed integer optimization (MIO) approach to subset selection. The
MIO approach was proposed in the 1970s, and recently it has received renewed attention due
to advances in algorithms and hardware. However, none of the existing studies have devel-
oped a computationally tractable MIO formulation for eliminating multicollinearity on the
basis of VIF. In this paper, we propose mixed integer quadratic optimization (MIQO) formu-
lations for selecting the best subset of explanatory variables subject to the upper bounds on
the VIFs of selected variables. Our two MIQO formulations are based on the two equivalent
definitions of VIF. Computational results illustrate the effectiveness of our MIQO formula-
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tions by comparison with conventional local search algorithms and MIO-based cutting plane
algorithms.

Keywords Integer programming · Subset selection · Multicollinearity · Variance inflation
factor · Multiple linear regression · Statistics

1 Introduction

Multiple regression analysis is a statistical process for estimating the relationship between
explanatory and response variables. When some of explanatory variables are highly corre-
lated, the reliability of the analysis is decreased because of the low quality of the resultant
estimates. This problem is known as multicollinearity [4,11,12].

There are several approaches to avoiding the deleterious effects of multicollinearity, such
as principal component regression [21,28], partial least squares regression [39,40], ridge
regression [17], and subset selection [16,30]. This paper is focused on subset selection, a
commonly used method for eliminating multicollinearity. Conventionally in this method,
explanatory variables are removed one at a time on the basis of indicators for detecting
multicollinearity, such as condition number of the correlation matrix and variance inflation
factor (VIF) [11]. On the other hand, the potential disadvantage of this iterative procedure is
that the best (e.g., in the least-squares sense) subset of variables is not necessarily found.More
precisely, the iterative procedure may fail to provide an optimal solution to the following
problem: Find a subset of variables that minimizes the residual sum of squares under the
constraint that multicollinearity measured by the VIF is undetected when using that subset.

Multiple regression analysis has two primary purposes: prediction and description [18].
Subset selection is particularly beneficial for description purposes because it promotes better
understanding of the causal relationships between explanatory and response variables. Var-
ious computational algorithms have been proposed for subset selection [10,14,23,26], and
many of them are categorized as heuristic algorithms. However, these heuristic algorithms
are often unsuitable for description purposes because they can yield low-quality solutions
that lead to incorrect conclusions about causality.

For this reason, we adopt amixed integer optimization (MIO) approach to subset selection.
This approach was first proposed in the 1970s [1], and recently it has received renewed
attention due to advances in algorithms and hardware [9,15,24,37,38]. In contrast to heuristic
algorithms, the MIO approach has the potential to provide the best subset of variables with
respect to several criterion functions, which include Mallows’ Cp [31], adjusted R2 [32],
discrete Dantzig selector [29], and some information criteria [22,32]. Due to its usefulness
and good performance, MIO-based subset selection has extended the range of applications to
areas such as logistic regression [8,34], sequential logit models [35], support vector machines
[27], cluster analysis [5], and classification trees [6].

To avoid multicollinearity in MIO-based subset selection, Bertsimas and King [7] sug-
gested the use of a cutting plane algorithm, which iteratively adds valid inequalities to cut
off sets of collinear variables. These valid inequalities can be strengthened by means of a
local search algorithm [36]; however, the cutting plane algorithm must solve a series of MIO
problems, each of which is NP-hard.

Meanwhile, Tamura et al. [36] devised amixed integer semidefinite optimization (MISDO)
formulation for subset selection to eliminate multicollinearity. In contrast with the cutting
plane algorithm, this approachmerely needs to solve a singleMISDOproblem. In thisMISDO
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formulation, however, only the condition number can be adopted as an indicator for detecting
multicollinearity. Although VIF is better-grounded in statistical theory [4,11], to the best of
our knowledge, none of the existing studies have developed a computationally tractable MIO
formulation for eliminating multicollinearity on the basis of VIF.

The purpose of this paper is to devise mixed integer quadratic optimization (MIQO)
formulations that can be used to select the best subset of explanatory variables subject to the
upper bounds on the VIFs of selected variables. Our two MIQO formulations are based on
two equivalent definitions of VIF. The effectiveness of our MIQO formulations is assessed
through computational experiments using several datasets from the UCI Machine Learning
Repository [25].

The main contributions of the present paper are as follows.

– We obtain computationally tractable MIQO formulations for best subset selection under
the upper-bound constraints on VIF. Although the cutting plane algorithm was the only
way to exactly solve this subset selection problem, we successfully reformulated the
problem as a convexMIQOproblem,which can be handled using standardMIO software.

– Our MIQO formulations are capable of verifying the optimality of the selected subset
of variables. We verify through computational experiments that when the number of
candidate explanatory variables is less than 30, our MIQO problems can be solved to
optimality within a few tens of seconds.

– The proposed MIQO formulations provide solutions of good quality even if the compu-
tation is terminated before verifying optimality. The computational results demonstrate
that even when the number of candidate explanatory variables is more than 30, ourMIQO
formulations with some preprocessing can find, within a time limit of 10,000s, better
subsets of variables than those obtained using local search algorithms.

2 Multiple linear regression and variance inflation factor

Let us suppose thatwe are givenn samples, (yi ; xi1, xi2, . . . , xip) for i = 1, 2, . . . , n.Here, yi
is a response variable and xi j is the j th explanatory variable for each sample i = 1, 2, . . . , n.
The index set of all candidate explanatory variables is denoted by P := {1, 2, . . . , p}.

For simplicity of explanation, in Sects. 2 and 3we assume that all explanatory and response
variables are centered and scaled for unit length; that is,

n∑

i=1

xi j =
n∑

i=1

yi = 0 and
n∑

i=1

(xi j )
2 =

n∑

i=1

(yi )
2 = 1 (1)

for all j ∈ P . The multiple linear regression model is then formulated as follows:

y = Xa + ε,

where y := (y1, y2, . . . , yn)�, a := (a1, a2, . . . , ap)�, ε := (ε1, ε2, . . . , εn)
�, and

X :=
(
x1, x2, . . . , x p

)
=

⎛

⎜⎜⎜⎝

x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

...

xn1 xn2 · · · xnp

⎞

⎟⎟⎟⎠ .

Here, a is a vector of regression coefficients to be estimated, and ε is a vector composed of
a prediction residual for each sample i = 1, 2, . . . , n.
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In what follows, we consider selecting a subset S ⊆ P of explanatory variables to mitigate
the negative influence of multicollinearity on regression estimates. On account of assump-
tion (1), the correlation matrix of selected variables is calculated as

RS := (r j�)( j,�)∈S×S = X�
S X S,

where X S := (x j ) j∈S is the submatrix of X corresponding to the set S.
The variance inflation factor, VIF, for detectingmulticollinearity is defined for each � ∈ S.

Specifically, VIF of the �th explanatory variable is defined as the �th diagonal entry of the
inverse of RS , that is,

VIF(�, S) := [R−1
S ]��. (2)

When some of the selected variables are highly correlated, RS is close to singular, and the
corresponding VIF value is very large. Hence, the following upper-bound constraints should
be imposed on the set S:

VIF(�, S) ≤ α (� ∈ S), (3)

where α is a user-defined parameter larger than one.
On the other hand, VIF has another easily interpretable definition. To describe this, we

consider a linear regression model that explains the relationship between the �th explanatory
variable and other variables in the set S,

x� = X S\{�}a(�,S) + ε(�,S), (4)

where a(�,S) ∈ R
|S|−1 and ε(�,S) ∈ R

n are vectors of regression coefficients and residuals.
To estimate the regression coefficients, a(�,S), the ordinary least squares (OLS) method

minimizes the residual sum of squares (RSS),

‖x� − X S\{�}a(�,S)‖22 = (x� − X S\{�}a(�,S))�(x� − X S\{�}a(�,S)). (5)

This is equivalent to solving the well-known normal equation:

X�
S\{�}X S\{�} â(�,S) = X�

S\{�}x�, (6)

where â(�,S) is called the OLS estimator.
The goodness-of-fit of regression model (4) is measured by the coefficient of determina-

tion. Due to assumption (1), it is calculated based on the OLS estimator as follows:

R2(�, S) := 1 − ‖x� − X S\{�} â(�,S)‖22.
When R2(�, S) is close to one, the �th explanatory variable has a strong linear relationship
with other variables in the set S. It is known that VIF of the �th explanatory variable can also
be defined as follows [4,12]:

VIF(�, S) := 1

1 − R2(�, S)
= 1

‖x� − X S\{�} â(�,S)‖22
. (7)

Here we briefly explain an advantage to using VIF over using the condition number as an
indicator of multicollinearity. To eliminate multicollinearity, we select explanatory variables
and construct a model in which VIF or the condition number does not exceed a specified
upper bound; 10 and 225, respectively, are frequently used as upper bounds for VIF and
the condition number [11]. From a modeling perspective, we can directly control the upper
bound of the degree of multicollinearity by using VIF. For example, when we need to tighten
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the upper bound of R2(�, S) from 0.9 to 0.8, we change the upper bound of VIF(�, S) from
1/(1−0.9) = 10 to 1/(1−0.8) = 5 due to the definition (7). On the other hand, such control
is not obvious when using the condition number.

3 Mixed integer quadratic optimization formulations

In this section, we consider minimizing RSS of a subset regression model under the upper-
bound constraints (3) on VIFs. Let z := (z1, z2, . . . , z p)� be a vector of 0–1 decision
variables for subset selection. Accordingly, S(z) := { j ∈ P | z j = 1} is a selected subset of
explanatory variables. The subset selection problem for eliminating multicollinearity based
on VIF is posed as an MIO problem:

minimize ‖ y − Xa‖22 (8)

subject to z j = 0 ⇒ a j = 0 ( j ∈ P), (9)

z� = 1 ⇒ VIF(�, S(z)) ≤ α (� ∈ P), (10)

a ∈ R
p, z ∈ {0, 1}p. (11)

If z j = 0, then the j th explanatory variable is deleted from the regression model because its
coefficient is set to zero by the logical implications (9). The VIF constraints (3) are imposed
in the form of logical implications (10). It is known that these logical implications can be
represented by using a big-M method or a special ordered set type 1 (SOS 1) constraint [2,3].

However, other than logical implications, constraints (10) still contain difficulty to be
handled in an MIO formulation. In the following two subsections, we derive two tractable
formulations of these VIF constraints.

3.1 Normal-equation-based formulation

We first propose an MIQO formulation based on the definition (7) of VIF. Let us introduce
a vector of decision variables, a(�) := (a(�)

j ) j∈P\{�} ∈ R
p−1 (� ∈ P). To convert the

VIF constraints (10) into a set of linear constraints, we exploit the normal-equation-based
constraints proposed by Tamura et al. [36]:

z j = 1 ⇒ x�
j X P\{�}a(�) = x�

j x� ( j ∈ P \ {�}), (12)

z j = 0 ⇒ a(�)
j = 0 ( j ∈ P \ {�}). (13)

Theorem 1 Suppose that (a(�), z) ∈ R
p−1 × {0, 1}p satisfies constraints (12)–(13). Then,

we have

VIF(�, S(z)) = 1

‖x� − X P\{�}a(�)‖22
(� ∈ S(z)).

Proof Let s be the number of nonzero elements of z. Without loss of generality, we may
assume that S(z) = {1, 2, . . . , s}. According to S(z), we partition a(�) as

a(�) =
(
a(�)
1

a(�)
2

)
, a(�)

1 ∈ R
s−1, a(�)

2 ∈ R
p−s ,
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where a(�)
2 = 0 due to constraints (13). Therefore constraints (12) correspond to the normal

equation (6) for S = S(z); that is,

X�
S(z)\{�}X S(z)\{�}a(�)

1 = X�
S(z)\{�}x�. (14)

Since the OLS estimator provides the minimum value of RSS (5), it follows that

‖x� − X S(z)\{�} â(�,S(z))‖22 = ‖x� − X S(z)\{�}a(�)
1 ‖22 = ‖x� − X P\{�}a(�)‖22.

Hence, the definition (7) of VIF completes the proof. �	
The VIF constraints (10) can be rewritten by Theorem 1 as follows:

z� ≤ α‖x� − X P\{�}a(�)‖22 (� ∈ P).

However, these are reverse convex constraints, which are very difficult to handle in an MIO
formulation. To resolve this reverse-convexity,we exploit the normal equation (14) as follows:

‖x� − X P\{�}a(�)‖22
= x�

� x� − 2x�
� X P\{�}a(�) + (a(�)

1 )�X�
S(z)\{�}X S(z)\{�}a(�)

1

= x�
� x� − 2x�

� X P\{�}a(�) + (a(�)
1 )�X�

S(z)\{�}x�

= x�
� x� − x�

� X P\{�}a(�). (15)

Consequently, the subset selection problem (8)–(11) can be formulated as anMIQO prob-
lem, which we call the normal-equation-based formulation:

minimize ‖ y − Xa‖22 (16)

subject to z j = 0 ⇒ a j = 0 ( j ∈ P), (17)

z� ≤ α(x�
� x� − x�

� X P\{�}a(�)) (� ∈ P), (18)

z j = 1 ⇒ x�
j X P\{�}a(�) = x�

j x� (� ∈ P, j ∈ P \ {�}), (19)

z j = 0 ⇒ a(�)
j = 0 (� ∈ P, j ∈ P \ {�}), (20)

a ∈ R
p, z ∈ {0, 1}p, a(�) ∈ R

p−1 (� ∈ P). (21)

3.2 Inverse-matrix-based formulation

We next propose another MIQO formulation based on the definition (2) of VIF. Let us intro-
duce square matrices of decision variables, Q := (q� j )(�, j)∈P×P and U := (u� j )(�, j)∈P×P .
To compute the inverse of the correlation matrix RS(z), we make use of the following con-
straints:

QRP + U = I p, (22)

z j = 1 ⇒ u� j = 0 (� ∈ P, j ∈ P), (23)

z j = 0 ⇒ q� j = q j� = 0 (� ∈ P, j ∈ P), (24)

where I p is the identity matrix of size p. To promote an understanding of constraints (22), we
consider a case in which all candidate explanatory variables are selected (i.e., z j = 1 ( j ∈
P)). In this case, U becomes the zero matrix because of constraints (23). Consequently,
we have QRP = I p; that is, Q is the inverse of the correlation matrix of all candidate
explanatory variables.
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Theorem 2 Suppose that (Q,U, z) ∈ R
p×p×R

p×p×{0, 1}p satisfies constraints (22)–(24).
Then, we have q�� = [R−1

S(z)]�� for � ∈ S(z), and q�� = 0 for � /∈ S(z).

Proof Similarly to Theorem 1, we may assume without loss of generality that S(z) =
{1, 2, . . . , s}. We partition Q, RP ,U and I p according to S(z) and rewrite constraints (22)
as follows:

(
Q1 Q2
Q3 Q4

)(
R1 R2

R3 R4

)
+

(
U1 U2

U3 U4

)
=

(
I s O
O� I p−s

)
,

where Q1, R1,U1 ∈ R
s×s , Q2, R2,U2 ∈ R

s×(p−s), Q3, R3,U3 ∈ R
(p−s)×s ,

Q4, R4,U4 ∈ R
(p−s)×(p−s), and O is the zero matrix of size s × (p − s). Note here

that Q2, Q3, Q4,U1 andU3 become zero matrices due to constraints (23)–(24). As a result,
the above constraints are reduced to

(
Q1R1

O�
)

=
(

I s
O�

)
, (25)

while other constraints are satisfied through free decision variables in U2 and U4. Since
R1 = RS(z), it follows that Q1 = R−1

S(z), which completes the proof. �	

Using the definition (2), the subset selection problem (8)–(11) is reformulated as anMIQO
problem, which we call the inverse-matrix-based formulation:

minimize ‖ y − Xa‖22 (26)

subject to z j = 0 ⇒ a j = 0 ( j ∈ P), (27)

q�� ≤ α (� ∈ P), (28)

QRP + U = I p, (29)

Q = Q�, (30)

z j = 1 ⇒ u� j = 0 (� ∈ P, j ∈ P), (31)

z j = 0 ⇒ q� j = 0 (� ∈ P, j ∈ P), (32)

a ∈ R
p, Q ∈ R

p×p, U ∈ R
p×p, z ∈ {0, 1}p. (33)

Note that the correlation matrix is symmetric, so is its inverse; thus, constraint (30) is redun-
dant. However, we explicitly add the constraint because it improves computational speed.

3.3 Preprocessing for faster computation

In this subsection, we propose some ideas for speeding up the MIQO computation. In our
preliminary experiments, however, preprocessing (iii) and (iv) did not shorten the computa-
tion time; hence, we will evaluate the efficiency of preprocessing steps (i) and (ii) in the next
section.

Preprocessing (i): Deleting redundant VIF constraints The definition (7) of VIF implies that
VIF(�, S) ≤ VIF(�, P) for all S ⊆ P . Therefore, the VIF constraints for � ∈ P0 can be
deleted, with

P0 := {� ∈ P | VIF(�, P) ≤ α}. (34)
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Table 1 List of instances

Abbreviation n p Original dataset [25]

Servo 167 19 Servo

AutoMPG 392 25 Auto MPG

SolarFlareC 1066 26 Solar flare (C-class flares production)

BreastCancer 194 32 Breast cancer Wisconsin

Automobile 159 65 Automobile

Crime 1993 100 Communities and crime

Preprocessing (ii): Adding cutting-plane-based constraints This step is the following. First,
find subsets Sk ⊆ P (k ∈ K ) of collinear variables such that VIF(�, Sk) > α for some
� ∈ Sk . Next, cut them off by means of the following cutting-plane-based constraints [7,36]:

∑

j∈Sk
z j ≤ |Sk | − 1 (k ∈ K ). (35)

Preprocessing (iii): Tightening constraints Constraints (18) can be tightened by using the
minimum RSS (5) of S = P as follows:

z� + (1 − z�)α‖x� − X P\{�} â(�,P)‖22 ≤ α(x�
� x� − x�

� X P\{�}a(�)) (� ∈ P).

Preprocessing (iv): Linearization of the objective function The objective function can be
linearized by applying the transformation (15) to ‖ y − Xa‖22, which changes the proposed
MIQO formulations into mixed integer linear optimization formulations.

4 Computational results

This section evaluates the computational performance of our MIQO formulations for subset
selection to eliminate multicollinearity as characterized by VIF.

We downloaded six datasets for regression analysis from the UCI Machine Learning
Repository [25]. Table 1 lists the instances used for computational experiments, where n
and p are the numbers of samples and candidate explanatory variables, respectively. In the
SolarFlareC instance, C-class flares production was employed as a response variable.
Categorical variableswere encoded into sets of dummyvariables. Samples containingmissing
values were removed, and then redundant variables (i.e., those with the same value in all
samples) were also removed.

We compare the computational performance of the following subset selection algorithms.

FwS: Forward selection method: Starts with S = ∅ and iteratively adds the j th variable
(i.e., S ← S ∪ { j}) that decreases RSS the most; this operation is repeated while the
VIF constraints (3) are satisfied.

BwE: Backward elimination method: Starts with S = P and iteratively eliminates the j th
variable (i.e., S ← S \ { j}) that increases RSS the most; this operation is repeated
until the VIF constraints (3) are satisfied.

CPA: Cutting plane algorithm [7,36]: Solves theMIQO problem (8)–(9) and (11), and adds
a valid inequality (cf. (35)) to the problem to cut off subsets of collinear variables;
this operation is repeated until the VIF constraints (3) hold.
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Table 2 Results of preprocessing (α = 5)

Instance n p Preprocessing (i) Preprocessing (ii)

|P0| Time (s) |K | Time (s)

Servo 167 19 0 0.06 7 1.80

AutoMPG 392 25 1 0.09 19 9.03

SolarFlareC 1066 26 4 0.14 18 8.37

BreastCancer 194 32 2 0.12 22 7.12

Automobile 159 65 1 0.47 56 79.90

Crime 1993 100 22 3.46 61 1354.53

CPA*: Cutting plane algorithm in which valid inequalities are strengthened by using a back-
ward elimination method [36].

NEF: Normal-equation-based MIQO formulation (16)–(21).
NEF+: Normal-equation-based MIQO formulation (16)–(21) with the preprocessing (i)

and (ii).
IMF: Inverse-matrix-based MIQO formulation (26)–(33).

IMF+: Inverse-matrix-basedMIQOformulation (26)–(33)with the preprocessing (i) and (ii).

These computations were performed on a Windows 7 PC with an Intel Core i7-4770 CPU
(3.40 GHz) and 8 GB memory. The algorithms FwS and BwE were implemented with R
3.1.1 [33]; the algorithms CPA and CPA* were implemented in Python 2.7 with Gurobi
Optimizer 7.5.2 [13], where the logical implications (9) were incorporated in the form of SOS
1 constraint as in Tamura et al. [36]. The MIQO problems (i.e., NEF, NEF+, IMF, and IMF+)
were solved using IBMILOGCPLEX12.6.3.0 [19]with eight threads.Here theindicator
function implemented in CPLEXwas used to impose the logical implications (17), (19), (20),
(27), (31), and (32).

A subset of explanatory variables often has collinearity problems when its VIF value is
greater than 5 or 10 (see [20], p. 101). Thus, we tested two values (α = 5 and 10) of the
upper bound on VIF to evaluate the effect on computational results.

The algorithms NEF+ and IMF+ involved preprocessing steps (i) and (ii), as explained in
Sect. 3.3. Specifically, the VIF constraints for the set (34) were deleted in advance, and the
cutting-plane-based constraints (35) were included. Here, the subsets Sk (k ∈ K ) of collinear
variables were found by applying the algorithm FwS to the regression model (4) for each
� ∈ P .

Results of the preprocessing are summarized in Table 2 (α = 5) and Table 3 (α = 10),
where |P0| and |K | are the numbers of redundant VIF constraints and cutting-plane-based
constraints, respectively. The column labeled “Time (s)” shows the computation time in sec-
onds.We can see that preprocessing (i) required only a few seconds, but the computation time
of preprocessing (ii) increased greatly with the number of candidate explanatory variables.

We evaluate the results of the subset selection algorithms on the basis of the following
evaluation criteria.

– VIF: must be smaller than the specified upper bound.
Note that if VIF isminimized as the objective function, then the optimal solution becomes
a trivial andmeaningless one, that is, a subset consisting of only one explanatory variable.
Therefore, VIF should not be treated as the objective function but should be kept small
by means of the upper-bound constraints.
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Table 3 Results of preprocessing (α = 10)

Instance n p Preprocessing (i) Preprocessing (ii)

|P0| Time (s) |K | Time (s)

Servo 167 19 0 0.05 9 2.49

AutoMPG 392 25 1 0.10 20 9.33

SolarFlareC 1066 26 4 0.16 17 8.65

BreastCancer 194 32 8 0.12 22 15.73

Automobile 159 65 5 0.49 58 126.23

Crime 1993 100 35 3.57 54 2099.16

– Computation time: lower is better. Several days of computation are rarely acceptable for
subset selection because it needs to be performed repeatedly (e.g., for cross-validation)
in many practical situations. In addition, we are faced with a growing number of samples
and explanatory variables because of recent advances in information technology. As a
result, a faster algorithm is required for subset selection.

– R2 value: higher is better. The goodness-of-fit of regression model is quantified by the
coefficient of determination, R2. Accordingly, an algorithm that produces a larger R2

value is desirable.
– Implementation: simpler is better. If two algorithms offer a similar performance, an easily

implementable one is highly preferred.

Tables 4 and 5 show the computational results of the subset selection algorithms for
α = 5 and 10, respectively. The column labeled “R2” shows the value of the coefficient
of determination of a subset regression model; the largest R2 values for each instance are
indicated in bold. The column labeled “VIFmax” shows the value of max{VIF(�, S) | � ∈
S}, and the column labeled “|S|” shows the number of selected explanatory variables. The
computation of each subset selection algorithm was terminated if it did not finish by itself
within 10,000s. In these cases, the best feasible solution obtained within 10,000s was taken
as the result.

First, we can confirm that all solutions satisfy the constraint VIFmax ≤ α unless no feasible
solution was found within 10,000s. Note that if a solution satisfies the VIF constraint, the
value itself of VIFmax does not matter.

Next, we discuss the computation time and R2 values of each algorithm. Note that FwS
and BwE are local search algorithms, and thus they complete the search process quickly
without certificates of optimality of the obtained solutions.Meanwhile, otherMIOapproaches
require a sufficient amount of computation time to verify optimality of the obtained solutions.
Nevertheless, most of the MIQO problems for the Servo, AutoMPG, and SolarFlareC
instances were solved to optimality within a few tens of seconds. In this case, R2 values of
our MIQO formulations were always the largest because the obtained solutions were verified
to be optimal. We can also see that our preprocessing significantly reduced the time used
in solving the MIQO problems. For instance, in Table 4, IMF required a relatively long
computation time for the AutoMPG and SolarFlareC instances, but the computation
of IMF+ finished much earlier for the same instances. In the case of the BreastCancer
instance, the computation was completed about 20 times faster by IMF+ than by IMF for
both α = 5 and 10.

The MIQO computations for the Automobile and Crime instances were terminated
due to the time limit of 10,000s; nevertheless, they successfully found solutions of good
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Table 4 Results of subset selection algorithms (α = 5)

Instance n p Method R2 VIFmax |S| Time (s)

Servo 167 19 FwS 0.75600 3.604 13 0.47

BwE 0.75482 3.194 13 0.41

CPA 0.75600 3.604 13 589.61

CPA* 0.75600 3.604 13 13.99

NEF 0.75600 3.604 13 40.61

NEF+ 0.75600 3.604 13 12.81

IMF 0.75600 3.604 13 29.06

IMF+ 0.75600 3.604 13 6.93

AutoMPG 392 25 FwS 0.86606 3.720 19 0.95

BwE 0.86521 1.751 14 0.81

CPA – – – > 10000.00

CPA* 0.87082 2.373 19 9.42

NEF 0.87082 2.224 19 43.65

NEF+ 0.87082 2.508 19 11.67

IMF 0.87082 1.998 19 > 10000.00

IMF+ 0.87082 2.554 19 12.45

SolarFlareC 1066 26 FwS 0.19713 3.083 19 1.23

BwE 0.17538 2.100 8 1.54

CPA 0.19715 2.874 19 4802.29

CPA* 0.19715 4.348 19 118.13

NEF 0.19715 4.348 19 9.64

NEF+ 0.19715 4.348 19 1.72

IMF 0.19715 4.348 19 2185.79

IMF+ 0.19715 3.505 19 2.34

BreastCancer 194 32 FwS 0.26848 4.984 14 1.02

BwE 0.24493 3.062 7 1.84

CPA – – – > 10000.00

CPA* 0.28192 4.993 14 809.54

NEF 0.28192 4.994 14 > 10000.00

NEF+ 0.28192 4.994 14 2246.02

IMF 0.28192 4.994 14 > 10000.00

IMF+ 0.28192 4.994 14 536.07

Automobile 159 65 FwS 0.93659 4.990 16 2.59

BwE 0.91369 1.596 10 12.95

CPA – – – > 10000.00

CPA* 0.96098 4.889 19 > 10000.00

NEF 0.96110 4.994 33 > 10000.00

NEF+ 0.95745 4.591 31 > 10000.00

IMF 0.90508 4.939 19 > 10000.00

IMF+ 0.96626 4.766 34 > 10000.00

Crime 1993 100 FwS 0.66248 4.996 21 11.44

BwE 0.64681 4.989 6 115.08
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Table 4 continued

Instance n p Method R2 VIFmax |S| Time (s)

CPA – – – > 10000.00

CPA* 0.65872 4.762 13 > 10000.00

NEF 0.66070 4.995 26 > 10000.00

NEF+ 0.66456 4.880 30 > 10000.00

IMF 0 – 0 > 10000.00

IMF+ 0.65161 4.726 20 > 10000.00

Table 5 Results of subset selection algorithms (α = 10)

Instance n p Method R2 VIFmax |S| Time (s)

Servo 167 19 FwS 0.75862 8.677 14 0.42

BwE 0.75862 8.677 13 0.28

CPA 0.75877 8.741 15 3.56

CPA* 0.75877 8.503 15 0.56

NEF 0.75877 8.741 15 36.18

NEF+ 0.75877 8.741 15 30.41

IMF 0.76877 8.741 15 29.67

IMF+ 0.75877 8.741 15 21.54

AutoMPG 392 25 FwS 0.87334 9.549 20 0.92

BwE 0.87149 5.899 16 0.75

CPA 0.87334 8.523 20 875.00

CPA* 0.87334 8.523 20 16.18

NEF 0.87334 8.523 20 13.12

NEF+ 0.87334 8.523 20 1.83

IMF 0.87334 8.523 20 21.09

IMF+ 0.87334 8.523 20 1.72

SolarFlareC 1066 26 FwS 0.19713 3.083 19 1.28

BwE 0.18232 7.661 9 1.50

CPA 0.19715 2.874 19 4830.02

CPA* 0.19715 5.989 19 214.53

NEF 0.19715 4.348 19 9.86

NEF+ 0.19715 4.348 19 1.93

IMF 0.19715 4.348 19 12.93

IMF+ 0.19715 9.102 19 2.00

BreastCancer 194 32 FwS 0.27039 9.981 16 1.24

BwE 0.25424 9.973 8 1.81

CPA – – – >10000.00

CPA* 0.29158 9.765 16 1197.84

NEF 0.29158 9.765 16 >10000.00

NEF+ 0.29158 9.765 16 1523.34

IMF 0.29158 9.765 16 >10000.00

IMF+ 0.29158 9.765 16 499.92
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Table 5 continued

Instance n p Method R2 VIFmax |S| Time (s)

Automobile 159 65 FwS 0.96605 9.996 31 5.25

BwE 0.91367 1.596 10 13.01

CPA – – – >10000.00

CPA* 0.96984 9.912 31 >10000.00

NEF 0.96281 9.411 32 >10000.00

NEF+ 0.96568 8.679 29 >10000.00

IMF 0.96626 9.923 41 >10000.00

IMF+ 0.96970 9.937 43 >10000.00

Crime 1993 100 FwS 0.66906 9.999 24 13.12

BwE 0.64953 5.773 7 115.52

CPA – – – >10000.00

CPA* 0.66946 9.766 21 >10000.00

NEF 0.67444 9.989 40 >10000.00

NEF+ 0.67587 9.934 49 >10000.00

IMF 0 – 0 >10000.00

IMF+ 0.67660 9.988 45 >10000.00

Table 6 Number of times the
best solutions were generated

α FwS BwE CPA CPA* NEF NEF+ IMF IMF+

5 1 0 2 4 4 5 4 5

10 1 0 3 5 4 4 4 5

Total 2 0 5 9 8 9 8 10

quality within 10,000s. On the other hand, IMF failed to deliver a solution of good quality to
the Crime instance; specifically, it found only the feasible solution S = ∅ within 10,000s
for α = 5 and 10. This issue was observed due to numerical instability in IMF, whereas it
did not happen in IMF+.

The algorithm CPA took a long time to solve even small instances (e.g., AutoMPG
and SolarFlareC), and it failed to find a feasible solution to the BreastCancer,
Automobile, and Crime instances within the time limit of 10,000s. The algorithm CPA*
is much faster than CPA, but it seems slower than IMF+, which is the fastest of four MIQO
formulations (NEF, NEF+, IMF, and IMF+).

Table 6 shows the number of times the best solution was generated by each algorithm.
We can see that CPA* was competitive with our MIQO formulations in terms of solution
quality. Here, we also take into account the simplicity of implementation of these algorithms.
The implementation of CPA* is relatively complicated; MIQO problems combined with
the backward elimination method must be solved repeatedly. On the other hand, our MIQO
formulations enable us to pose the subset selection problem as a singleMIQOproblem,which
can be handled using standard MIO software. From the point of view of implementation, our
MIQO formulations have a crucial advantage over the cutting plane algorithm.

We conclude this section by comparing our MIQO formulations with the MISDO formu-
lation devised by Tamura et al. [36] for subset selection with the condition number constraint.

123



444 Journal of Global Optimization (2019) 73:431–446

TheMISDO formulation spent 5563.34 s (κ = 100) and 336.14 s (κ = 225) for theAutoMPG
instance, where κ is the upper bound on the condition number. These results suggest that
our VIF-based MIQO formulations had a clear computational advantage over the condition-
number-based MISDO formulation. In addition, Tamura et al. [36] could not solve many of
the MISDO problems for larger instances because of numerical instability.

5 Conclusions

This paper dealt with the problem of selecting the best subset of explanatory variables under
upper-bound constraints on VIFs of selected variables. For this problem, we presented two
MIQO formulations (a normal-equation-based formulation and an inverse-matrix-based for-
mulation), based on two equivalent definitions of VIF.

The research contribution in this paper is computationally tractable MIQO formulations
for eliminating multicollinearity by using VIF. Previously, no tractable formulation of the
VIF constraint was known, and we have successfully written it as a set of linear constraints.
As a result, we reduced the subset selection to a single MIO problem, which can be handled
using standard MIO software.

Our MIQO formulations must spend a certain amount of time to verify optimality of
the selected subset of variables. Nevertheless, it was demonstrated that when the number of
candidate explanatory variables was less than 30, most of the MIQO problems were solved
to optimality within a few tens of seconds. Our MIQO formulations also have the advantage
of being able to find solutions of good quality in the early stage of the computation. Indeed,
even when the number of candidate explanatory variables was more than 30, our MIQO
formulations with preprocessing provided solutions of better quality within the time limit
than those obtained using local search algorithms. These results reveal that our method is
particularly effective for small-to-medium-sized problems (e.g., p ≤ 100). We believe that
our method has a potential value in reality because the number of candidate variables for
regression analysis is less than one hundred in many cases.

A conventional way of avoiding multicollinearity is to remove explanatory variables one
at a time according to the VIF value of each variable. Our MIQO formulations, however,
have a clear advantage in terms of solution quality over such a heuristic algorithm. A solution
of better quality leads to more reliable results for description purposes; hence, our MIQO
formulations will be helpful in enhancing reliability of the regression analysis.

A future direction of study will be to extend our formulations to other regres-
sion/classification models. Multicollinearity generates a harmful effect on most statistical
models, so our formulations are expected to be useful in various regression/classification
models.
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