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Abstract
0–1 multilinear program (MP) holds a unifying theory to LAD pattern generation. This paper
studies a multi-term relaxation of the objective function of the pattern generation MP for a
tight polyhedral relaxation in terms of a small number of stronger 0–1 linear inequalities.
Toward this goal, we analyze data in a graph to discover useful neighborhood properties
among a set of objective terms around a single constraint term. In brief, they yield a set of
facet-defining inequalities for the 0–1 multilinear polytope associated with the McCormick
inequalities that they replace. The construction and practical utility of the new inequalities are
illustrated on a small example and thoroughly demonstrated through numerical experiments
with 12 public machine learning datasets.

Keywords Logical analysis of data · Pattern · 0–1 multilinear programming · Multi-term
polyhedral relaxation · Facet-defining inequalities · Graph · Star

1 Introduction

Logical Analysis of Data (LAD) is a combinatorial optimization-based supervised learning
methodology that has proven useful across many disciplines (e.g., [1–7,12,18,20–23,27]).
A key and bottleneck step in LAD is pattern generation where a set of features and their
negations are optimally combined together to form knowledge/rule that distinguishes one
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type of data/observations from the other(s). Without loss of generality, we consider the
analysis of two types of + and − data and denote by S• the index set of • type of data
for • ∈ {+,−}. Let S = S+ ∪ S−. We assume S is duplicate and contradiction free (such
that S+ ∩ S− = ∅) and that the data under analysis are described by n Boolean attributes
a j , j ∈ N :={1, . . . , n}. We let an+ j = ¬a j for j ∈ N and let N ′:={n + 1, . . . , 2n} and
N :=N ∪ N ′. Finally, for each data Ai , i ∈ S, we denote by Ai j the j-th attribute value of
the data; such that Ai j = 1− Ai,n+ j for j ∈ N and Ai j = 1− Ai, j−n for j ∈ N ′. Last, since
+ and − patterns are symmetric in definition, we present the material below in the context
of + pattern generation for convenience, without loss of generality.

To build amathematicalmodel for pattern generation, we introduce 0–1 indicator variables
x j for j ∈ N and let

x j =
{
1, if attribute a j is involved in a pattern; and

0, otherwise.

For i ∈ S, we let

Ji :={ j ∈ N | Ai j = 0}.
Since the dataset is duplicate and contradiction free, all Ji ’s are unique. Besides, it is easy to
see that |Ji | = n,∀i ∈ S.

In [31], we showed that the 0–1 MP below holds a unifying theory to LAD pattern
generation:

(PG) : max
{
ϕ+(x) + l(x)

∣∣ ϕ−(x) = 0, x ∈ {0, 1}2n }
where l(x) is a linear function and

ϕ•(x) =
∑
i∈S•

∏
j∈Ji

(1 − x j )

for • ∈ {+,−}.
It is well-known that the constraint of (PG) is equivalent to a set of minimal cover inequal-

ities [17]: ∑
i∈S−

∏
j∈Ji

(1 − x j ) = 0 ⇐⇒
∑
j∈Ji

x j ≥ 1, i ∈ S−

The minimal cover inequalities provide a poor linear programming (LP) relaxation bound,
however. In [32], we studied a convex underestimation of ϕ− whose terms correspond to
the − observations of the dataset. For the purpose, we analyzed the − data in a graph and
discovered useful neighborhood properties among a set of data (forming a hypercube in a
graph) and also a set of sets of data (forming a set of pairwise neighboring hypercubes in
a graph) that allow for a ‘compact’ convexification of ϕ− in terms of a smaller number of
0–1 linear inequalities that dominate those obtained for ϕ− via methods from the literature
[9,17]. [32] also studied the Boolean multilinear polytope that results through the new valid
inequalities and identified cases where the new inequalities are facet-defining.

Consider the 0–1 linearization of ϕ+ now. In note that ϕ+ is in maximization form, one
only needs a (piece-wise) concave overestimating function to solve (PG) by techniques for 0–
1 mixed integer and linear programming (MIP). For this task, McCormick concave envelope
for a 0–1 monomial serves the purpose (e.g., [13,26,28,30]) at the expense of introducing
m+ (where m+ = |S+|) variables

yi =
∏
j∈Ji

(1 − x j ), i ∈ S+ (1)
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and n × m+ inequalities
yi ≤ 1 − x j , j ∈ Ji , i ∈ S+ (2)

to the formulation of a 0–1 linear relaxation of (PG). Alternatively, one may aggregate the
constraints in (2) with respect to j to concavify ϕ+ by m+ valid inequalities (e.g., [29])

nyi +
∑
j∈Ji

x j ≤ n, i ∈ S+,

but the resulting is a weaker relaxation of ϕ+. In addition, this relaxation requires the m+
additional yi ’s to be 0–1 integers. The constraints in (2) can also be aggregated with respect
to i via standard probing techniques and logical implications in integer programming (e.g.,
[14–16]). This yields ∑

i∈I j
yi ≤ |I j |(1 − x j ), j ∈ N ,

where I j :={i ∈ S+ | j ∈ Ji } for j ∈ N . Although a weaker relaxation of ϕ+ than the
standard, McCormick relaxation above, this method reduces the number of constraints by
m+/2 times, thus can be useful in data mining applications (eg, see [32]). Last, a method
based on ‘mapping’ from [8] replaces each yi in

∑
i∈S+ yi by some 1 − x j for j ∈ Ji . As

which j to use is unknown, a naive implementation of this mapping method introduces up
to (m+)n upper bounding functions, leaving that its most efficient form of implementation
may be the standard relaxation.

Extending the line of research in [32], this paper aims to compactly 0–1 linearize ϕ+ in
terms of a smaller number of stronger linear inequalities based on multi-term relaxation of
the terms of ϕ+. Toward this goal, we now analyze + and − data simultaneously on a graph
for useful properties between terms of ϕ+ and those in ϕ−; that is, between a set of+ data and
a set of − data. More specifically, on a graph where individual data are represented as nodes,
we introduce an edge between each pair of+ and− nodes that are 1 Hamming distance apart
in n original attributes. Then, we show that each star in a graph (which, by construction, has
a − data as the internal node) simultaneously relaxes d terms of ϕ+ to generate n + d valid
inequalities for (PG) that dominate n × d McCormick inequalities from the d leaf node(s)
of the star. In addition, we show that a collection of ‘neighboring’ stars generate a much
smaller number of stronger valid inequalities for (PG) based on multi-term relaxation of
the + terms/data in the star set that can substitute for the McCormick inequalities from the
+ nodes of the stars considered for a tighter polyhedral relaxation of (PG). Furthermore,
we show that our inequalities are facet-defining of the 0–1 multilinear polytope associated
with the McCormick inequalities that they replace. Summarizing in different terms, the
main results of this paper provide sufficient conditions and algebraic tools for automatically
lifting and tightening McCormick inequalities to a fullest extent, in terms of both dimension
and tightness. Mathematically and, also, through an illustrative example, we show that the
maximum benefit, in regard to the size as well as the tightness of the relaxation model,
is realized when ‘a maximal set of maximal stars’ are exploited for generating new valid
inequalities.

As for the organization of this paper, Sect. 2 first presents the backgroundmaterial and then
moves on to discovering the aforementionedmain results of this paper. Section 3 illustrates the
construction and benefits of the new polyhedral concavification scheme for ϕ+ with a small
artificial dataset of 10 observations while Sect. 4 demonstrates practical utilities of the main
results through experiments with 12 public datasets from [24], in comparison with cutting
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Fig. 1 Degree 4 star with internal
node a and 4 leaves b, c, d, e

plane methods implemented in CPLEX [19]. Finally, concluding remarks are provided in
Sect. 5.

2 Main results

Similarly as in [32], we engage in polyhedral analysis of feasible region of (PG) via a graph
theoretical analysis of data in this paper for a compact and tighter 0–1 linearization of ϕ+.
The difference is that both + and − data are now analyzed on one graph for the discovery
of useful neighborhood properties between a set of + and a set of − data. To obtain a graph
representation of a given dataset S, we consider each data as a node in a graph and introduce
an edge between a pair of + and − observations if they are 1 Hamming distance apart in n
original attributes. This yields an undirected graph G.

Let us recall the definition of a star in a graph (refer Fig. 1) and follow it with the definition
of the Hamming distance for measuring similarity between two Boolean data.

Definition 1 A star S is a tree with one internal/center node adjacent to all other leaf nodes.
The degree d of a star refers to the the degree of the internal node; thus, the number of
leaves/edges in it.

Definition 2 TheHamming distance H(x, y) between two 0–1 vectors x and y is the number
of positions in which they differ.

The following provides a means for comparing the relative strength of two valid inequal-
ities for a set of linear inequalities.

Definition 3 If πx ≤ π0 and μx ≤ μ0 are two valid inequalities for a polytope in the
nonnegative orthant, πx ≤ π0 dominates μx ≤ μ0 if there exists u > 0 such that uμ ≤ π

and π0 ≤ uμ0, and (π, π0) �= (uμ, uμ0).

Before proceeding, we summarize an important complementary relation between a pair
of Boolean attributes/variables that is exploited in obtaining stronger valid inequalities for
(PG).

Proposition 1 (Proposition 1 in [32]) For j ∈ N , let j c = n + j if j ∈ N and jc = j − n
if j ∈ N ′. Then, the complementarity cut

x j + x jc ≤ 1, (3)

is valid for (PG).
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Let:

IPG :=
{
x ∈ {0, 1}2n, y ∈ [0, 1]m+ ∣∣ ϕ−(x) = 0, (1), (3)

}
The following subsections deal with a tighter polyhedral relaxation of IPG via a smaller

number of stronger valid inequalities and study themultilinear polytope associated with these
inequalities.

2.1 Stronger valid inequalities from a star

We begin with a study of a linked pair of nodes in a graph (that is, a pair of + and − data
that are 1 Hamming distance away in n original attributes) and then extend the idea to a set
of nodes forming a (maximal) star in a graph. For insightful information, we first consider
an arbitrary pair of + and − data.

Proposition 2 For a pair of observations Ai , i ∈ S+, and A�, � ∈ S−, the following inequal-
ity

yi ≤
∑

j∈J�\Ji
x j (4)

is valid for IPG.

Proof As noted earlier, the minimal cover inequality associated with A� is:∑
j∈J�

x j ≥ 1 (5)

Note that |J� \ Ji | ∈ {1, . . . , n}. Suppose |J� \ Ji | = n. Then, we have∑
j∈J�\Ji

x j =
∑
j∈J�

x j ≥ 1 ≥ yi .

On the other hand, if |J� \ Ji | ≤ n − 1, (2) can be rewritten for Ai as

x j ≤ 1 − yi , j ∈ Ji

and using this in (5) yields:

|Ji ∩ J�| (1 − yi ) +
∑

j∈J�\Ji
x j ≥ 1

Now, with all x j 0–1 integer variables, yi is intrinsically binary, too. Finally, this reduces the
foregoing inequality to

(1 − yi ) +
∑

j∈J�\Ji
x j ≥ 1

and completes the proof. 
�
An acute reader notes in the proof above that (4) becomes stronger as H(Ai , A�) gets

smaller. That is, the strongest inequality of form (4) results when a pair of + and − observa-
tions has the Hamming distance equal to 1 in the original attributes such that |J� \ Ji | = 1.
By construction, each such pair has an edge in between in our graph representation of data,
and the following is a result that applies to every edge in G.
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(a) (b)

Fig. 2 yi ≤ 1 − x jc (McCormick) versus yi ≤ x j (Lemma 1)

Lemma 1 For a pair of observations Ai , i ∈ S+, and A�, � ∈ S− with J� \ Ji = { j}, the
inequality

yi ≤ x j (6)

is valid for IPG and dominates yi ≤ 1 − x jc and x j ≥ 0.

Proof J� \ Ji = { j} indicates that Ai j = 1 and A� j = 0 and Ji \ J� = { j c}, and the validity
of (6) is immediate from Proposition 2. Now, (6), along with (3), yields

0 ≤ yi ≤ x j ≤ 1 − x jc

and completes the proof. 
�
Remark 1 The strength of (6) primarily lies in that it eliminates the possibilities x j = x jc = 0
and yi = 1 once for good. This is illustrated in Fig. 2, in comparison with its counterpart
McCormick inequality. 
�

Let us extend the result above for a (maximal) starS in G with a − observation A� as the
center node and a set U (U ⊆ S+, |U | ≥ 2) of + observations as its leaves. For notational
simplicity, we let

Δ:=
⋃
i∈U

{ j ∈ N |Ai j �= A� j }

and, for each j ∈ Δ, denote by i j the index of + observation in U that is different from A�

in the j-th position; that is, Ai j j �= A� j , Ai j j ′ = A� j ′ ,∀ j ′ ∈ N \ { j}.
Theorem 1 Consider a star S formed by one − observation A� and a set U (U ⊆
S+, d=|U | ≥ 2) of + observations. Then, for each j ∈ J �:= ⋂

i∈U Ji ∩ J�(�= ∅), the
inequality ∑

i∈U
yi ≤ 1 − x j (7)

is valid for IPG and dominates yi ≤ 1 − x j for all i ∈ U.

Proof Consider the McCormick concave envelope for each yi , i ∈ U :
yi ≤ 1 − x j , j ∈ Ji
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(a) (b)

Fig. 3 Data for Example 1. a Observations under analysis b A star S formed by the five observations

It is easy to see that if x j = 1 for some j ∈ J �, then the minimal cover inequality (5) from
A� is satisfied, and yi = 0,∀i ∈ U . Hence, we have:∑

i∈U
yi = 0 ≤ 1 − x j , j ∈ J �

Now suppose x j = 0,∀ j ∈ J �. Without loss of generality, let A� j = 0,∀ j ∈ Δ. For
some ι ∈ Δ, by setting xι = 1, (5) is satisfied, and yi = 0,∀i ∈ U \{iι} since Ai ι = 0 (which
implies yi ≤ 1 − xι), ∀i ∈ U \ {iι}. In addition, it follows from Lemma 1 that yiι ≤ xι = 1.
Thus, ∑

i∈U
yi ≤ 1 = 1 − x j , j ∈ J �.

The dominance relation is immediate from yi ≤ ∑
i∈U yi for all i ∈ U . 
�

We briefly pause for an example to help the reader become acquainted with the notation
of this paper and also to illustrate how the results thus far work.

Example 1 [Illustration of Lemma 1 and Theorem 1] Consider a dataset in Fig. 3a that form
a starS in Fig. 3b, where J� \ Ji is indicated for each i ∈ {1, . . . , 4}. Applying the standard
McCormick concave relaxation, we obtain 20 inequalities below:

y1 ≤ 1 − x1, y1 ≤ 1 − x5, y1 ≤ 1 − x7, y1 ≤ 1 − x8, y1 ≤ 1 − x9

y2 ≤ 1 − x4, y2 ≤ 1 − x5, y2 ≤ 1 − x6, y2 ≤ 1 − x7, y2 ≤ 1 − x8

y3 ≤ 1 − x1, y3 ≤ 1 − x3, y3 ≤ 1 − x4, y3 ≤ 1 − x5, y3 ≤ 1 − x7

y4 ≤ 1 − x1, y4 ≤ 1 − x2, y4 ≤ 1 − x4, y4 ≤ 1 − x5, y4 ≤ 1 − x8

Applying Lemma 1 for A1 and A5, we obtain

y1 ≤ x4

and this inequality dominates its counterpart McCormick inequality

y1 ≤ 1 − x9.

Likewise, (6) in Lemma 1 yields

y2 ≤ x1, y3 ≤ x8 and y4 ≤ x7

which, respectively, dominate

y2 ≤ 1 − x6, y3 ≤ 1 − x3 and y4 ≤ 1 − x2.
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To apply the result in Theorem 1, we note that U = {1, 2, 3, 4} and J � = {5}. Therefore,
via (7), we obtain

y1 + y2 + y3 + y4 ≤ 1 − x5.

As seen, the above inequality dominates the four inequalities below by the standard lineariza-
tion method:

y1 ≤ 1 − x5, y2 ≤ 1 − x5, y3 ≤ 1 − x5 and y4 ≤ 1 − x5

Remark 2 The inequality in (7) resembles the inequality
∑

i∈I j yi ≤ |I j |(1 − x j ) that is
obtained for j ∈ N via a simple aggregation based on standard probing techniques and
logical implications in integer programming (e.g., [14–16]). The difference is that the for-
mer involves less yi ’s but has 1 as the coefficient of 1 − x j in the right-hand side of the
inequality. An acute reader may note that (7) is an inequality that results when the individual
McCormick/standard inequalities from the + leaf nodes of the star are lifted and tightened
to the fullest extent. This insight explains why the new inequality from a star is stronger than
the individual inequalities used for obtaining it, as illustrated in the preceding example. 
�

Whena leaf node of a star inTheorem1 is purposefully deleted,weobtain a valid inequality
in one less y variable and a different x variable than the one in (7) that is non-dominated by
(7) and dominates the set of McCormick inequalities from the remaining leaf nodes (data)
of the reduced star. We summarize this result next.

Corollary 1 Consider a star described in Theorem 1 with d ≥ 3. For each ι ∈ Δ, let J�\ Jiι =
{ j}, the inequality ∑

i∈U\{iι}
yi ≤ 1 − x j (8)

is valid for IPG and dominates yi ≤ 1 − x j for all i ∈ U \ {iι}.
Proof Consider the star obtained from S by removing a leaf Aiι . The result is immediate
from Theorem 1. 
�

A few remarks are due.

Remark 3 In Corollary 1, j = ι if A�ι = 0; while j = ι + n if A�ι = 1 (refer Fig. 3). 
�

Remark 4 Note that if d = 1 in Theorem 1 or d = 2 in Corollary 1, (7) and (8) reduce
to the inequalities given by the standard McCormick relaxation method, respectively. The
reader can verify that these two inequalities are made the strongest when a maximal star is
considered for their construction; the resulting involves the maximum number of y variables
in the left-hand side.

Furthermore, note for any starS that Δ is fixed. Therefore, removing more than a single
observation from U , as done so in Corollary 1, produces a valid inequality that has a less
number of yi ’s in the left-hand side than (8), thus is dominated by the latter. 
�
Example 2 (Illustration of Corollary 1) Let us recall the data in Fig. 3. Note that Δ =⋃

i∈U { j ∈ N |Ai j �= A5 j } = {1, 2, 3, 4}. For ι = 1, we have i1 = {2}, thus J5 \ J2 = {1}.
So, we obtain via (8)

y1 + y3 + y4 ≤ 1 − x1
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which dominates

y1 ≤ 1 − x1, y3 ≤ 1 − x1 and y4 ≤ 1 − x1.

In the same fashion, one uses Corollary 1 for other ι’s of Δ to obtain

y1 + y2 + y3 ≤ 1 − x7, y1 + y2 + y4 ≤ 1 − x8 and y2 + y3 + y4 ≤ 1 − x4

which dominate the set of McCormick inequalities involving x7, x8 and x4, respectively.
In summary, for analyzing the dataset in Fig. 3, one can use the 9 valid inequalities in

Example 1 and above in place of the 20McCormick inequalities to obtain a tighter polyhedral
overestimation of ϕ+. 
�

For analyzing the strength of the polyhedral inequalities above, we let

X := {
x j ∈ {0, 1}, j ∈ N , yi ∈ [0, 1], i ∈ U

∣∣ (3), (5), yi ≤ 1 − x j , j ∈ Ji , i ∈ U
}
.

Then, the following holds (and we defer its proof until the end of the next subsection).

Theorem 2 For a star S described in Theorem 1, (7) and (8) define facets of conv(X).

2.2 Stronger valid inequalities from a set of stars

Let us consider a set of q (≥ 2) (maximal) stars S1, . . . ,Sq and let A�k denote the internal
node of Sk and Uk denote the set of + observations (that is, the leaf nodes) of Sk , k ∈
Q:={1, . . . , q}. Further, we let

Δk :=
⋃
i∈Uk

{ j ∈ N | Ai j �= A�k j }, k ∈ Q

for each starSk . That is,Δk collects the indices where individual leaf nodes of the starSk are
different from the center in n original attributes. We also recall that each A�k corresponds to
a term in the constraint function ϕ− of (PG), which is 0–1 linearized by the standard method
into a minimal cover inequality [17] as follows:∑

j∈J�k

x j ≥ 1, k ∈ Q (9)

Finally, for a pair of stars, we let

Δkl :={ j ∈ N | A�k j �= A�l j }, k, l ∈ Q

to store information on attribute(s) where the two internal nodes of the stars differ (in the
original attributes).

With the notation above, consider the following result.

Theorem 3 Consider a set Q of q (≥ 2) stars. For any k, l ∈ Q and j ′ ∈ Δk and j ′′ ∈ Δl ,
suppose that i j ′ �= i j ′′ and neither of the two conditions below holds:

i) j ′ �= j ′′ and j ′, j ′′ ∈ Δkl

ii) j ′ = j ′′ and j ′, j ′′ /∈ Δkl

Then, for each j ∈ J:= ⋂
k∈Q J �

k (�= ∅), where J �
k :=⋂

i∈Uk
Ji ∩ J�k , the inequality∑

i∈U
yi ≤ 1 − x j (10)

is valid for IPG, where U :=⋃
k∈Q Uk .
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Proof If x j = 1 for any j ∈ J, then (9) is satisfied and yi = 0,∀i ∈ U . Therefore,∑
i∈U yi = 0, and (10) is trivially satisfied.
On the other hand, if x j = 0,∀ j ∈ J, we need to show that∑

i∈Uk

yi +
∑
i∈Ul

yi ≤ 1 (11)

holds for any pair k, l ∈ Q satisfying the conditions of the theorem. Equivalently, it suffices
to show that, for every j ′ ∈ Δk and j ′′ ∈ Δl (i j ′ �= i j ′′ ) satisfying neither of i) and i i), we
have:

yi j ′ + yi j ′′ ≤ 1 (12)

(As for reason, via (7) in Theorem 1, we have:
∑

i∈Uk
yi ≤ 1 and

∑
i∈Ul

yi ≤ 1. Thus,
yi j ′ = 1, for instance, indicates that yi = 0,∀i ∈ Uk \ {i j ′ } and yi = 0,∀i ∈ Ul via (12).)

For a pair of stars under consideration, the minimal cover inequalities in (9) associated
with A�k and A�l also need to be satisfied by a 0–1 feasible solution to IPG ; that is, at least
one x in them needs to be set to 1. Without loss of generality, assume A�k j ′ = 0 and consider
the two possible cases for j ′ ∈ Δk and j ′′ ∈ Δl with i j ′ �= i j ′′ .
Case 1 ( j ′ �= j ′′). In this case we have j ′ /∈ Δkl or j ′′ /∈ Δkl . Without loss of generality,
assume j ′ /∈ Δkl . This yields

A�l j ′ = 0, Ai j ′ j ′ = 1 and Ai j ′′ j ′ = 0.

Thus, setting x j ′ = 1 satisfies (9) for �k and �l and yields

yi j ′ ≤ x j ′ = 1, yi j ′′ ≤ 1 − x j ′ = 0,

which satisfies (12).
Case 2 ( j ′ = j ′′). In this case, we have j ′(= j ′′) ∈ Δkl such that A�l j ′ = 1, Ai j ′ j ′ = 1 and
Ai j ′′ j ′ = 0. Therefore, by setting x j ′ = 1, we have (9) satisfied for �k and obtain

yi j ′ ≤ x j ′ = 1, yi j ′′ ≤ xn+ j ′′ = xn+ j ′ = 0.

(9) is also satisfied for �l ; depending onwhich x is set to 1, we either have yi j ′ ≤ 1 or yi j ′ ≤ 0.
Therefore, we have (12) satisfied for this case as well.

Concluding, with (11) holding for each pair of stars satisfying the conditions of the the-
orem, at most one yi , i ∈ U can take value 1. Along with x j = 0,∀ j ∈ J, this shows that∑

i∈U yi ≤ 1 = 1 − x j , ∀ j ∈ J and completes the proof. 
�

Remark 5 Briefly, if either condition of Theorem 3 is satisfied, the right-hand side value of
the inequality in (11) becomes larger than 1 for some pair of stars, thereby making (10)
invalid for IPG . 
�

Now, we let

�:= {
x j ∈ {0, 1}, j ∈ N , yi ∈ [0, 1], i ∈ U

∣∣ (3), (9), yi ≤ 1 − x j , j ∈ Ji , i ∈ U
}

and analyze the strength of each of the new inequalities in (10) for j ∈ J.

Theorem 4 For a set of stars in Theorem 3, (10) defines a facet of conv(�).

Proof The validity of (10) was established in the proof of Theorem 3.
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Suppose now that (10) is not facet-defining. Then, there exists a facet-defining inequality
of � of the form ∑

j∈N
α j x j +

∑
i∈U

βi yi ≤ γ, (13)

where (α,β) �= (0, 0), such that (10) defines a face of the facet of conv(�) defined by (13).
That is,

F1:=
{

(x, y) ∈ �

∣∣∣∣∣ x j +
∑
i∈U

yi = 1

}
⊆ F :=

⎧⎨
⎩(x, y) ∈ �

∣∣∣∣∣∣
∑
j∈N

α j x j +
∑
i∈U

βi yi = γ

⎫⎬
⎭ .

Consider the following two cases for the solutions in F1.
Case 1 (x j = 1). Since j ∈ J, this solution satisfies (9). The solution with x j ′ = 0,∀ j ′ ∈
N \ { j} and yi = 0, ∀i ∈ U belongs to F1 hence F , which yields α j = γ . For this solution,
suppose x j ′ = 1 for some j ′ ∈ N \ { j, j c}. This yields α j + α j ′ = γ , thus:

α j = γ and α j ′ = 0, ∀ j ′ ∈ N \ { j, j c}
Case 2 (x j = 0). The existence of a pattern is guaranteed for a contradiction-free dataset.
This implies that there always exists a 0–1 vector x that yields yi = 1 for each i ∈ U . Also,
note that the value of x jc does not affect y; thus, βi = βi + α j c = γ for all i ∈ U . These
yield

α j c = 0 and βi = γ, ∀i ∈ U .

Summarizing, the two cases above show that

α j ′ = 0, ∀ j ′ ∈ N \ { j}; and α j = βi = γ > 0, ∀i ∈ U ,

where γ > 0 is from our supposition that (10) is dominated by (13). This indicates that (13)
is a positive multiple of (10) (which is a contradiction) and completes the proof. 
�

For a set of stars Sk, k ∈ Q, let

Δ⊗:=
⋃
k∈Q

Δk and Δ�:=
⋃

k,l∈Q, k �=l

Δkl

and consider the following result.

Theorem 5 Consider a set of stars in Theorem 3. For each ι ∈ Δ⊗ \ Δ�, assume without
loss of generality that ι ∈ Δk , k ∈ Q, and let iι ∈ U be such that J�k \ Jiι = { j}. Then, the
inequality ∑

i∈U \{iι}
yi ≤ 1 − x j (14)

is valid for � and defines a facet of conv(�).

Proof The validity of (14) for � is immediate from Theorem 3 for the sub-graph with Aiι
removed from the set of stars for the theorem. As for the facet result, we suppose the contrary
that (14) is not facet-defining for conv(�). This suggests

F2:=
⎧⎨
⎩(x, y) ∈ �

∣∣∣∣∣∣ x j +
∑

i∈U \{iι}
yi = 1

⎫⎬
⎭ ⊆ F,
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where F is given by a facet-defining inequality of conv(�) of the form (13), as in the proof
of Theorem 3. Now, consider the following two cases for any solution of F2.

Case 1 (x j = 1). Note that j ∈ J∩:= ∩k∈Q J�k , thus this solution satisfies (9). The solution
with x j ′ = 0, ∀ j ′ ∈ N \{ j} and yi = 0,∀i ∈ U belongs to F2, hence F . This yieldsα j = γ .
For this solution, we can set x j ′ = 1 for each j ′ ∈ N \ { j, j c} to obtain α j + α j ′ = γ . We
thus have

α j = γ and α j ′ = 0, ∀ j ′ ∈ N \ { j, j c}.
Moreover, as noted in the proof of Theorem 4, the existence of a pattern for a contradiction-
free dataset guarantees the existence of x such that yiι = 1. This yields:

α j + βiι = γ �⇒ βiι = 0

Case 2 (x j = 0). Again, there exists a 0–1 vector x that yields yi = 1 for each i ∈ U \ {iι}. If
x jc = 0 (or x jc = 1) in such a solution, we have βi = γ (or α j c + βi = γ ) for i ∈ U \ {iι},
hence obtain:

α j c = 0 and βi = γ, ∀i ∈ U \ {iι}
By the two cases above, we have

α j ′ = 0, ∀ j ′ ∈ N \ { j}; βiι = 0; and α j = βi = γ > 0, ∀i ∈ U \ {iι},
where γ > 0 is from the supposition that (14) is dominated by (13). This shows that (13) is
a positive multiple of (14) and completes the proof. 
�

We have another interesting result below.

Theorem 6 Consider a set of stars in Theorem 3. For each ι ∈ Δ�, let:

U ι
0 := {i ∈ U |Ai ι = 0} and U ι

1 := {i ∈ U |Ai ι = 1}
Then, a pair of inequalities∑

i∈U ι
0

yi ≤ 1 − xι and
∑
i∈U ι

1

yi ≤ 1 − xι+n (15)

are valid for � and define facets of conv(�).

Proof Again, the validity result is immediate; apply Theorem 3 to the two sub-graphs, one
with Ai , i ∈ U ι

0 and the other Ai , i ∈ U ι
1 , respectively. As for the facet result, since the

inequalities in (15) are symmetric, if suffices to show it for the former. For the purpose, we
again suppose the contrary to let

F3:=
⎧⎨
⎩(x, y) ∈ �

∣∣∣∣∣∣ xι +
∑
i∈U ι

0

yi = 1

⎫⎬
⎭ ⊆ F

(where F is as defined in Theorem 3) and investigate the two possible cases for the solutions
of F3.
Case 1 (xι = 1). The solution with x j = 1 for some j ∈ J, x j ′ = 0,∀ j ′ ∈ N \ {ι, j} and
yi = 0,∀i ∈ U satisfies (9), hence belongs to F3 and F . This yields α j + αι = γ, j ∈ J.
Let J :=J∩ \ {J} (where J∩ = ∩k∈Q J�k ) and note that the solution with x j ′ = 1 for some
j ′ ∈ J , x j ′′ = 0,∀ j ′′ ∈ N \ { j ′, ι} and yi = 0,∀i ∈ U also satisfies (9), hence belongs
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to F3 and F . This yields α j ′ + αι = γ, j ′ ∈ J . Therefore, the combination of these two
solutions yields α j + α j ′ + αι = γ, j ∈ J, j ′ ∈ J ; hence αι = γ, α j = 0, j ∈ J∩. By
setting x j ′′ = 1 for each j ′′ ∈ N \ (J∩ ∪ {ιc}) in the first solution above, we obtain:

αι + α j ′′ = γ �⇒ αι = γ, and α j = 0,∀ j ∈ N \ {ι, ιc}
Note that xι = 1 implies yi = 0,∀i ∈ U ι

0 . Additionally, there is a 0–1 vector x that yields
yi = 1 for each i ∈ U ι

1 . Therefore, we have:

αι + βi = γ, i ∈ U ι
1 �⇒ βi = 0,∀i ∈ U ι

1

Case 2 (xι = 0). Again, for a 0–1 vector x that yields yi = 1 for each i ∈ U ι
0 , if xιc = 0 (or

xιc = 1), we have βi = γ (or αιc + βi = γ ) for i ∈ U ι
0 . Therefore,

αιc = 0 and βi = γ,∀i ∈ U ι
0 .

The two cases above yield

α j = 0,∀ j ∈ N \ {ι}; βi = 0,∀i ∈ U ι
1 ; and αι = βi = γ > 0,∀i ∈ U ι

0

where γ > 0 is from our supposition that (15) is dominated by (13). This shows that (13) is
a positive multiple of (15) and completes the proof. 
�

Remark 6 Denote by dk the degree of (the internal node of)Sk for k ∈ Q. Then, the number
of inequalities generated from a set of stars by Theorem 3 is equal to |J| = n − |Δ⊗ ∪ Δ�|.
Likewise, the number of inequalities generated via Theorems 5 and 6 are calculated to be
|Δ⊗ \ Δ�| and 2|Δ�|, respectively. Therefore, the total number of inequalities from a set of
stars is: ∑

k∈Q
dk + n − |Δ⊗ ∪ Δ�| + |Δ⊗ \ Δ�| + 2 |Δ�| =

∑
k∈Q

dk + n + |Δ�|


�

Remark 7 As hinted in Remark 2 with a star inequality, the main results of this paper can
be understood as providing sufficient conditions and mechanisms for ‘algebraic lifting and
coefficient tightening’ amaximal set ofMcCormick inequalities to a fullest extent. By fullest,
we mean two things. One, the number of y variables in each new inequality is maximized.
The other, the coefficient of each and every decision variables x ∈ {0, 1}2n and y ∈ [0, 1]m+

is kept at 1, which attributed to obtaining facet-defining results in Theorems 2, 4, 5, and
6. Furthermore, as understood by now, the maximum benefit is realized when a maximal
set of maximal stars are exploited for generating the inequalities of this subsection (refer
Remark 4).

As a summary, the dominance relation among the inequalities dealt with and developed
in this paper is captured into the hierarchy of their relative strength in Fig. 4. 
�

Last, we note that Theorem 1 and Corollary 1 are special cases of Theorems 3 and 5,
respectively, when Q is a singleton. This yields the following proof for Theorem 2 as an
immediate consequence of the results in Theorems 4 and 5.

Proof (of Theorem 2). Since Q is a singleton, we have Δ⊗ = Δ, Δ� = ∅ and U = U . Use
these in Theorem 4 for (7) and Theorem 5 for (8), respectively. 
�
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Fig. 4 Dominance relation among valid inequalities for ϕ+ of (PG). ‘−→’ indicates dominance of the head
over the tail, while the dotted bidirectional arrow indicates that the two are equivalent; specifically, the one
placed northeast reduces to the other under the condition provided as the legend

3 Illustrative example: construction and strength/utility of main results

Consider a set of 6+ observations and 4− observations in Table 1 that are described in 10 0–1
attributes; that is, n = 10, thus N = {1 . . . , 10}, N ′ = {11 . . . , 20} and N = {1, . . . , 20}.
For convenience in presentation, we let S+ = {1, . . . , 6} and S− = {7, . . . , 10}.

When analyzed on a graph, these 10 observations comprise 4 stars, namely, S1, S2, S3

and S4, as shown in Fig. 5 and supplemented by Table 1. (We note with A5 as an example
that a + data can belong to multiple stars.)

For easier referencing, we connect each pair of the internal nodes of the 4 stars by a dashed
line and provide Δkl information (that is, the indices where the two internal nodes of the
stars differ) along the dashed edge. For each starSk, k ∈ Q:={1, 2, 3, 4}, the number on an
edge between a leaf node and the center is the index where the pair of + and − observations
differ. Therefore, Δk in Table 1 for each of the four stars is obtained by simply collecting the
indices indicated along the edges of the star.

To illustrate how the inequalities of this paper are generated for this dataset, we first take
the 7 edges of the graph and use (6) of Lemma 1 to obtain 7 valid inequalities

y1 ≤ x1, y2 ≤ x2, y3 ≤ x17, y4 ≤ x3,

y5 ≤ x15, y5 ≤ x16, y6 ≤ x4
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Table 1 Illustrative (PG) Dataset

+ Observation i Ai j ( j ∈ N ), Ji

1 A1 = [1000000000]
J1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

2 A2 = [0100000110]
J2 = {1, 3, 4, 5, 6, 7, 10, 12, 18, 19}

3 A3 = [0000100100]
J3 = {1, 2, 3, 4, 6, 7, 9, 10, 15, 18}

4 A4 = [0010101100]
J4 = {1, 2, 4, 6, 9, 10, 13, 15, 17, 18}

5 A5 = [0000001100]
J5 = {1, 2, 3, 4, 5, 6, 9, 10, 17, 18}

6 A6 = [0001011100]
J6 = {1, 2, 3, 5, 9, 10, 14, 16, 17, 18}

− Observation i Ai j ( j ∈ N ), Ji Star k J �
k , Uk , Δk

7 A7 = [0000000000] S1 J �
1 = {2, 3, 4, 5, 6, 7, 8, 9, 10}

J7 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} U1 = {1}, Δ1 = {1}
8 A8 = [0000011100] S2 J �

2 = {1, 2, 3, 5, 9, 10, 17, 18}
J8 = {1, 2, 3, 4, 5, 9, 10, 16, 17, 18} U2 = {5, 6}, Δ2 = {4, 6}

9 A9 = [0000000110] S3 J �
3 = {1, 3, 4, 5, 6, 7, 10, 18, 19}

J9 = {1, 2, 3, 4, 5, 6, 7, 10, 18, 19} U3 = {2}, Δ3 = {2}
10 A10 = [0000101100] S4 J �

4 = {1, 2, 4, 6, 9, 10, 18}
J10 = {1, 2, 3, 4, 6, 9, 10, 15, 17, 18} U4 = {3, 4, 5}, Δ4 = {3, 5, 7}

which, respectively, dominate

y1 ≤ 1 − x11, y2 ≤ 1 − x12, y3 ≤ 1 − x7, y4 ≤ 1 − x13,

y5 ≤ 1 − x5, y5 ≤ 1 − x6, y6 ≤ 1 − x14.

The user can verify that the inequalities generated by Lemma 1 are non-dominated by any
other inequality, both new and old.

To illustrate how to generate a set of inequalities from individual stars, we consider S4,
comprised of the internal node A10 and three leaf nodes A3, A4 and A5, henceU4 = {3, 4, 5}.
First, we collect the information of the edges of the graph to obtain Δ4 = {3, 5, 7} (=⋃

i∈U4
{ j ∈ N | Ai j �= A10, j }) and set J �

4 = J3 ∩ J4 ∩ J5 ∩ J10 = {1, 2, 4, 6, 9, 10, 18}
(refer Table 1 for information on Ji , i ∈ U4). Thus, (7) of Theorem 1 yields that

y3 + y4 + y5 ≤ 1 − x j

dominates

yi ≤ 1 − x j , ∀i ∈ U4 = {3, 4, 5}
for every j ∈ J �

4 = {1, 2, 4, 6, 9, 10, 18}.
Now, applyingCorollary 1withΔ4 = {3, 5, 7}, we obtain additional inequalities involving

x j , j /∈ J �
4 . For example, for ι = 3 ∈ Δ4, we have iι = 4, as indicated along the edge

123



720 Journal of Global Optimization (2019) 74:705–735

Fig. 5 Graph analysis of data in Table 1

between Aι(=3) and A10 in Fig. 5. Using the information of J4 in Table 1, one can verify that
J10 \ J4 = {3}. Now, using this in (8) of Corollary 1, we obtain

y3 + y5 ≤ 1 − x3

that is stronger than any McCormick inequality that involves x3, y3 and/or y5.
Moving onto more complex results, the reader can confirm that the 4 stars in Fig. 5 satisfy

the conditions of Theorem 3. So, we have U = U1 ∪ U2 ∪ U3 ∪ U4 = {1, 2, 3, 4, 5, 6} and
J = J �

1 ∩ J �
2 ∩ J �

3 ∩ J �
4 = {10} and use (10) of Theorem 3 to generate

y1 + y2 + y3 + y4 + y5 + y6 ≤ 1 − x10

which not only dominates its McCormick counterparts

yi ≤ 1 − x10, ∀i ∈ {1, 2, 3, 4, 5, 6}
but also the inequality from S4 for j = 10 ∈ J �

4 via (7):

y3 + y4 + y5 ≤ 1 − x10

The above serves as an example to show that an inequality fromamore complex neighborhood
structure (hence, a larger neighborhood) is stronger than the one(s) obtained from its sub-
structure(s); with exceptions dealt with in Corollary 1, Theorems 5 and 6 (refer Fig. 4).

To obtain a valid inequality involving a different x j , j /∈ J, we use Theorem 5 with
Δ⊗ = ⋃

k∈{1,...,4} Δk = {1, 2, 3, 4, 5, 6, 7} (refer Table 1 for Δk information) and Δ� =⋃
k,l∈{1,...,4}, k �=l Δkl = {5, 6, 7, 8, 9} (refer Fig. 5 forΔkl information along the dashed lines).

For example, for ι = 1 ∈ Δ⊗ \Δ� = {1, 2, 3, 4}, we have iι = 1, where A1 is a leaf node of
S1 with the internal node A7. Thus, we obtain U \ {iι} = {2, 3, 4, 5, 6} and J7 \ J1 = {1}
from the center and leaf nodes of A1. Using these in (14) of Theorem 5, we obtain

y2 + y3 + y4 + y5 + y6 ≤ 1 − x1

that dominates

yi ≤ 1 − x1, ∀i ∈ {2, 3, 4, 5, 6}
and, also, the following star inequalities fromS3, S4, and S2 respectively:

y2 ≤ 1 − x1, y3 + y4 + y5 ≤ 1 − x1, y5 + y6 ≤ 1 − x1
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Similarly, with ι ∈ {2, 3, 4}, we obtain
y1 + y3 + y4 + y5 + y6 ≤ 1 − x2,
y1 + y2 + y3 + y5 + y6 ≤ 1 − x3,
y1 + y2 + y3 + y4 + y5 ≤ 1 − x4,

that yield a tighter polyhedral relaxation than the one given by the set of their McCormick
counterparts

y1 ≤ 1 − x2, y3 ≤ 1 − x2, y4 ≤ 1 − x2, y5 ≤ 1 − x2, y6 ≤ 1 − x2,

y1 ≤ 1 − x3, y2 ≤ 1 − x3, y3 ≤ 1 − x3, y5 ≤ 1 − x3, y6 ≤ 1 − x3,

y1 ≤ 1 − x4, y2 ≤ 1 − x4, y3 ≤ 1 − x4, y4 ≤ 1 − x4, y5 ≤ 1 − x4,

and a set of star inequalities below:

y1 ≤ 1 − x2, y3 + y4 + y5 ≤ 1 − x2, y5 + y6 ≤ 1 − x2,
y1 ≤ 1 − x3, y2 ≤ 1 − x3, y3 + y5 ≤ 1 − x3, y5 + y6 ≤ 1 − x3,
y1 ≤ 1 − x4, y2 ≤ 1 − x4, y3 + y4 + y5 ≤ 1 − x4, y5 ≤ 1 − x4.

Last, for Theorem 6, consider ι = 5 ∈ Δ� = {5, 6, 7, 8, 9} to obtain U 5
0 = {1, 2, 5, 6}

and U 5
1 = {3, 4}. These give rise to two inequalities

y1 + y2 + y5 + y6 ≤ 1 − x5 and y3 + y4 ≤ 1 − x15

that are stronger than 6McCormick inequalities involving x5 and x15 and, also 3 star inequal-
ities.

Similarly, Theorem 6 yields 4 additional pairs (a total of 8) of valid inequalities below for
the illustrative dataset under analysis (Note that 3 are McCormick inequalities and see Fig. 4
for a quick reference for when this happens.):

y1 + y2 + y3 + y4 + y5 ≤ 1 − x6
y6 ≤ 1 − x16

y1 + y2 + y3 ≤ 1 − x7
y4 + y5 + y6 ≤ 1 − x17

y1 ≤ 1 − x8
y2 + y3 + y4 + y5 + y6 ≤ 1 − x18

y1 + y3 + y4 + y5 + y6 ≤ 1 − x9
y2 ≤ 1 − x19

As a summary, we listed all 60 standard, McCormick inequalities, 45 inequalities from
individual stars via Lemma 1, Theorem 1 and Corollary 1 in Sect. 2.1, and 22 inequalities
from a set of stars via Lemma 1, Theorems 3, 5 and 6 in Sect. 2.2 in the three columns of
Table 2, going from left to right, respectively. For easy comparison, we use ‘−→’ in this
table for dominance relation to state that the inequality in its tail side is dominated by the
one on its head. In brief, this table pictorially depicts benefits of the results of this paper in
regard to:

– algebraic lifting and strengthening of simple,McCormick envelopes for a 0–1multilinear
objective function ϕ+ of (PG);

– a multi-term relaxation of ϕ+ (for the example considered, the simultaneous relaxation
of all six terms of ϕ+) and strengthening; and

– a tighter polyhedral relaxation of (PG) in terms of a much smaller number of stronger
0–1 linear inequalities.
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Table 2 Summary of valid inequalities for (PG) instance on dataset in Table 1 and illustration of benefits of
new results

‘−→’ indicates that the inequality on its tail is dominated by the one on its head. Star set inequalities are
obtained as result of multi-term relaxing 5–6 terms of ϕ+ (which has 6 terms) and strengthening
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Table 3 CPLEX efforts for solving 0–1 equivalents of (PG) for + pattern generation for data in Table 1

0–1 model Root relaxation gap (%) CPU ticks BB nodes

(PG)mccormick 81.5 1.85 3

(PG)star 50.0 0.39 1

(PG)stars 0a 0.05 0b

a(PG)stars is integral; recall that no additional cuts are added
bSolved at the root node

Furthermore, the reader confirms the hierarchy of relative strength of the inequalities in
Fig. 4 in this table that the more advanced an inequality, the stronger it is; thus, a tightest
polyhedral overestimation of ϕ+ of (PG) is obtained when a maximum number of maximal
stars are exploited for the purpose.

Last, recall (PG) to note that, for + pattern generation experiments, we need to convexify
ϕ− and concavify ϕ+. For a numerical demonstration of the utility of the new polyhedral
overestimation scheme forϕ+, we thus obtain 0–1 polyhedral relaxations of the (PG) instance
generated on the dataset in Table 1 as

(PG)† : max

⎧⎨
⎩

6∑
i=1

yi

∣∣∣∣∣ ϕ̄+
† ,

∑
j∈Ji

x j ≥ 1 for i = 7, . . . , 10, x ∈ {0, 1}20, y ∈ [0, 1]6
⎫⎬
⎭

where ϕ̄+
† is the polyhedral concave overestimation of ϕ+ obtained by means of the method

specified in † ∈ {mccormick,star,stars}, where mccormick stands for the standard
McCormick relaxation method while star and stars indicate the improvements made on
the McCormick-based model by means of the inequalities from individual stars in Sect. 2.1
and via those from the neighboring stars in Sect. 2.2, respectively. Next, (PG)mccormick,
(PG)star and (PG)stars were solved by CPLEX 12.8 [19] without utilizing the cutting
plane methods of the solver, and information on some important performance indicators is
summarized in Table 3. Here, ‘Root Relaxation Gap’ is the % difference between the root
LP relaxation value of the corresponding model and its optimum; ‘CPU Ticks’ is time in
ticks and ‘BB Nodes’ is the total number of branch-and-bound nodes required by CPLEX
for solving these MIP instances.

In brief, the results in Table 3 show the practical side of themathematically stronger results
in this paper well. Particularly, we note that (PG)stars is integral, thus solved at the root
node.

4 Numerical experiments

For general • pattern generation for • ∈ {+,−}, we can use •̄ to denote the complementary
type of • with respect to {+,−} to obtain a 0–1 linear equivalent of (PG)• as

(PG)•† : max

⎧⎨
⎩

∑
i∈S•

yi

∣∣∣∣∣ ϕ̄•
† ,

∑
j∈Ji

x j ≥ 1, ∀i ∈ S•̄, x ∈ {0, 1}2n, y ∈ [0, 1]m•
⎫⎬
⎭

where ϕ̄•
† is the polyhedral concave overestimation of ϕ• obtained by any method † ∈

{mccormick,stars} andm• is the number of • data in the pattern generation task. Recall
that (PG)•stars is a strengthened form of (PG)•mccormick by means of the results in Sect. 2.
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Table 4 Binary classification datasets from [24]

Dataset (abbreviation) Number of data Number of features

m+ m− Original 0–1 binarizedb

BUPA liver disordera (bupa) 145 200 6 269

Cleveland heart diseasea (clev) 137 160 13 305

Credit card scoringa (cred) 357 296 15 773

Pima Indian diabetesa (diab) 268 500 8 857

Boston housinga (hous) 257 249 13 1209

Wisconsin breast cancera (wisc) 239 444 9 72

Blood transfusion service center (btsc) 125 423 4 144

King Rook vs. King Pawn (krkp) 1668 1527 73 73

Phishing websites (phis) 5945 4753 68 68

QSAR biodegradation (qsar) 356 699 41 4178

Seismic bumps (seis) 170 2414 15 1120

Wilt (wilt) 261 4578 5 2311

a6 well-studied data mining datasets
bAfter 0–1 binarization and before feature selection (e.g., see [10,11])

It is both tighter and smaller than the predecessor, thus is expected to provide better LP
relaxation bounds and aid in more efficient LAD pattern generation; that is, a more effective
and efficient solution of 0–1 MP in (PG).

To test this, this section runs pattern generation experiments with 12 public data mining
datasets from [24], summarized in Table 4. More specifically, we took each dataset in this
table and first randomly split it into 3 equal-sized, mutually disjoint partitions of 2/3 of the+
and 2/3 of the− data. Next, we combined 2 of them to obtain 3 sub-datasets, each comprised
of exactly 2/3 of the original dataset and differ from the other in 50%of the data for generating
a pair of + and − patterns via (PG)•mccormick and (PG)•stars. To assess the efficacy of the
new relaxation methodmore objectively, we use CPLEXwithout utilizing CPLEX cuts when
solving these two 0–1 MIP’s.

When it comes to solving MIP’s, cutting plane methods are a hallmark of efficacy. In note
of this, each time (PG)•mccormick was solved, we solved the same instance once more with
utilizing CPLEX cuts this second time. This 0–1 pattern generation MIP is referred to as
(PG)•mccormick+CPLEX below. As seen, (PG)•mccormick+CPLEX is a strengthened version of
(PG)•mccormick via cutting plane methods implemented in CPLEX.

Difficulties of mining useful information from real-life data are often caused by the pres-
ence of a few ‘hard-to-classify’ data. Thus, for a fair comparison, we repeated the whole
3-fold validation procedure 10 times to test the three 0–1 MIP models in 30 unique pattern
generation tasks with each dataset in Table 4.

The relaxation bound of a hard problem at the root node of the branch-and-bound tree is
usually poor, generally speaking. Nevertheless, when an advanced MIP solver like CPLEX
is utilized, the root node relaxation values are least influenced by the effect of the arsenal of
solution rules and tools as well as branch-and-bound options featured in the solver, hence
present itself a valid measure by which the relative strength of relaxation models compared
can be assessed. Thus, we compare the average root node relaxation gaps by the three MIP
pattern generation models to examine their relative tightness in formulation. Table 5 below
summarizes the root node relaxation gaps by the three MIP models and provides the infor-
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mation on the %-age of improvements made on (PG)•mccormick, the basis for all comparison,
by means of using CPLEX cuts and our new cuts under their sub-columns labelled by ‘†’
and ‘‡’, respectively. All numbers in this table and those below are in format ‘average ± 1
standard deviation’ of 30 results, followed by the minimum and the maximum values inside
parenthesis.

To assess how the new inequalities enhance the overall efficiency of solution, we compare
CPU time (in ticks) required for solving three 0–1 MIP models in Table 6 and summarize the
number of CPLEX branch-and-bound nodes explored in Table 7. Between CPU time and the
branch-and-bound nodes, we shall note that the former is a more credible measure of efficacy
of a method.

Last, Table 8 summarizes information on the number (n†) and degree (d) of stars found
and the number (n‡) of neighboring stars found, along with their size (q) and the number of
terms/data (|U | included in Q’s), for each of the 12 datasets. These numbers can be used
to infer practical utilities of the mathematical results of this paper, particularly in multi-term
relaxing ϕ•. For instance, with information onm+ and n̄s , one notes from last number inside
parenthesis for the seis dataset that Theorem 3 simultaneously relaxes up to 20 terms of
ϕ+, which consists of 113(m+) terms, each a multiplication of 35(n̄s) (1 − x j )’s, and so
forth.

For comparison, we recall once more that (PG)•mccormick+CPLEX and (PG)•stars are
strengthened forms of (PG)•mccormick by means of CPLEX cutting planes and the valid
inequalities of this paper, respectively. Thus, one has the following points readily available
for comparison and interpretation of numerical results in Tables 5–7:

– The comparative performance between (PG)•mccormick and (PG)•mccormick+CPLEX is an
indicator of the efficacy of cutting plane methods in solving 0–1 pattern generation
instances from the 12 datasets;

– Furthermore, the above serves as a measure of numerical difficulties associated with
LAD pattern generation and solving (PG);

– The comparative results by (PG)•mccormick and (PG)•stars illustrate benefits of the new
multi-term, polyhedral relaxation scheme of this paper for LAD pattern generation, thus
for a class of practical 0–1 MP in (PG); and

– Last, the comparative results by (PG)•mccormick+CPLEX and (PG)•stars measure a relative
superiority of one method over the other in solving the standard 0–1 MIP equivalent of
(PG).

In reference to the above, numerical results are self-explanatory, thus we comment only on
a few, more important and less obvious issues below.

To begin with, as noted earlier, data mining difficulties are often associated with the
presence of (a few) ‘difficult’ data. As real-life data, the 12 datasets used for comparative
experiments in this section contain hard-to-classify data. This is evidenced in Table 6 that time
required for solving (PG)•stars instances follows a right-skewed distribution for each dataset;
namely, the right tail (that is, the difference between the max and average values) is about 2-5
times longer than the left tail regardless of the size of the dataset, despite all 30 (PG)•stars
instances for a dataset feature the same number of constraints and 0–1 variables. Largely, this
explains why n-fold cross validation experiments have been adopted as a standard setting for
comparative experiments in the data mining literature as well as in this section.

Now, recall that (PG)•stars is built on (PG)•mccormick by means of replacing term-wise
McCormick envelopes in the latter by a smaller number of stronger inequalities. As practical
phenomena can defy mathematical triumphs occasionally, one may not expect (PG)•stars to
outperform (PG)•mccormick on every pattern generation dataset of the 30 fold experiments for
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Table 5 Root node relaxation gap

Dataset • (PG)•mccormick (PG)•mccormick+CPLEX † (PG)•stars ‡

bupa + 82.8 ± 2.4(77.1, 86.3) 82.1 ± 2.6(75.6, 85.6) 0.9 65.4 ± 5.5(54.6, 74.6) 21.1

− 83.7 ± 1.7(79.1, 86.4) 83.3 ± 1.7(78.7, 86.1) 0.5 72.3 ± 3.5(65.0, 78.4) 13.6

clev + 66.9 ± 4.2(59.1, 74.0) 64.3 ± 4.6(55.9, 72.4) 3.6 40.7 ± 4.3(32.3, 46.0) 39.7

− 70.6 ± 3.7(64.3, 77.8) 68.4 ± 3.6(62.1, 76.5) 3.2 46.6 ± 4.6(35.7, 54.7) 34.3

cred + 68.5 ± 6.0(55.9, 79.2) 67.9 ± 6.1(55.5, 78.6) 1.0 57.7 ± 8.0(40.7, 71.5) 16.2

− 76.8 ± 3.2(70.3, 83.1) 76.2 ± 3.3(69.8, 82.8) 0.8 67.6 ± 3.8(60.6, 75.0) 11.7

diab + 89.1 ± 1.4(85.9, 91.2) 88.8 ± 1.5(85.7, 91.1) 0.2 82.7 ± 2.6(77.2, 86.1) 7.2

− 81.1 ± 1.6(77.6, 84.0) 80.9 ± 1.6(77.3, 83.8) 0.3 74.7 ± 2.0(70.7, 78.9) 8.0

hous + 64.6 ± 5.1(55.4, 72.4) 63.2 ± 5.3(53.4, 71.4) 2.2 41.9 ± 6.0(30.2, 50.1) 35.5

− 74.1 ± 3.3(67.0, 78.6) 73.1 ± 3.3(66.2, 78.2) 1.3 55.0 ± 6.4(39.0, 65.2) 25.9

wisc + 59.1 ± 4.4(49.5, 65.4) 56.2 ± 5.3(46.1, 64.0) 4.9 42.1 ± 7.9(23.0, 54.7) 29.0

− 55.4 ± 4.8(46.5, 63.0) 47.4 ± 6.7(34.2, 58.1) 14.8 20.1 ± 8.9(0.0, 34.2) 64.2

btsc + 89.4 ± 1.7(85.9, 91.6) 89.0 ± 1.7(85.7, 91.2) 0.4 72.3 ± 3.8(62.5, 79.3) 19.1

− 83.0 ± 1.9(77.8, 85.9) 82.8 ± 1.9(77.5, 85.8) 0.2 75.9 ± 3.0(68.3, 79.8) 8.7

krkp + 51.5 ± 1.4(49.1, 53.5) 51.4 ± 1.4(49.0, 53.4) 0.1 34.1 ± 1.9(29.4, 36.7) 33.8

− 49.1 ± 0.7(47.7, 50.4) 49.0 ± 0.7(47.7, 50.3) 0.2 32.1 ± 1.2(29.8, 34.4) 34.4

phis + 72.4 ± 0.4(71.8, 73.2) 72.4 ± 0.4(71.8, 73.2) 0.0 70.6 ± 0.4(69.8, 71.3) 2.5

− 36.9 ± 0.7(35.6, 38.0) 36.9 ± 0.7(35.5, 38.0) 0.1 33.0 ± 0.7(31.7, 34.1) 10.8

qsar + 76.6 ± 2.0(71.5, 80.5) 76.2 ± 2.0(71.2, 80.2) 0.4 66.5 ± 2.9(60.9, 71.1) 13.4

− 79.3 ± 2.3(75.2, 83.6) 79.1 ± 2.4(75.0, 83.5) 0.2 74.7 ± 2.9(68.9, 80.4) 5.8

seis + 93.7 ± 0.6(92.5, 94.5) 93.7 ± 0.6(92.5, 94.5) 0.1 85.3 ± 1.6(81.9, 88.0) 9.0

− 86.7 ± 1.4(83.7, 88.7) 86.6 ± 1.4(83.7, 88.7) 0.0 85.1 ± 1.6(81.8, 87.6) 1.9

wilt + 73.6 ± 3.4(65.6, 78.8) 73.3 ± 3.4(65.1, 78.5) 0.4 53.8 ± 6.3(42.4, 64.1) 26.9

− 67.0 ± 3.0(61.9, 72.0) 66.9 ± 3.0(61.8, 72.0) 0.1 62.9 ± 3.5(56.5, 69.6) 6.1

(PG)•mccormick and (PG)•stars are solved by CPLEX without utilizing CPLEX cuts

(PG)•mccormick+CPLEX is (PG)•mccormick solved by CPLEX with CPLEX cuts utilized

All results are in format ‘average ± 1 standard deviation (min, max)’

†: Average of
Gap by (PG)•mccormick −Gap by (PG)•mccormick+CPLEX

Worse of the 2 results values: (measures relative efficacy

of (PG)•mccormick+CPLEX over (PG)•mccormick)

‡: Average of
Gap by (PG)•mccormick −Gap by (PG)•stars

Worse of the 2 results values: (measures relative efficacy of
(PG)•stars over (PG)•mccormick)

each of the test datasets, moderately speaking. Generally speaking, however, mathematical
superiority pervades in practice and translates to benefits. Therefore, in light of the mathe-
matical truth that (PG)•stars is not only smaller in size but also tighter than its predecessor,
the former is much easier to solve, regardless of the size of the dataset. Tables 6–7 support
this well and clearly demonstrate benefits of the multi-term relaxation method of this paper.

General cutting plane methods have stood the test of time to be effective in MIP solution.
However, one sees from comparative results by (PG)•mccormick and (PG)•mccormick+CPLEX
in the Tables 5–7 that they do not prove to be effective at all for the class of practically
important problems dealt with in this paper. Specifically, the use of CPLEX cuts improves
the root node bounds for (PG)•mccormick only by a very small fraction (refer Table 5) but
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requires substantiallymoreCPU time (referTable 6) for solving the0–1MIPmodel. Plausibly,
the increased CPU time requirements may arise from adding cuts giving rise to larger LP
relaxations to be solved. It may also due to additional constraints getting in the way of the
simple structure of (PG)•mccormick—namely, theminimal cover inequalities and simple upper
bounding-type constraints via the McCormick relaxation—from being ‘fully’ exploited for
efficient solution. Simply, one can see from the comparative results by (PG)•mccormick+CPLEX
that (PG)•mccormick is a challenging global optimization problem.

For the same optimization problem, our new cuts reduce the root node gap by a substantial
amount and prove to be significantly more effective than CPLEX cuts on average; to see,
compare numbers in columns ‘†’ and ‘‡’ of Table 5. They contribute to faster solution of the
0–1 pattern generation instances, too (refer Table 6). As an acute reader notes, this is not a
surprise but a direct result of mathematical discoveries of this paper that yield (PG)•stars
from (PG)•mccormick by substituting a smaller number of stronger inequalities for standard
McCormick inequalities in the latter, basis model. Furthermore, we (refer the reader back to
Table 2 to) note that fixing the value of one yi in our new inequality to 1 can have a cascading
effect on fixing the values of the remaining y j ’s in the same inequality to 0 (although we
doubt this useful property is fully exploited by CPLEX’s default setting). For example, the
information for seis in Table 8 reveals that our valid inequalities via Theorem 3 involve up
to 20 yi ’s, obtained from simultaneously relaxing 20 terms of ϕ+, that further yield additional
inequalities with up to 19 yi ’s and a different xk via Theorems 5 and 6.

5 Conclusion

This paper dealt with a multi-term, polyhedral relaxation of ϕ+ of (PG) in terms of a smaller
number of stronger linear inequalities. Toward this goal, we analyzed a set of + data and a
set of − data on a graph and discovered sufficient conditions and tools for obtaining a tight
polyhedral overestimator of ϕ+ from individual stars and also from sets of stars. We showed
that our inequalities are facet-defining of the 0–1 multilinear polytope associated with the
McCormick inequalities that they replace. We further showed that the maximum benefit, in
regard to the size as well as the tightness of the relaxation model, is realized when a maximal
set of maximal stars are exploited for generating new valid inequalities. With experiments
on 12 public data mining datasets, we demonstrated practical utilities of the new results in
absolute terms and also in comparison with the cutting plane methods for MIP implemented
in CPLEX.

Last, a multi-term, polyhedral convexification/relaxation of highly nonlinear, complex
multilinear programs is well-known to be difficult. Numerical studies in Sect. 4 demonstrate
benefits of such results with the practical pattern generation MP for LAD. Here, we note
that the material of this paper can also be used for other optimization problems/functions,
including:

– more general 0–1 multilinear functions of the form φ+(x):= ∑
i∈m ci

∏ni
j=1 x j , where

ci ∈ IR+; and
– linear complementary relations/constraints—that is, functions in 0–1 vectors x and y

with x · y = 0 (e.g., [25])

Therefore, one may see the numerical results of this paper as calling more attention from
the optimization community on the aforementioned, mathematically classic and practically
important research subject in nonlinear optimization.
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