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Abstract Non-Dominated Sorting (NDS) is the most time-consuming procedure used in
the majority of evolutionary multiobjective optimization algorithms that are based on Pareto
dominance ranking without regard to the computation time of the objective functions. It can
be accelerated by the exploitation of its parallelismonHighPerformanceComputing systems,
that provide heterogeneous processing units, such as multicore processors and GPUs. The
optimization of energy efficiency of such systems is a challenge in scientific computation
since it depends on the kind of processing which is performed. Our interest is to solve
NDS in an efficient way concerning both runtime and energy consumption. In literature,
performance improvement has been extensively studied. Recently, a sequential Best Order
Sort (BOS) algorithm for NDS has been introduced as one of the most efficient one in
terms of practical performance. This work is focused on the acceleration of the NDS on
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modern architectures. Two efficient parallel NDS algorithms based on Best Order Sort, are
introduced,MC-BOS andGPU-BOS.Both algorithms start with the fast sorting of population
by objectives. MC-BOS computes in parallel the analysis of the population by objectives on
the multicore processors. GPU-BOS is based on the principles of Best Order Sort, with a new
scheme designed to harness the massive parallelism provided by GPUs. A wide experimental
study of both algorithms on several kinds of CPU and GPU platforms has been carried out.
Runtime and energy consumption are analysed to identify the best platform/algorithm of the
parallel NDS for every particular population size. The analysis of obtained results defines
criteria to help the user when selecting the optimal parallel version/platform for particular
dimensions of NDS. The experimental results show that the new parallel NDS algorithms
overcome the sequential Best Order Sort in terms of the performance and energy efficiency
in relevant factors.

Keywords Evolutionary multiobjective algorithms · Non-Dominated Sorting · Best Order
Sort · High Performance Computing · Multicore platforms · GPU

1 Introduction

The increasing computational demandof the next generation applications has driven computer
designers to adopt new approaches in designing and constructing large High Performance
Computing platforms (HPC), sparking the development and deployment of new technologies.
Those technologies include the use of multicore and/or many-core architecture such as GPUs
or the modern Xeon Phi platforms and multi-GPU clusters to speed up algorithms with high
computational requirements.

The use of evolutionarymultiobjective optimization (EMO) algorithms to solve large-scale
multiobjective problems has been limited due to its large computational burden. However,
thanks to HPC techniques, these kinds of algorithms can be used for solving multiobjective
problems with many objectives and/or with large number of variables within a reasonable
amount of time with an optimal energy consumption. Examples of such applications are
found, e.g., in finance (large scale asset allocation problems) [22] in which thousands or even
tens of thousands of variables must be balanced. As consequences, large populations must
be used to approximate the Pareto front. Some studies where HPC techniques are developed
to solve large-scale EMO problems are [10,14,21,28].

Commonly, parallel implementations of EMO algorithms are focused on the distributions
of evaluations of objective functions. The Non-Dominated Sorting (NDS) is the most time-
consuming procedure used in the majority of EMO algorithms that are based on Pareto
dominance ranking principle, without regard to the computation of the objective functions.
Well-known EMO algorithms that use this procedure are: NSGA-II [5], SPEA2 [31], PAES
[16], R-NSGA-II [6], Synchronous NSGA-II [8], NSGA-III [4], EPCS [24], etc.

The sequential NDS optimization has been extensively studied. The first NDS version
was proposed in [26]. It is based on the brute force method for finding the Pareto sets.
The algorithm has O(MN3) complexity because of repeated comparisons without auxiliary
structures which store dominance information of the individuals. In [5] the popular NSGA-II
algorithm for EMO, the Fast Non-Dominated Sorting (FNDS), was introduced withO(MN2)

complexity. For this sequential method, a specific data structure saves a domination count
variable and a set of dominated solutions for every individual. It requires N 2 comparisons
because all individuals are compared among them once. However, it is possible to complete
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the individual classification in fronts avoiding unnecessary comparisons. In this line, several
improvements were implemented by developing more efficient sorting strategies [7,11,23,
27,29,30]. It must be noted that the computational burden of these sequential approaches of
the NDS procedure has O(MN2) complexity in the worst case.

The divide-and-conquer strategy proposed by Jensen reduced the complexity to O
(N logM−1 N ) [15], however this algorithm is not applicable to many instances of EMO
problems. In [9], the Jensen algorithm was extended removing its limitation that no two solu-
tions can share identical values for any of the problem’s objectives and the slight modification
of [2] maintains O(N logM−1 N ) complexity at the worst-case running time. However, the
divide-and-conquer approach has longer processing times when increasing the number of
objectives. Recently, several efficient NDS algorithms have been proposed. In [11], Efficient
Non-Dominated Sort with Non-Dominated Tree (ENS-NDT) was introduced. It starts with
the population ordered by the first objective and uses a novel Non-Dominated Tree (NDTree)
to speed up the NDS to reduce unnecessary comparisons. In [23], an efficient NDS method,
referred to as Best Order Sort (BOS) was proposed. It begins ordering the population by
all objectives. Then, the fronts are built avoiding unnecessary comparisons. Its performance
for sorting large populations according to many objectives overcomes previous proposals.
BOS has also been used to define a hybrid NDS in combination with a divide-and-conquer
approach [17].

However, the improved sequential NDS versions do not cover the computational needs
when solving large-scale EMO problems. Therefore, parallel NDS routines should be devel-
oped. In [10], a NSGA-II parallel implementation on a GPU, focusing on the acceleration
of NDS, has been analysed. However, this GPU NDS version has the highest complexity
O(MN 3). Every thread computes the dominance of every individual in parallel without con-
sidering dominance information about other individuals. Parallel implementations of NDS
(withO(MN 2) complexity) on multicore CPU and GPU have been analysed in [21]. An effi-
cient parallel version of the NDS procedure was formally presented in [25]. The dominance
information of individuals is stored in a matrix, but its experimental analysis is very limited.
In [19], the same concept is applied to another GPU version of NDS. It is based on a data
structure to store the dominance information where the individuals that dominate the popula-
tion are computed by using fast shuffled reductions of dominance matrices on modern GPUs.
Therefore, the GPU versions of NDS analysed in literature are based on the algorithms with
the highest computational costs. Moreover, parallel versions of the most efficient sequential
NDS algorithms have not been developed since an adaption of the algorithms due to their
data dependencies is necessary.

It is remarkable that most NDS schemes, which reduce unnecessary comparisons, became
inherently sequential algorithms. In this line, to our knowledge, the fast state-of-the-art algo-
rithm Best Order Sort (BOS), referred to above, makes use of fast implementations of sorting
algorithms and removes unnecessary comparisons among individuals. It results in an effi-
cient NDS in terms of runtime, but with a structure which prevents its parallel execution.
With the goal to optimize both performance and energy consumption of NDS with respect
to the efficient BOS algorithm, two parallel NDS algorithms, MC-BOS and GPU-BOS are
introduced in this work. MC-BOS ranks populations in parallel on multicore processors and
GPU-BOS solves the same problem on GPUs.

The proposed algorithms start by ordering the population according to the different objec-
tiveswith a fast parallel routine and then the fronts are built from two ideas: (1) if an individual
is not dominated by any solution with a particular rank, then it belongs to that particular rank;
and (2) if an individual is dominated by at least one individual of all ranks then the individual
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is defining a new front of an upper rank. If these principles are considered, the number of
comparisons can be reduced since the population is ordered by the objectives.

The contribution of this work is twofold. First, new parallel implementations of NDS
procedure onmulticore andGPUare analysed, referred to asMC-BOS andGPU-BOS respec-
tively. Second, an experimental evaluation of MC-BOS and GPU-BOS is carried out using
modern multicore processors and GPUs to rank populations of different sizes and number
of objectives. The runtime and energy consumption are analysed in relation to the sequen-
tial BOS. For all tests, both parallel algorithms accelerate the NDS and reduce its energy
consumption in relation to the sequential BOS in relevant percentages. The analysis of the
obtained results allows us to identify the best platform/algorithm of the parallel NDS accord-
ing to every problem size.

The paper is organized as follows: Sect. 2 is devoted to describing some relevant concepts
related to the EMOproblems and BOS algorithm, a state-of-the-art NDS algorithm. Section 3
explains in detail the parallel implementations of BOS introduced in this work, MC-BOS
and GPU-BOS. An experimental study of performance and energy consumption of both
parallel implementations and the sequential BOS is carried out in Sect. 4. The analysis of
the experimental results allows us to define criteria to choose the optimal version/platform
in terms of performance and energy consumption. Finally, Sect. 5 shows the conclusions of
this work.

2 Background

2.1 Evolutionary multiobjective optimization

We can formulate a multiobjective minimization problem as follows [18]:

min
x∈S f(x) = [ f1(x), f2(x), . . . , fM (x)]T (1)

where z = f(x) is an objective vector, defining the values for all objective functions f1(x),
f2(x), . . . , fM (x), fi : RV → R, i ∈ {1, 2, . . . , M}, M ≥ 2 is the number of objective
functions; x = (x1, x2, . . . , xV ) is a vector of variables (decision vector) and V is the
number of variables S ⊂ R

V is search space, which defines all feasible decision vectors.
A decision vector x′ ∈ S is a Pareto-optimal solution if fi (x′) ≤ fi (x) for all x ∈ S,

i ∈ {1, 2, . . . , M} and f j (x′) < f j (x) for at least one j ∈ {1, 2, . . . , M}. The set of all the
Pareto-optimal solutions is called the Pareto set.An objective vector f(x′) is a Pareto-optimal
vector if x′ is a Pareto-optimal solution. The region defined by all the Pareto-optimal vectors
is called the Pareto front.

For two objective vectors z and z′, z′ dominates z (or z′ � z) if z′i ≤ zi for all i ∈
{1, 2, . . . , M} and there exists at least one j ∈ {1, 2, . . . , M} such that z′j < z j . In EMO
algorithms, the subset of solutions in a population whose objective vectors are not dominated
by any other objective vector is called the non-dominated set, and the objective vectors are
called the non-dominated objective vectors. The main aim of the EMO algorithms is to
generate well-distributed non-dominated objective vectors as close as possible to the Pareto
front. Many EMO algorithms have been designed and various operator techniques, fitness
functions and chromosomal representations can be found in literature, however the outline
remains similar. As a rule, the solution process of an EMO algorithm is iterative. An EMO
algorithm starts with an initial population consisting of decision vectors randomly generated
in the search space. Each iteration of an EMO consists of the following operations:
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– Evaluating each individual.
– Assigning fitness to each individual.
– Checking if termination condition is satisfied.
– Modifying population using selection, mutation and crossover operators.
– Creating a new population.

The solution process is continued till a stopping criterion is not satisfied, which is usually
based on the maximum number of iterations or number of function evaluations. Without
regard to the operation of evaluation, every individual which computes the objective func-
tions, the most computationally expensive part of such algorithms is the dominance ranking
operators. They are performed in the fitness assignment operation in each iteration of an
EMO algorithm. In algorithms based on Pareto dominance, this is implemented by the NDS
procedure.

2.2 Non-Dominated Sorting

Non-Dominated Sorting aims to assign different ranks to the individuals, and dividing the
population into several non-dominated levels (fronts). According to Pareto dominance, the
individuals with the same rank are non-dominated among themselves and they can only be
dominated by a solution in a lower rank. It should be noted that dominance comparisons
between the individuals are repeated in every iteration on an EMO algorithm and takes the
most computational burden.

Best Order Sort1 algorithm for NDS has been introduced and analysed in [23]. It is
considered one of the most efficient NDS algorithms in terms of practical performance [17].
In this work, the principles of BOS are used for developing parallel NDS procedures with a
reduced number of comparisons.

Algorithm 1 describes the BOS procedure to compute fronts of the population P with N
individuals for a problem with M objectives. It consists of two stages. In the first one the
global data structures are initialized and the population is sorted in the ordered sets Q j by
objectives j = 1, . . . M , using lexicographical ordering in case of a tie. This way, Q j can be
considered the columns of a matrix, referred to as Q, which is computed in the first stage. So,
Qi j represents the i-th individual in the list of objective j . SC and RC represent the numbers
of ranked individuals and fronts computed, respectively. The sets Lr

j for 1 ≤ j ≤ M and
1 ≤ r ≤ N define the subset of the front r by the analysis of objective j . When BOS finishes
the front r is the union of Lr

j with 1 ≤ j ≤ M .Moreover, two N vectors, F and isRanked , are
defined to store the rank of every individual and to mark the ranked individuals, respectively.

In the second stage, the individuals are ranked by the comparison of their dominance.
It starts with the analysis of individuals with better objective values in the sorted sets Q j .
Every individual is checked in the corresponding objective. Then, the sets Lr

j are filled to
compute the fronts and to save the ranked individuals by comparisons to objective j . If an
individual, s, is checking for one objective j and previously it had been ranked by the analysis
of another objective, then it is added to the set LFs

j . If the individual s had not been previously
ranked, then the routine FindRank(s, j) ranks the individual by the dominance analysis in
the objective j as described in Algorithm 2. This way, s is compared to the individuals t in
Lk
j for all computed ranks 1 ≤ k ≤ RC . If there is any individual, t , which cannot dominate

s, then s is classified in the front of t , Fs = Ft and added to LFs
j . If the comparisons finish

and s is dominated by the checked individuals, then s defines a new front of higher rank.

1 https://github.com/Proteek/Best-Order-Sort.
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Algorithm 1 Best Order Sort algorithm for NDS
Input: P: population; M : number of objective functions

Initialization of the global data structures
1: N ← |P|; SC ← 0; RC ← 1;
2: Lrj ← ∅ for 1 ≤ j ≤ M and 1 ≤ r ≤ N
3: isRankedi ← false; Fi ← 0 for 1 ≤ i ≤ N
4: Q ← [Q j ] ← sorted P by the objective j for 1 ≤ j ≤ M in every column of Q

Building fronts from ordered population Q j
5: for i ← 1 to N do
6: for j ← 1 to M do
7: s ← Qi, j � i-th individual in the sorted population by objective j
8: if isRanked(s) then
9: LFs

j = LFs
j ∪ {s}

10: else
11: Fs ← FindRank(s, j) � Algorithm 2
12: isRankeds ← true; SC ← SC + 1
13: if SC = N then break
14: return F

Algorithm 2 FindRank Procedure of Best Order Sort
Input: s: individual; j : number of list
1: done ← false
2: for k ← 1 to RC do
3: for t ∈ Lkj do
4: check ← true � It is assumed t dominates s
5: for l ← 1 to M do
6: if s is better than t in objective l then
7: check ← false � t cannot dominate s
8: break
9: if check then break
10: if not check then � s is non-dominated by Lkj
11: Fs ← k; LFs

j = LFs
j ∪ {s}

12: done ← true
13: break
14: if not done then � s is dominated by all fronts previously defined
15: RC ← RC + 1
16: Fs ← RC
17: LFs

j = LFs
j ∪ {s}

18: return Fs

Thus, Algorithm 1 optimizes the comparisons to compute NDS as it is based on: (1)
the previous sorting of the population by objectives, this way the comparisons to identify
the ‘not-worse’ individuals in the corresponding objective can be optimized; (2) the sorted
checking which ranks firstly individuals with ‘better’ objectives.

The computational complexity of BOS in theworst case isO(MN 2), however it is relevant
to underline that BOS optimizes the number of comparisons at the expense of incrementing
its data dependencies. Therefore, it is inherently a sequential algorithm. However, in next
sections, several modifications of the BOS algorithm are studied with the goal of defining
parallel versions of BOS which can exploit modern parallel architectures and be competitive
in relation to the efficient sequential BOS.
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3 Parallel implementations of the Non-Dominated Sorting based on Best
Order Sort algorithm

Most of the HPC platforms and also modern computers are composed of multicore and GPU
devices. CUDA (Compute Unified Device Architecture) is the parallel interface introduced
by NVIDIA to help develop GPU codes using C or C++ language. CUDA provides some
abstraction to the GPU hardware, and it provides the SIMT (Single Instruction, Multiple
Threads) programming model to exploit the GPU. However, the programmer has to take
into account several features of the architecture, such as the topology of the multiprocessors
and the management of the memory hierarchy. For the execution of the program, the CPU
(called host in CUDA) performs a succession of parallel routine (kernels) invocations to the
device. The input/output data to/from the GPU kernels are communicated between the CPU
and the ‘global’ GPU memories. GPUs have hundreds of cores which can collectively run
thousands of computing threads. Each core, called Scalar Processor (SP), belongs to a set of
multiprocessor units called Streaming Multiprocessors (SM). The SMs are composed of 192
(or 128) SPs on Kepler (or Maxwell) GPU architectures [12,20]. This way, the GPU device
consists of a set of SMs and each kernel is executed as a batch of threads organized as a grid
of thread blocks [1].

3.1 Multicore version of the Best Order Sort algorithm (MC-BOS)

The multicore version is implemented on Pthreads2 and C to exploit the parallelism available
onmodernprocessors.While the originalBOSalgorithm loops through theQmatrix rowwise,
trying to reduce the number of comparisons needed to rank each individual, each Q j set has
its own L j structure. Therefore, they can be processed in parallel without synchronization.

Algorithm 3 describes the operation of each of the M compute threads. The initial sorting
of the population by each objective is efficiently computed by each thread using qsort_r3

with a custom comparison function to consider multiple objectives in case of a tie. Every
thread j ranks the population in the order defined by Q j andwrites the rank of every individual
in the shared data structure F (line 9, Algorithm 3). Thus, every thread will rank only the
individuals which have not been studied by another thread.

Although not using any synchronization points increases the performance of the multicore
algorithm, it may cause a ‘write after write’ data hazard on the shared array F (that contains
the ranks of the population) when several threads try to rank the same individual at the
same time. Nevertheless, the definition of domination given in Sect. 2 guarantees that the
individuals that dominate a given individual are in lower positions of every sorted set Q j . As
the rank of an individual is the maximum rank of the individuals that dominate it plus one,
the ranks computed by the threads are the same and this hazard does not cause wrong results.

3.2 GPU implementation of NDS based on Best Order Sort (GPU-BOS)

Theparallel schemeofMC-BOS is not appropriate to exploit themassive parallelismprovided
byGPU.As a consequence it is necessary to design a new schemewith specific data structures
which allowus to increase the parallelism level of the algorithm.GPU-BOShas been designed
by adapting the key ideas of BOS to a massively parallel architecture.

2 https://computing.llnl.gov/tutorials/pthreads/.
3 https://linux.die.net/man/3/qsort_r.
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Algorithm 3 Pseudocode of the MC-BOS function computed by every thread
Input:

N : Number of individuals
M : Number of objective functions
j : Index of the objective function this thread will study
P: Matrix of dimensions N × M containing the definition of the population
F : Array of size N to store the rank of each individual (initialized to −1)

1: RC ← 1
2: Lrj ← ∅ for 1 ≤ r ≤ N
3: Qi, j ← i for 0 ≤ i < N
4: Key-value ordering of Q j by Pj , using other objectives in case of a tie.

5: for i ← 0 to N − 1 do
6: s ← Qi, j
7: if Fs < 0 then � This individual is unranked
8: Fs ← FindRank(s, j) � Defined on Algorithm 2
9: else � The individual was ranked by another thread

10: LFs
j ← LFs

j ∪ s � Add individual s to front Fs

11: return F

Algorithm 4 GPU-BOS host pseudocode to compute NDS on GPU
Input:

N : Number of individuals
M : Number of objective functions
P: Matrix of dimensions N × M containing the definition of the population

Phase 1: Initialization and sorting of the population.
1: Communicate P matrix to GPU global memory.
2: Qi, j ← i for 0 ≤ i < N and 0 ≤ j < M � Initialize matrix Q of dimensions N × M
3: for j ← 0 to M − 1 do
4: Q j ← DeviceRadixSort(Pj ) � Key-value ordering of Q j by Pj

Phase 2: Compute best objective and position for each individual
5: B0,i ← N for 0 ≤ i < N � Initialize first row of matrix B (best positions)
6: B1,i ← 0 for 0 ≤ i < N � Initialize second row of matrix B (best objective)
7: Paux ← FindPositions(Q, P) � Best position for each individual in each objective
8: B ← BestObjective(Paux ) � Objective with the lowest position for each individual

Phase 3: Compute fronts from the information of Phase 2
9: batchi ← 0 for 0 ≤ i < N
10: Fi ← −1 for 0 ≤ i < N
11: Δi, j ← −1 for 0 ≤ i < N and 0 ≤ j < blockDim
12: Rank ← 0
13: SC ← 0
14: while SC < N do
15: F ←CuNewFront(N , M , Rank, P , Q, Δ, B, batch, F) � Algorithm 5
16: Communicate F from GPU memory to CPU memory
17: SC ← SC + |{k : Fk = Rank}|
18: Rank ← Rank + 1
19: return F

Algorithm 4 shows the host pseudocode of GPU-BOS to compute the NDS on the GPU. It
includes three phases. In Phase 1, global parameters are defined, the population data structure
is sent from the CPU to the GPU memory and then, it is efficiently sorted by objectives on
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the GPU. The sorting is computed on the GPU by M executions of the DeviceRadixSort
kernel defined by the CUB4 library in streaming mode.

In Phase 2, for every individual s, the sub-population which could dominate it is obtained
from the matrix Q whose M columns define the sorted population by the objectives. Every
individual, s, is classified at each column Q j . Then, the lowest row of Q which stores s is
obtained, i, and the corresponding column is defined as j. Thus, j represents the objective
with best order for the individual s and i is the index of s in the sorted population by such
objective. As it is justified in [23], the sub-population which could dominate the individual
s is defined by the array Ss = [Q0,j, . . . , Qi−1,j].

So, the B matrix is 2× N and it saves the mentioned pairs of indexes for every individual
and it is computed in parallel on the GPU by the kernels FindPositions and BestObjective
(lines 7 and 8, Algorithm 4). The kernel FindPositions also contains a sub-routine to include
in the set Ss of each individual s, the individuals with higher positions but the same value
in the objective function studied, in such a way allowing us to use a faster sorting algorithm
that does not need lexicographical sorting in case of ties.

Then, Phase 3 iteratively computes a new front till the entire population is ranked. The
kernel CuNewFront (Algorithm 5) computes in parallel a new front at every iteration. N
blocks of threads are defined and every block analyses if the corresponding individual s is
classified in the new front. This analysis is based on the following property [23]: Let s, Ds ,
and r − 1 be an individual, the set of dominators of such individual and the maximal rank of
the dominators, respectively, then the rank of s is r .

In kernel CuNewFront every thread block analyses if its individual s belongs to the new
front. When s has been previously ranked then the block stops. Otherwise, if the first front
is being analysed, every block checks the dominance of s by comparisons to the lists Ss . So,
iteratively every batch of blockDim individuals is analysed in parallel. When one dominator
is identified the thread block stops checking and the threads that have identified dominators
save that information in the column s of the matrix Δ. Also, the first thread of each block
stores in batchs the index of the next batch of individuals to be checked. When one front of
Rank > 0 is studied, every thread in the s block reads the dominators previously identified
from the s column ofΔ. If at least one of them has not been ranked, then its rank is q ≥ Rank,
the rank of s is higher than Rank and therefore s is not classified in the new front, and the
thread block stops.

Otherwise, if all dominators have been classified in a front q < Rank then every thread
block checks the dominance of s with an initial sorted set of candidates as dominators of s,
S∗
s ≡ [Qk,j, . . . , Qi−1,j], where k = B0,j. When the dominance is checked by a thread block

this initial set can include individuals previously ranked which are erased from S∗
s . When at

least one dominator of s is identified then, it is saved in Δ and also kstop in batch and the
computation stops. Otherwise, there are no new dominators of s, therefore it is classified in
the new front. Figure 1 illustrates the scheme to analyse the dominance of the individual s by
a thread block with blockDim = 4 for a very reduced population when 1st and 2nd fronts
are computed by GPU-BOS.

The performance of GPU-BOS is bounded by the CuNewFront kernel. On this kernel
there are two types of comparisons. The first type (lines 8–14, Algorithm 5) is the comparison
of an individual with its saved dominators. Although each such comparison runs inO(1), one
individual can be comparedwith the same dominatormultiple times if the dominator is not yet
ranked. However, the maximum number of ranks is N and the rank is incremented after each
call to the CuNewFront kernel, so there cannot be more than O(N ) of such comparisons

4 https://nvlabs.github.io/cub/structcub_1_1_device_radix_sort.html.
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(a) (b)

Fig. 1 Dominance checking to analyse if the individual s belongs to the 1st or 2nd front and data structures
involved in CuNewFront. a On the left, the dominance of the sorted list Ss = { f, a, c, e, b, d, g,m, l, h, n}
over s is computed to check if the individual s belongs to the first front. The checking is computed in a parallel
loop by a thread block. At first iteration, c is identified as a dominator and the s-block stops. Then, the threads
write inΔs the last dominators computed, c, and also they write 4 in the array batch, the next index to continue
the dominance checking for a new call of CuNewFront. These written values are shown on the right of the
figure. b On the right, to check if the individual s belongs to the 2nd front, when the last dominators of s
computed, saved in Δs , have no rank then s-block stops. But in the example the last dominator computed, c,
has been previously classified in the first front. Then, the dominance over the sorted list S∗

s = {b, d,m, l, n} is
computed. Notice that, the individuals g and h have been previously classified in the first front, then they are
not included in the checking list. If new dominators of s are not identified, then s is classified in the 2nd front.
Otherwise, the individual s is not ranked and it will be involved in the successive calls of CuNewFront to
compute new fronts

for each individual, O(N 2) in total. The second type (lines 15–31, Algorithm 5) is the
comparison of an individual with its potential dominators. There are O(N 2) combinations
and each comparison runs in O(M).

Therefore, GPU-BOS retains the worst-case complexity of the original BOS algorithm:
O(MN 2). Although the computational schemes of GPU-BOS and BOS are different, they
are based on the same rules to organize the individuals in order to reduce the number of
dominance comparisons.

4 Evaluation

This section opens with a technical description of the experimental hardware setup, followed
by an analysis of the performance and energy consumption of the BOS, MC-BOS and GPU-
BOS algorithms when applied to compute the fronts of populations with different sizes and
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Algorithm 5 CuNewFront GPU kernel computes a new front in parallel
Input:

N : Number of individuals
M : Number of objective functions
Rank: Current rank
P: Matrix of dimensions N × M containing the definition of the population
Q: Matrix of dimensions N ×M containing the indexes of the population sorted by each objective function
Δ: Matrix of dimensions N × blockDim where we store partial domination information
B: Matrix of size N ×2 containing, for each individual, the objective where it is best sorted and its position
in the sorted list
batch: Array of size N to store the starting index of the next batch to be processed
F : Array of size N to store front information for each individual

Initialization.
1: __shared__ dominated � Block scope shared variable
2: s ← block Idx .x � The individual this block will study
3: x ← thread Idx .x � Block scope thread ID
4: if Fs ≥ 0 then return � This individual is already ranked
5: if thread Idx .x = 0 then
6: dominated ← false � The first thread initializes the shared variable
7: __syncthreads � Synchronization point for all threads in each block

Checking if the dominators of s (saved in Δ) have been ranked
8: if Δs,x ≥ 0 then
9: if FΔs,x ≥ 0 and FΔs,x < Rank then
10: Δs,x ← −1 � The individual that dominated s is already ranked
11: else
12: dominated ← true � s is dominated by an unranked individual
13: __syncthreads
14: if dominated then return

If all computed dominators of s are ranked, analyse remaining candidates
15: j ← B1,s � Objective where s is best sorted
16: for k ← batchs to B0,s − 1 with k += blockDim do
17: __syncthreads
18: if k + thread Idx .x < B0,s then
19: c ← Qk, j � Index of a candidate to a new dominator
20: is_candidate ← true
21: if Rank > 0 then
22: if Fc ≥ 0 and Fc < Rank then
23: is_candidate ← false � Already ranked, not a candidate
24: if is_candidate and is_dominated(P , s, c) then
25: Δs,x ← c � s is dominated by an unranked individual
26: dominated ← true
27: __syncthreads
28: if dominated then
29: if thread Idx .x = 0 then
30: batchs ← k + blockDim � Store the batch where s left
31: return

All the candidates for dominance have been checked
32: if thread Idx .x = 0 then
33: Fs ← Rank � If this instruction is reached, s belongs to this rank

number of objectives on the target architectures. We assume that users of these routines are
interested in specific EMO problems with particular number of objectives and population
sizes. Our goal with this experimental analysis is to provide general criteria to help users
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Table 1 Characteristics of the test GPUs

NVIDIA K80 Tesla M2075

Peak performance (double prec.) (TFLOPS) 2.91 0.5

Peak performance (single prec.) (TFLOPS) 8.74 1.03

Device memory (GB) 2 × 12 5

Memory bandwidth (GB/s ) 2 × 240 144

Multiprocessors 2 × 13 14

CUDA cores 2 × 2496 448

Compute Capability 3.7 2.0

Fig. 2 Experimental Runtime (solid lines) and Energy Consumption (dashed lines) of BOS, MC-BOS and
GPU-BOS on the platform F1 for four random populations of four sizes when the number of objectives
changes from M = 5 to M = 30

to choose the best platform/version to obtain the best performance and/or lowest energy
consumption for solving specific NDS processes.

Three computational architectures have been considered in the experiments:

F1 : Bullx R424-E3: 2 Intel Xeon E5 2650 processors with 8 cores each and 64 GB of RAM.
It is connected to a NVIDIA Tesla M2070 GPU. Table 1 provides technical details about
this GPU platform.

F2 : Bullx R421-E4: 2 Intel Xeon E5 2620v2 processor with 6 cores each and 64 GB of
RAM. It is connected to 2 NVIDIA K80 (each NVIDIA K80 is composed by two Kepler
GK210 GPUs). The characteristics of each NVIDIA K80 are given in Table 1.

F3 : Bullion S8: 8 Intel Xeon E7 8860v3 processors with 16 cores each and 2.3 TB of RAM.
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Fig. 3 Experimental Runtime (solid lines) and Energy Consumption (dashed lines) of BOS, MC-BOS and
GPU-BOS on the platform F2 for four random populations of four sizes when the number of objectives
changes from M = 5 to M = 30

The test platforms do not include the most recent multicore processors and GPUs. How-
ever, this hardware is readily available on many currently accessible clusters for scientific
computation. Therefore, they can be considered representative examples of available plat-
forms for users of the routines that will be tested. Three kinds of multicore processors are
considered.

F1 contains 2 Intel Sandy Bridge EP processors for a total of 16 CPU cores with 64 GB
of RAM and 2 NVIDIA Tesla M2070 GPUs of the Fermi microarchitecture. F2 is a newer
platform, containing 2 Intel Ivy Bridge EP processors with 64 GB of RAM for a total of 12
CPU cores and 2 NVIDIA Tesla K80 GPUs of the Kepler microarchitecture. Although both
of these platforms have multiple GPUs, our GPU-BOS implementation uses only one. F3

contains 8 IntelHaswell processors for a total of 128 coreswith 2.3 TBofRAM.This platform
is composed of four nodes, with two sockets and 576 GB of RAM per node, interconnected
by a proprietary bus that converts them into a single NUMA node.

To provide a fair comparison and avoid the overhead of the JVM, the original sequential
BOS Java code5 has been reimplemented in C. All the programs have been compiled using
gcc 5.4.0 and nvcc 8.0.44 with optimization flags O3. All platforms run Ubuntu 16.04 LTS
with CUDA SDK 8.

For the acquisition of the energy consumption data, we have developed a software tool
that collects metrics from various hardware counters integrated on each platform. It uses
the Running Average Power Limit (RAPL) interface on Intel processors, introduced on the

5 https://github.com/Proteek/Best-Order-Sort.
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Fig. 4 Experimental Runtime (solid lines) and Energy Consumption (dashed lines) of BOS and MC-BOS on
the platform F3 for four random populations of different sizes when the number of objectives changes from
M = 5 to M = 30

Sandy Bridge microarchitecture [3] via the Linux Power Cap sysfs. It uses the NVIDIA
Management Library6 (NVML) API on NVIDIA GPUs.

The runtime and energy of sequential BOS, MC-BOS and GPU-BOS has been evaluated
when the number of objectives, M , and population size, N , vary on the platforms F1 and
F2. On F3 only results for BOS and MC-BOS are shown since there is no GPU on this
platform. Figures 2, 3 and 4 represent the experimental results with four graphics for random
populations with different numbers of individuals N = 5000, 20,000, 50,000, 100,000. To
obtain these results, 100 test populations have been randomly generated by the testing scripts,
following a uniform distribution in the range [0, 1). For each population and implementation,
we have repeated the experiment 10 times, for each case discarding the best andworst runtime,
and averaging the rest to obtain the experimental results shown in this section.

Every plot represents, on the left, the runtimes inmilliseconds (with solid lines) and, on the
right, energy consumption in joules (with dashed lines) for the different NDS versions. The
energy measurement results are generated taking into consideration only the domains used
by each implementation. This means that, for the sequential algorithm, we only consider the
processor where it is running. For the multicore algorithm we consider as many processors
as needed to allocate the number of threads spawned. For the GPU algorithm, we consider
the processor where the host code is running and the GPU where the kernels are launched.

The general trends of BOS, MC-BOS and GPU-BOS when the objectives increase are
similar on every plot, although the random populations are different on each platform. The
runtimes of BOS increases almost linearly for the smallest populations with M = 5, 10, 15

6 https://developer.nvidia.com/nvidia-management-library-nvml.
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Fig. 5 Experimental acceleration factors of runtime and energy savings for multicore version (on the top) and
GPU version (at the botton) in relation to the sequential BOS on the platformF1 for four random populations
of four sizes when the number of objectives changes from M = 5 to M = 30

and for M = 20, 25, 30 the runtime lightly increases for small populations. BOS runtime
even decreases, since for the larger populations the percentage of non-dominated individuals
increases as N and M , decreasing in such cases the comparisons needed to compute fronts.
MC-BOS achieves a high acceleration in relation to BOS in terms of runtime and energy.
MC-BOS runtimes increase as M increases, and the slope of this increment is less relevant
as the individual count increases. This trend is clearly appreciated on the three platforms in
general terms. On F1 (F2) there are relevant runtime increments between M = 15 and 20
(M = 10 and 15) because the number of cores available on the platform F1 (F2) becomes
less than M , that is M > 16 (M > 12). Therefore, since the number of threads is defined by
M , as M increases several threads are concurrently executed on the same core. The runtimes
of GPU-BOS for the smaller populations decrease as M increases with a more relevant slope
when the population is large.

On platform F1, GPU-BOS is slower than MC-BOS when M ≤ 15 and N < 10,000. For
10,000 ≤ N < 100,000 and M > 15, GPU-BOS is faster thanMC-BOS and, in some cases,
more energy efficient. For populations larger than that, the multicore implementation scales
better than the GPU implementation. The high energy consumption of these old NVIDIA
Fermi cards is relevant, making GPU-BOS less energy efficient than even the sequential
implementation for M = 5.

On platform F2, the newer NVIDIA Fermi cards show better performance than their
Fermi counterparts, being faster than the multicore implementation when M ≥ 15 for all the
population sizes shown. They are also energy efficient, making the GPU implementation the
best one in both metrics for most of the test cases.
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Fig. 6 Experimental acceleration factors of runtime and energy savings for multicore version (on the top) and
GPU version (at the botton) in relation to the sequential BOS on the platformF2 for four random populations
of four sizes when the number of objectives changes from M = 5 to M = 30

On platformF3, there are enough cores for the number of threads spawned, so the situation
where multiple threads execute concurrently on the same core does not appear. So, the slope
of the performance as M increases is much more gradual.

Additionally, experiments onNDSwere performed on the basis of theNSGA-II algorithm.
Populations after several NSGA-II generations with DTLZ2 test functions [13] with M =
5, . . . , 30 have also been analysed. This experimental study has not been included in this
section because the acceleration factors achieved by MC-BOS and GPU-BOS, in terms
of performance and energy, are similar to the study carried out for random populations.
Therefore, the general conclusions of this study were the same.

The advantages in performance and energy consumption of both parallel versions in rela-
tion to the sequential BOS are analysed in Figs. 5, 6 and 7 for the three test platforms
respectively. These plots have been obtained from the runtime and energy consumption
above shown in Figs. 2, 3 and 4. The acceleration factors of MC-BOS vs BOS (GPU-BOS
vs BOS) range from 3× to 14× (2× to 14.5×) on platform F1, 2× to 8× (2× to 17.5×) on
platform F2 and 3× to 15.6× on platform F3. The energy savings factors are slightly lower,
from 1.5× to 5× (0.5× to 2.8×) on platform F1, 1× to 3× (0.5× to 6×) on platform F2

and 2× to 8× on platform F3.
Summarizing, parallel versions are faster and consume less energy than the sequential

BOS in relevant percentages, in spite of the irregularity of both parallel algorithms. If the
number of objectives is less than the number of cores in the processor, then the best option
is the multicore version to optimize performance and energy. If there are many objectives,
then, the GPU version is the optimal selection.
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Fig. 7 Experimental acceleration factors of runtime and energy savings for the multicore version in relation
to the sequential BOS on the platform F3 for four random populations of four sizes when the number of
objectives changes from M = 5 to M = 30

5 Conclusions

This work has proposed two parallel procedures, MC-BOS and GPU-BOS, to improve the
performance and the energy consumption to compute Non-Dominated Sorting on multicore
and GPU architectures. Both procedures are based on the principles of the Best Order Sort
algorithm and their source code is publicly available at GitHub7. It is a state-of-the-art
procedure to efficiently rank populations avoiding unnecessary comparisons to a sequential
structure. To improve the performance of BOS by the exploitation of modern multicore
processors and GPUs, two schemes have been developed to increase the parallelism level of
this algorithm. MC-BOS defines the same number of threads as objectives and efficiently
exploits multicore processors. GPU-BOS defines a scheme that tries to reduce the number
of comparisons needed for sorting without the need for large dominance data structures. It
reduces both the comparisons and thememory requirements in relation to other GPU versions
of NDS.

From the evaluation results, it can be concluded that both parallel algorithms improve
the performance of the BOS algorithm in factors that reach 17.5× and reduce the energy
consumption in factors that reach 8×. The multicore version is the best option to optimize
performance and energy consumption when the number of objectives is not excessive, other-
wise the best option is the GPU version. These results are amilestone due to the irregularity of
NDS procedures that optimize the sequential performance, such as BOS. They are inherently
sequential and a re-definition of schemes of the parallel algorithms to exploit the moderate
and massive parallelism of multicore processors and GPUs has been necessary.

Our future work is focused on the evaluation of MC-BOS and GPU-BOS on novel archi-
tectures, such as Skylake processors of Intel and Volta GPUs of NVIDIA.
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