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Abstract We solve a general vector variational inequality problem in a finite—dimensional
setting, where only approximation sequences are known instead of exact values of the cost
mapping and feasible set. We establish a new equivalence property, which enables us to
replace each vector variational inequalitywith a scalar set-valued variational inequality. Then,
we approximate the scalar set-valued variational inequality with a sequence of penalized
problems, and we study the convergence of their solutions to solutions of the original one.

Keywords Vector variational inequality · Non-stationarity · Set-valued mappings ·
Approximation sequence · Penalty method · Coercivity conditions

1 Introduction

Let D be a nonempty convex set in the real n-dimensional space Rn , and let G : D → R
n

be a mapping. Then one can define the variational inequality problem (VI, for short), which
is to find an element x∗ ∈ D such that

〈G(x∗), y − x∗〉 ≥ 0 ∀y ∈ D. (VI)

VIs give a suitable common format for various applied problems and are closely related
with other general problems in nonlinear analysis, such as fixed point, optimization, comple-
mentarity, and equilibrium problems; see, e.g., [4–9] and the references therein. Moreover,
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there exist various extensions of the usual scalar VIs, in particular, vector VIs, which are
closely related with vector optimization problems; see [6–8] for more details.

We recall that the usual vector variational inequality problem (in short, VVI) is to find an
element x∗ ∈ D such that

G(x∗)(y − x∗) /∈ −intC ∀y ∈ D, (VVI)

where G is a single-valued mapping from D into L(Rn,Rm), and C is some ordering cone
of Rm with intC 	= ∅ (see Sect. 2). Clearly, VVI is an extension of VI in the case m = 1
and C is the non-negative ray. Note that each value G(x) is an m × n matrix. However,
exact values of the cost mapping G, ordering cone C , and feasible set D may be unknown
for many real problems. This situation is clearly invoked by the usual calculation errors and
incompleteness of information about the problem under solution. As a result, one can only
deal with problems arising from suitable approximations {Dk}, {Gk} and {Ck} of the set D,

the mapping G and the cone C, respectively.
Our aim is to investigate convergence properties of the approximated problems, following

the lines of [12,13], where convergence of some penalty based methods for limit variational
inequality problems in finite-dimensional spaces was obtained. These approximations do not
require special concordance of parameters, and their convergence will be established under
suitable coercivity conditions, not necessarily related to any monotonicity assumptions.

The paper is organized as follows: first, we establish a new equivalence property, which
enables us to replace each VVI with a scalar set-valued variational inequality. Then, we
approximate the scalar set-valued variational inequality with a sequence of penalized prob-
lems, and we study the convergence of their solutions to solutions of the original one.

2 Preliminary results

In this section we collect some preliminary notions, and some known results about VVIs.
Furthermore, in view of the approximated problems considered in the sequel, we provide
some known facts about generalized mixed variational inequalities. The setting is finite-
dimensional; everyEuclidean spacewill be endowedby the usual scalar product 〈·, ·〉 inducing
the Euclidean norm ‖ · ‖. In particular, B(a, r) will denote the open ball centered at a with
radius r, and B(a, r) its closure.

Let us recall that a nonempty setC ⊂ R
m is called a convex cone if λC ⊆ C for all λ > 0,

and C + C = C . A cone C is called pointed if C ∩ (−C) = {0}, where 0 denotes the zero
vector. A set X is called solid if its interior, denoted by intX, is nonempty. Also, a nonempty
set X is called proper if it is contained properly in R

m , i.e. X 	= R
m . If C is a convex and

proper cone, then 0 /∈ intC .
Given a convex, proper and solid cone, we can introduce the order �C in Rm as follows:

x �C y ⇐⇒ x − y ∈ intC.

In the case where

C = R
m+ = {z ∈ R

m : zi ≥ 0 i = 1, . . . ,m},
we have the weak Paretian order. Note that the cone C is not supposed to be a closed set,
since there are some orderings, such as the lexicographic one, whose cones are not closed.

Given a set K in R
m, define

S(K ) = K ∩ S(0, 1), P(K ) = convS(K ),
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where S(0, 1) = {z ∈ R
m : ‖z‖ = 1}, and convA denotes the convex hull of the set A.

Furthermore, the polar (or conjugate) cone of a set K in R
m is given by

K ∗ = {q ∈ R
m : 〈p, q〉 ≥ 0, ∀p ∈ K }.

It is clear that K ∗ is a convex and closed cone. If K is itself a cone in R
m, then K ∗∗ = K .

Moreover, if the cone K is proper, convex and solid, then K ∗ has nonzero elements due to
the separation theorem.

In the next lemma a characterization of the interior points of closed and convex cones is
provided.

Lemma 2.1 (see e.g. [11, Lemma 1]).

(i) Let K be a subset of Rm. If p ∈ intK, then

〈p, q〉 > 0 ∀q ∈ K ∗\{0}.
(ii) Let K be a convex and closed cone in Rm. Suppose that

〈p, q〉 > 0 ∀q ∈ K ∗\{0};
then, p ∈ intK (i.e. intK 	= ∅).

Let us consider the following VVI: find x∗ ∈ D such that

G(x∗)(y − x∗) /∈ − int(C), ∀y ∈ D,

where D ⊆ R
n, and G = [G1,G2, . . . ,Gm]�, with G j : R

n → R
n for every j =

1, 2, . . . ,m.

For every element q ∈ C∗\{0} we define the scalarized problem (VIq , for short): find a
point xq ∈ D such that

〈G(xq)(y − xq), q〉 ≥ 0 ∀y ∈ D, (VIq )

or, equivalently,
〈G�(xq)q, y − xq〉 ≥ 0 ∀y ∈ D.

Remark 2.2 From Lemma 2.1, it is easy to prove that any solution of VVI is a solution of
problem VIq , for some q ∈ C∗\{0}. As a matter of fact, if x∗ is a solution of VVI, from
the convexity of D it follows that the set G(x∗)(D − x∗) is convex; moreover, it contains
0, and does not intersect − intC. By the separation theorem, there exists q ∈ R

n\{0} such
that, for all y ∈ D and all v ∈ − intC, one has 〈G(x∗)(y − x∗), q〉 > 〈v, q〉. It follows that
〈v, q〉 < 0 for all v ∈ − intC, and 〈v, q〉 ≤ 0 for all v ∈ −C. Hence q ∈ C∗, and x∗ is a
solution of VIq . In addition, any solution of problem VIq , with q ∈ C∗\{0}, is a solution of
VVI.

In order to replace the original VVI with an equivalent formulation, we define the set-
valued mapping F : Rn → �(Rn) as follows:

F(x) =
⎧
⎨

⎩
f ∈ R

n : f = G�(x)q =
m∑

j=1

G j (x)q j , q ∈ P(C∗)

⎫
⎬

⎭
. (2.1)

Here and below �(A) denotes the family of all nonempty subsets of a set A. The set-valued
map F is trivially nonempty, compact and convex valued inRn , and the set P(C∗) is compact.
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Under the assumption of continuity of the maps G j , by adapting the proof of Theorem 16.34
in [3], we can easily show that F is upper semicontinuous.

Let us now consider the following generalized variational inequality problem (GVI, for
short): find an element x∗ ∈ D and f ∗ ∈ F(x∗) such that

〈 f ∗, y − x∗〉 ≥ 0 ∀y ∈ D. (GVI)

The problem GVI turns out to be equivalent to the problem VVI, as the next proposition
shows.

Proposition 2.3 VVI is equivalent to GVI, where the mapping F is defined in (2.1).

Proof If x∗ is a solution of VVI, then it solves problem VIq for some q ∈ C∗\{0}, as a
consequence of Lemma 2.1. Hence we can take q ′ = (1/‖q‖)q ∈ S(C∗). This means that
x∗ is a solution of GVI, with f ∗ = G�(x∗)q ′.

Conversely, let x∗ be a solution of GVI. Then it solves VIq for some q ∈ P(C∗). By
definition, there exist elements qi ∈ S(C∗) and numbers αi > 0 such that

q =
∑

i∈I
αi q

i ,
∑

i∈I
αi = 1,

where I is a finite set of indices. Fix any point y ∈ D. Then, there exists an index l ∈ I such
that

〈G(x∗)(y − x∗), ql〉 ≥ 0,

hence, by Lemma 2.1,

G(x∗)(y − x∗) /∈ −intC.

Therefore x∗ solves VVI. ��
By the proposition above, existence results for VVI can be obtained by investigating the

equivalent GVI. This is a special case of the more general generalized mixed variational
inequality (GMVI, for short; see e.g. [13]), which is to find an element x∗ ∈ D and f ∗ ∈
F(x∗) such that

〈 f ∗, y − x∗〉 + h(y) − h(x∗) ≥ 0 ∀y ∈ D, (GMVI)

where h : D → R, and F : D → �(Rn).

In the following we will consider the problem GMVI under the following basic assump-
tions:

(A) D is a nonempty, closed and convex set, h : D → R is a lower semicontinuous and
convex function, F : D → �(Rn) is upper semicontinuous, with nonempty, convex, and
compact values on D.

Let us recall some existence results for GMVI.

Proposition 2.4 (see [13, Proposition 2]). If A holds and D is bounded, then GMVI has a
solution.

In case the set D is unbounded, some proper coercivity conditions are required. To this
purpose, let us recall that a function μ : Rn → R is said to be weakly coercive with respect
to a set D if there exists ρ ∈ R such that the set

D(μ, ρ) := {x ∈ D : μ(x) ≤ ρ}
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is nonempty and bounded. For every f ∈ F(x), set

�( f, h, x, y) = 〈 f, y − x〉 + h(y) − h(x).

We take the following coercivity condition:

(C) There exist a convex function μ : Rn → R, which is weakly coercive with respect to
the set D, and a number r such that, for any point x̄ ∈ D\D(μ, r) and any f̄ ∈ F(x̄)
with

inf
x∈D(μ,r)

�( f̄ , h, x̄, x) ≥ 0, (2.2)

there is a point z ∈ D such that

min{�( f̄ , h, x̄, z), μ(z) − μ(x̄)} < 0,
and

max{�( f̄ , h, x̄, z), μ(z) − μ(x̄)} ≤ 0.
(2.3)

The following existence result holds.

Proposition 2.5 [13, Theorem 1] If A and C are fulfilled, then GMVI has a solution.

We can somewhat strengthen the above assertion by specializing (2.3), in order to be able
to localize the solutions by considering the following coercivity condition:

(C′) There exist a convex function μ : Rn → R, which is weakly coercive with respect to
the set D, and a number r such that for any point x̄ ∈ D\D(μ, r) and any f̄ ∈ F(x̄)
satisfying (2.2) there is a point z ∈ D such that μ(z) ≤ μ(x̄) and

�( f̄ , h, x̄, z) < 0. (2.4)

Corollary 2.6 If A and C′ are fulfilled, then GMVI has a solution, and all the solutions are
contained in D(μ, r).

Proof It is enough to note that (2.4) implies (2.3), hence existence of solutions of GMVI
follows from Proposition 2.5. Due to (2.4), all these solutions belong to D(μ, r). ��

3 Convergence of penalized approximation problems

ConvertingVVIs intoGVIs enables us to apply the penalty approach. Following some ideas in
[12,13], we intend to establish existence results for the ‘limit’ problem VVI by investigating
the cluster points of the solutions of penalized approximation problems that are defined in
terms of more regular data.

In the sequel, we will suppose that D is a set of the form

D = V ∩ W, (3.1)

where V,W are convex and closed sets in the space Rn . In general, V represents geometric
constraints, whereasW corresponds to “functional” ones. To identify the points of this latter
set, a suitable penalty function will be used, that is a function P : Rn → R such that

P(w)

{
= 0 w ∈ W,

> 0 w /∈ W.

We now define approximations of the data D, G and C. Let {Vk} be a sequence of closed,
convex subsets of Rn such that
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(A1) Ls Vk ⊆ V, where Ls denotes the topological limit superior, i.e.,

Ls Vk = {x ∈ R
n : xnk → x with xnk ∈ Vnk }.

The set W will be approximated via perturbed penalty functions well behaved with respect
to {Vk}, i.e., a sequence of nonnegative functions Pk : Rn → R such that

(A2) (i) Pk is lower semicontinuous and convex;
(ii) if xk ∈ Vk, xk → x, and lim inf Pk(xk) = 0, then P(x) = 0, i.e., x ∈ W ;
(iii) for every w ∈ V ∩ W, there exists {vk}, with vk ∈ Vk and vk → w such that

Pk(vk) = 0 for k large enough.

This means that the set W is approximated implicitly with a sequence {Wk}. In addition,
condition A2-(iii) admits, for some elements of the sequence {Wk}, to be empty.
The convex, proper and solid cone C in R

m will be approximated by a sequence of convex,
proper and solid cones {Ck} satisfying
(A3) LsC∗

k ⊆ C∗.
Denote by Gk the mapping

Gk = [Gk
1,G

k
2, . . . ,G

k
m]� : Rn → L(Rn,Rm),

and by Fk the set-valued map Fk : Rn → �(Rn), defined as follows:

Fk(x) =
⎧
⎨

⎩
f ∈ R

n : f = (Gk)�(x)q =
m∑

j=1

Gk
j (x)q j , q ∈ P(C∗

k )

⎫
⎬

⎭
.

Let us consider the following assumptions concerning the mappings Gk
j :

(A4) (i) Gk
j is continuous, for every j, k;

(ii) for every sequence {xk}, with xk ∈ Vk and xk → x, the set

{Gk
j (xk), j = 1, 2, . . . ,m, and k ∈ N}

is bounded;
(iii) if xk ∈ Vk, xk → x, fk ∈ Fk(xk) and fk → f , then f ∈ F(x).

Remark 3.1 Property A4-(ii) implies that the sets Fk(xk) are uniformly bounded, for every
convergent sequence {xk} with xk ∈ Vk .

For each k, let us now consider the problem GMVIk : find x∗
k ∈ Vk and f ∗

k ∈ Fk(x∗
k ) such

that
〈 f ∗

k , y − x∗
k 〉 + τk(Pk(y) − Pk(x

∗
k )) ≥ 0, ∀y ∈ Vk, (3.2)

where τk is a penalty parameter such that τk → +∞.

First of all, we need the following technical result:

Lemma 3.2 Suppose A3 holds. Then each limit point of any sequence {qk}, qk ∈ P(C∗
k ),

belongs to P(C∗).

Proof Note that by A3 each limit point of the sequence {qk} belongs to C∗. Without loss
of generality suppose that qk → q̄. Then for each k there exist elements qk,i ∈ S(C∗

k ) and
numbers αk

i ≥ 0, i = 1, . . . ,m + 1 such that

qk =
m+1∑

i=1

αk
i q

k,i ,

m+1∑

i=1

αk
i = 1. (3.3)
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For each fixed i we have the bounded sequence {qk,i }. Besides, the sequence {αk} with
αk = (αk

1, . . . , α
k
m+1)

� is also bounded. Hence, taking m + 2 times proper subsequences, if
necessary, we can suppose that qk,i → q̄ i for i = 1, . . . ,m + 1 and αk → ᾱ, where, again
by A3, q̄ i ∈ S(C∗) for i = 1, . . . ,m + 1, and

m+1∑

i

ᾱi = 1, ᾱi ≥ 0, i = 1, . . . ,m + 1.

By (3.3),

q̄ =
m+1∑

i=1

ᾱi q̄
i ,

hence q̄ ∈ P(C∗). ��
In order to provide existence results for (3.2), in the sequel we will assume the following

coercivity condition (see, for instance, [12]):

(C1) for each k = 1, 2, . . . , there exist a convex function μk : Rn → R, which is weakly
coercive with respect to the set Vk , and a number σk such that for any point u ∈
Vk\Vk(μk, σk) there is a point v ∈ Vk , μk(v) ≤ μk(u) such that Pk(v) ≤ Pk(u) and
Gk(u)(v − u) ∈ − intCk .

Remark 3.3 (i) Condition C1 implies condition C′, by taking D = Vk, r = σk, x̄ = u,

z = v, h = τk Pk and f̄ ∈ Fk(u). Indeed, take any point u ∈ Vk\Vk(μk, σk); then, by C1,
there is v ∈ Vk with μk(v) ≤ μk(u) such that Pk(v) ≤ Pk(u) and Gk(u)(v − u) ∈ −intCk .
Then, for any qk ∈ P(C∗

k ), we have 〈qk,Gk(u)(v − u)〉 < 0 due to Lemma 2.1. It follows
that

〈qk,Gk(u)(v − u)〉 + τk(Pk(v) − Pk(u)) < 0.

C′ follows by setting f̄ = ∑m
j=1 G

k
j (u)qkj .

(ii) In case the sets Vk are bounded, condition C1 can be trivially satisfied by taking, for
instance, μk(x) = 0 and σk ≥ 0, for every k.

The following result holds:

Theorem 3.4 Let {Vk} and {Pk} satisfy A1–4. Suppose that C1 is fulfilled. Then

(i) the problem GMVIk has at least a solution x∗
k , and all the solutions belong to

Vk(μk, σk);
(ii) any cluster point x∗ of a sequence of solutions {x∗

k } is a solution of the problem VVI.

Proof Assertion (i) follows directly from Corollary 2.6 and Remark 3.3-(i). Concerning (ii),
by A1, we get that x∗ ∈ V . Let us show that x∗ ∈ W. From (3.2), there exists f ∗

k ∈ Fk(x∗
k )

such that
0 ≤ Pk(x

∗
k ) ≤ τ−1

k 〈 f ∗
k , y − x∗

k 〉 + Pk(y), ∀y ∈ Vk . (3.4)

Take any w ∈ V ∩ W ; from A2-(iii), there exists {xk}, with xk ∈ Vk such that xk → w and
Pk(xk) = 0 for k large enough. Therefore, by choosing y = xk in (3.4), we get

0 ≤ Pk(x
∗
k ) ≤ τ−1

k 〈 f ∗
k , xk − x∗

k 〉.
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Denote by x∗
nk a subsequence converging to x∗. From assumption A4-(ii) we get that

0 ≤ lim inf Pk(x
∗
nk ) ≤ lim τ−1

nk 〈 f ∗
nk , xnk − x∗

nk 〉 = 0,

i.e., lim inf Pk(x∗
nk ) → 0. From A2-(ii), it follows that P(x∗) = 0, i.e. x∗ ∈ W. Let us prove

that x∗ is indeed a solution of VVI. First of all, we have already shown that x∗ ∈ D. Let
z ∈ D; from A2-(iii) there exists zk ∈ Vk such that zk → z, and Pk(zk) = 0. From (3.2) and
the assumptions on Pk we get

〈 f ∗
k , zk − x∗

k 〉 ≥ τk Pk(x
∗
k ) ≥ 0.

From A4-(ii), there exists a subsequence { f ∗
mk

} such that f ∗
mk

→ f ∗. It is easy to show, from
A3 and A4-(iii), that f ∗ ∈ F(x∗). Taking k → ∞ in the inequality above, the assertion
easily follows. ��

4 Existence results

In the previous section we focused on conditions entailing existence of solutions of the
approximating problems. Moreover, we found out that any cluster points of a sequence of
solutions provides a solution of the ‘limit’ problem. In order to apply Theorem 3.4, we are
interested in sufficient conditions on the data leading to the existence of cluster points for
any sequence of solutions of the problems {GMVIk}.

Following some literature on this subject (see, for instance, [12]), the first result takes into
account some additional assumptions involving the weakly coercive functions μk and the
scalars σk associated to condition C1.

Proposition 4.1 Let C1 be satisfied for every k, and assume that the next conditions are
fulfilled:

(C2) If vk ∈ Vk and ‖vk‖ → +∞, then lim infk→∞ μk(vk) ≥ σ ′′;
(C3) lim supk→∞ σk ≤ σ ′ < σ ′′.

Then, any sequence of solutions {x∗
k } has a cluster point.

Proof From Theorem 3.4, every solution x∗
k belongs to Vk(μk, σk), therefore μk(x∗

k ) ≤ σk .

Assumptions C2 and C3 gives the assertion. ��
Let us now denote by dH (A, B) the Hausdorff distance between two nonempty sets

A, B ⊂ R
m, defined as follows:

dH (A, B) := max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

,

where d denotes the distance endowed by the Euclidean norm. In particular, if both sets are
bounded, then dH (A, B) ∈ R.

Proposition 4.2 Suppose that the following assumptions hold:

(B) (i) there exists x̃ ∈ ∩kVk such that Pk(x̃) = 0;
(ii) for any {zk}, with zk ⊂ Vk and ‖zk‖ → +∞,

min
q∈P(C∗)

〈G�(zk)q, zk − x̃〉
‖zk − x̃‖ → +∞;
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(iii) set dk(x) = dH (Fk(x), F(x)); if zk ∈ Vk and ‖zk‖ → +∞, then
lim supk dk(zk) ∈ R.

Then, any sequence of solutions {x∗
k } admits a cluster point.

Proof Let us argue by contradiction, by assuming that ‖x∗
k − x̃‖ → +∞. Since x∗

k is a
solution for GMVIk, there exists f ∗

k ∈ Fk(x∗
k ) such that

〈 f ∗
k , y − x∗

k 〉 + τk(Pk(y) − Pk(x
∗
k )) ≥ 0, ∀y ∈ Vk .

Set y = x̃; then, from B-(i), we get, for every k,

〈 f ∗
k , x̃ − x∗

k 〉 ≥ τk Pk(x
∗
k )) ≥ 0.

From the definition of dk in B-(iii), and the closedness of the set F(x) for all x ∈ D, there
exists φk ∈ F(x∗

k ) such that
‖φk − f ∗

k ‖ ≤ dk(x
∗
k ), (4.1)

and

〈φk, x̃ − x∗
k 〉 + 〈 f ∗

k − φk, x̃ − x∗
k 〉 ≥ 0,

implying that
〈φk, x∗

k − x̃〉
‖x∗

k − x̃‖ ≤ 〈 f ∗
k − φk, x̃ − x∗

k 〉
‖x∗

k − x̃‖ . (4.2)

Note that

φk = G(x∗
k )

�qk, for some qk ∈ P(C∗);
in particular, from B-(ii), we have that

〈φk, x∗
k − x̃〉

‖x∗
k − x̃‖ → +∞.

As a matter of fact, from (4.1) we have that

〈 f ∗
k − φk, x̃ − x∗

k 〉
‖x∗

k − x̃‖ ≤ ‖ f ∗
k − φk‖ ≤ dk(x

∗
k ).

Therefore, from (4.2), we get

+∞ = lim sup
k

dk(x
∗
k ),

contradicting the assumption B-(iii). ��
Remark 4.3 In caseC = C∗ = R

m+, conditionB-(ii) reduces to the usual coercivity condition
for the components G j , j = 1, 2, . . . ,m:

〈G j (zk), zk − x̃〉
‖zk − x̃‖ → +∞, ∀ j = 1, 2, . . . ,m.

If C = Clex, where Clex denotes the cone associated to the lexicographic order, the C∗ is
given by

C∗ = {q ∈ R
m : q = (t, 0, . . . , 0), t ≥ 0},
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and P(C∗) = {e1}. Thus, condition B-(ii) reduces to the usual coercivity condition for the
first component G1 of G only:

〈G1(zk), zk − x̃〉
‖zk − x̃‖ → +∞.

Under different conditions, another existence result can be stated in the framework of
C-monotone maps G. Let us first recall that G : R

n ⊆ R
n → L(Rn,Rm) is said to be

C-monotone on D ⊆ R
n if

(G(x ′) − G(x))(x ′ − x) ∈ C, ∀x ′, x ∈ D.

This is equivalent to say that the map x �→ G�(x)q is monotone on D, for every q ∈ P(C∗).
In the sequel, we will suppose that the set D has nonempty interior. Denote by x a point in

int(D). From Lemma 2 in [2] (see also [1]), for any q ∈ P(C∗), there exist positive numbers
rq = rq(x) and cq = cq(x) such that

〈G�(x)q, x − x〉 ≥ rq‖G�(x)q‖ − cq(‖x − x‖ + rq), ∀x ∈ D; (4.3)

in particular, cq = supx∈B(x,rq ) ‖G�(x)q‖ < +∞.

Proposition 4.4 Let x ∈ int(D), and set

r ′ = inf
q∈P(C∗)

rq , r ′′ = sup
q∈P(C∗)

rq , c′ = sup
q∈P(C∗)

cq .

Suppose that A2-(iii) holds, and the following assumptions are satisfied:

(B′) (i) the map G : Rn → L(Rn,Rm) is C-monotone on D;
(ii) for every β ∈ R the set

Lβ(G) :=
{

x ∈ R
n : sup

q∈P(C∗)
‖G�(x)q‖ ≤ β‖x‖

}

is bounded;
(iii) set d ′

k(x) = supa∈Fk (x),b∈F(x) d(a, b); if zk ∈ Vk and ‖zk‖ → +∞, then
lim supk d

′
k(zk) ∈ R;

(iv) r ′ > 0, r ′′, c′ ∈ R.

Then, any sequence of solutions {x∗
k } admits a cluster point.

Proof Let x ∈ D and f ∈ F(x). Then, there exists q ∈ P(C∗) such that f = G�(x)q.

Therefore,

〈 f, x − x〉 ≥ rq‖ f ‖ − cq(‖x − x‖ + rq),

i.e.
rq‖ f ‖ ≤ 〈 f, x − x〉 + cq(‖x − x‖ + rq).

From B′-(iv),
r ′‖ f ‖ ≤ 〈 f, x − x〉 + c′(‖x − x‖ + r ′′). (4.4)

Let now x∗
k be a solution of GMVIk . Then, for some f ∗

k ∈ Fk(x∗
k ),

〈 f ∗
k , y − x∗

k 〉 + τk(Pk(y) − Pk(x
∗
k )) ≥ 0 ∀y ∈ Vk .
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From assumption A2-(iii), there exist vk ∈ Vk , vk → x such that Pk(vk) = 0 for any k.
Therefore, from the previous inequality, taking into account the nonnegativity of Pk , we get

〈 f ∗
k , vk − x∗

k 〉 ≥ 0. (4.5)

From (4.5), for any fk ∈ F(x∗
k ) we have

〈 fk, x∗
k − x〉 = 〈 fk − f ∗

k , x∗
k − x〉 + 〈 f ∗

k , x∗
k − x〉

≤ 〈 fk − f ∗
k , x∗

k − x〉 + 〈 f ∗
k , x∗

k − vk〉 + 〈 f ∗
k , vk − x〉

≤ 〈 fk − f ∗
k , x∗

k − x〉 + 〈 f ∗
k , vk − x〉

≤ d ′
k(x

∗
k )‖x∗

k − x‖ + 〈 f ∗
k , vk − x〉.

From (4.4), setting x = x∗
k , we have

r ′‖ fk‖ ≤ 〈 fk, x∗
k − x〉 + c′(‖x∗

k − x‖ + r ′′),

therefore

r ′‖ fk‖ ≤ d ′
k(x

∗
k )‖x∗

k − x‖ + 〈 f ∗
k − fk, vk − x〉+

+ 〈 fk, vk − x〉 + c′(‖x∗
k − x‖ + r ′′)

≤ (c′ + d ′
k(x

∗
k ))‖x∗

k − x‖ + d ′
k(x

∗
k )‖vk − x‖ + ‖ fk‖‖vk − x‖.

Since vk → x , there exists an integer k′ such that (r ′ − ‖vk − x‖) > r ′/2. Rearranging the
terms we have:

r ′/2‖ fk‖ ≤ (r ′ − ‖vk − x‖)‖ fk‖ ≤ (c′ + d ′
k(x

∗
k ))‖x∗

k − x‖ + d ′
k(x

∗
k )‖vk − x‖

for any k ≥ k′.
Suppose that ‖x∗

k ‖ → +∞. Then, from B′-(iii), the sequence {d ′
k(x

∗
k )} is bounded from

above, and therefore there exists a positive β such that

‖ fk‖ ≤ β‖x∗
k ‖.

In particular, supq∈P(C∗) ‖G�(x∗
k )q‖ ≤ β‖x∗

k ‖, i.e. x∗
k ∈ Lβ(G), contradicting the bound-

edness assumption B′-(ii). ��
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