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Abstract The small-field astrometric point-pattern matching problem is a fundamental prob-
lem in astronomy, that although considered a long time ago still lacks a formal definition. It
can be textually stated as: given two lists of positions of stars, find the common stars between
these lists, taking into account rotation, translation, reflection and scaling operations. It is
expected that there might be missing stars between the lists. In this work, we give the astro-
nomical context, review some heuristic methods adopted in the literature, present distance
matrix formulations for the problem and propose a new algorithm to solve it.
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1 Introduction

One of the most fundamental aims of small-field astrometry is to study the variations in
the time of the relative positions of stars in small field observations of typically some arc
min in length (in astronomical observations, distances are expressed in angular units as they
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represent spherical distances). This study is of great importance because it is from these
relative motions between stars that we are able to infer the distances between stars and the
sun. There are two different motions to consider. One of them, called proper motion, manifests
itself as a linear motion through time, and is intrinsic to the star. In fact, it is the projection
of the space motion of the star in the tangent plane of a unitary sphere centered on the solar
system. The other motion, called parallax, is an apparent effect created from the movement
of the Earth around the Sun. This motion is periodic and correlates strongly with the time of
the year. A very important property of the parallax is that the further the star is from the sun,
the smaller it is. Thus, by measuring this effect, known as the annual parallax of the stars,
it is possible to obtain a purely geometric measurement of the distance between these stars
and the sun, assuming that the orbit of the Earth around the Sun is well-known.

To solve this problem one needs to determine the relative angular distances between
the stars at each observation during the night, and then combine all these measurements
resulting into the most probable distances between the pairs of stars and their associated
error distributions. Then, it is necessary to determine how these angular distances vary in
time. However, first the fundamental problem of matching the stars between all the different
observations performed at a same date as well as between different dates (usually called
epochs) must be solved. Even in cases where the astronomer is not interested in studying the
positions of the stars per se, the identification of the stars among different observations is
necessary in most astronomical studies.

The available methods in the literature to solve this problem are heuristic, unable to guar-
antee a solution for a given precision. Furthermore, they are either based in some form of
triangulation or constrained to two dimensions, without an evident efficient extension to
higher dimensions. Usually, a method based on triangle matching strategies is adopted [2,9],
with O (%) to O (*?) complexity, where n is the number of stars. A short overview of
some classic strategies for solving this problem can be found in [7]. That paper presents
an alternative method to triangle matching that is based on coordinate couples, their dis-
tances and angles relative to an arbitrary axis, with O (n%) complexity. However, because this
method relies on sorting angles, its applicability to higher dimensions is not clear. Further
works on this problem adopt variations of the triangle matching method, simplifying it, and
thus improving its robustness [11], its execution time [10] (optimistic pattern matching), or
enabling its application to wide-field imaging [8] and to the identification of astronomical
images with incorrect or missing metadata via a precomputed geometric hashing of the sky
[4]. However, to the best of our knowledge, this problem was not yet formally stated.

We present a distance matrix formulation [5] for the astrometric point-pattern matching
problem and propose a new way to solve it.

2 The problem

Before formally describing the problem, let us define the following sets for some integer
s > 0:

IS =1{1,....s),
jS:{(u,u):ueIS},
js . XIX_jS.

Given a set of points p; = (x;, yi) € IR2, i e I", for some integer n > 0, the associated
distance matrix D is given by:
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D j=llpi — pjlly.i,jel".

Given two lists of stars taken from two different images, we wish to find which stars in one
list correspond to the ones in another. One crucial assumption that is used in our approach is
that one of the lists is contained in the other. It is worth mentioning that the input lists may
have the same size. Although it is possible to extend the results here to the general case of
mutual containment of two given lists, such extension using the approach presented in this
paper needs considerable changes in order to be efficient. Throughout this paper, we will use
the term point to denote a star.

Problem 1 Given two sets A = {p; € IR :i € I} and B = {g; € IR? : i € I""}, such that
m < n, we wish to find an injective function f : I"" — I" such that there exists a sequence
of k operations (rotations and scaling) M, j € 1 k where

pi= 1 Mjgraier” ri et

jelk

One can define an inner product on IR"*" by setting
n
(A,B)=Tr(AB') =) Ai;Bi,.
ij

This defines the Frobenius norm on IR"*" by setting ||A|| = (A, A).

If D is a distance matrix, we will say that ﬁ is as a normalized distance matrix, where
II-|l is the Frobenius norm. All matrix norms used in this article are to be understood as the
Frobenius norm.

Since normalized distance matrices are invariant under rotations and scaling operations
(see [6]), our approach to solve Problem 1 will be finding a subset of /" whose corresponding
normalized distance matrix is equal (within some specified tolerance) to the distance matrix
associated with I, formally described as follows:

Problem 2 Given two distance matrices D! € IR™*™ and D? € IR™ ", with m < n, and a
positive tolerance € € IR, find an injective function f : I"™ — " such that

1 2
Dyy D). 1o

DY HDz

<e
liefamy.jefam) H

, Yx,y)elI™ xI™, (D

where D[zi eFUm), jefam is the submatrix of D? formed by the rows and columns with indices

in £(I™).

Notice that Problems 1 and 2 are not equivalent. A solution for Problem 1 is also a solution
for Problem 2, but the converse is clearly not true, because of the error (tolerance) allowed
in Relation (1).

Given a distance matrix D, we will denote by D; the jth row of D.

3 The algorithm

Since we want to find an injective function f : I"™ — [I" that satisfies (1), we cannot use
such relation, unless we test it for every injective function possible, which would lead to an
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algorithm of factorial complexity. Instead, for each pair (x, x + 1), x € I"™,anda$ > 0, we
find a pair (X, u), X, u € I", such that

D! D? .
‘1” e @)
Dx,x—H D)?,u

Vy e I, Vy € I, for some I C I" with || = |I™]. Note that [ is introduced existentially
here. We shall show how to construct it using Algorithm 2 presented later in this section.
So, whenever a pair (%, u) satisfies the above relation, an injective function f such that
f(x) =%, f(x+1) =uand f(y) = y is a possible solution for Problem 2. Since more than
one injective function is possible, we will use a bipartite graph to represent all the injective
functions that can be constructed from Relation (2). Such graph G = (V, E) can be defined
as:

VG =1"Ul, 3)
.| D! D?
E(g):{(a,b):ael’",bel,‘ e 55}. )
Dx,X+1 D)?,u
The set of edges of G can be described as follows:
_| . D?
gj:{b:bel, = 2 53}. Q)
Dx,x-H Di.u

So, if a graph G is such that for each j € V(G), G; is built using Relation (5), then
s€gG; < (i,s) € EG).

Thus, an injective function f will correspond to a perfect matching of G. For a graph
G constructed as described by Relations (3, 4), we denote by M*(G) the set of all perfect
matchings of G.

Relation (2) is easier to check, as the whole submatrix D;.( m) of D? is not taken into

account, as in Relation (1), which requires the value || D2 (rmy Il

If we are to use Relation (2), we need to find the “correct” value of § from the value of ¢,
since the input value for our algorithm will be €, not §. Therefore, we must find bounds on §¢
(where § is obtained as a function of €) in order to guarantee that if Relation (2) is satisfied
for §, then Relation (1) will be satisfied for € (without loss of generality, we will consider
matrices D!, D? to be of equal dimension).

Given a distance matrix D € IR™>™, let us define the following quantity:

up = min{D;; : (i, j) € T"}.
Lemma 1 Given two distance matrices D', D* € IR™*™, define

1 2
« 1D Nmax 1D [lmax
H’Dl D2 = min ) .
' K pt K p2

If 8 > 0 is such that

D}, D}
— — —=|<é, V(rs)eJ", ©)
‘DJ.U D},
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for some (u,v) € J™, then

1
D r,s

DY

2
r,s

ID2|

<o (141p ). Vo) e T 7

Proof Since (7) must be valid for V(r, s) € J™, we will first check it forr = u and s = v.

l 2
‘ D;, 1D B ID*II|| Du,v Diy
IID‘II D2 D}, [DY|| | D2
| , HD I, 102 | 5
_ ”D || “D ” ““ Du, Duv
DL, D2, \lipty , o (1D ID2
1 D2
u,v u,v
2
Z(x.y)ej'” <D£>) _ Z(x.y)GJ’" (D
B (p}.) (2.)° ‘
- DY 1D2] D1 D2
b+ [ || I D3|
L2 5 \2| ( Puv Do ’
L yegn (Dx,y) L yegn (D ,y) DT D]
= 2 B 1 2
Dl D2 DHI DIA,U
(Do) (i, ot D
Diy Diy ’ L )\2 5 \2
1D D7 (Dx,y) (Dx y)
st ) ; >
D}, , DI, D! D2
DT + D3 (x,y)egm ( u v) ( u v)
5 1 2 1 2
B (IID‘H IID2H) Z Di, Di,||Di D?
u L) (D ) Dl]tl) DI%U Dl]ll) DI%U
Jm i ) >
||Dlu + oy | e
Using (6):
2
(Dllt LU thtv) l 2
DY) 107 D! D?_
AR e 5
Dy, o Ph, | o= Dy Dy
DT D7
oy, 02,
DT D2 IDY D2
- 1 2 8 1 + 2
Duv + DML Du,U Du,v
DT D2
D), D2,
TOU D ||D1|| |D2||
=34
llL MU
IID‘H
1 2
DM.U Du,v < (8)
~ DY D2~
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1
Du v

Letn; =

and =5 D, ‘” Then

2
Du,v
IIDlll I D]

[n —m2| =

Thus, using (9) and (8):
[lm2l = Imll < Im —n2l =8 = Iml < In2| +3.
Therefore, V(r, s) € J™ — {(u, v)}:

2 1 2 1 2
D},S _ DV,S Dr,s _ D _ 7]1 DV,S _772 Dr,s
IDY D] | Phs DE«» D}, D;,
n n
Using (10) in (11):
D ‘(I I+6)D1 D2
: m
DY IIDZII D, , D,
D, D;y | Di,
=|m-—" M|+
Dy, Di,|  Di,
1 2
_ D _ Dr,s +8DI},S
=m|pr " b2 DI
u,v u,v u,v
< DPuv g 51D e <5<1+ ||Dl||max>
- ||D1||max M pt - M pt
Similar to (10) we can bound n,:
2| < Im| + 8.

Using (13) and following the same reasoning as before we can write
D!, D},

D2
: s 5<1+ l ”max).
IDY D Hp2

From (12) and (14) we can deduct the following bound:

D!, D}

r,s

1D 1D

HMpi Hp2

Since (1 + 14}, ) = 1, bound (15) is superior to bound (8) and the result follows.

3.1 Understanding the algorithm

D! D?
3(1+ {II ||max, [ ”max}) = 501+ 10 o).

(C))

(10)

(an

12)

(13)

(14)

(15)

Since Relation (2) is not sufficient to find a solution to Problem 2, we need to try several
values of €. Therefore, Algorithm 1 consists of trying different values of € [Loop (4-7)] in
order to find a small enough tolerance for which Relation (2) holds. At each iteration of the
loop, if no injective function is found (Line 4), a higher value of € is considered (Line 6)
and Algorithm 2 is called (Line 5). Algorithm 2 consists of eliminating impossible injective
functions. We refer to each pass of the loop defined by Lines 5-33 as iterations of Algorithm 2.
For each value of € considered, the bound on delta in Line 3 is taken from Lemma 1. We
have shown that f is a solution to Problem 2 if there exists an injective function such that
Relation (2) holds. Thus, for every row k in D!, we need to find a row r in D? such that
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Relation (2) holds. Since r and s are candidates, Drz’s will be used to normalize row r (Line
9). For every row considered in Line 5, we try to find a row r and an element Drz’s (Line 8)
such that Relation (2) holds for x = k, f(x) = r and f(x 4+ 1) = s. Thus, a graph G that
contains all possible bijections such that f(k) = r and f(k + 1) = s is constructed (Lines
9-12) using Relations (3, 4).

If there is at least one possible injective function that can be extracted from the graph
(perfect matching) (Line 13), then the current graph G will be considered (Lines 14-22).

Line 16 checks the consistency of the current injective function with the previously found
ones, just after the first iteration (Line 14), thereby removing the inconsistent mappings (by
removing edges) from the current graph . If the first iteration is being executed, then there
are no graphs stored, so the current graph is simply stored (Line 22).

If no pair (r, s) that satisfies Relation (2) (Line 26) can be found, then there is no f for
which Relation (2) holds, i.e., the problem cannot be solved for the current value of § (Line
27). If there is a unique pair (r, s) that satisfies Relation (2) (Line 30), then we no longer
need to compare any more rows of matrix D' and loop 5 does not need to be executed (Line
31).

Lines 34-39 check if an injective function can be extracted from the graphs stored in F*.
Algorithm 3 checks whether a graph G contains a perfect matching f for which Relation (2)
is satisfied.

In the following lemma, we use the expressions perfect matching and bijective function
interchangeably, since it is easy to see that a bijective function induces a perfect matching
and vice versa.

Lemma 2 Given a tolerance € > 0, Algorithm 2 returns the solution for Problem 2.

Proof We will prove that Algorithm 2 returns a bijection f if and only if f is a solution
to Problem 2. We will assume that, for such € and each pair (k,k + 1), k € 7"=1 there
exists a pair (r,s) € J™ and § (computed from € using Lemma 1) such that Relation
(6) is valid. Otherwise, Algorithm 2 is called with another € as parameter (Algorithm 1).
Sufficiency is trivial, i.e., if Algorithm 2 returns a bijection f, then f solves Problem 2, since
Algorithm 3 checks whether a given assignment (bijection) satisfies Relation (1). In order to
prove necessity, given a tolerance factor € > 0, 3f and & such that Relation (6) is valid for
(k,k+ 1) and (f(k), f(k + 1)), Vk € Z"~!. We need to prove that a bijective function f
(a perfect matching) can be extracted from a graph g € F* in Line 34 in the last iteration of
loop Lines 5-33. We will prove the result by contradiction. Let k be the smallest value of k
such that f ¢ F* in loop between Lines 5-33.

In order to simplify the proof, if a bijective function f (or a perfect matching) can be
extracted from a graph g € F*, we will say that f € F*, since the set of edges in a matching
induces a function and can be thought of as graph and all graphs stored in F* have at least
one perfect matching (Line 17).

Clearly, k> 1, since if k= 1, f € G (Lines 10-12), then f € F (Line 22) and, therefore,
f € F* (Line 29). Since f ¢ F at the end of this iteration, we must have that f ¢ F for
every iteration of loop between Lines 15-20. That is only possible if f ¢ G NG, VG € F*
(Line 16). Because of the choice of , f € G, for some G € F*. From our assumption,
for the given value of e, there exists (r, s) and é (from Lemma 1) such that Relation (6) is
valid for (k, k + 1) and (f(k), f(k + 1)), where f(lg) = r and f(lg +1)=s.So f € G.
Thus f € G NG. Therefore f € F (Line 16) and f € F (Line 18), implying that f € F*,
contradicting our hypothesis, thereby proving the result. O
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Algorithm 1 FindAssignment

: Input: two distance matrices D! € R™*M and D? € R ", with m < n, the desired tolerance €.
: Qutput: an injective function f : I™ — I" as described in Problem 2 or 4, if there is no solution.
f <0

: while f = ¢ do

f <~ FindAssignment(Dl ,D2,e);

€ «— € %2;

: end while

: return f;

Algorithm 2

1: Input: two distance matrices D! € R™*™M and D? € IR™ ", with m < n and the desired tolerance €.
2: Qutput: an injective function f : I — I" as described in Problem 2 or #, if there is no solution.
1
3: 8= —5—¢;
1“’“21 2
4: F* <~ @,
5: fork € 1’"‘1l do

Dki . m
a <~ ———,Viel"

6
kk+1

7. F <0
8: for (r,s) € J" do
9: D%,[ Vi In:

. Bi < D%s’ Lel’;
10: Gk < {rk
11: Ok+1 < {sh
12: Viel™ —{kk+1},G < {t:|B —a;| <8, tel});
13: if |M*(G)| > 1 then
14: if k > 1 then
15: for G € 7* do
16: F«<gng;
17: if |M*(F)| > 1 then
18: F «— FU ﬁ;
19: end if
20: end for
21: else
22: F «— FUG;
23: end if
24: end if
25:  end for
26: if F = () then
27: return (;
28:  endif
29:  F* <« F;
30: if |F*| = 1 then
31: break;
32:  endif

33: end for

34: for G € F* do _
35: f < ChecMSAvignment(Dl, D2, Gg,e);
36: if f # () then

37: return f;

38:  endif

39: end for

40: return ¢;
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Algorithm 3 CheckAssignment

1: Input: two distance matrices D! € R™*M and D2 € R"¥", with m < n, the desired tolerance € and a
graph G. ~

2: Output: an injective function f or ¢, if there is no such function.

3: for extract a function f € C; do

4. V <« true;

5 for (x,y) € J" do
o Dby Di s
6: if | HD‘INII - D2 : i | > € then
fam
7 V < false;
8: break;
9: end if
10:  end for
11:  if V then
12: return f;
13:  endif
14: end for
15: return ¢;

4 An example and computational results
4.1 An example
In this subsection, we will present an example in order to illustrate how Algorithm 1 works. For

the two lists of points in IR2, {(2, 1), (1, 3), (3, %)} and {(7,7),(5,1),4,7),(3,1),(3,3)},
we obtain the following distance matrices (€ = 1075):

0 f oAl
p'=[v5 0 3
J5 5
7 2 0
and
0 2J10 3 2J/13 42
210 0 37 2 2J2
D? = 3 V3 0 V37T V17|,
24/13 2 V37 0 2
42 22 1T 2 0
where I = {1,2,3}and I" = {1, 2, 3, 4, 5}.
1 — \/g 1 — 5 HDIH)nax — 3 — 5 - j—
Since pup1 = %5 and [|[D' e = 3, St = i = 7 Since pwp2 = 2 and
2 _ 1D mar — 2/13 _ — {3 _ 5
D lmax = 2+/13, =T = +/13. Therefore ,u’l‘), , = mln{\/g,«/13} =5
: —10-5 1 _ 1 5_ 5 5
Sincee = 107,48 = E 026— l+[10 5+\[10
i _ m—1 _ _ 0 _ _ 5
Initially, we setk = 1 (k € 1 = {1,2}). Thus, o1 = Nl 0,0y = 5= 1 and
3 1
o3 = ﬁ = 5.

We will now try different pairs (r, s) (see loop in Line 8) that belong to J", i.e

(r,s) € {(1,2),(1,3), (1,4, (1,5), (2, 1), (2,3), (2,4, (2,5), 3, D),
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(3,2),(3,4),(3,5),4,1),4,2),4,3),(4,5), (5, 1),(5,2), (5,3), (5, H}.

_ _ _ 0 _ _ 210 _ _ 3
Forr_lands—2,wehavethat,81—zm—O,ﬂz—zm—l,ﬂ3_2m,
_2J/13 _ /13 _ 42 2
Pa=5y5=y1oadfs=575= 7

From the choice of r, s, we have that G; = {1}, G» = {2} and previous calculations imply
that

11
|/31—“3|=§>E>5’

11
|/32_013|:§>E>37
B—asl = —— — 1» Lo
— o = |l — | > —= > o0,
FTEWITL 0 20 100

\/ﬁ L S
|Ba — 3] = | E_§|>E> s
2 1 1
|85 — a3| = |ﬁ— §| > E

Thus, Gz = ¥ and vertex 3 is not connected to any other vertex in G, implying that G does
not have a perfect matching. Thus, | M*(G)| = 0 and we can infer that for this choice of r, s
there is no injective function that solves the problem.

The same happens for » = 1,2,3,4and s = 1,2, 3,4. However, forr = S5and s = 1,
we can find the following injective function:

fHh=5 =1, fB =2

We have found a solution for & = 1. Therefore, only one iteration of Algorithm 2 was
required.

4.2 Computational results

Our experiments were performed both with synthetic and real data. We present first tests
performed on randomly generated instances. For each combination of parameters, we ran 50
instances. For these random instances, all results are the average over these 50 instances.

We performed several experiments for different values of m, n and for points in IR and
IR?. We generated 8 test sets:

— SetlA: dimension =2, n = 100, m = (l)‘m)n, where x = 5, 10, ..., 50;
— SetlB: dimension =2, n = 200, m = (l"m)n, where x = 5, 10, ..., 50;
— SetlIC: dimension =2, n = 50, 55, ...,200, m = 0.1 % n;
— SetlD: dimension =2, n = 50,55, ...,200,m = 0.5 % n;
— Set2A: dimension =3, n = 100, m = (lxm)n, where x = 5, 10, ..., 50;
— Set2B: dimension = 3, n = 200, m = (lxm)n, where x = 5, 10, ..., 50;
— Set2C: dimension =3, n = 50, 55, ...,200, m = 0.1 x n;
— Set2D: dimension =3, n = 50,55, ...,200, m = 0.5 % n.

In order to consider different types of experiments, we need additional notation. We will
refer to sets Set/A, SetlB, Set]1C and Set1D as sets SetlX. Similarly, will refer to sets Ser2A,
Set2B, Set2C and Set2D as sets Ser2X. We will also refer to sets Set/A and Ser2A as SetXA.
Similarly, we will use the labels SerXB, SetXC and SetXD for all other pairs.
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CPU time (Set1A) CPU time (Set2A)

35
30
30
25
25

N
1)

20

runtime (s)

runtime (s)

15

10
10

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
m m

Fig. 1 Runtime as a function of m in IR? and R3

Sets Set1X are experiments in which the dimension of the points is 2. For sets Ser2X, the
dimension of the points is 3.

Sets SetXA are experiments in which 7 is fixed (n = 100) and m (the size of the smaller
list of points) varies. For these sets, we show two graphs: runtime as a function of n and
runtime as a function of the ratio n/m.

Sets SetXB are experiments in which 7 is fixed (n = 200) and m (the size of the smaller
list of points) varies. For these sets, we show two graphs: runtime as a function of » and
runtime as a function of the ratio n/m.

Sets SetXC are experiments in which n varies and the m is obtained from n such that the
ratio is constant - = 10. For these sets, we show two graphs: runtime as a function of n.

Sets SetXD are experiments in which 7 varies and the m is obtained from n such that the
ratio is constant ;- = 2. For these sets, we show two graphs: runtime as a function of 7.

In all experiments, Algorithm 1 found the solution with € = 10~>, which was the initial
€ used, which means that Algorithm 2 was called only once from Algorithm 1.

Figure 1 shows the runtime as a function of m for sets Set/A and Set2A, respectively.
Figure 2 shows the runtime as a function of m for sets Set/B and Set2B, respectively. These
experiments show that the runtime increases linearly with m for the different values of n
considered.

Figure 3 shows the runtime as a function of the ratio % for sets Set/A and Set2A, respec-
tively. Figure 4 shows the runtime as a function of the ratio ;- for sets Set/B and Ser2B,
respectively. These experiments show that the runtime decreases with - for the different
values of the ratio considered.

Figures 5 and 6 show the runtime for experiments SetXC and SetXD, respectively. We
can see that the runtime increases as n increases. For these experiments, the runtime can be
bounded by a fourth degree polynomial.

Nearly all experiments for sets SezXA and SetXB finished in one or two iterations (see
Figs. 7, 8,9, 10). A significant number of instances from sets SetXC and SetXD required two
or more iterations. The number of iterations required by these experiments can be seen on
Figs. 11 and 12, respectively. The term iteration here is applied to denote the same as defined
in Sect. 3.1.

We will now present experiments done with real data. We ran our algorithm using data of
aregion of the sky containing a star Groombridge 34 (see [1]), around which there is one of
the closest exoplanets found (see [3]).
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CPU time (Set1B) CPU time (Set2B)
700 700
600 600
500 500
) O
Q [
E 400 g 400
B €
2 300 2 300
200 200
100 100
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Fig. 4 Runtime as a function of the ratio % in IR? and IR3

12 sets were run using the same reference catalogue with 202 stars, i.e., they differ only on
the observation data. Table 1 shows the results. The columns catalogue and observed show
the value of n and m for each set, respectively.

For both sets, Algorithm 1 found the solution with € = 107>, which was also the initial
€ used and only one iteration was required.
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5 Conclusion

Besides providing a clear and formal definition of the small-field astrometric point-pattern
matching problem, we developed a new algorithm to solve it. Unlike the methods developed
in the literature, most of which based on triangulation (see [2, 10, 11]), our method guarantees
to find an injective function with a given precision, if such function exists. Additionally, our
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method can be used to solve problems in any dimension, unlike the methods we found to
solve this problem in the literature (see [2,7,10,11]).

Our algorithm solved all randomly generated instances very efficiently, both for points
in IR? and IR3, since it required an average of less than two iterations. The growth of the
number of operations executed was inferior to a polynomial of fourth degree, pointing to a
fairly low complexity of our algorithm in practice. Moreover, our approach was tested in a
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Table 1 Groombridge 34

Set Runtime (s) Catalogue Observed
Groombridge34-1 159.8 202 22
Groombridge34-2 124.7 202 16
Groombridge34-3 154.0 202 21
Groombridge34-4 182.0 202 24
Groombridge34-5 190.3 202 26
Groombridge34-6 221.8 202 30
Groombridge34-7 148.0 202 21
Groombridge34-8 165.5 202 23
Groombridge34-9 156.7 202 22
Groombridge34-10 134.5 202 18
Groombridge34-11 235.5 202 38
Groombridge34-12 785.0 202 128

real instance (see [1]). We considered a catalogue with 202 stars for a number of observed
data sets. Our algorithm solved these instances with a tolerance of € = 1072,
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Our approach is very flexible, allowing for the incorporation of observation errors that
will be considered, including larger instances, in a future work. Furthermore, our approach
is independent of the dimension of the space in which the points lie.

Another possible extension of our work would be to find the injective function over the
largest domain that solves Problem 2. As an application of this extension, one could find points
that were not in the original list. As regards celestial bodies, one could use this approach to
detect new objects in the sky, as well as objects that are moving with respect to the background
stars.
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