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Abstract The convergence rate of a rectangular partition based algorithm is considered. A
hyper-rectangle for the subdivision is selected at each step according to a criterion rooted in
the statistical models based theory of global optimization; only the objective function values
are used to compute the criterion of selection. The convergence rate is analyzed assuming
that the objective functions are twice- continuously differentiable and defined on the unit
cube in d-dimensional Euclidean space. An asymptotic bound on the convergence rate is
established. The results of numerical experiments are included.

Keywords Global optimization · Convergence rate · Rectangular partition · Statistical
models for global optimization · Bayesian approach · P-algorithm

1 Introduction

Problems of global optimization of continuousmultimodal functions are attacked using deter-
ministic [1–7], stochastic [8–12], and heuristic approaches [13–15]. A promising research
direction is the hybridization of the advantages of some of the successful methods [16,17].
Although the proposed algorithms are thoughtfully investigated there remains an important
issue that has received relatively little attention, namely the convergence rate problem. In
the present paper we focus on this problem continuing the research in [18–21] where the
convergence rate was established for algorithms rooted in the approach based on statistical
models of global optimization. The convergence rate of global optimization algorithms in
a stochastic setting has been considered for certain Gaussian probabilities; see for example
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[19]. The general question of average-case tractability of multivariate global optimization is
mentioned (Open Problem 87) in [22].

Weconsider the problemof approximating the globalminimum f ∗ of a twice-continuously
differentiable function f defined on the d-dimensional unit cube A = [0, 1]d , for d ≥ 2.
We assume that the global minimizer, denoted by x∗, is unique and lies in the interior of the
cube. While we assume differentiability, we are interested in algorithms that only evaluate
the function and not derivatives. Our interest centers on how the number of function values
required to obtain a given quality approximation grows with the dimension of the domain.

The algorithm presented here is similar to a one-dimensional algorithm presented in [20]
and a two-dimensional algorithm based on Delaunay triangulations presented in [21]. Those
papers presented algorithms with the property that for large enough N (depending on f ),
the residual error (difference between the smallest function value observed and the global
minimum) after N function evaluations is at most

c1 exp(− c2
√
N )

for c1, c2 depending on dimension (1 or 2) and f . While the algorithm presented in [21] was
based on a Delaunay triangulation of the domain, the algorithm considered in this paper is
based on a rectangular decomposition. Rectangular decompositions have been employed in
previous studies of global optimization, for example in [4,23–25]. The rectangular partition
of the feasible region is inherent also for the interval arithmetic-based global optimization
algorithms, see e.g. [26]. One of the advantages of the algorithms using rectangular partition
of the feasible region is their suitability for parallelization; however the investigation of
parallel versions of the algorithm proposed here is postponed for further research. For a
discussion of the alternative simplicial partition of the feasible region in the development of
global optimization algorithms we refer to [27].

The algorithm in [21] works for arbitrary domains, but the error bound, which required
a certain quality triangulation, could only be proved for bivariate functions. In the present
paper we are able to prove an asymptotic error bound for arbitrary dimension. Our main
result is that eventually the error is at most

c1( f, d) exp
(
− c2( f, d)

√
N

)
,

where c2( f, d) decreases exponentially in dimension d . Recall that we assume that f has
continuous partial derivatives up to order 2, and that the global minimizer is unique and is in
the interior of the domain.

In the worst-case setting any nonadaptive optimization algorithm has an error of order at
least N− 2/d . It is known that for a convex and symmetric function class such as C2([0, 1]d)
adaptive algorithms are essentially no more powerful than nonadaptive algorithms for linear
problems such as function approximation with error measured using the L∞ norm ([28]).
Global optimization is as difficult as L∞ approximation (see Theorem 18.24 in [22]). There-
fore, N− 2/d is an optimal worst-case error bound for optimization on C2([0, 1]d). To obtain
an error of at most ε, we then require on the order of (1/ε)d/2 function values. For the algo-
rithm proposed in this paper, we consider the asymptotic decay of the error, showing that
for small enough ε on the order of dd+3 log(1/ε)2 function values suffice. Because of the
asymptotic setting, this does not contradict the worst-case results mentioned above.

With the algorithm defined in this paper, the error converges to zero for a much broader
class of functions than the one we consider. For example, the error converges to zero for any
continuous function defined on [0, 1]d , though it could be difficult to characterize the rate of
convergence for such a broad class.
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At the present stage of investigation we have not focused on the details of efficient soft-
ware development, and have tested a rather simple implementation (without sophisticated data
structures) of the algorithm with well known test functions. Our initial guess was that Delau-
nay triangulation-based algorithm would be considerably more efficient than the algorithm
proposed in this paper. This guess was based on the observation that hyper-rectangles have
more volume far from the vertices than simplexes. Also, in our Delaunay-based algorithm,
each step placed a single function evaluation in a simplex,while subdividing a hyper-rectangle
takes a number of evaluations that grows exponentially with dimension. However, at least
for the low dimensional problems in our experiments, this guess was not confirmed. The
results are presented in the last section of the paper where the testing results of the pro-
posed algorithm and the algorithm based on Delaunay triangulation [21] are presented for
comparison.

2 The algorithm

The algorithm operates by decomposing [0, 1]d into hyper-rectangles as follows. Given a
current decomposition, choose one of the hyper-rectangles (according to the maximal value
of a criterion to be defined below) and bisect it along the longest axis by evaluating the
function at up to 2d−1 midpoints of the longest hyper-rectangle edges (some of the midpoints
may have been evaluated in previous decompositions).

The criterion of choice of a rectangle is rooted in definition of the P-algorithm described
in detail in [29]. The P-algorithm chooses the point for the current computing the an objective
function value according to the criterion of maximum of improvement probability

max
x∈A

P{ξ(x) ≤ y0N − ε|ξ(xi ) = yi , i = 1, . . . , N },

where ξ(x) is a Gaussian random field accepted as a statistical model of objective func-
tions, and yi values of the objective function computed at previous iterations, and y0N =
mini=1,...,N yi , ε > 0. The maximization of the improvement probability can be simplified
because of the equality

argmaxx∈A P{ξ(x) ≤ y0N − ε|ξ(xi ) = yi , i = 1, . . . , N }
= argmaxx∈A

y0N − ε − μ(x |(xi , yi ), i = 1, . . . , N )

σ (x |(xi , yi ), i = 1, . . . , N )
, (1)

where μ(x |(xi , yi ), i = 1, . . . , N ) and σ 2(x |(xi , yi ), i = 1, . . . , N ) denote conditional
mean and variance correspondingly. The criterion for the selection of a rectangle by the
algorithm considered in the present paper is a modification of (1) where conditional mean
and variance are replaced by the relevant parameters of the rectangle, and ε is replaced by a
parameter g(·)which is defined below; its form of the dependence on the number of iteration
is determined aiming at fast asymptotic convergence of the algorithm,

Suppose that the algorithm has evaluated f at N points. Let s(N ) denote the number of
hyper-rectangles in our partition. Each hyper-rectangle subdivision (iteration) requires up to
2d−1 function evaluations; let us note that at the current iteration some function values can be
known since computed at previous subdivisions. Therefore, the following inequality is valid

s(N ) ≥ N

2d−1 . (2)
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Wenext define some constants and functions that are used in the definition of the algorithm.
Define

q ≡ 3 · 22/3e−1

2 log(2)
≈ 1.27, λ ≡ (qd2/4)d/2,

and set

g(x) ≡ (λx log(1/x))2/d ,

for 0 < x ≤ 1/2 and g(1) = qd2/4. Note that g is increasing and g(x) ↓ 0 as x ↓ 0.
It will be convenient to index quantities to be defined by the iteration number of the

algorithm, which we denote by n, instead of the number of function evaluations, N , which
is generally larger. Later we will also describe the error bound in terms of the number of
function evaluations N .

After n iterations of the algorithm, let Mn = min1≤i≤n f (xi ) and denote the error by
Δn = Mn − f (x∗). Define the function Ln : [0, 1]d → R as follows. In the interior of
hyper-rectangle R, Ln coincides with the multilinear interpolant of the function values at the
vertices of R. On the boundaries of hyper-rectangles set Ln ≡ Mn , so that Mn is equal to
the global minimum of Ln . Let vn denote the smallest volume of a hyper-rectangle after n
iterations.

Our algorithm will assign a numerical value to each hyper-rectangle in the subdivision.
After n iterations of the algorithm, for each hyper-rectangle Ri , 1 ≤ i ≤ n, set

ρn
i ≡

∫

Ri

ds

(Ln(s) − Mn + g(vn))d/2 , (3)

and

ρn
i ≡ |Ri |(

inf t∈int (Ri ) Ln(t) − Mn + g(vn)
)d/2 . (4)

The criteria (3) and (4) are analogues of reciprocal (1) with opposite sign where g(vn) is
a generalisation of ε. Since the hyper-rectangle boundaries have measure zero, the way we
defined Ln on the boundaries is immaterial for the values of the ρn

i . Note that the inf in the
denominator of (4) is equal to the minimum of f at the vertices of the hyper-rectangle.

If we are about to subdivide the smallest hyper-rectangle, then

ρn
i ≤ ρn

i ≤ |Ri |
g(vn)d/2 = vn

λvn log(1/vn)
= 1

λ log(1/vn)
≤ 1

λ log(n)
, (5)

with the last inequality following from the fact that the smallest hyper-rectangle in the sub-
division has volume vn ≤ 1/n.

A more formal description of the algorithm follows. In the description, N is the total
number of function evaluations to make, i is the current number of hyper-rectangles, and j
is the number of function evaluations that have been made. Let v, the volume of the smallest
hyper-rectangle, take initial value 1 and let M , the minimum of the observed function values,
take initial value the minimum of the function values at the vertices of [0, 1]d .

The algorithm comprises the following steps.

1. We start with the hyper-rectangle [0, 1]d and with the function values at all 2d vertices.
Set i , the number of hyper-rectangles, to 1 and set j , the number of function evaluations,
to 2d .
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2. For each hyper-rectangle Rk in the current collection {R1, R2, . . . , Ri }, compute ρi
k ,

keeping track of the rectangle with the lowest index γ that has the maximal value of ρi
γ .

3. From the hyper-rectangle Rγ with maximal value ρn
γ , form two new hyper-rectangles as

follows. Suppose that

Rγ = [a1, b1] × [a2, b2] × · · · × [ad , bd ],
and that j is the smallest index with b j − a j ≥ bi − ai for 1 ≤ i ≤ d . The two new
hyper-rectangles are

R′
γ ≡ [a1, b1] × · · · × [a j , (a j + b j )/2] × · · · × [ad , bd ]

and

R′′
γ ≡ [a1, b1] × · · · × [(a j + b j )/2, b j ] × · · · × [ad , bd ].

Evaluate f at the (at most) 2d−1 points
(
c1, . . . ,

a j + b j

2
, . . . , cd

)
, ci ∈ {ai , bi }, 1 ≤ i ≤ d, i = j,

which have not been evaluated previously.
If

∣∣Rγ

∣∣ = v, then set v ← v/2, and if the smallest of the new function values is less than
the previously observed minimum M , then set M to that new smallest value. Update the
number of hyper-rectangles i ← i + 1 and increment j by the number of new function
evaluations.

4. If j < N , return to step 2.

Typical subdivisions for the two-dimensional case are depicted in Fig. 1 in Sect. 5. In
the graphs, each vertex of the mesh corresponds to a point where the function has been
evaluated. Each hyper-rectangle has been evaluated at its four vertices, as well as possibly
other points on the perimeter. The function Ln agrees on the interior of a hyper-rectangle
with the multilinear interpolation of the four vertices, disregarding additional vertices that
may lie on the perimeter. The aspect ratio of each hyper-rectangle is either 1 or 2.

Let F̂ ⊂ C2
([0, 1]d) denote the set of functions that have a unique global minimizer

x∗ ∈]0, 1[d . Our error bound will hold for functions in F̂ . It is essential for our result that the
function has only a finite number of isolated global minimizers; the uniqueness assumption
is to simplify the presentation.

Denote the matrix of second-order partial derivatives at the minimizer by D2 f (x∗),
assumed positive definite.

The error bound will depend on the regularity of the function as measured by a seminorm
that we now define. For a compact set K⊂ [0, 1]d and f ∈ C2(K ), define the seminorm

∥∥D2 f
∥∥∞,K ≡ sup

x∈K
sup

u1,u2∈Rd

‖ui‖=1

∣∣Du1Du2 f (x)
∣∣ ,

where Dy f is the directional derivative of f in the direction y. This is a measure of the
maximum size of the second derivative of f over K .

Our main result on the convergence rate of the error for this algorithm follows. Let
note, that the convergence of the original version of the P-algorithm for continuous objective
functions we refer to ([29]) where the improvement threshold ε, analogous to g(·) in (3), (4),
can be any positive constant. With such a weaker assumption, however, the convergence rate
remains not known.
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Theorem 1 Suppose that f ∈ F̂ . There is a number n0( f ) such that for n ≥ n0( f ), the
residual error after n iterations of the algorithm satisfies

Δn( f ) ≡ min
1≤i≤n

f (xi ) − f (x∗) ≤ 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(−√
nβ( f, d)

)
,

where

β( f, d) =
(
2
√

π
(
det(D2 f (x∗))

)1/2
9ed(d+3)/2(πeq)d/2

exp

(
− 1

2
− 16

q

))1/2

.

The number n0( f ) after which the bound applies will be the maximum of several other
ni ( f )’s that will be defined in the proof of the theorem. We note here that n0( f ) depends
(exponentially) on the value of the seminorm

∥∥D2 f
∥∥∞,[0,1]d .

Note that the limiting error decreases when the determinant of the second derivative at the
minimizer increases; a larger second derivative allows the search effort to concentrate more
around the minimizer. The convergence rate in terms of the number of function evaluations
n is quite fast, but the term β( f, d) decreases exponentially fast as d increases: as d → ∞,
β( f, d) = O

(
d−(d+3)/2

)
. Therefore, this algorithm does not escape the curse of dimension.

We focus on the information complexity; that is, the cost is the number of function eval-
uations. The worst-case combinatorial cost of the algorithm grows quadratically with the
number of iterations.

3 Interpolation error bounds

We will use results about interpolation from [30].

Lemma 1 Consider a hyper-rectangle R = {x ∈ [0, 1]d : ai ≤ xi ≤ bi , 1 ≤ i ≤ d}, and let
L denote the multilinear function that interpolates f at the vertices of the hyper-rectangle.
We have the error bound

| f (x) − L(x)| ≤ 1

2

d∑
i=1

(xi − ai )(bi − xi )
∥∥D2 f

∥∥∞,R

= 1

2

∑d
i=1(xi − ai )(bi − xi )

|R|2/d
∥∥D2 f

∥∥∞,R |R|2/d ,

which implies the bound

max
x∈R

| f (x) − L(x)| ≤ 1

8

d∑
i=1

(bi − ai )
2
∥∥D2 f

∥∥∞,R

= 1

8

∑d
i=1(bi − ai )2

|R|2/d
∥∥D2 f

∥∥∞,R |R|2/d .

Proof See [30]. ��
The quantity

∑d
i=1(bi − ai )2

|R|2/d =
∑d

i=1(bi − ai )2(∏d
i=1(bi − ai )

)2/d
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is a measure of how “bad” the hyper-rectangle is from the point of view of interpolation
error; that is, how far it is from a cube. Since by construction of the algorithm the widths are
within a factor of 2 of each other, there is some number 1 ≤ k ≤ d and a positive number w

such that k of the dimensions have width w and d − k have width 2w, and
∑d

i=1(bi − ai )2(∏d
i=1(bi − ai )

)2/d = kw2 + (d − k)(2w)2

(2d−kwd)2/d
= (4d − 3k)

22(d−k)/d
=

(
d − 3

4
k

)
22k/d .

For k = d we get the value d and for k = 1 we get the value (d − 3/4)22/d . Maximizing

d(1 − 3x/4)22x

over x ∈]0, 1[ gives a maximum value of

3 · 22/3e−1

2 log(2)
d ≡ q · d ≈ 1.27d.

Therefore, the quality metric ranges from d up to about 1.27d , and the second bound in
Lemma 1 implies that

max
x∈R

| f (x) − L(x)| ≤ 1

8
q · d ∥∥D2 f

∥∥∞,R |R|2/d . (6)

Also note that

d ≤
∑d

i=1(bi − ai )2(∏d
i=1(bi − ai )

)2/d ≤ qd. (7)

In addition to
∥∥D2 f

∥∥∞,[0,1]d , we introduce a functional that is in a sense a measure of
how difficult it is to obtain an ε approximation of f . For ε > 0, define

I f (ε) ≡
∫

[0,1]d

dx

( f (x) − f ∗ + ε)d/2 .

The following lemma, proved in “Appendix A”, generalizes Lemma 3.2 of [21] to arbitrary
dimension.

Lemma 2

lim
ε↓0

I f (ε)

log(1/ε)
= d(2π)d/2

2Γ (1 + d/2)
· (
det(D2 f (x∗))

)−1/2 ≡ α( f, d).

4 Proof of Theorem 1

We begin with a rough outline the steps of the proof of Theorem 1, which will be based on
a series of lemmas. The proofs of the lemmas appear in “Appendix B”.

Lemma 4 establishes that the hyper-rectangle that contains the global minimizer cannot
be much larger than the smallest rectangle at that iteration; this fact allows us to bound the
error in terms of vn , the volume of the smallest rectangle. Recalling that ρn

i is the metric used
to choose the next rectangle to split, Lemmas 5 and 6 establish that

1

n

n∑
i=1

ρn
i ∼ 1

log(1/vn)
,
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while Lemma 7 shows that
n∑

i=1

ρn
i ∼ I f (g(vn)).

With this, Lemma 2 allows us to bound g(vn), and thereby the error. All of the analysis relies
on Lemma 3, which gives an upper bound for ρn .

We consider a fixed function f ∈ F̂ . The subscript n will indicate the number of iterations
of the algorithm (not the number of function evaluations). We assume that n ≥ n2( f ), where
n2( f ) is the first time after n1( f ) that the smallest rectangle is about to be split and

n1( f ) = inf

{
n : n ≥ exp

((
d

∥∥D2 f
∥∥∞,[0,1]d

)d/2
)}

. (8)

(Later we will further restrict n.)

Lemma 3 For all n ≥ n2( f ),

ρn≡ max{ρn
1 , ρn

2 , . . . , ρn
n } ≤ 4

λ log(1/vn)
≤ 4

λ log(n)
.

Lemma 4 Let v∗
n denote the volume of the hyper-rectangle containing the minimizer x

∗. For
n ≥ n2,

v∗
n ≤ 4vn (9)

and
Δn ≡ Mn − f (x∗) ≤ 2d− 2g(vn). (10)

The following lemma gives a lower bound for ρn that complements the upper bound
provided by Lemma 3.

Lemma 5 For n ≥ n2( f ),

ρn ≡ max
i≤n

ρn
i ≥ exp(− 16/q)

λ log(1/vn)
.

Lemma 6 For n ≥ n3( f ) ≡ 2n2( f ), we have the bounds

1

n

n∑
i=1

ρn
i ≤ ρn ≤ 4

λ log(1/vn)
(11)

and
1

n

n∑
i=1

ρn
i ≥ 1

2
exp

(
−1

2
− 16

q

)
1

λ log(1/vn)
. (12)

The following lemma allows us to approximate the average of the {ρn
i } in terms of I f (·),

for which we have the approximation given by Lemma 2.

Lemma 7 For n ≥ n2( f ),

1

2
I f (g(vn)) ≤

n∑
i=1

ρn
i ≤ 9

4
I f (g(vn)). (13)
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We are now ready to prove Theorem 1. From Lemma 6 we have the bounds

1

n

n∑
i=1

ρn
i ≤ 4

λ log(1/vn)
(14)

and
1

n

n∑
i=1

ρn
i ≥ 1

2

exp(− 1/2 − 16/q)

λ log(1/vn)
. (15)

Therefore

1

8
exp(− 1/2 − 16/q)

1/2

n
I f (g(vn)) ≤ 1

8
exp(− 1/2 − 16/q)

1

n

n∑
i=1

ρn
i

≤ 1

2
exp(− 1/2 − 16/q)

1

λ log(1/vn)
≤ 1

n

n∑
i=1

ρn
i ≤ 9/4

n
I f (g(vn)),

using the first inequality in (13), (14), (15), and the second inequality in (13), respectively.
We focus on the inequalities

1

16
exp(− 1/2 − 16/q)

1

n
I f (g(vn)) ≤ 1

4
exp(− 1/2 − 16/q)

1

λ log(1/vn)

≤ 9/4

n
I f (g(vn)).

There is a number n4( f ) such that, by Lemma 2, n ≥ n4( f ) implies that

1

2
log(1/g(vn))α(d) ≤ I f (g(vn)) ≤ 2 log(1/g(vn))α(d).

Replace I f (g(vn)) by log(1/g(vn)) (times appropriate factor) in the extreme terms of (??)
to get

1

32
exp(− 1/2 − 16/q)

1

n
log(1/g(vn))α(d)

≤ 1

4
exp(− 1/2 − 16/q)

1

λ log(1/vn)
≤ 9/4

n
2 log(1/g(vn))α(d).

Now substitute the value

log(1/g(vn)) = − log(qd2/4) + 2

d
(log(1/vn) − log log(1/vn))

to obtain the bounds

1

32
exp(1/2 − 16/q)

1

n

(
− log(qd2/4) + 2

d
(log(1/vn) − log log(1/vn))

)
α(d)

≤ 1

4
exp(−1/2 − 16/q)

1

λ log(1/vn)

≤ 9/4

n
2

(
− log(qd2/4) + 2

d
(log(1/vn) − log log(1/vn))

)
α(d).

This implies that eventually, say for n ≥ n5( f ),

log(1/vn) ≥
(

dn

36α(d)λ
exp

(
−1

2
− 16

q

))1/2

,
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which entails that

vn ≤ exp

(
−

(
dn

36α(d)λ
exp

(
−1

2
− 16

q

))1/2
)

.

Then

Mn − f ∗ ≤ 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d)v

2/d
n

≤ 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(
−

(
dn

36α(d)λ
exp

(
−1

2
− 16

q

))1/2 2

d

)
.

For n ≥ n0( f ) ≡ max{n2( f ), n3( f ), n4( f ), n5( f )},

Δn ≤ 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(
−

(
dn

36α(d)λ
exp

(
−1

2
− 16

q

))1/2 2

d

)

= 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(
−√

n

(
d

36α(d)λ

4

d2
exp

(
−1

2
− 16

q

))1/2
)

.

(16)

Substituting the value of α from Lemma 2, and using the bound (from Stirling’s approxima-
tion)

Γ (1 + d/2) ≥ √
2π(d/2)(1+d)/2e−(1+d/2),

we obtain

d

36α(d)λ

4

d2
= 1

9α(d)λd
= 1

9 d(2π)d/2

2Γ (1+d/2) · (
det(D2 f (x∗))

)−1/2
λd

= 2Γ (1 + d/2)
(
det(D2 f (x∗))

)1/2
9d(2π)d/2(qd2/4)d/2d

≥ 2
√
2π(d/2)(1+d)/2e− (1+d/2)

(
det(D2 f (x∗))

)1/2
9d(2π)d/2(qd2/4)d/2d

= 2
√

π
(
det(D2 f (x∗))

)1/2
9ed3/2(eπqd)d/2 .

Combined with (16) this yields the bound

Δn ≤ 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d)

× exp

⎛
⎝−√

n

(
2
√

π
(
det(D2 f (x∗))

)1/2
9ed3/2(eπqd)d/2 exp

(
− 1

2
− 16

q

))1/2
⎞
⎠

= 42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(−√
nβ( f, d)

)

where

β( f, d) =
(
2
√

π
(
det(D2 f (x∗))

)1/2
9ed(d+3)/2(πeq)d/2

exp

(
− 1

2
− 16

q

))1/2

.
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Finally, note that this is the expression for the error after n iterations of the algorithm,
which corresponds to as many as 2d−1n function evaluations. After a total of N function
evaluations, an upper bound on the error is given by

42/d

8

∥∥D2 f
∥∥∞,[0,1]d (q · d) exp

(
−√

N2−(d−1)/2β( f, d)
)

.

This completes the proof of Theorem 1.

5 Numerical examples

The main goal of the research presented in the paper was the evaluation of convergence rate
of the algorithm which generalizes the previously investigated algorithms for the case of
arbitrary d . However, we do not expect the upper bound to be tight for typical test functions
since the worst case objective function is considered. Therefore, including of some results of
preliminary numerical experiments seemed reasonable to illustrate relation of the asymptotic
convergence rate to the practical performance. The theoretical overestimate of the actual error
is commented after the presentation of the experimental results.

A simple C++ implementation of the algorithm, applicable to the problems of low dimen-
sionality, was used. Further, we plan to implement parallel version of the algorithm and
perform the so called competitive software testing according to the widely accepted method-
ology [13,31,32].

The algorithm consists of the following main parts: computation of the selection criterion
(3), selection and subdivision of the hyper rectangle, and storing of the new hyper rectangles
produced. The computational burden needed for the implementation of the current iteration
of algorithm depends on the dimensionality d and on the number of iteration. The dimen-
sionality influences computing time of the criterion (3). The amount of stored information
grows with the number of iteration, and correspondingly grows computer time needed for its
management. Therefore, for the problems of higher dimensionality, the parallel implementa-
tion of the algorithm is planned. Meanwhile, the numerical results below are obtained using
the straightforward C++ implementation.

The computation of criterion (3) reduces to the numerical integration over the hyper
rectangle. In the two-dimensional case the integral can be computed using a combination of
analytic and numerical techniques. Let pi = (pi0, p

i
1), i = 0, . . . , 3, be the rectangle vertices,

numbered such that p00 = p10 < p20 = p30 and p01 = p21 < p11 = p31. The corresponding
objective function values are then fi = f (pi ), i = 0, . . . , 3. The bi-linear interpolation of the
objective value at an arbitrary point x = (x0, x1), x j ∈ [a j , b j ], a j = p0j , b j = p3j , j = 0, 1,
can then be expressed as

L(x) = L(x0, x1) = A(x1)x0 + B(x1),

A(x1) =
x1−a1
b1−a1

( f0 − f1 − f2 + f3) + ( f2 − f0)

b0 − a0
,

B(x1) =
x1−a1
b1−a1

(− f0 p30 + f1 p20 + f2 p10 − f3 p00) + ( f0 p30 − f2 p10)

b0 − a0
. (17)

Then

ρn
i =

∫

Ri

dx
L(x) − Mn + g(vn)

=
b1∫

a1

b0∫

a0

dx0
L(x0, x1) − Mn + g(vn)

dx1
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=
b1∫

a1

b0∫

a0

dx0
A(x1)x0 + C(x1)

dx1 =
b1∫

a1

u(x1)dx1, (18)

where

u(x1) =
{
ll 1

A(x1)
(ln(A(x1)b0 + C(x1)) − ln(A(x1)a0 + C(x1))), if A(x1) = 0,

1
C(x1)

(b0 − a0), if A(x1) = 0,

C(x1) = B(x1) − Mn + g(vn). (19)

Note that the function u(x1) is continuous at the point x̂1 = f0− f2
f0− f1− f2+ f3

, x̂1 ∈ [a1, b1],
that gives A(x̂1) = 0.

In the experiments for the two dimensional case we compute ρn
i as a single dimensional

integral using Eqs. 17–19. The single dimensional integral is computed numerically using
the GNU Scientific Library [33] routine gsl_integration_cquad requiring a relative error
smaller than 10−7. We call the resulting implementation Rect-A. For comparison we also
include the integration over the rectangle Ri using the classical Monte Carlo method (GNU
Scientific Library routine gsl_monte_plain_integrate) with M = 10,000 evaluations of the
two dimensional integrand (referred to as Rect-MC). Finally, we present a simplified version
of computing ρn

i for dimension d = 2 as

ρn
i ≈ |Ri |

L(x) − Mn + g(vn)
, x j = (a j + b j )/2, j = 0, . . . , d. (20)

We call this algorithm versionRect-1. In all implementations the function evaluation database
is employed, so that the objective is never evaluated twice at the same location.

For comparison, two following algorithms were used. A recent algorithm [21], based on
the Delaunay triangulation of the optimization region and referred to as Simpl in this section,
is also implemented in the C++ programming language and uses the 2D and 3DDelaunay tri-
angulation code from the CGAL library [34]. The comparison with a non-adaptive algorithm
presents interest especially because of mentioned in the introduction different convergence
rates. The non-adaptive algorithm is implemented using the so called LPτ sequences [35],
and is worst case quasi optimal since it generates points for computing objective function
values nearly uniformly in the feasible region. The results of that algorithm are referred to
as Sobol.

We start by illustrating the partition of the feasible regions by the algorithmsRect-A during
minimization of the following objective functions:

– The six-hump camel back function [36]:

f (x) = (
4 − 2.1x21 + x41/3

)
x21 + x1x2 + (− 4 + 4x22 )x

2
2 ,

x ∈ [−3, 3] × [− 2, 2]. (21)

– The Branin function [37]:

f (x) =
(
x2 − 5.1

4π2 x
2
1 + 5

x1
π

− 6

)2

+ 10

(
1 − 1

8π

)
cos(x1) + 10,

x ∈ [− 5, 10] × [0, 15]. (22)

Figure 1 shows the partition after n = 3000 objective function evaluations. It can be seen
that the space is roughly explored everywhere, however, the trial points are positioned more
densely in the regions of potential global minima.
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Fig. 1 Examples of the partition of feasible region for the six-hump camel back function (left) and Branin
(right) test functions after n = 3000 function evaluations

Next, we present the numerical experiments aimed at the comparison of the proposed
algorithm with the algorithm of similar destination which implements the partition based on
the Delaunay triangulation of the feasible region [21]. The latter was tested using a set of
2-dimensional objective functions from [38], that were used as well as in numerous other
papers investigating Lipschitz optimization algorithms.

Table 1 presents results ofminimization of test functions from [38] using the same numera-
tion. The optimization error is presented (on a logarithmic scale) as δn = − log10(Mn− fmin),
after n = 1000, 3000 function evaluations for each of the algorithms Rect-A, Rect-1, Rect-
MC, Simpl [21] and Sobol. Symbol∞means that zero error has been achievedwithinmachine
precision. The numbers in the left column have been copied from the function definitions in
[38] on p. 468. The values for the algorithm [21] have been copied from the Table 1 of the
paper [21].

It can be seen that the various versions of the proposed algorithm perform comparably
with the algorithm [21]. Moreover, there appears to be no significant difference between
implementations Rect-A and Rect-MC, suggesting that the Monte Carlo technique could be
used to approximate the integral in the higher dimensions. As could be expected, the results
of the non-adaptive Sobol algorithm are the worst. The minimization of the function No. 13
was similarly problematic to all algorithms, as the global minimum of this function is hidden
in a small basin behind a sharp spike.

The minimization results for objective functions defined over 3-dimensional regions are
shown in Table 2. The functions are also taken from [38]. Since the analytic expression of
the integral is not available in the 3-dimensional case, we included only versions Rect-1 and
Rect-MC (M = 100000 evaluations of the integrand per hyper-rectangle) of the proposed
algorithm. The table shows that the proposed algorithmperforms better than other algorithms.

The number of iteration needed to find an appropriate approximation of minimum can
depend on a coincidental match of properties of an algorithm and objective function. To
reduce that factor, the performance profiles below are evaluated using a sample of randomly
generated problems where the same objective function is minimized over a feasible region
which is randomly (with uniform distribution) scrolled for 10% of its original extend. The
average and maximum errors of 100 random problems were recorded and plotted against
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Table 1 Testing results with functions from [38] defined over a 2-dimensional region

f(x) Rect-A Rect-1 Rect-MC Simpl [21] Sobol

n n n n n

1000 3000 1000 3000 1000 3000 1000 3000 1000 3000

1 5.80 6.84 5.30 5.80 5.80 6.84 5.30 6.86 0.97 1.95

2 6.93 11.00 6.93 6.93 6.93 11.00 6.95 ∞ 1.82 2.01

3 11.88 11.88 13.80 14.30 12.91 14.30 ∞ ∞ 1.36 4.54

3.1 11.88 11.88 14.16 14.16 12.31 14.30 ∞ ∞ 3.44 3.44

3.2 11.88 11.88 14.16 14.16 12.31 14.30 ∞ ∞ 1.80 1.80

3.3 11.87 11.87 13.43 14.30 13.37 14.30 ∞ ∞ 1.55 2.33

4 ∞ ∞ ∞ ∞ ∞ ∞ 2.97 3.29 ∞ ∞
5 6.01 6.01 4.14 6.01 6.01 6.01 6.01 6.01 0.76 1.37

6 4.49 6.21 4.49 4.49 4.49 6.21 4.25 4.25 −0.48 −0.48

7 2.81 12.38 11.83 12.38 2.88 12.38 25.56 29.61 1.31 1.31

8 6.23 8.53 6.12 6.23 8.53 8.53 6.23 8.53 0.99 0.99

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.50 1.28

9.1 ∞ ∞ −1.91 −1.91 ∞ ∞ ∞ ∞ −1.33 0.47

9.2 10.61 10.61 −1.91 −1.91 ∞ ∞ ∞ ∞ −0.23 −0.23

9.3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2.15 2.15

10 12.27 12.27 ∞ ∞ ∞ ∞ ∞ ∞ 3.39 3.39

11 9.17 14.10 9.17 ∞ 9.17 ∞ 8.04 8.04 2.86 3.00

12 6.02 9.04 6.02 9.04 6.02 9.04 2.38 2.38 3.22 4.24

13 1.51 1.59 1.51 1.56 1.51 1.59 1.37 1.58 1.15 1.38

Optimization stops after a predefined number of function evaluations n

Table 2 Testing results with functions from [38] defined over a 3-dimensional region

f(x) Rect-1 Rect-MC Simpl [21] Sobol

n n n n

3000 5000 3000 5000 3000 5000 3000 5000

20 ∞ ∞ ∞ ∞ ∞ ∞ 1.86 1.86

21 7.83 11.06 7.83 11.05 4.45 4.61 1.82 1.82

22 8.49 12.19 9.79 13.30 4.11 4.52 1.52 2.13

23 0.84 1.20 0.88 1.20 0.94 0.94 1.44 1.44

24 10.53 13.57 10.53 12.21 3.88 3.88 1.61 1.61

25 4.00 4.00 4.00 4.00 1.18 1.28 1.20 1.20

26 ∞ ∞ ∞ ∞ −0.69 −0.60 −0.81 −0.81

Optimization stops after a predefined number of function evaluations n

number of function evaluations n. The logarithmic scale for the presentation of graphs was
used: δn = − log10(Mn − fmin), where Mn denotes the best function value found up to
the nth function evaluation and fmin is the actual global minimum value. In Fig. 2 are
presented graphs for (2-dimensional) six-hump camel back and Branin functions; the version
of algorithm Rect-A was used, partition of the feasible region is shown in Fig. 1.
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Fig. 2 The maximum and average error after n function evaluations of algorithms Rect-A and Sobol with 100
perturbed cases of the 2-dimensional test problems: the six-hump camel back function (left) and the Branin
function (right)

Fig. 3 The maximum and average error after n function evaluations of algorithms Rect-1 and Sobol with 100
perturbed cases of the Rastrigin test problem (Eq. 23) for d = 2, 3, 4, 5

To illustrate the influence of the dimension similar experiments were performed with test
problems up to dimension 5. Let us note, that contemporary publications on algorithms of
similar destination, i.e supposed for expensive black box type problems, typically present
experiments with objective functions up to dimensionality five, six [16,39]. The test problems
were constructed extending the two dimensional Rastrigin function [15] for dimension d:
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Table 3 The average/maximum number of objective function evaluations, performed by algorithms Rect-1
and Sobol, before − δndrops below t , for the 100 perturbed cases of the Rastrigin test problem (Eq. 23) in
dimensions d = 2, 3, 4, 5

Alg. t Rastrigin function

d = 2 d = 3 d = 4 d = 5

Rect-1 − 2 51/63 287/356 1838/2231 10,017/13,725

− 5 101/117 668/827 4935/6350 34,186/45,297

− 10 215/239 1443/1658 11,212/12,892 > 60,000/> 60,000

Sobol − 2 1089/> 3000 > 5000/> 5000 > 40,000/> 40,000 > 60,000/> 60,000

− 5 > 3000/> 3000 > 5000/> 5000 > 40,000/> 40,000 > 60,000/> 60,000

− 10 > 3000/> 3000 > 5000/> 5000 > 40,000/> 40,000 > 60,000/> 60,000

f (x) =
d∑

i=1

x2i − cos(πx1) − cos(πx2), x ∈ [− 2, 2]d . (23)

Such an extension keeps fixed number of local minima equal to 5. The global minimum
point is the d dimensional vector with zero components. The results for d = 2, 3, 4, 5 are
presented in Fig. 3, and are also quantified in the Table 3.

Nowwe can compare the upper bound given by Theorem 1 with the actual error estimated
experimentally. Our analysis uses the inequality vn ≤ 1/n (vn is the volume of the smallest
rectangle after n iterations), for example in the last inequalities in the proof of Lemma 4. If
f is near its minimum over much of the domain, then vn ≈ 1/n (think of a nearly constant
functionwith a tiny, locally quadratic valley in the center of the domain). For our test functions,
vn is much smaller than 1/n. We computed the characteristics of the test function at (23),
and arrived at a value of β = 2.05 × 10−4 for dimension d = 5. For n = 60,000, this
gives an upper bound of − 0.02, while the corresponding number is less than − 5 in the last
graph of Fig. 3 (the difference is even larger if we take into account the factor in front of the
exponential term).
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Appendix A

This appendix contains the proof of Lemma 2.
Denote the eigenvalues of D2 f (x∗) by

θ1 ≥ θ2 ≥ · · · ≥ θd > 0.

Then by Taylor’s theorem (x a column vector),

f (x∗ + x) − f (x∗) = 1

2
xT D2 f (x∗)x + o(‖x‖2).
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Since D2 f (x∗) is symmetric positive definite, we can express it as

D2 f (x∗) = VΘV T

for an orthogonal matrix V and diagonal matrix Θ = diag(θ1, θ2, . . . , θd). Then

D2 f (x∗) = VΘ1/2Θ1/2V T

and

f (x∗ + x) − f ∗ = 1

2
xT VΘ1/2Θ1/2V T x + o(‖x‖2) = 1

2
‖T x‖2 + o(‖x‖2), (24)

where T x ≡ Θ1/2V T x .
Let Bd

c (0) denote the ball of radius c, centered at 0, in R
d . For c > 0, let

fc ≡ inf{ f (x∗ + x) : x /∈ Bd
c (0)},

which is positive since the minimizer is assumed unique and f is continuous. Then
∫

[0,1]d\Bd
c (x∗)

dx

( f (x) − f (x∗) + ε)d/2 ≤ f −d/2
c

and ∫

[0,1]d

dx

( f (x) − f (x∗) + ε)d/2 ≤ f −d/2
c +

∫

Bd
c (0)

dx

( f (x∗ + x) − f (x∗) + ε)d/2

= f −d/2
c +

∫

Bd
c (0)

dx
( 1
2 ‖T x‖2 + ε + o(‖x‖2))d/2

by (24). For any η ∈]0, 1/2], we can choose c > 0 small enough so that

1

2
‖T x‖2 + ε + o(‖x‖2) ≥

(
1

2
− η

)
‖T x‖2 + ε.

Therefore,
∫

[0,1]d

dx

( f (x) − f (x∗) + ε)d/2 ≤
∫

Bd
c (0)

dx
(
(1/2 − η) ‖T x‖2 + ε

)d/2 + O(1) (25)

as ε ↓ 0, and similarly
∫

[0,1]d

dx

( f (x) − f (x∗) + ε)d/2 ≥
∫

Bd
c (0)

dx
(
( 12 + η) ‖T x‖2 + ε

)d/2 + O(1). (26)

Using the orthogonality of V , for any b > 0,
∫

Bd
c (0)

dx
(
b ‖T x‖2 + ε

)d/2 =
∫

V (Bd
c (0))

dx(
b

∥∥Θ1/2x
∥∥2 + ε

)d/2

=
∫

Bd
c (0)

dx(
b

∥∥Θ1/2x
∥∥2 + ε

)d/2
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=
∫

E(c,b,ε)

dy
(‖y‖2 + 1

)d/2

1

bd/2
(∏d

i=1 θi

)1/2 , (27)

where E(c, b, ε) is the image of the ball of radius c under the map xi �→ xi (θi b/ε)1/2, and
we used the substitution yi ← xi (θi b/ε)1/2 in the last equation. Therefore,

Bd
c
√
bθd/ε

(0) ⊂ E(c, b, ε) ⊂ Bd
c
√
bθ1/ε

(0),

and (27) gives the bounds
∫

Bd
c
√

bθd /ε
(0)

dy
(‖y‖2 + 1

)d/2

1

bd/2
(∏d

i=1 θi

)1/2 ≤
∫

Bd
c (0)

dx
(
b ‖T x‖2 + ε

)d/2

≤
∫

Bd
c
√

bθ1/ε
(0)

dy
(‖y‖2 + 1

)d/2

1

bd/2
(∏d

i=1 θi

)1/2 .

Let V(x) = πd/2Γ (d/2 + 1)−1xd denote the volume of the d-dimensional ball of radius x .
For z > 0,

∫

Bd
z (0)

dx
(‖x‖2 + 1

)d/2 =
z∫

r=0

dV(r)

(r2 + 1)d/2 = dπd/2

Γ (d/2 + 1)

z∫

r=0

rd−1dr

(r2 + 1)d/2

= dπd/2

Γ (d/2 + 1)

z∫

r=0

1

r

(
r2

r2 + 1

)d/2

dr.

For z > 1,
z∫

r=0

1

r

(
r2

r2 + 1

)d/2

dr <

z∫

r=1

1

r
dr = log(z), (28)

and for A < z,

z∫

r=0

1

r

(
r2

r2 + 1

)d/2

dr >

(
A2

A2 + 1

)d/2 z∫

r=A

1

r
dr

=
(

A2

A2 + 1

)d/2

(log(z) − log(A)) .

Combining this inequality with (28) we conclude that

lim
z↑∞

∫ z
r=0

1
r

(
r2

r2+1

)d/2
dr

log(z)
= 1. (29)

Set

Cd = dπd/2

Γ (1 + d/2)
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and

Gd(c) =
c∫

r=0

rd−1dr

(r2 + 1)d/2 .

By (29), Gd(c)/ log(c) → 1 as c ↑ ∞. For any b > 0, we have the bounds

b−d/2

(
d∏

i=1

θi

)−1/2

CdGd

(
c
√
bθd/ε

)
≤

∫

Bd
c (0)

dx
(
b ‖T x‖2 + ε

)d/2

≤ b−d/2

(
d∏

i=1

θi

)−1/2

CdGd

(
c
√
bθ1/ε

)
,

and

O(1) + (1/2 + η))−d/2

(
d∏

i=1

θi

)−1/2

CdGd

(
c
√

(1/2 + η)θd/ε
)

≤ I f (ε) ≤ O(1) + (1/2 − η)−d/2

(
d∏

i=1

θi

)−1/2

CdGd

(
c
√

(1/2 − η)θ1/ε
)

.

Since η > 0 is arbitrary, the fact that Gd(c)/ log(c) → 1 as c ↑ ∞ completes the proof.

Appendix B

This appendix contains the proofs of the lemmas upon which the proof of Theorem 1 are
based.

Proof of Lemma 3 Let m ≤ n be the last time before n that the smallest hyper-rectangle was
about to be split, so vm = 2vn and by (5),

ρm ≤ 1

λ log(1/vm)
= 1

λ log(1/2vn)
.

Note that m ≥ n0 by definition of n2.
We will show by induction that

ρm+k ≤ 2

λ log(1/vm+k)
(30)

for k ∈ {1, 2, . . . , n−m}, if the hyper-rectangle that the algorithm is subdividing at iteration
m + k has not been previously subdivided since time m. At other times the bound is twice as
large.

Let us first consider {ρm+1
i : i ≤ m + 1}. Suppose that i is the split hyper-rectangle at

time m, and let j denote a non-split hyper-rectangle, so ρm
j ≤ ρm

i . Then there exists a point
c j ∈ R j such that

ρm+1
j =

∣∣R j
∣∣

(
Lm(c j ) − Mm+1 + g(vm+1)

)d/2

123



184 J Glob Optim (2018) 71:165–191

≤
(
g(2vn)

g(vn)

)d/2
∣∣R j

∣∣
(
Lm(c j ) − Mm + g(2vn)

)d/2 since g(2vn) > g(vn)

=
(
g(2vn)

g(vn)

)d/2

ρm
j ≤

(
2
log(1/2vn)

log(1/vn)

)
1

λ log(1/vm)
by (5)

= 2
log(1/2vn)

log(1/vn)

1

λ log(1/2vn)
= 2

λ log(1/vn)
= 2

λ log(1/vm+1)
.

Next consider a child of the split subrectangle i . Since we are splitting the smallest
subrectangle, vm = 2vn , and there exists a point ci ∈ Ri such that (supposing that one
child has index i at time m + 1)

ρm+1
i = |Ri | /2

(Lm+1(ci ) − Mm+1 + g(vm+1))
d/2 ≤ vm+1

g(vm+1)d/2 = 1

λ log(1/vm+1)
.

We have established the base case for the induction. Now consider iteration m + k + 1,
1 ≤ k < n − m. For the induction hypothesis, assume that

ρm+k
i ≤ 2

λ log(1/vn)

if hyper-rectangle i has not been split since time m and

ρm+k
i ≤ 4

λ log(1/vn)

if hyper-rectangle i has been split since time m.
Suppose that the most promising hyper-rectangle at iteration m + k + 1 is subrectangle

R j = ∏d
i=1[ai , bi ],

ρm+k+1 = ρm+k+1
j =

∫

R

ds

(Lm+k+1(s) − Mm+k+1 + g(vn))d/2 .

Assume that this hyper-rectangle has not been split since time m. Let us suppose that during
this interval (betweenm and the next time that the smallest hyper-rectangle is split) R is split
r times, and denote by L ′ the piecewise multilinear function defined over R after the splitting
evaluations. Then

max
s∈R

∣∣L ′(s) − Lm+k+1(s)
∣∣ ≤ max

s∈R
| f (s) − Lm+k+1(s)| ≤ γ (s),

where

γ (s) = 1

2

d∑
i=1

(s − ai )(bi − s)
∥∥D2 f

∥∥∞,R ≤ 1

8
qd |R|2/d ∥∥D2 f

∥∥∞,R ≡ γ̂ .

Set

γ (s) = min{γ (s), Lm+k+1(s) − Mm+k+1}.
Then, denoting by ρ1 the sum of the ρ values for the resulting subrectangles of R at time
m + k + q , we have

ρ1 =
∫

R

ds

(L ′(s) − Mm+k+q + g(vn))d/2
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≤
∫

R

ds

(Lm+k+1(s) − γ (s) − Mm+k+1 + g(vn))d/2

≤
∫

R

ds

(Lm+k+1(s) − Mm+k+1 + g(vn) − γ̂ )d/2 .

Let

a + Q(s) = Lm+k+1(s) − Mm+k+1 + g(vn),

where a = mins∈R Lm+k+1(s) − Mn + g(vn) > 0. Then

ρ1

ρ0
≤

∫
R

ds
(a+Q(s)−γ̂ )d/2∫
R

ds
(a+Q(s))d/2

.

The latter ratio is maximized by Q ≡ 0, which corresponds to ρ0 = |R| /ad/2, and so

ρ1

ρ0
≤

∫
R

ds
(a−γ̂ )d/2∫
R

ds
(a)d/2

= 1(
1 − γ̂

a

)d/2 = 1(
1 −

1
8 qd|R|2/d‖D2 f ‖∞,R

a

)d/2

≤ 1(
1 − 1

8qdρ
2/d
0

∥∥D2 f
∥∥∞,R

)d/2 ≤ 1(
1 − 1

8qd
4·42/d

qd3‖D2 f ‖∞,R

∥∥D2 f
∥∥∞,R

)d/2

= 1(
1 − 42/d

2d2

)d/2 ≤ 2.

We used the inequalities

ρ
2/d
0 ≤

(
4

λ log(n)

)2/d

≤
⎛
⎜⎝ 4

λ
(
d

∥∥D2 f
∥∥∞,R

)d/2

⎞
⎟⎠

2/d

=
( 4

λ

)2/d
d

∥∥D2 f
∥∥∞,R

= 4 · 42/d
qd3

∥∥D2 f
∥∥∞,R

,

which follows from the induction hypothesis.
We have shown that whenever the algorithm is about to subdivide a hyper-rectangle for the

first time sincem, ρm+k ≤ 2/λ log(m+k). After a hyper-rectangle is subdivided, subsequent
subdivisions can never result in ρ more than twice as large.

The proof by induction of (30) is complete. ��
Proof of Lemma 4 Suppose (to get a contradiction) that |Ri | = v∗

n ,
∣∣R j

∣∣ = vn , and v∗
n = 4vn ,

but yet we are about to split hyper-rectangle R j , resulting in v∗
n > 4vn ; that is, ρn

j ≥ ρn
i :

ρn
j =

∣∣R j
∣∣ = vn(

Ln(c j ) − Mn + g(vn)
)d/2 ≥ |Ri | = v∗

n = 4vn
(Ln(ci ) − Mn + g(vn))d/2 = ρn

i

for some ci ∈ Ri , c j ∈ R j . This implies that

Ln(ci ) − Mn + g(vn)

Ln(c j ) − Mn + g(vn)
≥ 42/d . (31)
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But Ln(c j ) ≥ Mn and

Ln(ci ) ≤ Mn + 1

8
qd

∥∥D2 f
∥∥∞,Ri

|Ri |2/d .

Thus

Ln(ci ) − Ln(c j ) ≤ 1

8
qd

∥∥D2 f
∥∥∞,[0,1]d v

2/d
n 42/d .

This means that

Ln(ci ) − Mn + g(vn)

Ln(c j ) − Mn + g(vn)
= 1 + Ln(ci ) − Ln(c j )

Ln(c j ) − Mn + g(vn)

= 1 + Ln(ci ) − Ln(c j )

v
2/d
n

v
2/d
n

Ln(c j ) − Mn + g(vn)

= 1 + Ln(ci ) − Ln(c j )

v
2/d
n

(ρn
j )

2/d

≤ 1 + 1

8
qd

∥∥D2 f
∥∥∞,[0,1]d

(
42/d

) (
4

λ log(n)

)2/d

≤ 1 + 1

8
qd

∥∥D2 f
∥∥∞,[0,1]d

(
42/d

) 42/d

(qd2/4) log(n)2/d

≤ 1 + 1

2
qd

∥∥D2 f
∥∥∞,[0,1]d

(
42/d

) 42/d

(qd2)d
∥∥D2 f

∥∥∞,[0,1]d
since n ≥ n2

= 1 + 1

2d2
44/d < 42/d

since d ≥ 2. But this contradicts (31), and establishes (9).
The proof of (10) follows from

Δn

g(vn)
≤

1
8qd

∥∥D2 f
∥∥∞,Ri

(4vn)2/d

1
4qd

2 (vn log(1/vn))2/d
=

∥∥D2 f
∥∥∞,Ri

42/d

2d (log(1/vn))2/d
≤

∥∥D2 f
∥∥∞,Ri

42/d

2d (log(n))2/d

≤
∥∥D2 f

∥∥∞,Ri
42/d

2d · d ∥∥D2 f
∥∥∞,[0,1]d

≤ 42/d

2d2
≤ 2

d2
.

��
Proof of Lemma 5 Recall that R∗

n denotes the hyper-rectangle containing x∗ at time n, and
that

∣∣R∗
n

∣∣ = v∗
n ≤ 4vn by Lemma 4. If h is the minimal edge length of R∗

n , then v∗
n = 2 j hd

for some 0 ≤ j < d , and the diameter of R∗
n is less than 2h

√
d . Also h = 2− j/d(v∗

n)
1/d .

Therefore, for s ∈ R∗
n ,

Ln(s) − Mn ≤ Ln(s) − f (x∗)
≤ max

s∈R∗
n

f (s) − f (x∗)

≤ 1

2

(
2h

√
d
)2 ∥∥D2 f

∥∥∞,R∗
n

by Taylor’s theorem

= 1

2

(
2 · 2− j/d(v∗

n)
1/d

√
d
)2 ∥∥D2 f

∥∥∞,R∗
n

≤ 2d(v∗
n)

2/d
∥∥D2 f

∥∥∞,[0,1]d
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≤ 2d(4vn)
2/d

(
log(n)

d

)2/d

by Lemma 4 and n ≥ n2

≤ 2d(4vn)
2/d

(
log(1/vn)

d

)2/d

= 2 · 42/d d

d2/d
λ− 2/dg(vn)

= 2 · 42/d d

d2/d
4

qd2
g(vn) <

32

dq
g(vn).

Therefore, by the previous inequality

ρn ≥
∫

R∗
n

ds

(Ln(s) − Mn + g(vn))d/2 ≥ v∗
n(

32
dq g(vn) + g(vn)

)d/2

≥ vn

λvn log(1/vn)
(
1 + 32

dq

)d/2 = 1

λ log(1/vn)
(
1 + 32

dq

)d/2

≥ 1

λ log(1/vn) exp
(
16
q

) = exp(−16/q)

λ log(1/vn)
.

��

Proof of Lemma 6 Equation (11) follows from Lemma 3.
For n ≥ n2( f ), the ρ values for the children of a split hyper-rectangle will not be much

smaller than the parent. The largest possible decrease occurs if the values on the boundary
of Ri are constant, say with value Mm+k + A, and the new function values are the largest
possible, namely Mn + A + a, where

a ≤ 1

8
qd

∥∥D2 f
∥∥∞,Ri

|Ri |2/d .

Considering a child of the split hyper-rectangle (say with index i),

ρn+1
i ≥ |Ri | /2

(A + a + g(vn))d/2 ≥ |Ri | /2
(A + g(vn))d/2

(
1 + a

A+g(vn)

)d/2

≥ |Ri | /2
(A + g(vn))d/2

(
1 +

1
8 qd‖D2 f ‖∞,Ri

|Ri |2/d
|Ri |2/d

|Ri |2/d
A+g(vn)

)d/2

≥ 1

2
ρn
i

1
(
1 +

1
8 qd‖D2 f ‖∞,Ri

|Ri |2/d
|Ri |2/d

|Ri |2/d
A+g(vn)

)d/2

= 1

2
ρn
i

1
(
1 +

1
8 qd‖D2 f ‖∞,Ri

|Ri |2/d
|Ri |2/d

(
ρn
i

)2/d)d/2

≥ 1

2
ρn
i

1
(
1 +

1
8 qd‖D2 f ‖∞,Ri

|Ri |2/d
|Ri |2/d

(
4

λ log(n)

)2/d)d/2 (by Lemma 3)
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≥ 1

2
ρn
i

1⎛
⎝1 +

1
8 qd‖D2 f ‖∞,Ri

|Ri |2/d
|Ri |2/d

(
4

λdd/2‖D2 f ‖d/2
∞,[0,1]d

)2/d
⎞
⎠

d/2 (since n ≥ n2)

≥ 1

2
ρn
i

1(
1 + 1

8qd
(

4
(qd3/4)d/2

)2/d)d/2 = 1

2
ρn
i

1(
1 + 1

8qd
42/d
qd3/4

)d/2

= 1

2
ρn
i

1(
1 + 1

2
42/d

d2

)d/2 ≥ 1

2
ρn
i exp

(
− 1

4d
42/d

)
≥ 1

2
e−1/2ρn

i ,

using the inequality (1 + x/k)k ≤ exp(x) and the fact that d ≥ 2 implies that 42/d/(4d) ≤
1/2.

Consider the average of the {ρn
i } at time n that were the product of splits after time n/2.

Over this time interval we have

ρk ≥ exp(−16/q)

λ log(1/vk)
≥ exp(−16/q)

λ log(1/vn)

by Lemma 5, since n ≥ 2n2( f ). Since the children ρ values will not be much smaller than
the parent’s,

1

n

n∑
i=1

ρn
i ≥ 1

n

n/2

n/2

n∑
i=n/2

ρi ≥ 1

2

1

n/2

n∑
i=n/2

exp(−16/q)

λ log(1/vi )
≥ 1

2

exp(−16/q)

λ log(1/vn)
,

since vi ≥ vn . ��
Proof of Lemma 7 Fix a particular hyper-rectangle Ri with

ρn
i =

∫

Ri

ds

(Ln(s) − f ∗ + g(vn))d/2 .

We first show that the integrals
∫

Ri

ds

( f (s) − f ∗ + g(vn))d/2 ,

∫

Ri

ds

(Ln(s) − f ∗ + g(vn))d/2

are close. As in the proof of Lemma 3, let

a + Q(s) = L(s) − f ∗ + g(vn),

where a = mins∈Ri Ln(s) − f ∗ + g(vn) > 0. Then, from (6),

max
x∈Ri

| f (x) − Ln(x)| ≤ 1

8
q · d ∥∥D2 f

∥∥∞,Ri
|Ri |2/d ≡ b,

and
∫
Ri

ds
( f (s)− f ∗+g(vn))d/2∫

Ri
ds

(Ln(s)− f ∗+g(vn))d/2

≥
∫
Ri

ds
(Ln(s)− f ∗+g(vn)+b)d/2∫

Ri
ds

(Ln(s)− f ∗+g(vn))d/2

=
∫
Ri

ds
(a+Q(s)+b)d/2∫

Ri
ds

(a+Q(s))d/2

.

The smallest value of the ratio occurs when Q(s) ≡ 0.
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The case Q ≡ 0 corresponds to ρ = |Ri | /ad/2, and so
∫
Ri

ds
(a+Q(s)+b)d/2∫

Ri
ds

(a+Q(s))d/2

≥
∫
Ri

ds
(a+b)d/2∫
Ri

ds
ad/2

=
(

a

a + b

)d/2

= 1(
1 + 1

8q · d ∥∥D2 f
∥∥∞,Ri

|Ri |2/d
a

)d/2 = 1(
1 + 1

8q · d ∥∥D2 f
∥∥∞,Ri

ρ2/d
)d/2 .

Now

1

8
q · d ∥∥D2 f

∥∥∞,Ri
ρ2/d ≤ 1

8
q · d ∥∥D2 f

∥∥∞,Ri

(
4

λ log(n)

)2/d

≤ 1

8
q · d ∥∥D2 f

∥∥∞,Ri

42/d

qd3

4

∥∥D2 f
∥∥∞,Ri

= 42/d

2d2
.

Therefore,
∫
Ri

ds
(a+Q(s)+b)d/2∫

Ri
ds

(a+Q(s))d/2

≥ 1(
1 + 42/d

2d2

)d/2 ≥ 2

3
,

since the last expression is increasing in d ≥ 2. Turning to an upper bound for
∫
Ri

ds
( f (s)− f ∗+g(vn))d/2∫

Ri
ds

(Ln(s)− f ∗+g(vn))d/2

,

observe that
∫
Ri

ds
( f (s)− f ∗+g(vn))d/2∫

Ri
ds

(Ln(s)− f ∗+g(vn))d/2

≤
∫
Ri

ds
(Ln(s)− f ∗+g(vn)−b)∫

Ri
ds

(Ln(s)− f ∗+g(vn))d/2

≡
∫
Ri

ds
(a+Q(s)−b)d/2∫

Ri
ds

(a+Q(s))d/2

≤ 1
(
1 − b

a

)d/2 ≤ 1(
1 − 42/d

2d2

)d/2 ≤ 2.

We have shown that

2

3

∫

[0,1]d

ds

(Ln(s) − f ∗ + g(vn))d/2 ≤
∫

[0,1]d

ds

( f (s) − f ∗ + g(vn))d/2

≤ 2
∫

[0,1]d

ds

(Ln(s) − f ∗ + g(vn))d/2 . (32)

Recall that v∗
n denotes the volume of the hyper-rectangle containing the minimizer x∗.

Since n ≥ n2, by Lemma 4 v∗
n ≤ 4vn and

Mn − f ∗ ≤ g(vn)

d2/2
.

Therefore,
∫

R

ds

(Ln(s) − Mn + g(vn))d/2 =
∫

R

ds

(Ln(s) − Mn + g(vn) + Mn − f ∗)d/2
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=
∫

R

ds

(Ln(s) − Mn + g(vn))d/2
(
1 + Δn

Ln(s)−Mn+g(vn)

)d/2

≥
∫

R

ds

(Ln(s) − Mn + g(vn)(1 + 2/d2))d/2 by (10)

= 1(
1 + 2/d2

)d/2

∫

R

ds

(Ln(s) − Mn + g(vn))d/2

≥ 2

3

∫

R

ds

(Ln(s) − Mn + g(vn))d/2 .

Combining these inequalities with (32) gives

4

9

∫

[0,1]d

ds

(Ln(s) − Mn + g(vn))d/2 ≤ 2

3

∫

[0,1]d

ds

(Ln(s) − f ∗ + g(vn))d/2

≤
∫

[0,1]d

ds

( f (s) − f ∗ + g(vn))d/2 ≤ 2
∫

[0,1]d

ds

(Ln(s) − f ∗ + g(vn))d/2

≤ 2
∫

[0,1]d

ds

(Ln(s) − Mn + g(vn))d/2 .

Since
n∑

i=1

ρn
i =

∫

[0,1]d

ds

(Ln(s) − Mn + g(vn))d/2 ,

this completes the proof. ��
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