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Abstract The interval Branch and Prune (iBP) algorithm for obtaining solutions to the
interval Discretizable Molecular Distance Geometry Problem (iDMDGP) has proven itself
as a powerful method for molecular structure determination. However, substantial obstacles
still must be overcome before iBPmay be employed as a tractable general-purpose alternative
to existing structure determination algorithms. This work introduces an iterative variant of
the iBP algorithm that leverages existing knowledge of protein structures in order to reduce
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the size of the effective search space by many orders of magnitude. These improvements are
included in a newly released implementation of the iBP software that aims to provide a solid
platform for both research and application of the iDMDGP.

Keywords Distance geometry · Protein structure · Nuclear magnetic resonance · Branch-
and-Prune

1 Introduction

Within biology, it is well-established that the biochemical function of a molecule is strongly
related to its three-dimensional structure. As a direct consequence, substantial effort is
devoted within the field of structural biology to the problem of molecular structure determi-
nation: given the chemical composition and topology of amolecule, we seek its conformation
inR3. For the specific problem of protein structure determination, the composition and topol-
ogy of a protein molecule are completely specified by its amino acid sequence,1 and we again
seek its conformation(s) in three dimensions.

Proteins are highly flexible polymer chains of amino acids, and consequently may have
multiple conformations for a given amino acid sequence. Therefore, additional geometric
measurements are required in order to obtain a reasonable number of solutions to the pro-
tein structure determination problem. Nuclear magnetic resonance (NMR) experiments are
frequently employed to obtain these measurements. In an NMR experiment, the interaction
between the nucleus of each atom in amolecule and a strongmagnetic field is measured using
precisely timed pulses of radio-frequency radiation [15]. The interaction energy of a nucleus
as a fraction of the total magnetic field energy is known as its chemical shift. Chemical shifts
are highly sensitive reporters of the local electronic environments of their nuclei, making
them excellent tools for structure determination. For proteins, whose polymer backbones
are formed by repeated N–Cα–C′ units, chemical shifts are dominated by local backbone
geometry (Fig. 1), in particular the backbone dihedral angles φ, ψ and ω. The φ and ψ

angles are historically referred to as the Ramachandran angles [19]. For amino acid i of a
protein, the φi angle is defined by the atoms C′(i−1)–N(i)–C(i)

α –C′(i), the ψi angle is defined
by N(i)–C(i)

α –C′(i)–N(i+1), and the ωi angle is defined by C(i)
α –C′(i)–N(i+1)–C(i+1)

α . The ωi

dihedral angle is usually fixed to 180◦ due to the known near-planarity of the peptide bond
[1]. When all ω dihedrals are fixed to 180◦, and the local geometry is assumed to be fixed
[10], the conformation of a protein’s backbone may be completely specified by supplying the
Ramachandran angles (φ, ψ) for all of its amino acid units. These angles may be predicted
from the chemical shifts of the N, Cα , Cβ , C′, H1 and Hα atoms using TALOS-N, an artificial
neural network trained on a large database of previously determined NMR protein structures
[23]. Multiple predictions from the neural network are used to estimate a mean and standard
deviation for each backbone dihedral angle, resulting in fairly reliable Ramachandran angle
intervals. However, when some chemical shift measurements are missing, the accuracy of the
predicted dihedral angles can suffer. A set of multidimensional NMR experiments involving
different nuclei [11] are required to determine the chemical shift of each atom, using a process
known as sequential assignment (cf. §4). Figure 2 illustrates one such experimental result
in protein NMR, a two-dimensional spectrum that is used to correlate the chemical shifts of
backbone H(i)

1 and N(i) atoms.

1 Additional post-translational modifications may alter the chemical composition of a protein molecule, but
their effects must be detected by further chemical analysis.
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Fig. 1 Depiction of a single amino acid unit i of a protein backbone, including any atoms of flanking units
i − 1 and i + 1 necessary for defining the backbone dihedral angles φi , ψi and ωi . While the repetition vertex
orders introduced in Sect. 2.3 do not include Cβ atoms, the NMR chemical shifts of these atoms are important
indicators of the local dihedral angles (cf. 1)

Fig. 2 NMR spectrum obtained from the 1H–15N heteronuclear single quantum coherence (HSQC) experi-
ment for theHHD2protein sample described in Sect. 4. Peaks in the spectrum labeledwith a number correspond

to pairs of bonded H(i)
1 and N(i) atoms in the protein, where the number corresponds to the index of the amino

acid unit (i). The protein studied here is a short sub-sequence of a much longer amino acid sequence, so the
values of i indicate the position of the synthesized amino acids within that longer sequence

In addition to the local geometic information provided by chemical shifts, NMRmay also
be used to obtain global geometric information in the form of distances between pairs of
atoms. In such experiments, the intensity of the NMR signal at the chemical shifts of two
atoms, e.g. H(i) andH( j), is approximately proportional to the inverse sixth power of their dis-
tance, d(H(i),H( j))−6. Because the signal intensity decays rapidly with increasing distance,
this information is usually only available for atoms that are within 5–6 Å in the structure.
Additional effects, including inevitable molecular motion during the measurement, can also
result in a change of signal between nearby atoms. Finally, these signal intensity measure-
ments are often perturbed by strong systematic measurement errors, so they are generally
converted into interval distances using “rules of thumb” developed by NMR spectroscopists
[27].

Conventional NMR protein structure determination protocols combine known distances
and angles between bonded atoms with predicted Ramachandran angles and interval distance
measurements into a non-convex objective function that smoothly penalizes any deviations
of the structure from the target geometry [4,18]. As this objective contains many local
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optima, metaheuristics such as simulated annealing with multiple random initializations
are employed. Nevertheless, there is no guarantee that the resulting structures are within the
feasible set specified by the distance, angle and dihedral constraints.

The protein structure determination problem may be recast into a distance geometry
problem (DGP) by converting all aforementioned geometric constraints into distance con-
straints between pairs of atoms. Formally, the protein is represented as a graphG = (V, E, d),
where V represents the atoms and E holds the atom pairs which have a known distance. The
distances are either exact values or intervals, so there exists a partitioning of the edge set
E = ED ∪ EI , where ED and EI hold exact and interval distances, respectively. We denote
the set of positive real valued intervals as IR+. Exact distances in ED are given by known
bond lengths, angles, and dihedrals in protein structures. Three-atom angles and four-atom
dihedral angles that are known from protein chemistry shall be collected into the sets Θ

and Ω , respectively. Given this information, we may formally re-introduce the interval
Discretizable Molecular Distance Geometry Problem [16] as the following,

interval DMDGP: given a simple weighted undirected graph G = (V, E, d) where
E = ED ∪ EI and,

d :
{
ED → R+
EI → IR+

and a vertex ordering R = (v1, . . . , vn) on V satisfying the following requirements:

– The subgraph of G induced by V0 = {v1, v2, v3} is a clique with all edges in ED

– For all j ∈ R\V0 we have
1. d j−1, j , d j−2, j ∈ ED

2. d j−3, j ∈ E
– For all j ∈ R\{v1, v2} the strict triangular inequality is satisfied by d j−1, j , d j−2, j

and d j−2, j−1

is there an embedding x : V → R
3 such that ‖xu − xv‖ = duv ∀{u, v} ∈ ED and

‖xu − xv‖ ∈ [duv, duv] ∀{u, v} ∈ EI ?

In general, the vertex ordering R may visit each vertex in the graph one or more times.
We define such a repetition order [6] as a sequence R : N → V ∪ 0 with length |R| ∈ N

(such that Ri = 0 for all i > |R|) when it satisfies the requirements of the iDMDGP. A
repetition order entry ri is referred to as repeated when there exist one or more elements v j

with j < i −2, such that v j = vi . As shown in [6, §4], there exist iDMDGP instances whose
vertex orders must contain repetitions.

The interval Branch-and-Prune (iBP) algorithm is a combinatorial method for finding
solutions to the iDMDGP. The iDMDGP solution space is a search tree, within which each
path from the root node to a leaf node represents a distinct protein conformation. The iBP
algorithm, explained in detail previously [5,12,13], recursively traverses the search tree in
order to enumerate solutions to a given problem instance. If at any point in the search, the
partial solution becomes infeasible with respect to the constraints, then the leaves of the
current search tree node are “pruned” and iBP backtracks until a solution is identified. By
searching the entire tree, iBP is capable of systematically exploring the feasible set of any
given problem instance.

This work introduces a variant of iBP that uses an iterative tree traversal algorithm based
on embedding equations derived from Clifford algebra [12]. This iterative variant is ideal for
iDMDGP instances that have highly repetitive vertex orders [6], as it requires no extra matrix
computations for repeated atoms in the order. We then pair our iterative iBP algorithm with
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Fig. 3 Embedding relations for computing the position of a vertex x4 from its predecessors (x1, x2, x3), via
the parameters (δ4, θ4, τ4, σ4)

such a highly repetitive discretization vertex order that directly uses information on dihedral
angles during tree traversal. When many backbone dihedral angles are known to high preci-
sion in a given problem instance, this method and vertex order produce significantly smaller
search trees than prior methods. For the purposes of this work, the proposed algorithm and
vertex order enable iBP to obtain solutions to problem instances containing strong backbone
dihedral information. For such problem instances, it is challenging for iBP to obtain any
solutions using previously introduced vertex orders that do not branch on backbone dihe-
drals. We show that our new implementation solves this family of instances efficiently, even
when previous iBP implementations fail to obtain any solutions.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the iterative
iBP algorithm with its embedding equations, along with new repetition vertex orders for
protein structures. In Sect. 3, we describe features of the new iterative iBP implementation
that simplify its use in routine applications while retaining the remarkable flexibility and
generality of iBP. In Sect. 4 we present some computational results, specifically focusing on
benchmarking the ability of iBP to find a single solution. Finally, we conclude the paper in
Sect. 5.

2 Algorithmic considerations

2.1 Iterative embedding relations

iBP ismost naturally defined as a recursive tree traversal algorithm [7,13] that uses recursively
defined affine transformation matrices [24] for computing embedded coordinates. However,
recent use of Clifford algebra has yielded embedding equations that are non-recursive [12],
the key results of which are recalled here.

For any vertex j in a repetition order R, we seek the embedded coordinate x j ∈ R
3, given

distances to the three preceding vertices j − 1, j − 2 and j − 3. From the properties of the
iDMDGP, the distances d j−1, j , d j−2, j and d j−3, j are known, where d j, j−3 is potentially
an interval. The remaining distances in the clique formed by the four vertices ( j − 3, j −
2, j − 1, j) are calculable from the coordinates x j−1, x j−2 and x j−3. We shall introduce the
quantities δ j , θ j , τ j and σ j for embedding vertex j , where δ j � d j−1, j (cf. Fig. 3). The angle
θ j is uniquely defined, and is obtained from the cosine law using the relevant distances,

θ j � cos−1

(
d2j−1, j + d2j−2, j−1 − d2j−2, j

2d j−1, j d j−2, j−1

)
(1)
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From the requirement that the vertex order satisfies the strict triangular inequality, θ j is strictly
within (0, π), ensuring the vertices ( j − 3, j − 2, j − 1) are non-collinear. The variable
τ j � cosω j is related to the dihedral angleω j formed by the vertices ( j −3, j −2, j −1, j).
When ω j is known from either protein chemistry or measurement, such that ω j ∈ Ω , the set
of experimentally known dihedral angles, we may directly compute τ j , as well as the sign
variable σ j ∈ {−1,+1}:

σ j �
{ sinω j

| sinω j | if sinω j 	= 0

1 if sinω j = 0

In cases where ω j /∈ Ω , the iDMDGP nevertheless guarantees that the distance d j−3, j is
available, and we may compute τ j from the cosine law for a trihedron [12]:

τ j =
2d2j−2, j−1

(
d2j−3, j−2 + d2j−2, j − d2j−3, j

)
− d j−3, j−2, j−1d j−2, j−1, j√

4d2j−3, j−2d
2
j−2, j−1 − d2j−3, j−2, j−1

√
4d2j−2, j−1d

2
j−2, j − d2j−2, j−1, j

(2)

where

d j−3, j−2, j−1 � d2j−3, j−2 + d2j−2, j−1 − d2j−3, j−1

d j−2, j−1, j � d2j−2, j−1 + d2j−2, j − d2j, j−1

Given δ j , θ j , τ j , and σ j , the embedded coordinates of vertex j are given by the following
equation:

x j = p1 + τ j p2 + σ j

√
1 − τ 2j p3

where p1, p2, p3 ∈ R
3 depend only on x j−1, x j−2, x j−3, δ j and θ j ,

p1 = −
(

δ j

‖r12‖
)((

cos(θ j ) − ‖r12‖
δ j

)
x j−1 − cos(θ j ) x j−2

)

p2 = −
(

δ j

‖r12‖
)(

sin(θ j )

‖r12 × r23‖
) (‖r12‖2 r23 − (r12 · r23) r12

)
p3 = −

(
δ j

‖r12‖
)(

sin(θ j )

‖r12 × r23‖
)

‖r12‖ (r12 × r23)

and we have introduced r12, r23 ∈ R
3 for notational simplicity,

r12 = x j−1 − x j−2

r23 = x j−2 − x j−3

By explicitly parameterizing each embedding with the sign σ j , we obtain an unambiguous
solution for the coordinate x j . An iBP search tree that uses these equations therefore stores
a set of values (δ, θ, τ, σ, x) at each of its nodes. Thus, whenever ω j—and consequently σ j

and τ j—is known for vertex j , this yields a single branch at that level in the tree.
In the present iBP implementation [5] that uses recursively defined affine transformation

matrices, iBP must compute and store a matrix for each repeated vertex in a repetition order.
To compute the matrix of a repeated vertex, the sign parameter σ j must be determined by
systematic search during branching: the value of σ j that yields an embedded coordinate near-
est to the originally determined coordinate is used to build the transformation matrix. For
vertex orders containing a large degree of repetition, this introduces unnecessary computa-
tions. Using the above equations, embedding a new vertex x j requires only (δ j , θ j , ω j , σ j )
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and the embedded coordinates of the last three vertices in the order, so repeating a vertex
in a discretization order introduces a copy of the original vertex coordinate, but requires no
additional computations.

Like the iBP implementation using affine transformation matrices, our implementation
requires the calculation of τ j from distances by Eq. (2) when ω j /∈ Ω . While this can
lead to numerical instability in large instances with imperfect distance data, the fact that
our implementation directly computes τ j when ω j ∈ Ω effectively mitigates this instability
when dihedral constraints are available.

Thus far, the discussion of the Clifford algebraic embedding equations has focused on
situations when either ω j or d j, j−3 are known exactly, resulting in a single value of τ j
and either one or two values of σ j , respectively. When d j−3, j is an interval distance, such
that { j − 3, j} ∈ EI , we shall denote its lower and upper bounds as d j−3, j and d j−3, j ,
respectively. Similarly, when ω j is an interval dihedral, i.e. ω j ∈ ΩI , we denote its bounds
as ω j and ω j . In a process that is described in more detail below, these intervals are then
discretized through linear interpolation in order to obtain values that may be used in the
embedding equations.

Algorithm 1 The advance method

1: Input: Index I and tree size N in N|R|, incremented element position j
2: Output: Least modified element position j∗
3: Ik ← 1 ∀k ∈ { j + 1, . . . , |R|}
4: for all k ∈ { j, j − 1, . . . , 1} do
5: Ik ← Ik + 1
6: j∗ ← k
7: if Ik > Nk then
8: Ik ← 1
9: else
10: return j∗
11: end if
12: end for
13: return j∗

2.2 Iterative tree traversal

In order to obtain solutions to the iDMDGP, iBP discretizes the search space by breaking
each interval into a finite set of values, resulting in a search tree. We introduce the R-index
N ∈ N

|R|, referred to as the tree size, which holds the number of branches at each level of
this tree. Herein R is the repetition order associated with the iDMDGP instance. The number
of branches at level j of the tree is given by N j , and depends on the geometric information
available for vertex j . When j is a repetition of a previously embedded vertex, we have
N j = 1. When d j−3, j is an exact distance, there are two possible embeddings of vertex j , so
N j = 2. Finally, when d j−3, j is an interval distance, N j = 2B where B is a user-specified
discretization factor. In cases where ω j is known—as opposed to knowing only cosω j via
d j−3, j—the branch count N j is reduced by a factor of two, as σ j takes a single value.

By default, interval discretization in iBP is done uniformly, with each of the B discrete
points equally spaced upon its arc formed by the three-sphere intersection sub-problem. Due
to discretization, iBP is a heuristic method. For any iDMDGP instance having a non-empty
feasible set, there is no guarantee that iBP will select discretization points which satisfy the
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original iDMDGP [9]. However, when sufficiently large values of B are used in concert with
a small tolerance during distance feasibility pruning, the chances of obtaining solutions is
increased. Thus, in the absence of alternative methods for discretizing the interval d j and ω j

values, we defer to uniform subdivision.
In the following, we shall employ multi-index notation to describe the iterative tree traver-

sal routine, with multi-indices denoted by capitalized boldface letters. Given a tree size
N ∈ N

|R|, we introduce the partial order operator for all |R|-indices I ∈ N
|R| as follows:

I ≤ N →
{
true if I j ≤ N j ∀ j ∈ {1, . . . , |R|}
false otherwise

An index I describes a valid—though potentially infeasible—path through the tree if it
satisfies 1 ≤ I ≤ N, where 1 is a vector of ones.

In the iterative formulation of iBP described in this paper, paths through the search tree
are enumerated by advancing an index I (Algorithm 1). Advancing an index I at its last
element I|R| yields a sequence of indices—and thus paths through a tree—that implicitly
effects a depth-first search in that tree. On the other hand, incrementing an index I at some
element I j , with j < |R|, is equivalent to pruning the tree at that level, as it skips all indices
that would have been produced by incrementing at |R|. The term index is used to describe I
due to the similarity it shares to the indices of multidimensional arrays of shape N. In this
analogy, each leaf of the search tree is a given element in a multidimensional array, which
has |R| dimensions and N j elements along dimension j . Alternatively, the act of advancing
an index may be considered equivalent to a set of combined operations on a stack S.

Proposition 1 (Stack equivalence) An index I ∈ N
|R|, combined with a level j ≤ |R|, repre-

sents a stack S, such that S = (I1, I2, I3, . . . , I j ). By introducing the following equivalence
between index operations and stack operations,

i. Ik ← z, k > j : no operation.
ii. Ik ← z, k ≤ j :

a. pop S until |S| = k − 1,
b. push z onto S.

iii. j ← k, k > j : push 1 onto S until |S| = k.

we see that the advance method maintains a stack within the first j elements of its index I.

Proof (Stack equivalence)

i. As S only contains the first j elements of I, the modification of an index element Ik for
k > j does not modify S.

ii. This applies to lines 5 and 8 of Algorithm 1, and ensures that Sk = Ik for k ≤ j . Note
that this changes the size of the stack, which is reflected in the algorithm by the least
modified index j∗

iii. This ensures that the initialization ( j ← 1) and the act of moving to the next tree level
( j ← j + 1) are equivalent to pushing the next available tree node onto the stack S.

�
Using these indices, we may construct an iterative variant of iBP that implicitly traverses

and prunes a search tree by advancing an index (Algorithm 2). The calcAngle and calcTorsion
methods in Algorithm 2 calculate the bond angle θi and the cosine of the dihedral angle, τi ,
using Eqs. 1 and 2 above, using the provided vertex coordinates to compute the required
distances.
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Algorithm 2 The iterative iBP algorithm
1: Input: iDMDGP instance with graph G, repetition order R, and tree size N.
2: Output: Set of solutionsX .
3: Initialize I ← 1, j = 1, andX ← ∅
4: while I ≤ N do
5: while j ≤ |R| do
6: if r j is a repetition then
7: Copy x j from the original embedding xi {where i < j s. t. ri = r j }
8: else
9: δ ← d j−1, j
10: θ ← calcAngle(x j−1, x j−2, d j−1, j , d j−2, j )
11: if ∃ω j ∈ Ω then

12: �ω ← I j
N j

(ω j − ω j ) + ω j )

13: σ ← sin �ω/| sin �ω| {Or 1, if sin �ω = 0}
14: τ ← cos �ω

15: else
16: σ ← 2(I j mod 2) − 1

17: �d ← �I j /2�
N j /2

(d j−3, j − d j−3, j ) + d j−3, j

18: τ ← calcTorsion(x j−1, x j−2, x j−3, d j−1, j , d j−2, j , �d )
19: end if
20: Embed x j given x j−1, x j−2, x j−3, δ, θ , τ , σ
21: if vertex x j is infeasible then
22: (I, j) ← advance(I, N, j)
23: break {Jump to outermost while (line 4).}
24: end if
25: end if
26: if j = |R| then
27: X ← X ∪ x {The current embedding x is a solution}
28: end if
29: j ← j + 1
30: end while
31: (I, j) ← advance(I, N, |R|)
32: end while

2.3 Ramachandran-defined vertex orders

In order to leverage known backbone dihedral angles when enumerating solutions to the
iDMDGP, a new set of vertex orders was introduced. We define an initial order R1, an inner
order Ri and a final order Rn for the first, inner, and last amino acid units of protein graphs,
respectively. The vertex orders are as follows:

R1 =
{
N(1), H(1)

1 , H(1)
2 , C(1)

α , N(1), H(1)
α , C(1)

α , C′(1)}
Ri =

{
N(i), O(i−1), C(i−1)

α , C′(i−1), N(i), C(i)
α , C′(i), N(i+1),

C(i−1), N(i), C(i)
α , H(i)

1 , N(i), C(i)
α , C′(i), H(i)

α , C′(i), C(i)
α

}
Rn =

{
N(n), O(n−1), C(n−1)

α , C′(n−1), N(n), C(n)
α ,

C′(n), C′(n−1), N(n), C(n)
α , H(n)

1 , N(n), C(n)
α , C′(n),

H(n)
α , C′(n), C(n)

α , O(n)
1 , C′(n), O(n)

2

}
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(a) (b)

Fig. 4 Reorder-dependent differences in sampling of Ramachandran space, using identical branching factors
(B = 64). Black crosses and red dots represent conformations sampled with and without application of
dihedral restraints to (φ, ψ), respectively. a Old repetition orders. b New Ramachandran-defined repetition
orders. (Color figure online)

where i denotes the amino acid unit index and n denotes the total number of amino acid units
within this context. These orders make extensive use of repeated vertices in order to achieve
direct branching on the backbone dihedrals φ, ψ and ω.

Figure 4 illustrates how the newordersmore directly and uniformly sampleRamachandran
space than previously published vertex orders [7]. An iBP calculation was performed, using
both vertex orders, to find solutions to the iDMDGP instance of a backbone-only tetrapeptide,
with the direct distance feasibility (DDF, [5]) and van der Waals (VDW) pruning devices
enabled. Because the previous orders do not branch on the φ or ω backbone dihedral angles
of proteins, they do not enable iBP to cover this space in a regular way, and often sample
nearby points in (φ, ψ)-spacemore than once during tree traversal (Fig. 4a). An even stronger
difference in behaviour is observed when constraints are placed on an instance’s φ and ψ

angles (Fig. 4, red dots).Using previously published orders, iBP treats the dihedral constraints
as extra pruning edges, thus maintaining the same irregular sampling pattern and pruning
any partial conformations that fall outside the constraints. Using the new orders that directly
branch on protein backbone dihedral angles, iBP adaptively changes its sampling pattern
(Fig. 4b, red dots) to better cover the region specified by the constraints. The red rectangle
in the second panel of Fig. 4 is indeed a regular grid of sampled conformations. The central
regions of (φ, ψ)-space were not sampled by either vertex order, as they were pruned by the
VDW device.

3 Implementation-specific technical innovations

3.1 CHARMM-syntax force fields

The basic input to protein structure determination procedures is the amino acid sequence
of the protein of interest. From the sequence, software packages draw information from
“force field” libraries in order to construct the topology (graph structure) and parameters
(graph edge weighting) of the target molecule. Routinely employed software packages [2,
3,22,26] employ a common force field syntax derived from the Chemistry at HARvard
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Molecular Mechanics (CHARMM) software package [2]. To ensure extensibility, flexibility
and interoperability with these packages, our implementation of iBP also uses CHARMM-
syntax force fields to construct iDMDGP instances. In addition, iBP accepts a superset of
the CHARMM parameter file syntax that allows users to specify interval distances, angles
and dihedrals within force fields. The force field used by iBP was derived from the protein
based force field of the Crystallography and NMR System (CNS, [3]) with minor additions.
For example, the topology information of a protein backbone is defined in iBP using the
following notation:

! BBI: interior (1<i<n) backbone-only residue
residue BBI
group
atom N type=NH1 charge=-0.36 end
atom HN type=H charge= 0.26 end
atom CA type=CH1E charge= 0.00 end
atom HA type=HA charge= 0.10 end
atom C type=C charge= 0.48 end
atom O type=O charge=-0.48 end

bond N HN bond N CA bond CA HA
bond CA C bond C O
dihedral HN N CA HA

end

Vertex orders in iBP are also specified using a custom syntax that retains the flexibility of
CHARMM-style force fields. Each amino acid unit defined in the force field topology files
is given a corresponding order. As an example, the Ramachandran-defined vertex order of a
protein backbone corresponding to the above topology entry is specified as follows:

reorder BBI
N, -O, -CA, -C, N, CA, C, +N,
-C, N, CA, H1, N, CA, C, HA, C, CA

end

where -O denotes atom O of the previous amino acid unit, and +N denotes atom N of the next.
At runtime, iBP constructs the iDMDGP instance of a protein from its sequence using this
combined topology, parameter, and vertex order information. The validity of the resulting
problem instance is then checked, and tree traversal is initiated viaAlgorithm 2. Therefore, it
is now straightforward to use iBP within routine structure determination efforts. In addition,
this flexibility enables iBP to handle structure determination involving post-translational
modifications and non-natural amino acids, provided a repetition order can be crafted.

3.2 Pruning and timing statistics

Our implementation of iBP admits the inclusion of new pruning devices via a system of call-
back functions. On tree initialization, each pruning device registers its callbacks at each level
of the tree. During tree traversal, iBP executes each registered callback function to determine
the feasibility of newly embedded vertices. Finally, when traversal is completed or termi-
nated prematurely by the user, each pruning device outputs vertex-specific pruning results.
This is useful for identifying any distance, angle or torsion constraints that are geometrically
inconsistent, for example.

Furthermore, the index-based traversal algorithm enables iBP to roughly estimate its
runtime. Given an index I in a tree of size N, we define the “width” of the sub-tree from 1 to
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Fig. 5 The first solution returned by iBP for the HHD2 iDMDGP instance, using only dihedral constraints
predicted from NMR chemical shifts

I as the number of leaves in that sub-tree,

w(I, N) =
|R|∑
j=1

(I j − 1)
|R|∏

k= j+1

Nk

Therefore, the width of the entire tree is w(N, N)+1, and the width of the yet-untraversed
portion of the tree is given by w(N − I + 1, N). Assuming the rate of tree traversal—defined
as the number of leaf nodes traversed per unit time—is relatively constant on average, we
estimate the remaining runtime of an iBP tree traversal as follows:

tr = w(N − I + 1, N)

w(I, N)
te

where tr and te are the remaining and elapsed runtimes, respectively. Using these equations,
iBP may output tree size and periodic timing information to the user. This assumption of a
constant traversal—and thus pruning—rate of iBP is ensured by measuring w(N − I + 1, N)

at sufficiently spaced time intervals.

4 Computational results

4.1 Experimental data

The vertex orders in this work are ideally suited to pairing with backbone dihedral angles,
such as those predicted from measured NMR chemical shifts (e.g. by TALOS-N, [23]). To
illustrate this, the structure of an HHD2 protein domain (residues G420-R499 of Whirlin
isoform-4) was solved by constraining all backbone dihedral angles to the intervals predicted
by TALOS-N (Fig. 5). NMR chemical shifts were measured from a uniformly 15N,13C-
labeled protein sample that was prepared at a concentration of 300 µM in 250 µL of a buffer
solution (150mMNaCl, 50mMTris-HCl, 5%D2O, pH 7.5). All data were collected at 25 ◦C
on a Bruker Avance III 900 MHz spectrometer with a three-channel cryogenically cooled
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Fig. 6 Comparison of the first solution returned by iBP for the HHD2 iDMDGP instance (Fig. 5, shown here
in dark grey) with the ten lowest-energy structures from ARIA/CNS (colored, thin traces), using the large
initial structure set and slow annealing rate

probe. The following experiments were performed, yielding chemical shifts for the following
types of atomic nuclei:

– BT-HSQC [14]: H1, N. (cf. Fig. 2)
– HNHA [25]: H1, N, Hα .
– BT-HNCO [14], BT-HNCO+ [8]: H1, N, C′.
– BT-HNCACB, BT-HNCOCACB [14]: H1, N, Cα , Cβ .

From these experiments, about 99% of the expected backbone chemical shifts were assigned
(99% of H1, N, Cα , Cβ and C′; 91% of Hα). The assigned chemical shifts, along with
the amino acid sequence of HHD2, were then used to obtain predicted intervals for φ and
ψ backbone dihedral angles using TALOS-N. The ω backbone dihedral angles were fixed
to 180◦, following standard practice in the structural bioinformatics field. The resulting
iDMDGP instance contained 464 vertices, and had a vertex order length |R| = 1378.

4.2 Structure calculations

To obtain the structure illustrated in Fig. 5, the iterative iBP variant described in Algorithm 2
was run using the Ramachandran-defined vertex orders described in Sect. 2.3. A branching
factor of B = 16 and a branch ε of 0.01 Å were used, resulting in an effective branching
factor Beff, j that varies at each level of the tree according to the following equation:

Beff, j � min

{
B,

⌊
d j, j−3 − d j, j−3

ε

⌉}

The direct distance feasibility (DDF, [5]) and van derWaals (VDW) pruning devices were
enabled during iBP tree traversal, as well as a new pruning device that tested for direct dihe-
dral angle feasibility. In short, dihedral feasibility pruning ensures that all quartets of atoms
with corresponding dihedral angles in Ω are consistent with their respective dihedral con-
straints. This dihedral feasibility pruning device effectively generalizes previously developed
iBP pruning devices related to proteins, including the α-helix and chirality pruning devices
introduced in [5].

To provide a basis for comparison, conventional NMR structure calculations were per-
formedbymolecular dynamics simulated annealing (MDSA)usingARIA/CNS [3,20],which
was recently evaluated as one of the most effective software tools for NMR structure deter-
mination [21]. In MDSA, the motion of each protein structure is simulated by numerically
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Fig. 7 Summary of root mean square deviations (RMSD) between the first solution produced by iBP from
the TALOS instance and the target structure, as a function of dihedral uncertainty (Δ) and distance threshold
dmin . Full results are listed in Tables 1, 2, and 3

solving Newton’s equations of motion from various initial velocities, during which the tem-
perature of the system is reduced from ∼ 104 to ∼ 50 K. The structures from simulated
annealing are then subjected to a round of local descent. For both the dynamics and descent
stages, the objective function is an approximation of the molecule’s potential energy, which
includes terms for the known local geometry and the NMR-derived geometric constraints
[18].

Within ARIA/CNS, default parameters were used to randomly generate two sets of 20
and 100 initial structures, based solely on the predicted (φ, ψ) angles from TALOS-N. The
smaller set of structures was subjected to local descent using a short MDSA calculation,
whereas the larger set was subjected to a longer MDSA calculation with a ten-fold slower
annealing rate.

While complete traversal of the search tree, which contained 10147 leaves, was estimated
to require 10140 min, the solution illustrated in Fig. 5 was obtained by iBP within a few
seconds, thanks to the strong constraints supplied from TALOS-N. In contrast, average times
of the short and longMDSA computations were 29 and 186 s, respectively. However, none of
the structures produced by short MDSAwere in the dihedral angle feasible set, and only 71%
of structures from long MDSA were feasible. A comparison of the overall folds produced by
iBP and the long MDSA run of ARIA/CNS is given in Fig. 6; while the secondary structures
and general fold are the same among all structures, only the iBP structure is guaranteed to
be feasible in the iDMDGP.

4.3 Sensitivity to uncertainty

In general graphs, iBP exhibits exponential worst-case complexity [17]. Fortunately, the fact
that pruning edges of similar length are distributed sufficiently uniformly over the vertex
order ensures that branches do not occur frequently, resulting in tractable instances. How-
ever, when intervals are employed for branching in iBP, discretization can potentially spoil
the favorable properties of the method [9]. Lower discretization factors B increase the prob-
ability that no path through the search tree remains feasible after applying the discretization.
Conversely, increasing the discretization factor grows the search tree exponentially, resulting
in dramatically longer runtimes.

To analyze the sensitivity of the proposed iBP algorithm and vertex order to inter-
val uncertainty, a set of experiments was performed using the first solution from the
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Table 1 Results of solving the
TALOS instance under low
dihedral angle uncertainties
(Δ = 0◦, 1◦, 2◦)

Δ (◦) dmax (Å) mdist t1 (s) RMSD (Å)

0 5 0 1.7 0.014

0 6 1 1.7 0.014

0 7 6 1.7 0.014

0 8 29 1.7 0.014

0 9 81 1.7 0.014

0 10 163 1.7 0.014

0 12 314 1.7 0.014

0 15 625 1.7 0.014

0 20 1150 1.7 0.014

1 5 0 1.7 0.014

1 6 1 1.7 0.014

1 7 6 1.7 0.014

1 8 29 1.6 0.014

1 9 81 1.7 0.014

1 10 163 1.7 0.014

1 12 314 1.7 0.014

1 15 625 1.7 0.014

1 20 1150 1.7 0.014

2 5 0 1.8 0.014

2 6 1 1.7 0.014

2 7 6 1.7 0.014

2 8 29 1.7 0.014

2 9 81 1.7 0.014

2 10 163 1.7 0.014

2 12 314 1.7 0.014

2 15 625 1.7 0.014

2 20 1150 1.7 0.014

TALOS instance (the target structure) as a basis. First, dihedral restraints were obtained
by computing the backbone φ and ψ dihedral angles from the target structure, and vary-
ing degrees of uncertainty (Δ) were added to the dihedrals of residues 11–13, 30–34,
46–49, and 61–65. These residues were found in “loop” regions of the target structure,
which are generally more flexible in protein structures. In addition, long-range distance
restraints were obtained by collecting the following set of distances from the target struc-
ture:

D = {‖xi − x j‖ < dmax; |i − j | ≥ 5}
where dmax specifies themaximum admissible distance in the set. The final distance restraints
were obtained by forming intervals 0.5Å wide around each distance in D . We shall refer to
the size of the set D as mdist in all further discussions. For the problem instances resulting
from each pair of values (Δ, dmax), iBP was run using identical parameters to those used to
solve the original TALOS instance, with the exception that the DDF tolerance was expanded
to 0.1Å. The time required for iBP to obtain a single solution, subject to a time limit of 5 h,
was recorded as t1 for each instance, and the root mean square deviation of each obtained
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Table 2 Results of solving the
TALOS instance under moderate
dihedral angle uncertainties
(Δ = 5◦, 10◦, 15◦)

Δ (◦) dmax (Å) mdist t1 (s) RMSD (Å)

5 5 0 1.7 0.522

5 6 1 1.7 0.522

5 7 6 1.7 0.522

5 8 29 1.6 0.522

5 9 81 1.7 0.555

5 10 163 2.1 0.360

5 12 314 96.4 0.317

5 15 625 – –

5 20 1150 – –

10 5 0 1.3 1.130

10 6 1 1.2 1.130

10 7 6 1.2 1.130

10 8 29 1.7 0.720

10 9 81 79.1 0.611

10 10 163 638.0 0.529

10 12 314 – –

10 15 625 – –

10 20 1150 1378.0 0.289

15 5 0 0.8 1.732

15 6 1 0.8 1.732

15 7 6 0.8 1.732

15 8 29 1.2 1.557

15 9 81 1.3 1.381

15 10 163 18.9 1.398

15 12 314 1400.8 1.169

15 15 625 – –

15 20 1150 – –

solution to the target structure was also recorded (Fig. 7). The complete set of results of this
analysis is given in Tables 1, 2, and 3.

This analysis illustrates several general behaviors of iBP for solving protein instances.
When dihedrals are specifiedwith high precision (Table 1), the conformational space is small,
and iBP rapidly obtains a solution. As Δ is increased, iBP still rapidly obtains a solution
when only a few long-range distances are supplied. However, their deviations from the target
structure increase with Δ, and supplying more distances decreases the deviations at the
expense of increased computation time. Finally, the inclusion of a large number of distance
restraints tends to increase runtime past the 5 h limit, especially when the conformational
space is large due to large Δ. While one may expect runtimes to decrease as more distances
are added, due to the graph becoming more complete [17], the opposite effect is observed.
This is a result of the negative interplay between interval discretization and distance pruning
in iBP, and might be alleviated using error-tolerant pruning devices such as mean distance
error (MDE) [9].

123



J Glob Optim (2018) 72:109–127 125

Table 3 Results of solving the
TALOS instance under high
dihedral angle uncertainties
(Δ = 20◦, 25◦, 30◦)

Δ (◦) dmax (Å) mdist t1 (s) RMSD (Å)

20 5 0 1.4 2.028

20 6 1 1.3 2.028

20 7 6 1.5 2.028

20 8 29 2.8 1.334

20 9 81 4.4 2.130

20 10 163 8.2 1.632

20 12 314 1004.2 1.389

20 15 625 – –

20 20 1150 – –

25 5 0 1.4 3.222

25 6 1 1.3 3.566

25 7 6 0.8 3.566

25 8 29 3.2 2.742

25 9 81 3.3 2.317

25 10 163 – –

25 12 314 – –

25 15 625 – –

25 20 1150 – –

30 5 0 1.6 3.589

30 6 1 2.1 3.589

30 7 6 1.9 3.589

30 8 29 17.1 2.472

30 9 81 20.7 2.266

30 10 163 106.5 1.882

30 12 314 – –

30 15 625 – –

30 20 1150 – –

Finally, it is important to note that none of the artificial instances produced from the
original TALOS structure generated solutions when running iBP with previously defined
vertex orders [7], due to the irregular sampling patterns of Ramachandran space that those
orders produce.

5 Conclusions

This paper introduces a new implementation of the interval Branch-and-Prune algorithm
for molecular structure determination [13], and describes several modifications that provide
enhanced performance for the specific task of protein structure elucidation. Comparison
against an existing state of the art method in the field demonstrates the advantages of iBP
in practical structure determination problems. Our new iBP implementation is completely
open source, and is available under the MIT license at http://github.com/geekysuavo/ibp-ng.
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