
J Glob Optim (2018) 72:347–372
https://doi.org/10.1007/s10898-018-0627-0

A vector linear programming approach for certain global
optimization problems

Daniel Ciripoi1 · Andreas Löhne1 ·
Benjamin Weißing1

Received: 5 May 2017 / Accepted: 19 February 2018 / Published online: 5 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Global optimization problems with a quasi-concave objective function and linear
constraints are studied. We point out that various other classes of global optimization prob-
lems can be expressed in this way. We present two algorithms, which can be seen as slight
modifications of Benson-type algorithms for multiple objective linear programs (MOLP).
The modification of the MOLP algorithms results in a more efficient treatment of the studied
optimization problems. This paper generalizes results of Schulz and Mittal (Math Program
141(1–2):103–120, 2013) on quasi-concave problems and Shao and Ehrgott (Optimization
65(2):415–431, 2016) on multiplicative linear programs. Furthermore, it improves results
of Löhne and Wagner (J Glob Optim 69(2):369–385, 2017) on minimizing the difference
f = g−h of two convex functions g, hwhere either g or h is polyhedral. Numerical examples
are given and the results are compared with the global optimization software BARON.

Keywords Global optimization · DC programming · Multiobjective linear programming ·
Linear vector optimization

Mathematics Subject Classification 90C26 · 90C29 · 52B55

This research was supported by the German Research Foundation (DFG) Grant Number LO–1379/7–1.

B Andreas Löhne
andreas.loehne@uni-jena.de

Daniel Ciripoi
daniel.ciripoi@uni-jena.de

Benjamin Weißing
benjamin.weissing@uni-jena.de

1 Department of Mathematics, Friedrich Schiller University Jena, 07737 Jena, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-018-0627-0&domain=pdf
http://orcid.org/0000-0003-0872-4735

348 J Glob Optim (2018) 72:347–372

1 Introduction

The object of study is a global optimization problem with a quasi-concave objective function
f : R

q → R̄ and linear constraints of the form

min f (Px) s.t. Ax ≥ b, (QCP)

where P ∈ R
q×n , A ∈ R

m×n and b ∈ R
m . The symbol R̄ := R ∪ {±∞ } denotes the set of

extended reals. The following four examples show classes of global optimization problems
which are covered by (QCP).

Example 1 (DC programming - “convex component” being polyhedral) Consider

min
x∈dom g

[g(x) − h(x)] (1)

where g : R
n → R ∪ {+∞} is polyhedral convex and h : R

n → R ∪ {+∞} is convex. The
reformulation

min
x, r

[r − h(x)] s.t. (x, r) ∈ epi g

has a concave objective function. As g is polyhedral, the constraints are linear. See, e.g. [12]
for more details.

Example 2 (DC programming - “concave component” being polyhedral) Consider the DC
program (1) but, in contrast to Example 1, let g be convex and h be polyhedral convex and
proper. As shown in [12], the Toland–Singer dual problem

min
y∈dom h∗[h∗(y) − g∗(y)] (2)

can be utilized to solve (1), where g∗ : R
n → R ∪ {+∞} and h∗ : R

n → R ∪ {+∞} are the
conjugates of g and h, respectively. Since h∗ is polyhedral convex and g∗ is convex, we can
proceed as in Example 1 to obtain a reformulation as (QCP).

Example 3 (Minimizing a convex function over the boundary of a polytope) Let g : R
q →

R ∪ {+∞} be convex and let

Q =
{
x ∈ R

q
∣∣ ∃u ∈ R

k : Ax + Bu ≥ b
}

be a polytope. We consider the problem

min g(x) s.t. x ∈ bd Q, (3)

where bd Q denotes the boundary of Q.
We assume 0 ∈ int Q and that g is Lipschitz over Q. For some real parameter c > 0 we

define hc : R
q → R ∪ {+∞} by its epigraph:

epi hc =
{
(x, r) ∈ R

q × R
∣∣ ∃u ∈ R

k : Ax + Bu − 1

c
b r ≥ 0, r ≥ 0

}
.

Because epi hc is equal to the cone generated by the set Q×{c}, the negative of the polyhedral
convex function h(x) = hc(x) − c penalizes points belonging to the interior of Q. Thus, for
c chosen sufficiently large, (3) can be replaced by the equivalent problem

min g(x) − (hc(x) − c) s.t. x ∈ Q. (4)

123

J Glob Optim (2018) 72:347–372 349

Problem (4) is a DC program as considered and transformed into (QCP) in Example 2. Note
that g needs to be modified by setting g(x) = ∞ for x /∈ Q. For more details see Sect. 7.4
below.

Example 4 (Linear multiplicative programming [18]) A special instance of (QCP) is to min-
imize the product of affine functions under linear constraints:

min
q∏

i=1

(c
ᵀ
i x + di) s.t. Ax ≥ b. (5)

Here, we assume cᵀ
i x + di > 0 for feasible x . Various applications of this problem class can

be found in the literature, see e.g. [18].

Our approach to solve (QCP) can be summarized as follows: We show that solving (QCP)
is equivalent to solve

min
y∈vert P f (y),

where vert · denotes the vertex set of a polyhedron, and

P = { y ∈ R
q
∣∣ y − Px ∈ C, Ax ≥ b

}

denotes the upper image of the vector linear program

minC Px s.t. Ax ≥ b. (VLP)

Here, C is some polyhedral convex pointed cone with respect to which f is monotone, that
is y − x ∈ C implies f (x) ≤ f (y). A vector linear program describes the minimization
of the linear function Px under the constraints Ax ≥ b with respect to the partial ordering
induced byC . For further information and applications compare, for example, [7].Algorithms
designed for solving vector linear programs, in particular Benson-type algorithms [7], also
compute the set vert P . Thus, those algorithms could be utilized directly to solve (QCP).
However, computing all the vertices of P may be too expensive in practice. Therefore we
alter the algorithms for solving (VLP) slightly by introducing certain bounding techniques,
which are introduced in [18] for the special case of linear multiplicative programming (5).
These bounding techniques usually lead to a decline in the number of vertices of P that need
to be computed.

An overview over various solution techniques for global optimization problems can be
found in [9,10]. Quasi-concave minimization problems have been investigated, for instance,
in [15,20]. The idea to solve a (scalar) global optimization problem via a multiple objective
linear program (MOLP) (which we understand to be a vector linear program with the special
cone C = R

q
+) is not new in the literature. Fülöp [6] shows that a linear bilevel programming

problem can be solved by optimizing a linear function over the Pareto set of a MOLP. Mittal
and Schulz [16] minimize a quasi-concave objective function under linear constraints via a
corresponding MOLP. Shao and Ehrgott [18] investigate the special case of multiplicative
linear programs using this idea. Löhne and Wagner [12] solve DC optimization problems
with one polyhedral component (compare Examples 1 and 2) by utilizing a MOLP solver.

The article is organized as follows. In Sect. 2we introduce some concepts and notation. The
problem formulation and corresponding concepts and results are given in Sect. 3. Section 4
is devoted to a first algorithm, which we call the primal algorithm as it is a modification of
(the primal version of) Benson’s algorithm [1,7] for vector linear programs. Section 5 deals
with the dual algorithm, which is a modification of the dual variant of Benson’s algorithm

123

350 J Glob Optim (2018) 72:347–372

for VLP [3,7]. We also recall some facts about geometric duality for vector linear programs
[8]. In Sect. 6, our methods are extended to the case of non-solid cones, which requires a
problem reformulation in order to be able to use these methods for VLPs. The last section
provides numerical examples.

2 Preliminaries

A polyhedral convex set or convex polyhedron is defined to be the solution set of a system of
finitely many affine inequalities. Since all polyhedral sets in this article are convex, we will
say polyhedral set or polyhedron for short. If a polyhedron is given as in the latter definition,
we speak about an H-representation of the polyhedron. The well-known Minkowski–Weyl
theorem states that every nonempty polyhedron K ⊆ R

q can be represented as a generalized
convex hull of finitely many points { v1, . . . , vr } ⊆ R

q , r ≥ 1 and finitely many directions
{ d1, . . . , ds } ⊆ R

q , s ≥ 0, that is,

K =
⎧
⎨
⎩

r∑
i=1

λiv
i +

s∑
j=1

μ j d
j
∣∣ λi ≥ 0 (i = 1, . . . , r), μ j ≥ 0 (j = 1, . . . , s),

r∑
i=1

λi = 1

⎫
⎬
⎭.

The pair (Kpoi, Kdir) consisting of the two sets Kpoi := { v1, . . . , vr } and Kdir :=
{ d1, . . . , dr } is called V-representation of K . We also write

K = conv Kpoi + cone Kdir,

where conv · denotes the convex, and cone · the conical hull of a set. We assume that Kpoi

is nonempty and define cone ∅ := {0} as Kdir is allowed to be empty.
A polyhedron K can be expressed as

K =
{
x ∈ R

q
∣∣ ∃u ∈ R

k : Ax + Bu ≥ b
}
,

where A ∈ R
m×q , B ∈ R

m×k and b ∈ R
m . This type of representation is referred

to as projection- or P-representation, as K is the projection of the polyhedron Q ={
(x, u) ∈ R

q × R
k
∣∣ Ax + Bu ≥ b

}
onto R

q .
A multiple objective linear program (MOLP) is an optimization problem of the form

min Px s.t. Ax ≥ b, (MOLP)

where P ∈ R
q×n , A ∈ R

m×n and b ∈ R
m . Typically we have at least two linear objective

functions, i.e. q ≥ 2. The operator min · in (MOLP) is to be understood with respect to the
component-wise partial ordering in R

q : y ≤ z if and only if z − y ∈ R
q
+ := {w ∈ R

q |
w1 ≥ 0, . . . , wq ≥ 0 }. If the cone R

q
+ is replaced by a general polyhedral convex pointed

cone C ⊆ R
q , we obtain a vector linear program (VLP):

minC Px s.t. Ax ≥ b. (VLP)

For a polyhedral convex pointed coneC ⊆ R
q there exist matrices Y ∈ R

q×o and Z ∈ R
q×p ,

o, p ∈ N, such that

C = { Yλ
∣∣ λ ∈ R

o+
} =

{
y ∈ R

q
∣∣ Zᵀ

y ≥ 0
}
. (6)

The equivalence x ≤C y ⇐⇒ Zᵀx ≤ Zᵀy follows. Elements of S := { x ∈ R
n | Ax ≥ b }

are called feasible points. Elements of 0+S := { x ∈ R
n | Ax ≥ 0 }, the recession cone of S,

123

J Glob Optim (2018) 72:347–372 351

are feasible directions. By P[S] := {
Px
∣∣ x ∈ S

}
we denote the image of S under P . The

polyhedron P := P[S] + C is known as upper image of (VLP).
We call a point y ∈ R

q a minimal point of the polyhedron P ⊆ R
q if there is no z ∈ P

with z ≤C y and z �= y. The set of minimal points of P is denoted by MinC P . A vector
x ∈ S is called minimizer of (VLP) if Px ∈ MinC P[S]. A feasible direction x ∈ 0+S is
called minimizer of (VLP) if Px ∈ MinC P[0+S]\{ 0 }. Let Spoi ⊆ S and Sdir ⊆ 0+S with
P[Sdir] ∩ { 0 } = ∅, be finite sets. We call (Spoi, Sdir) a finite infimizer of (VLP) if

conv P[Spoi] + cone P[Sdir] + C = P .

A finite infimizer consisting of minimizers only is called a solution of (VLP), see [7,11].
Finally we recall two types of scalarizations for (VLP). For a w ∈ R

q , the weighted sum
scalarization is

minwᵀPx s.t. Ax ≥ b. (P1(w))

The corresponding dual problem is

max bᵀu s.t.

{
A

ᵀ
u = P

ᵀ
w,

u ≥ 0.
(D1(w))

Another relevant scalarization is the translative scalarization (or scalarization by a reference
variable) for some t ∈ R

q :

min z s.t.

{ Ax ≥ b,

Z
ᵀ
Px ≤ Z

ᵀ
t + z · Zᵀ

c.
(P2(t))

Note that the second inequality is equivalent to Px ≤C t + z · c. The purpose of this
scalarization method is depicted in Proposition 7. The corresponding dual problem of (P2(t))
(in a slightly modified form, see [7] for details) is

max bᵀu − tᵀw s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A
ᵀ
u = P

ᵀ
w,

cᵀw = 1,

Y
ᵀ
w ≥ 0,

u ≥ 0.

(D2(t))

A function f : R
q → R̄ is said to be quasi-concave if its super level sets Ur := { x ∈ R

q |
f (x) ≥ r } are convex for every r ∈ R. Equivalently [2, Section 3.4], f is quasi-concave if
and only if

∀λ ∈ (0, 1), ∀x, y ∈ R
q : f (λx + (1 − λ)y) ≥ min{ f (x), f (y) }.

Let C ⊆ R
q be a pointed (i.e. C ∩ (−C) = { 0 }) convex cone. As usual, we write x ≤C y

if y − x ∈ C . A function g : R
q → R̄ is said to be C-monotone on a set D ⊆ R

q if for all
x, y ∈ D, x ≤C y implies g(x) ≤ g(y).

A function f : R
q → R̄ is called polyhedral convex (polyhedral) if its epigraph epi f :=

{(x, r) ∈ R
n × R | f (x) ≤ r} is a polyhedral convex set. The domain of f is defined as

dom f := {x ∈ R
n | f (x) < +∞}.

The conjugate f ∗ : R
q → R ∪ {+∞} of f with dom f �= ∅ is defined as

f ∗(x∗) = sup
x∈dom f

{
xᵀx∗ − f (x)

}
.

123

352 J Glob Optim (2018) 72:347–372

3 Problem formulation

The optimization problem we intend to solve is

min f (Px) s.t. Ax ≥ b, (QCP)

where f : R
q → R̄ is a quasi-concave function, P ∈ R

q×n , A ∈ R
m×n are matrices and

b ∈ R
m is a vector. In typical applications one has q � n. A low rank of non-linearity

(see e.g. [20]) is indicated by the projection of the n-dimensional feasible polyhedron S :=
{x ∈ R

n | Ax ≥ b} onto the “low”-dimensional polyhedron P[S] ⊆ R
q . In other words,

the problem is non-linear with respect to only q instead of n variables. The problem can
be solved if q is not “too large” (say up to q = 20). The low rank property can arise from
modeling techniques, e.g. by introducing slack variables, or by auxiliary variables which are
inserted in order to transform polyhedral convex terms (such as finite maximum or absolute
value) into linear constraints, see e.g. [12] for an example from location analysis.

We assume that C ⊆ R
q is a polyhedral convex pointed cone such that:

The objective function f is C-monotone on the set P[S] − C .(M)

C ⊇ 0+P[S], i.e. P[S] is C-bounded.(B)

Note that assumption (M) is always satisfied for the coneC = {0}. There are three reasons
for a larger (with respect to set inclusion) cone C . First, if one is able to find a cone with
int C �= ∅, a direct application of modified VLP algorithms is possible, while in the case
of int C = ∅ a reformulation of the problem is necessary, which is discussed in Sect. 6.
Secondly, a larger cone C tends to reduce the number of iteration steps required. Third, a
larger cone C can be necessary to satisfy the boundedness assumption (B).

A further assumption ismade in the algorithms following subsequently:We assume that an
H-representation of an initial outer approximation O is available as input. In order to ensure
thatO possesses a vertex, we additionally requireO to be C-bounded. Thus, the assumption
reads as follows:

An H-representation of a polyhedron O, with O ⊇ P and 0+O = C , is given.(O)

An initial approximation according to (O) can be computed whenever assumption (B) holds.
Appropriate techniques for constructing O can be found in, e.g., [7].

We next show existence of an optimal solution of (QCP) and its attainment in a vertex of
P .

Proposition 5 Let the assumptions (M) and (B) be satisfied. Let O denote a polyhedron
according to (O). Then

min
y∈vert O f (y) ≤ inf

x∈S f (Px).

Proof As C is supposed to be pointed, vert O �= ∅ follows from 0+O = C . Let vert O =
{y1, . . . , yk}. For any x ∈ S there exist λ j ∈ [0, 1], j = 1, . . . , k; and a direction c ∈ C
such that

Px =
k∑
j=1

λ j y
j + c.

123

J Glob Optim (2018) 72:347–372 353

From (M) follows f (Px) � f (Px − c) � f
(∑k

j=1 λ j y j
)
. As f is supposed to be quasi-

concave, this leads to

f (Px) � min
j=1,...,k

f (y j),

which proves the claim. ��
Note that in the preceding proof we need C-monotonicity of f on the set O ∩ (P[S] − C)

only. If we are given an objective function f ′ and an outer approximationO according to (O)
such that f ′ is C-monotone on O ∩ (P[S] − C), we can transform f ′ in the following way
in order to obtain a quasi-concave function f that complies with (M):

f (y) :=
{
f ′(y) if y ∈ O,

−∞ otherwise.

Corollary 6 Let the assumptions (M) and (B) be satisfied. Then (QCP) has an optimal
solution x∗ ∈ S such that

f (Px∗) = min
y∈vert P f (y).

Proof By applying Proposition 5 to the setO = P , we know that miny∈vert P f (y) is a lower
bound for the optimal value of (QCP). There are only finitely many vertices y of P , each of
which can be expressed as y = Px for some x ∈ S. Thus, the lower bound is attained by
some x∗ ∈ S and x∗ is an optimal solution for (QCP). ��

4 Primal algorithm for QCP

We begin this section by recalling some facts about Benson’s algorithm for vector linear pro-
grams following the exposition of [7]. A modified variant of the algorithm is then developed
(the results of [18] are generalized) to solve the quasi-concave scalar optimization problem
(QCP).

4.1 Primal Benson-type algorithm for VLP

Benson’s algorithm can briefly be described as a procedure computing a shrinking sequence
of outer approximating polyhedra O j = {y ∈ R

q | B j y ≥ c j } for P , that is,

O0 � O1 � · · · � O j � · · · � Ok = P .

The procedure is started with O0 := O from assumption (O). By solving the linear
program (P2(t)) parametrized by an arbitrary vertex t of the current outer approximationO j ,
we obtain a boundary point v of P . An optimal solution of the dual problem (D2(t)) yields
a half-space H j supporting P in v, that is, H j ⊇ P and v ∈ P ∩ −H j . The refinement of
outer approximations is based on setting

O j+1 := O j ∩ H j . (7)

The algorithm terminates when all vertices of O j belong to P . Benson’s algorithm can be
seen as a cutting plane method. The algorithm as presented in [7] requires the cone C to be
solid, i.e. int C �= ∅. The following proposition summarizes the role of scalarizations for the
algorithm.

123

354 J Glob Optim (2018) 72:347–372

Proposition 7 ([7, Proposition 4.2]) Let S �= ∅ and let assumption (B) be satisfied. Fur-
thermore, assume C to be solid and let c ∈ int C. Let an H-representation of C be given
by C = {y ∈ R

q | Zᵀy ≥ 0}. Then, for every t ∈ R
q , there exist optimal solutions

(x̄, z̄) to (P2(t)) and (ū, w̄) to (D2(t)). Each solution (ū, w̄) to (D2(t)) defines a half-space
H := {y ∈ R

q
∣∣ w̄ᵀy ≥ bᵀū

} ⊇ P such that s := t + c · z̄ ∈ P ∩ −H. Furthermore, one has

t /∈ P ⇐⇒ z̄ > 0.

Assumption (O) ensures that anH-representation of the initial outer polyhedral approxima-
tionO = O0 ofP is given and by (7) we obtain iterativelyH-representations of all subsequent
outer approximationsO j . It is necessary to compute (or to update) a V -representation ofO j .
This step is called vertex enumeration. Algorithm 1 is a simplified and slightly improved
version of the primal Benson algorithm as formulated in [7]. In contrast to [7, Algorithm
1] we do not store the “pre-image information”, i.e. x and (u, w). Moreover, for simplicity,
we store the H-representation of O directly instead of using duality theory. We enhance [7,
Algorithm 1] as we do not re-initialize the set T , and thus avoid solving the same linear
program twice. The operation solve(·) returns optimal solutions of a given pair of dual
linear programs.

Algorithm 1: Simplified version of Benson’s algorithm for bounded (i.e. assumption
(B) holds) (VLP), compare [7, Algorithm 1].

Input:
Data A, b, P, Z , Y (problem data), c ∈ int C , O according to assumption (O).
Output:
V-representation (Opoi, {columns of Y}) of P
H-representation O of P

1 begin
2 T ← ∅
3 compute the set Opoi of vertices ofO
4 repeat
5 choose t ∈ Opoi \ T
6 (x, z, u, w) ← solve((P2(t))/(D2(t)))
7 if z > 0 then
8 O ← O ∩ {y ∈ R

q | w
ᵀ
y ≥ b

ᵀ
u}

9 update the set Opoi of vertices ofO
10 else
11 T ← T ∪ {t}
12 end
13 until Opoi \ T = ∅
14 end

Theorem 8 [see [7, Theorem 4.5]] Let S �= ∅, denote by C a polyhedral convex solid pointed
cone as defined in (6) which satisfies assumption (B). Then Algorithm 1 is correct and finite.

4.2 Modified primal Benson-type algorithm for QCP

We already know that an optimal solution of (QCP) can be found if in Algorithm 1 the
vector x with the smallest value f (Px) is stored. Algorithm 2 is just a modification and
simplification of Algorithm 1, which also yields an optimal solution of (QCP). In general,
Algorithm 2 requires less iteration steps.

123

J Glob Optim (2018) 72:347–372 355

Algorithm 2: Modified version of Benson’s algorithm to solve (QCP), generalization
of [18, Algorithm 3.2]

Input:
Data A, b, P, Y, Z , f (problem data), c ∈ int C , O according to assumption (O)
Output:
Optimal solution x of (QCP)

1 begin
2 compute the set Opoi of vertices ofO
3 loop
4 choose t ∈ argmin

{
f (t) | t ∈ Opoi

}
5 (x, z, u, w) ← solve((P2(t))/(D2(t)))
6 if z > 0 then
7 O ← O ∩ {y ∈ R

q | w
ᵀ
y ≥ b

ᵀ
u}

8 update the set Opoi of vertices ofO
9 else

10 break
11 end
12 end
13 end

Theorem 9 Let S �= ∅, f : R
q → R quasi-concave. Let C be a polyhedral convex solid

pointed cone according to (6) which satisfies assumptions (M) and (B). Then Algorithm 2 is
correct and finite.

Proof The main difference between Algorithms 1 and 2 is that Algorithm 2 terminates after
z equals zero for the first time. Since Algorithm 1 is finite and as it terminates only if the case
z = 0 occurred at least once, Algorithm 2 must be finite, too. Thus, it remains to show that x
is an optimal solution of (QCP). By Proposition 5 and taking into account thatOpoi = vert O,
we have

f (t) = min{ f (y) | y ∈ Opoi } ≤ inf{ f (Pv) | v ∈ S }. (8)

At termination, z = 0 in (P2(t)) implies Px ≤C t . Assume that Px �= t . Then there is some
c ∈ C\{0} such that t − c = Px ∈ P ⊆ O. We also have t + c ∈ O. This contradicts the
fact that t is a vertex ofO. Hence t = Px . We obtain f (Px) = f (t), where x is feasible for
(QCP). Together with (8) we conclude that x solves (QCP). ��

Example 10 The following problem is a slight modification of the problem stated and solved
in [10, p. 256] using polyhedral annexation methods:

min g(x) = −|x1| 32 − 1

10
(x1 − 0.5x2 + 0.3x3 + x4 − 4.5)2

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎣

1.2 1.4 0.4 0.8
− 0.7 0.8 0.8 0.0
0.0 1.2 0.0 0.4
2.8 − 2.1 0.5 0.0
0.4 2.1 − 1.5 − 0.2

− 0.6 − 1.3 2.4 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
x ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

6.8
0.8
2.1
1.2
1.4
0.8

⎤
⎥⎥⎥⎥⎥⎥⎦

, x ≥ 0.

123

356 J Glob Optim (2018) 72:347–372

Fig. 1 P[S] and level sets of f
for Example 10. The cone C
generated by (− 1, 0)ᵀ and
(0, 1)ᵀ is indicated by the dashed
lines. It apparently reflects the
objective’s monotonicity within
the feasible region

-1 -0.5 0 0.5 1 1.5
-1

0

1

2

3

4

5

y1

2

1

P

−1 1

y2

y1

1

P

−1 1

y2

y1

O0

1

P

−1 1

y2

y1

O1

1

P

−1 1

y2

y1

O2

1

−1 1

y2

y1

P

O3

Fig. 2 Iteration steps for Example 10. The white circle shows the current point t , whereas the gray dots
indicate the boundary points s calculated by (P2(t)). Note that we avoid two additional iteration steps in
comparison to Algorithm 1 since there are two remaining vertices of the outer approximation, which do not
need to be processed

We have y = Px for the matrix

P =
[
1 0 0 0
1 − 0.5 0.3 1

]

and the objective function turns into

f (y) = −|y1| 32 − 1

10
(y2 − 4.5)2

with g(x) = f (Px). The feasible region and some level sets of the projected problem are
depicted in Fig. 1. The iteration steps of Algorithm 2 are shown in Fig. 2. We obtain the
optimal value − 2.494 attained at (1.084, 0.804).

123

J Glob Optim (2018) 72:347–372 357

5 Dual algorithm for QCP

In this section we propose a dual algorithm for the quasi-concave problem (QCP), which is
related to the dual variant of Benson’s algorithm for vector linear programs, introduced in [3].
In [18], Shao and Ehrgott introduced a similar algorithm for linear multiplicative programs,
which is a special case of our setting. Here, we propose a modification of Shao and Ehrgott’s
algorithm, which turns out to yield better numerical results.

We start by recalling several facts about duality theory for vector linear programs. After-
wards we recapitulate the dual variant of Benson’s algorithm for vector linear programs,
which we present in a simplified form. The final subsection deals with the dual algorithm for
quasi-concave programs.

5.1 Geometric duality for VLP

The dual problem associated with (VLP), introduced in [8] (see also [3,11]), is

maxK D∗(u, w) s.t. (u, w) ∈ T (VLP∗)

with objective function D∗ : R
m × R

q → R
q defined by

D∗(u, w) = (w1, . . . , wq−1, b
ᵀu
)ᵀ

,

feasible set

T :=
{

(u, w) ∈ R
m × R

q
∣∣ u ≥ 0, A

ᵀ
u = P

ᵀ
w, cᵀw = 1, Y

ᵀ
w ≥ 0

}

and ordering cone
K := R+ · (0, . . . , 0, 1)

ᵀ
.

Throughout, we assume that
c ∈ int C and cq = 1. (9)

Observe that this assumption does not constitute a restriction: As int C �= ∅, it is always
possible to chose c ∈ int C such that either cq = 1 or cq = −1. In the latter case, an
equivalent problem where C , P and c are replaced by −C , −P and −c, respectively, can be
considered.

Similar to the upper image P for (VLP), the lower image for (VLP∗) is defined as

D∗ := D[T] − K .

To express the duality relations, we make use of the following bi-affine coupling function:

ϕ : R
q × R

q → R, ϕ(y, y∗) :=
q−1∑
i=1

yi y
∗
i + yq

⎛
⎝1 −

q−1∑
i=1

ci y
∗
i

⎞
⎠− y∗

q . (10)

Theorem 11 (weak duality [8,11]) One has
[
y ∈ P ∧ y∗ ∈ D∗] �⇒ ϕ(y, y∗) ≥ 0.

123

358 J Glob Optim (2018) 72:347–372

Theorem 12 (strong duality [8,11]) Let S and T be nonempty. Then
[∀y∗ ∈ D∗ : ϕ(y, y∗) ≥ 0

] �⇒ y ∈ P[∀y ∈ P : ϕ(y, y∗) ≥ 0
] �⇒ y∗ ∈ D∗.

Using the coupling function ϕ we define half-space-valued functions

H∗ : R
q ⇒ R

q H∗(y) := {y∗ ∈ R
q
∣∣ϕ(y, y∗) ≥ 0

}

H : R
q ⇒ R

q H(y∗) := {y ∈ R
q
∣∣ϕ(y, y∗) ≥ 0

}

and a duality mapping

� : 2Rq → 2R
q
, �(F∗) :=

⋂
y∗∈F∗

−H(y∗) ∩ P .

A proper face F∗ of the lower image D∗ is called vertical if F∗ = F∗ − K . Non-vertical
proper faces of D∗ are also called K-maximal as they consist of K -maximal points only.

Theorem 13 (Geometric Duality [8])� is an inclusion reversing one-to-one map (i.e. F∗
1 ⊆

F∗
2 ⇐⇒ �(F∗

1) ⊇ �(F∗
2)) between the set of all non-vertical proper faces F∗ of D∗ and

the set of all proper faces F of P . The inverse map is given by

�−1 : 2Rq → 2R
q
, �∗(F) :=

⋂
y∈F

−H∗(y) ∩ D∗.

For non-vertical proper faces F∗ of D∗ one has

dim F∗ + dim�(F∗) = q − 1.

In particular, vertices of D∗ correspond to facets of P and vertices of P correspond to
non-vertical facets of D∗. There is also a correspondence between the vertical facets of D∗
and extremal directions of P , see [11, Section 4.6].

5.2 Dual variant of Benson’s algorithm for VLP

Thedual variant ofBenson’s algorithmconstructs the lower imageD∗ by a shrinking sequence
of polyhedral outer approximations

O∗
0 � O∗

1 � · · · � O∗
j � · · · � O∗

k = D∗.

This refinement procedure is analogous to the one described in the primal case. An arbitrary
vertex of O∗

j is either identified as element of D∗ or is cut off by intersecting O∗
j with a

suitable half-space H∗
j obtained from the solution of a scalar problem. This results in the

improved outer approximation O∗
j+1 := O∗

j ∩ H∗
j .

In order to give a counterpart to Proposition 7, let t∗ be a vertex of O∗
j . By

C+ := {y∗ ∈ R
q
∣∣ y ∈ C �⇒ yᵀy∗ � 0

}

we denote the positive dual of C . We set

ω(t∗) :=
⎛
⎝t∗1 , . . . , t∗q−1, 1 −

q−1∑
i=1

ci t
∗
i

⎞
⎠

ᵀ

and � := { y∗ ∈ R
q
∣∣ω(y∗) ∈ C+ } .

123

J Glob Optim (2018) 72:347–372 359

Proposition 14 ([7, Proposition 4.6]) Let S �= ∅, and let C as in (6) be a solid, polyhedral
convex pointed cone with c ∈ int C and cq = 1 that satisfies assumption (B). Consider
t∗ ∈ �. For w := ω(t∗), there exists an optimal solution x to (P1(w)). Each solution x
to (P1(w)) defines a half-space H∗(Px) := {y∗ ∈ R

q | ϕ (Px, y∗) ≥ 0} ⊇ D∗ such that

s∗ :=
(
t∗1 , . . . , t∗q−1, w

ᵀPx
)ᵀ

∈ −H∗ ∩ D∗. Furthermore, one has Px ∈ bd P , and

t∗ /∈ D∗ ⇐⇒ wᵀPx < t∗q .

Algorithm 3: Dual variant of Benson’s Algorithm, compare [7, Algorithm 2]
Input:
Data A, b, P, Z , Y, c
Output:
V-representation (O∗

poi, {−eq }) of D∗
H-representation O∗ of D∗

1 begin
2 O∗ ← {y∗ ∈ R

q | yᵀω(y∗) ≥ 0, y ∈ {columns of Y }}
3 T ∗ ← ∅
4 w ← sum of columns of Z

5 t∗ ← (cᵀw)−1w
6 t∗q ← ∞
7 loop
8 w ← ω(t∗)

9 x ← solve((P1(w)))
10 if t∗q − wᵀPx > 0 then
11 O∗ ← O∗ ∩ {y∗ ∈ R

q | ϕ(Px, y∗) ≥ 0}
12 compute/update the set O∗

poi of vertices ofO∗
13 else
14 T ∗ ← T ∗ ∪ {t∗}
15 end
16 if O∗

poi \ T ∗ �= ∅ then
17 choose t∗ ∈ O∗

poi \ T ∗
18 else
19 break
20 end
21 end
22 end

Algorithm 3 is a simplified and slightly modified version of the dual variant of Benson’s
algorithm, compare [7, Algorithm 2]. Note that all outer polyhedral approximations O∗ are
contained in the set�, compare line 2 of Algorithm 3. As the recession cone of the setsO∗

j is
always −K , their V-representations are already specified by a finite set of points (rather than
both points and directions). Because of the modifications of the algorithm in comparison to
[7], we sketch the proof of the following theorem.

Theorem 15 (compare [7, Theorem 4.9]) Let S �= ∅, let C according to (6) be a polyhedral
convex solid pointed cone with c ∈ int C and cq = 1 such that assumption (B) is satisfied.
Then Algorithm 3 is correct and finite.

Proof Since c ∈ int C and w computed in line 4 belongs to C+\{0}, we obtain that cᵀw in
line 5 is not zero. The linear program in line 9 always has a solution since t∗ ∈ �, which

123

360 J Glob Optim (2018) 72:347–372

holds as the initial setO∗ equals � by line 2. The last component of the normal vector of the
half-space {y∗ ∈ R

q | ϕ(Px, y∗) ≥ 0} in line 11 is −1, see (10). Thus, after the first cut in
line 11 was made, O∗ has a vertex. It follows that O∗

poi is always nonempty. At termination,
we have O∗

poi ⊆ T ∗. Since T ∗ ⊆ D∗ and O∗ ⊇ D∗, we obtain O∗ = D∗.
To prove that the algorithm is finite, observe that F∗ := −H∗ ∩ D∗ in Proposition 14

is a face of D∗ which belongs to the boundary of O∗ after the cut in line 11. A vertex t∗
of O∗ ⊇ D∗ chosen in a subsequent iteration either belongs to D∗ or cannot belong to the
relative interior of F∗. In the first case t∗ is a vertex of D∗ and is stored in T ∗. In the second
case, another face of D∗ corresponds to the cut. Since D∗ has only finitely many faces, the
algorithm is finite. ��
5.3 Modified dual variant of Benson’s algorithm to solve QCP

Now the ideas from Sect. 4 are applied to modify the dual variant of Bensons’s algorithm in
order to get a more efficient algorithm for (QCP). The main difference in comparison to the
primal case is that a shrinking sequence of outer polyhedral approximations O j for P is not
part of Algorithm 3, but values of f at vertices of O j are required in order to be able to use
the ideas of Sect. 4.2. Accepting the computational cost of an extra vertex enumeration step
per iteration allows us to calculate the required sequence of outer polyhedral approximations
O j of P .

Shao and Ehrgott [18] developed a similar algorithm for the special case of multiplicative
linear programs, also see Sect. 7.

The main idea of Algorithm 4 can be explained as follows: In the loop we compute both,
shrinking sequences of outer approximations O j of P and O∗

j of D∗. First, in the manner of
Algorithm 2, a vertex t ofOwith minimal value f (t) is selected. Thereafter, a vertex t∗ ofO∗
which has not yet been identified as a member of D∗ is selected such that ϕ(t, ·) is minimal.
The difference to Algorithm 3 is that t∗ is selected in this special way. If ϕ(t, t∗) ≥ 0 for a
vertex t of O with f being minimal and for all vertices t∗ of O∗, then x ∈ S with t = Px is
an optimal solution for (QCP). Thus, the selection rule for t and t∗ can be motivated as the
choice corresponding to the strongest violation of this optimality condition.

Theorem 16 Let S �= ∅, f : R
q → R̄ quasi-concave, and let C = {

y ∈ R
q
∣∣ Zᵀy ≥ 0

}
be a polyhedral convex solid pointed cone which satisfies assumptions (M) and (B). Then
Algorithm 4 is correct and finite.

Proof Note that Algorithms 4 coincides with Algorithm 3 up to the following changes:

(a) the additional lines 16–18 to compute the outer approximations O of P ,
(b) a different stopping condition for the loop in line 19,
(c) a specific rule to select some t∗ from the set O∗

poi\T ∗ in line 20,
(d) the computation of the result x in line 22.

Therefore, the result follows from Theorem 15 by taking into account the following facts:

(a) The new lines 16–18 are well defined, in particular, by assumption (O), the set O has a
vertex.

(b) We show that the condition

min
{
ϕ(t, y∗) | y∗ ∈ O∗

poi

}
< 0 (11)

in Algorithm 4, line 19 implies the corresponding condition

O∗
poi\T ∗ �= ∅ (12)

123

J Glob Optim (2018) 72:347–372 361

Algorithm 4: Modified dual variant of Benson’s algorithms
Input:
Data A, b, Z , Y, c, f ,O according to assumption (O).
Output:
Solution x of (QCP)

1 begin
2 O∗ ← {y∗ ∈ R

q | yᵀω(y∗) ≥ 0, y ∈ {columns of Y }}
3 T ∗ ← ∅
4 w ← sum of columns of Z

5 t∗ ← (cᵀw)−1w
6 t∗q ← ∞
7 loop
8 w ← ω(t∗)

9 x ← solve((P1(w)))
10 if t∗q − wᵀPx > 0 then
11 O∗ ← O∗ ∩ {y∗ ∈ R

q | ϕ(Px, y∗) ≥ 0}
12 compute/update the set O∗

poi of vertices ofO∗
13 else
14 T ∗ ← T ∗ ∪ {t∗}
15 end
16 O ← O ∩ {y ∈ R

q | wᵀy ≥ wᵀPx}
17 compute/update the set Opoi of vertices ofO
18 choose t ∈ argmin

{
f (y) | y ∈ Opoi

}

19 if min
{
ϕ(t, y∗) | y∗ ∈ O∗

poi

}
< 0 then

20 choose t∗ ∈ argmin
{
ϕ(t, y∗) | y∗ ∈ O∗

poi \ T ∗}

21 else
22 determine x ∈ S such that t = Px and break
23 end
24 end
25 end

in Algorithm 3, line 16. Assume that (11) is satisfied but (12) is violated, i.e.,O∗
poi ⊆ T ∗.

Since T ∗ ⊆ D∗ and O∗ ⊇ D∗, we obtain O∗ = D∗. By construction, we have

O ⊆ {y ∈ R
q | ∀t∗ ∈ T ∗ : ω(t∗)ᵀy ≥ t∗q } ⊆ {y ∈ R

q | ∀t∗ ∈ vertD∗ : ϕ(y, t∗) ≥ 0} = P ,

where the last equation follows from geometric duality, see Theorem 13. On the other
hand, we have O ⊇ P , whence t ∈ O = P . Weak duality (Theorem 11) implies that
ϕ(t, t∗) ≥ 0 for all t∗ ∈ O∗

poi, which contradicts (11). This proves that (11) implies (12).
Hence, from the finiteness of Algorithm 3 finiteness of Algorithm 4 follows.

(c) As shown in (b), the specific choice of t∗ in line 20 is well-defined.
(d) At termination, we have ϕ(t, y∗) ≥ 0 for all y∗ ∈ O∗

poi. As O∗ = conv O∗
poi − K , the

inequality also holds for all y∗ ∈ D∗ ⊆ O∗. Theorem 12 implies t ∈ P . Since t ∈ P is a
vertex ofO andO ⊇ P , t is also a vertex of P . Taking into account that P = P[S]+C ,
we conclude that there exists x ∈ S with t = Px . Since t in line 18 was chosen from
Opoi such that f (t) is minimal, Proposition 5 yields that x is an optimal solution of
(QCP). ��

Example 17 Consider the problem stated in Example 10. The first steps of Algorithm 4 are
shown in Fig. 3.

123

362 J Glob Optim (2018) 72:347–372

−1

−1

y∗
2

y∗
1

O∗
0

I∗
0

−1

−1

y∗
2

y∗
1

O∗
1

I∗
1

−1

−1

y∗
2

y∗
1

O∗
2

I∗
2

1

1

y2

y1

I0

O0

1

1

y2

y1

I1

O1

1

1

y2

y1

I2

O2

Fig. 3 Visualization of the initialization and the first two iteration steps of Algorithm 4 by Example 17. The
shrinking sequence O∗

j of outer approximations of D∗ corresponds to the expanding sequence I j := {y ∈
R
q | ∀y∗ ∈ O∗

j : ϕ(y, y∗) ≥ 0} of inner approximations of P by geometric duality. Likewise, there is

an expanding sequence I∗
j := {y∗ ∈ R

q | ∀y ∈ O j : ϕ(y, y∗) ≥ 0} of inner approximations of D∗
corresponding to the shrinking sequence of outer approximations O j of P . The white circle indicates the
vertex of O j chosen as t in line 18. The black dots label the corresponding points t∗, see line 20. Again, the
gray dots indicate the calculated boundary points. The calculations are based on the choice of c = (−0.25, 1)ᵀ
as inner point of C . Notice that even though we have D∗ = O∗

2 , the algorithm does not terminate after two
iterations because t is not an element of P . Another two iteration steps are required to identify the problems
solution (1.084, 0.804)ᵀ

6 Extension to the case of non-solid cones

The algorithms developed in Sects. 4 and 5 are based on the assumption that the cone C has
a nonempty interior. Some c ∈ int C is required in Proposition 7 and for the duality results
in Sect. 5.1.

As shown in [13], any vector linear program

minC Px s.t. Ax ≥ b, (VLP)

for C = {y ∈ R
q | Zᵀy ≥ 0}, can be reformulated as a vector linear program

min
R
q+1
+

(
y

−eᵀy

)
s.t. Z

ᵀ
y ≥ Z

ᵀ
Px, Ax ≥ b. (VLP’)

We use e to denote the vector whose entries are all equal to one of appropriate dimen-
sion. Observe that the ordering cone used in (VLP’) is the non-negative orthant R

q+1
+ . The

relationship between the upper images P of (VLP) and M of (VLP’) can be described as
follows. Consider the hyperplane H := {y ∈ R

q+1 | eᵀy = 0} and let π : R
q+1 → R

q be
the projection defined by π(y1, . . . , yq , yq+1) := (y1, . . . , yq) (i.e. cancellation of the last

123

J Glob Optim (2018) 72:347–372 363

component). Then
P = π(M ∩ H).

The next result shows that assumption (B) is not satisfied for (VLP’) in most cases.

Proposition 18 Let C �= {0}. If Problem (VLP’) is feasible, then it is unbounded.

Proof Since C �= {0}, there is a nonzero vector c ∈ C . Consider the vector

c̄ :=
(

c
−eᵀc

)
∈ R

q+1.

Let z̄ be an arbitrary point in the upper image

M =
{(

z
ζ

) ∣∣ ∃y ∈ P : z ≥ y, ζ ≥ −eᵀy
}

of (VLP’) and λ ≥ 0. Then z̄ + λc̄ ∈ M, i.e., c̄ is a direction of M. But obviously c̄ does
not belong to R

q+1
+ . Thus, (VLP’) is unbounded. ��

This problem can be solved by enlarging the ordering coneR
q+1
+ appropriately. LetY ∈ R

q×o

denote a matrix whose columns are generators of the cone C , that is, C = {Yμ | μ ≥ 0}. Set

R :=
{(

I,
Y

−eᵀY

)(
λ

μ

)
| λ ∈ R

q+1
+ , μ ∈ R

o+
}

and consider the problem

minR

(
Px

−eᵀPx

)
s.t. Ax ≥ b. (VLP”)

Problems (VLP) and (VLP”) are related in the following sense.

Proposition 19 LetP be the upper image of (VLP) and letM be the upper image of (VLP”).
Then

P = π(M ∩ H).

Proof From the problem definitions we have

M =
{(

z
ζ

) ∣∣ ∃x ∈ S :
(
z
ζ

)
≥R

(
Px

−eᵀPx

)}

=
{(

z
ζ

) ∣∣ ∃x ∈ S, ∃μ ∈ R
o+ :
(
z
ζ

)
−
(

Px
−eᵀPx

)
≥
(

Y
−eᵀY

)
μ

}
.

Thus, we have

M ∩ H =
{(

z
−eᵀz

) ∣∣ ∃x ∈ S, ∃μ ∈ R
o+ :
(

z − Px
−eᵀ(z − Px)

)
≥
(

Yμ

−eᵀYμ

)}

=
{(

z
−eᵀz

) ∣∣ ∃x ∈ S, ∃μ ∈ R
o+ : z − Px = Yμ

}
,

which implies the claim. ��

123

364 J Glob Optim (2018) 72:347–372

Let Problem (QCP) as defined in Sect. 3, in particular, let a quasi-concave function
f : R

q → R̄, be given and let C ⊆ R
q be a polyhedral convex pointed cone such that

the assumptions (M) and (B) are satisfied. We define

f̄ : R
q+1 → R, f̄

((
y
η

))
:=
{
f (y) if eᵀy + η � 0,

−∞ otherwise.

As f is quasi-concave on R
q , f̄ is quasi-concave on R

q+1. Further, we define

P̄ :=
(

P
−eᵀP

)
.

The following quasi-concave problem is a reformulation of (QCP) with the same optimal
solution:

min f̄ (P̄x) s.t. Ax ≥ b. (QCP’)

The associated vector linear program is (VLP”).

Proposition 20 Let (M) be satisfied for (QCP) and cone C. Then assumption (M) does also
hold for (QCP’) with respect to the cone R, i.e. f̄ is R-monotone on the set P̄[S] − R.

Proof Consider z1 ∈ P̄[S] − R, i.e.

z1 =
(

y − c1

−eᵀ(y − c1)

)
− σ 1

for y ∈ P[S] and some σ 1 ∈ R
q+1
+ , c1 ∈ C . Furthermore, let z2 ∈ R

q+1 with z2 �R z1,
meaning

z2 = z1 −
(

c2

−eᵀc2

)
− σ 2

=
(

y − c1 − c2

−eᵀ (y − c1 − c2
)
)

− (σ 1 + σ 2)

for some σ 2 ∈ R
q+1
+ , c2 ∈ C , be given. Then

f̄ (z2) =
{
f (y − c1 − c2) if σ 1 = σ 2 = 0

−∞ otherwise

holds. In the case σ j = 0 for j = 1, 2, due to condition (M) for (QCP), we get

f̄ (z2) = f (y − c1 − c2) � f (y − c1) = f̄ (z1),

which proves the claim. ��
Proposition 21 Let (B) be satisfied for Problem (QCP) with cone C. Then (B) does also
hold for (QCP’), i.e. P̄[S] is bounded with respect to R.

Proof Let P[S] beC-bounded, i.e. it holds 0+P[S] ⊆ C . The claimed statement immediately
follows from

0+ P̄[S] =
(

0+P[S]
−eᵀ (0+P[S])

)
⊆
(

C
−eᵀC

)
⊆ R .

��

123

J Glob Optim (2018) 72:347–372 365

−1

1

−1
1

y2

y1

P [S] = P

π−1 (P)M

Fig. 4 Image P[S] and upper image P of (VLP) and upper imageM of (VLP”) for Example 23. Notice the
facet in M corresponding to P

Let us summarize the results.

Corollary 22 The assumption int C �= ∅ can be dropped, when Algorithm 2 or Algorithm
4 is applied to the reformulated quasi-concave problem (QCP’).

For illustration reasons we close this section with an example.

Example 23 Consider the concave problem

min y1 − y22 s.t. x ∈ S, y = Px .

for a matrix P ∈ R
2×n . Without any information about the structure of P[S] and due to the

quadratic impact of y2, the largest polyhedral monotonicity cone usable is C = (1, 0)ᵀ · R+.
This cone is obviously non-solid in R

2. To illustrate the method discussed above we consider
the problem

min y1 − y22 s.t. − e ≤ x, x1 ≤ 1, x3 ≤ 1, y = Px ,

where we set

P =
(
1 1 −1
1 0 1

)
.

The upper images P of (VLP) and M of (VLP”) are depicted in Fig. 4. Obviously both
(1,−1, 1)ᵀ and (−1,−1,−1)ᵀ solve the given problem with optimal value −5. Notice the
solid recession cone of M.

7 Numerical results

The present section contains various numerical examples. The package bensolve tools [14]
for Gnu Octave / Matlab contains an implementation of the algorithms developed in this
article. The test problems in this section are solved using bensolve tools with Gnu Octave
on a computer with Intel® Core™ i7-6700HQ CPU with 2.6 GHz. For bensolve tools we
use the default tolerance for numerical inaccuracies of 10−7. We compare these results to
the running times achieved with BARON [19], the general purpose solver for mixed-integer
nonlinear optimization problems. The convergence tolerance of BARON is also set to 10−7.

123

366 J Glob Optim (2018) 72:347–372

7.1 Linear multiplicative programs

Shao and Ehrgott [18] treat the problem class of linear multiplicative programs. For ci , l, u ∈
R
n, b ∈ R

m, di ∈ R and A ∈ R
m×n , they consider the problem

min
q∏

i=1

(cᵀ
i x + di) s.t.

{
b ≤ Ax ,

l ≤ x ≤ u.
(LMP)

The parameters ci , di of the objective function and the constraint set in (LMP) is chosen in
such a way that cᵀ

i x + di > 0 holds for all feasible points. In the following example we
generate random instances in the same way as Shao and Ehrgott [18].

Example 24 Let A consist of equally distributed random real numbers out of the interval
[0, 10]. The vectors ci and b are generated in the same way. The variable bounds are set to
l j = 0 and u j = 100. For the sake of simplicity, we set di = 0. We can now transform
(LMP) to an equivalent problem of type (QCP):

min f (Px) s.t.

{
b ≤ Ax ,

l ≤ x ≤ u,

where the rows of P consist of cᵀ
i from (LMP) and the objective f is defined as

f (y) =
⎧
⎨
⎩

q∏
i=1

yi if y ∈ R
q
+,

−∞ else.

Then f is a quasi-concave function being R
q
+-monotone on the whole space R

q .

The dual algorithm introduced in [18] is similar to ours, but a different vertex selection
rule is used: While in line 20 of Algorithm 4 we determine a vertex t∗ of O∗\T ∗ such
that ϕ(t, t∗) is minimal, in [18, Algorithm 3.17, step (k1)] an arbitrary vertex t∗ of O∗
with ϕ(t, t∗) < 0 is chosen. In order to compare the different vertex selection rules, we also
implement Algorithm 4 with the vertex selection rule from [18]. This modification is denoted
by Algorithm 4*. In Table 1 we compare the running times of Algorithms 2, 4 and 4* to the
times BARON needs to solve the problem instances of Example 24. For reference, we also
include the average running times for this problem class as reported in [18], where a personal
computer with 2.5 GHz CPU and 4 GB RAM is used for the computations.

Thedual vertex t∗ chosen inAlgorithm4, line 20maygenerate a half-space in the following
iteration step which contains the currently selected primal vertex t (line 18). In this case the
algorithm fails to cut off the vertex t in line 11, and thus fails to improve the current lower
bound. We call occurences of this case a failed cut. In Table 2 we compare the number of
such failed cuts generated by Algorithm 4 and the modification of this algorithm with the
vertex selection rule of [18] (Algorithm 4*).

7.2 Concave quadratic programs

LetM ∈ R
n×n be a positive semi-definite symmetric matrix withM = PᵀP for somematrix

P ∈ R
q×n . The problem

min
x∈S −xᵀMx , (CQP)

123

J Glob Optim (2018) 72:347–372 367

Table 1 Average running time in seconds and number of iterations in parentheses for ten randomly generated
instances of Example 24 of Algorithm 2 and Algorithm 4. Algorithm 4* is a modified version of Algorithm 4
utilizing Shao and Ehrgott’s vertex selection rule. The two columns primal and dual contain the average
running times of the respective algorithm taken from [18]. The fourth column lists the average running times
achieved by global optimization solver BARON. A ‘–’ indicates that at least one test instance of the respective
size was not solved within 600 seconds

q (m, n) Alg. 2 Alg. 4 Alg. 4∗ BARON Shao/Ehrgott [18]

primal dual

2 (20, 30) 0.01 (7) 0.01 (7) 0.01 (7) 0.18 0.10 0.11

(50, 30) 0.01 (7) 0.01 (7) 0.01 (7) 0.28 0.14 0.11

(100, 60) 0.01 (8) 0.01 (9) 0.01 (9) 1.09 0.20 0.15

3 (50, 30) 0.01 (18) 0.01 (25) 0.01 (32) 0.50 0.34 0.29

(60, 40) 0.01 (18) 0.01 (23) 0.01 (32) 0.87 0.35 0.32

(100, 60) 0.01 (20) 0.02 (24) 0.02 (34) 2.00 0.68 0.58

4 (60, 40) 0.02 (32) 0.03 (51) 0.04 (88) – 2.09 2.26

(100, 60) 0.03 (34) 0.05 (56) 0.08 (106) – 7.98 7.94

5 (100, 60) 0.07 (59) 0.22 (101) 0.69 (222) – 24.17 29.38

6 (100, 60) 0.51 (87) 5.17 (161) 29.55 (410) – 243.34 259.46

(150, 80) 0.82 (98) 6.73 (183) 64.83 (554) – – –

7 (100, 60) 19.89 (129) 347.30 (263) – – – –

(150, 80) 40.16 (164) 384.23 (314) – – – –

Table 2 Average number of failed cuts for Algorithm 4 and Algorithm 4∗ for Example 24. The data was
generated by averaging the results of 10 different instances with 100 constraints and 60 variables for each
value of q

q 2 3 4 5 6

Alg. 4 0 1 5 13 21

Alg. 4∗ 1 8 50 133 294

where S ⊆ R
n is a polytope, is a concave quadratic optimization problem. Problem (CQP)

can be transformed to (QCP) by using the concave objective function f : R
q → R defined

by f (y) = −yᵀy. We obtain

−xᵀMx = f (Px).

Monotonicity holds for the trivial cone C = { 0 }. Hence, Algorithms 2 and 4 can be applied
to solve (CQP) using the techniques discussed in Sect. 6.

Example 25 ([12, Example 23]) For q, n ∈ N, let P ∈ R
q×n be defined as

Pi j = �q · sin ((j − 1) · q + i)� ,
where �x� := max{z ∈ Z | z ≤ x}. Then M := PᵀP is a positive semi-definite symmetric
matrix. We solve (QCP) with f (y) = yᵀy, matrix P as defined above and feasible region
S = {

x ∈ R
n
∣∣ − e ≤ x ≤ e

}
. We compare our results to the ones achieved by the non-

convex problem solver BARON , see [17], and to the results of the approach taken in [12].
The numerical results are listed in Table 3.

123

368 J Glob Optim (2018) 72:347–372

Table 3 Numerical results for
the concave quadratic program of
Example 25. Running times are
given in seconds. Again, no
number given in the column
corresponding to BARON
indicates the exceeding of 600 s
given. The last column contains
results of [12] obtained by a
DC-programming reformulation
and using an unmodified MOLP
solver

q n Alg. 2 Alg. 4 BARON DC ([12])

2 200 0.01 0.01 0.33 0.08

1000 0.04 0.03 6.08 0.49

5000 0.85 0.67 567.96 10.48

3 200 0.03 0.02 0.56 0.13

1000 0.14 0.06 21.16 1.16

5000 2.98 1.53 – 25.40

4 200 0.05 0.04 1.88 –

1000 0.42 0.16 43.84 –

5000 8.40 3.15 – –

5 10 0.02 0.05 0.22 0.06

50 0.38 0.24 1.43 –

200 0.05 0.22 6.76 –

1000 0.47 0.50 109.06 –

5000 10.41 3.99 – –

6 10 0.83 0.55 0.24 0.09

50 18.32 3.92 0.46 –

200 1.06 16.89 68.19 –

1000 2.58 20.50 – –

5000 22.4 28.64 – –

7.3 DC-programs

Recall the problem class of DC-programs with one polyhedral component introduced in
Examples 1 and 2 in the introduction, which were shown to be special cases of (QCP).

Example 26 We want to solve the following problem from [5] and discussed in [12]:

min
x∈S g(x) − h(x), (13)

where

g(x) = |x1 − 1| + 200
q∑

i=2

max {0, |xi−1| − xi } and h(x) = 100
q∑

i=2

(|xi−1| − xi) .

The feasible region is S = {x ∈ R
q
∣∣ − 10 · e ≤ x ≤ 10 · e}. Both of the given functions are

polyhedral. Hence, by following the procedure in the introducing section (Examples 1 and
2) we obtain the two equivalent problems

min r − h(x) s.t. (x, r) ∈ epi ĝ

and

min r∗ − ĝ∗(x∗) s.t. (x∗, r∗) ∈ epi h∗,

where we set

ĝ(x) :=
{
g(x) if x ∈ S,

+∞ else.

123

J Glob Optim (2018) 72:347–372 369

Table 4 Running time in seconds for Example 26. The first two columns are results of [4] obtained by the
DC extended cutting angle method (DCECAM) and the DC prismatic algorithm (DCPA). It should be pointed
out that these two methods do not require one of the two objective functions to be polyhedral. Thus, they are
capable of solving more general problems than we do in this article. The next two columns, DC and DC∗,
are results of [12] obtained by using an unmodified MOLP solver. The last two columns, QCP and QCP∗, are
results obtained by the extension of Algorithm 2 using the cone R+ · (0, . . . , 0, 1)ᵀ. DC and QCP are based
on the primal approach in Example 1. DC∗ and QCP∗ are based on the dual approach outlined in Example 2

p DCECAM [5] DCPA [5] DC [12] DC∗ [12] QCP QCP∗

2 0.21 0.22 0.05 0.05 0.01 0.01

3 3.57 4.63 0.06 0.06 0.01 0.02

4 2.47 0.78 0.17 0.08 0.01 0.03

5 345.12 502.29 3.68 0.09 0.30 0.06

6 – – 375.03 0.13 12.34 0.11

7 – – 28003.06 0.21 350.88 0.23

8 – – – 0.80 – 0.47

9 – – – 7.95 – 0.99

We can now solve our initial problem by solving one of the two problems above. They both
have a polyhedral feasible region and concave objective functions. The objectives of both
problems are monotone with respect to the cone C = {

(0, . . . , 0, t)ᵀ ∈ R
q+1

∣∣ t ≥ 0
}
. As

int C = ∅, this problem is solved by using the extension discussed in Sect. 6. The optimal
value of (13) is 0, and a solution is given by e ∈ R

q . In Table 4 we list numerical results for
Algorithm 2 compared to the ones obtained in [12] and [5]. BARON solves any instance of
this problem in 0.01 s. This is probably due to the simple structure of the solution.

7.4 Minimizing a convex function over the boundary of a polytope

Example 3 in the introduction motivates the class (QCP) by the problem to minimize a
Lipschitz continuous convex function g over the boundary of a polytope Q. To this end, the
optimization problem (3) is reformulated as the DC optimization problem (4), which depends
on a sufficiently large constant c > 0. Let L > 0 be the Lipschitz constant of g as a function
defined on Q, that is,

∀x, y ∈ Q : g(x) − g(y) ≤ L‖x − y‖, (14)

where ‖·‖ denotes the Euclidean norm. The next statement provides a proper choice of the
parameter c in dependence of L .

Proposition 27 Let Q = {x ∈ R
q
∣∣ ∃u ∈ R

k : Ax + Bu ≥ b
}
be a polytope with 0 ∈ int Q

and let g : R
q → R ∪ {+∞ } be a convex function such that (14) holds. Let R ∈ R with

R ≥ max
{‖x‖ ∣∣ x ∈ Q

}
.

When the parameter c in Problem (4) is chosen such that c > LR, then (3) and (4) have the
same set of optimal solutions and the same optimal value.

Proof First note that the objective functions of (3) and (4) coincide on the boundary of Q.
Hence, it suffices to show that every optimal solution of (4) belongs to the boundary of Q.
Assume that an optimal solution x∗ of (4) belongs to the interior of Q. We start with the case

123

370 J Glob Optim (2018) 72:347–372

Table 5 Running time in seconds for Example 28 using Algorithm 2 and Octaves’s sqp solver for solving
(16)

m q

1 2 3 4 5

10 0.10 0.48 0.67 2.21 44.27

20 0.15 0.84 1.08 5.84 26.71

50 0.72 1.87 4.64 41.19 159.97

100 3.84 11.48 20.17 152.62 2316.05

200 25.35 77.98 93.8 1504.82 33089.42

where x∗ �= 0. There exists μ > 1 such that μx∗ ∈ Q and we have

g(μx∗) − (hc(μx∗) − c) ≥ g(x∗) − (hc(x
∗) − c).

Thus

L(μ − 1)‖x∗‖ ≥ g(μx∗) − g(x∗) ≥ hc(μx∗) − hc(x
∗) ≥ c

R
(μ − 1)‖x∗‖,

where the latter inequality follows from the fact that the epigraph of hc is the cone generated
by the set Q × {c}. Hence LR ≥ c, which contradicts the assumption LR < c. The case
x∗ = 0 can be shown likewise by replacing μx∗ by some arbitrary x ∈ Q\{0}. ��
Example 28 Let q,m be positive integers with q ≤ m and let P ∈ R

q×m be the matrix
described in Example 25. Furthermore let S = {u ∈ R

m | − e ≤ u ≤ e}. We intend to solve
the problem

min
x∈bd P[S] x

ᵀx . (15)

Note that the polyhedron Q := P[S] is given by a P-representation

Q = {x ∈ R
p | ∃u ∈ R

m : u ∈ S, x = Pu
}
.

Following the procedure described in Example 3 we obtain a DC optimization problem as
considered in Example 2. We set

g(x) =
{
xᵀx if x ∈ Q,

∞ otherwise.

Thus, the conjugate in (2) is obtained by solving the quadratic convex program

− g∗(y) = min
x∈Q{ xᵀx − yᵀx }. (16)

The definition of the polyhedral convex function h in Example 3 requires the parameter c
being sufficiently large. Let r be the vector of row sums of absolute values in P . We choose
c, according to Proposition 27 with R = ‖r‖ and Lipschitz-constant L = 2‖r‖ of g, as
c := 2‖r‖2+1. A representation of h∗, as needed in (2), is obtained as described in [12,
Proposition 6].

Numerical results of Algorithm 2 applied to this problem are listed in Table 5. Problem
(15) cannot be solved by BARON in the way described above, as BARON requires explicitly
expressed algebraic functions, see [17].

123

J Glob Optim (2018) 72:347–372 371

8 Conclusion

The contribution of this article can be summarized as follows:
We generalize the approach of Mittal and Schulz [16] with respect to the following three

aspects: First, the objective function is not supposed to have a certain scaling property at
the price of loosing polynomial running time. Secondly, our approach is based on Benson-
type algorithms for MOLPs instead of using grid-based scalarization parameters. Thirdly,
we allow polyhedral ordering cones C which are more general than R

q
+ in order to weaken

the monotonicity assumption to the objective function. In particular, in Sect. 6 we even allow
the cone C = {0}, which means that no monotonicity assumption is required. We present a
technique that allows to treat the case of int C = ∅ even though the VLP solver requires an
ordering cone C with nonempty interior.

The results of Shao and Ehrgott [18] for multiplicative linear programs (compare Exam-
ple 4) are generalized to the class (QCP). Moreover, we suggest an improvement of the dual
algorithm introduced in [18], which consists of a vertex selection rule based on the strongest
violation of an optimality condition.

The results of [12], where a MOLP solver without any modification was used to solve
the problem classes of Examples 1 and 2 are generalized and improved, since the approach
we introduced requires less iteration steps, in general. Numerical examples show that our
approach via (a modified) VLP solver is competitive with the global optimization software
BARON [17].

References

1. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome
set of a multiple objective linear programming problem. J. Glob. Optim. 13(1), 1–24 (1998)

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
3. Ehrgott,M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation algorithm” formultiple

objective linear programming. J. Glob. Optim. 52(4), 757–778 (2012)
4. Ferrer, A.: Applying global optimization to a problem in short-term hydrothermal scheduling. In: Gen-

eralized Convexity, Generalized Monotonicity and Applications, volume 77 of Nonconvex Optimization
Application, pp. 263–285. Springer, New York (2005)

5. Ferrer, A., Bagirov, A., Beliakov, G.: Solving DC programs using the cutting angle method. J. Glob.
Optim. 61(1), 71–89 (2015)

6. Fülöp, J.: On the equivalence between a linear bilevel programming problem and linear optimization over
the efficient set. Technical report. Working Paper 93-1. Laboratory of Operations Research and Decision
Systems, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest (1993)

7. Hamel, A.H., Löhne, A., Rudloff, B.: Benson type algorithms for linear vector optimization and applica-
tions. J. Glob. Optim. 59(4), 811–836 (2014)

8. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2),
836–845 (2008)

9. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, volume 2 of Nonconvex Optimization
and its Applications. Kluwer Academic Publishers, Dordrecht (1995)

10. Horst, R., Tuy, H.: Global Optimization, second edn. Springer, Berlin (1993)
11. Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization. Springer, Heidelberg

(2011)
12. Löhne, A., Wagner, A.: Solving DC programs with a polyhedral component utilizing a multiple objective

linear programming solver. J. Glob. Optim. 69(2), 369–385 (2017)
13. Löhne, A., Weißing, B.: Equivalence between polyhedral projection, multiple objective linear program-

ming and vector linear programming. Math. Methods Oper. Res. 84(2), 411–426 (2016)
14. Löhne, A., Weißing, B., Ciripoi, D.: Bensolve tools, 2014–2017. Bensolve interface for Gnu

Octave/Matlab. http://tools.bensolve.org

123

http://tools.bensolve.org

372 J Glob Optim (2018) 72:347–372

15. Majthay, A., Whinston, A.: Quasi-concave minimization subject to linear constraints. Discrete Math. 9,
35–59 (1974)

16. Mittal, S., Schulz, A.S.: An FPTAS for optimizing a class of low-rank functions over a polytope. Math.
Program. 141(1–2), 103–120 (2013)

17. Sahinidis, N.V.: BARON14.3.1: Global optimization of mixed-integer nonlinear programs, user’s manual
(2014). http://www.minlp.com/downloads/docs/baron%20manual.pdf

18. Shao, L., Ehrgott, M.: Primal and dual multi-objective linear programming algorithms for linear multi-
plicative programmes. Optimization 65(2), 415–431 (2016)

19. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103, 225–249 (2005)

20. Tuy, H., Tam, B.T.: An efficient solution method for rank two quasiconcave minimization problems.
Optimization 24(1–2), 43–56 (1992)

123

http://www.minlp.com/downloads/docs/baron%20manual.pdf

	A vector linear programming approach for certain global optimization problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem formulation
	4 Primal algorithm for QCP
	4.1 Primal Benson-type algorithm for VLP
	4.2 Modified primal Benson-type algorithm for QCP

	5 Dual algorithm for QCP
	5.1 Geometric duality for VLP
	5.2 Dual variant of Benson's algorithm for VLP
	5.3 Modified dual variant of Benson's algorithm to solve QCP

	6 Extension to the case of non-solid cones
	7 Numerical results
	7.1 Linear multiplicative programs
	7.2 Concave quadratic programs
	7.3 DC-programs
	7.4 Minimizing a convex function over the boundary of a polytope

	8 Conclusion
	References

