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Abstract The optimization of multimodal functions is a challenging task, in particular when
derivatives are not available for use. Recently, in a directional direct search framework,
a clever multistart strategy was proposed for global derivative-free optimization of single
objective functions. The goal of the current work is to generalize this approach to the com-
putation of global Pareto fronts for multiobjective multimodal derivative-free optimization
problems. The proposed algorithm alternates between initializing new searches, using a mul-
tistart strategy, and exploring promising subregions, resorting to directional direct search.
Components of the objective function are not aggregated and new points are accepted using
the concept of Pareto dominance. The initialized searches are not all conducted until the end,
merging when they start to be close to each other. The convergence of the method is analyzed
under the common assumptions of directional direct search. Numerical experiments show its
ability to generate approximations to the different Pareto fronts of a given problem.
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1 Introduction

When optimizing in engineering it is common the presence of additional challenges. Func-
tions evaluated by conducting large numerical simulations are often associated with the
absence of analytical expressions for derivatives, making numerical approximations imprac-
tical due to the large computational cost involved. There are also cases where the function to
be optimized is nonsmooth, which prevents the use of derivative-based techniques. Several
times there is more than one objective in this optimization process, generally conflicting,
which motivates the use of multiobjective derivative-free algorithms.

Solution techniques depend on the moment where the decision maker establishes prefer-
ences relating the different objectives to optimize [22]. Methods could be classified as having
an a prior articulation of preferences, when objectives are aggregated into a single objective
function which is then optimized, generating a single point as solution to the multiobjective
optimization problem. Changes in preferences will cause changes in the aggregating function
and the optimization procedure will need to be reapplied. Additionally, it is well known that
this procedure can fail in capturing nonconvex parts of the Pareto front [12].

Another approach consists in a posteriori articulation of preferences. The algorithms
belonging to this class attempt to capture the whole Pareto front of the problem, never
establishing preferences among the several objectives. We will focus on this last class of
methods, providing to the decision maker a set of alternative solutions, such that selecting
one instead of another will always compromise the quality of at least one of the objectives
(while improving, at least, another). Typical approaches include evolutionary algorithms, like
is the case of NSGA-II [15], CMA-ES [17], orMOPSO [7]. These are random algorithms, for
which general convergence proofs have not yet been established. Different classes, presenting
well-established convergence analysis, include trust-region interpolationbasedmethods, until
nowonly developed for biobjective optimizationwith algorithmBOTR [25], and direct search
methods, like is the case of DFMO [21], BIMADS [4] or MultiMADS [5]. A review on some
classes of multiobjective derivative-free optimization methods can be found in [9].

Direct MultiSearch (DMS) [11] is a well-established direct search method, based on a
posteriori articulation of preferences. In [11] convergence results were derived, stating that
at least one limit point of the sequence of iterates generated by DMS lies in a stationary form
of a Pareto front. Intensive numerical testing showed its competitiveness with other state-
of-art algorithms, like is the case of NSGA-II [15] or BIMADS [4]. As result of its good
performance, DMS continues to be used for benchmark new derivative-free multiobjective
optimization algorithms [21].

Nevertheless, as mentioned in [14], the optimization of multimodal functions raises issues
regarding the convergence to the true Pareto front of a problem (the global Pareto front). In
fact, this question is not specific to multiobjective optimization, since global optimization is
an active field of research for single objective optimization, both in presence or absence of
derivatives.

Recently, in the context of single objective derivative-free optimization, the algorithm
GLODS [10] was proposed as a strategy for identifying global minimizers. GLODS is a
directional direct search method [8] equipped with a clever multistart strategy. The dif-
ferent searches initialized with the multistart strategy are not all conducted until the end.
Rather, when points generated by different searches start to be close to each other, GLODS
will merge searches, giving up on the ones that are not promising. This procedure showed
to be competitive when compared with state-of-art solvers in global derivative-free opti-
mization. Moreover, numerical experiments showed its capability of identifying all the local
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(and global) optimums of the problem, a distinguishing feature from the remaining global
derivative-free optimization solvers.

The goal of the present work is to address the computation of the global Pareto front of
the problem:

min F(x) ≡ ( f1(x), . . . , fm(x))

s.t. x ∈ Ω ⊂ R
n,

(1)

where F : R
n → R

m ∪{(+∞, . . . ,+∞)}, n,m ≥ 1 represents a real-extendedmulti-valued
function, and the compact set Ω ⊂ R

n denotes the feasible region of the problem. Addition-
ally, we would like to identify local Pareto fronts of the problem, when they exist. We assume
that derivatives are not available for use, neither can they be numerically approximated.

Constraints will be addressed through an extreme barrier approach, meaning that only
feasible points will be evaluated. In a context of expensive function evaluation, this avoids
unnecessary computations. We also note that when the objective function represents a real
application, the evaluation of infeasible points could be impossible, corresponding to points
with no physical meaning. The extreme barrier approach will be implemented through the
use of a barrier function:

FΩ(x) =
{
F(x), if x ∈ Ω,

(+∞, . . . ,+∞), otherwise.
(2)

Using the concept of Pareto dominance, we will generalize the approach followed by
GLODS to multiobjective directional direct search, conferring a global flavor to DMS. In
Sect. 2 we will describe the proposed algorithmic structure. The theoretical results associated
with the new algorithm will be presented in Sect. 3, andSect. 4 illustrates the corresponding
global features. We end in Sect. 5 with some conclusions.

2 MultiGLODS: global and local multiobjective optimization using direct
search

In multiobjective optimization, where the objective function presents several components,
the concept of dominance is used for comparing pairs of points.We say that point x dominates
point y, and represent it by x ≺ y, if the following condition is satisfied:

x ≺ y ⇔ FΩ(y) − FΩ(x) ∈ R
m+\{0}. (3)

It is now possible to define what is a solution for problem 1.

Definition 1 A point x∗ ∈ Ω is said to be a global Pareto minimizer of F in Ω if �y ∈ Ω

such that y ≺ x∗. If there exists a neighborhoodN (x∗) of x∗ such that the previous property
holds in Ω ∩ N (x∗), then x∗ is called a local Pareto minimizer of F .

In general, a problem will have several points satisfying Definition 1. The set of all these
points will define a Pareto front for the problem (global or local, depending on the type of
condition satisfied).

Like any other directional direct search method, each iteration of MultiGLODS is orga-
nized in a search step and a poll step. The convergence properties of the algorithm are a
direct consequence of the poll step. In the context of global optimization, the search step is
mainly responsible for spreading the search in the feasible region, ensuring that promising
subregions will be located. The quality of the computed Pareto front (as being local or global
to the problem) is, in general, a consequence of the search step.
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Fig. 1 Adding active points to the list in MultiGLODS: points far from all the points already stored. (Color
figure online)

The algorithm keeps a list of feasible points, Lk , which could be updated both at the search
and the poll steps. Points are stored in this list as tuples (x;αx ; rx ; ix ), where x represents
the point to be stored, αx a step size, rx a comparison radius and ix a binary indicator, which
takes the value 1 if the point is active and 0, otherwise.

Similarly to GLODS [10], a point is added to the list as active or inactive. A point is added
as active if it is far from all the points already stored, meaning that it is located in a part of
the feasible region not yet explored (see lines 1 and 2 in Algorithm 2.2). Radius ry is used in
point comparisons, as a measure of closeness (see lines 1 and 3 in Algorithm 2.2). Figure1
illustrates this situation for a biojective optimization problem. On the left we have a plot in
the variables space, where the painted box represents the feasible region. On the right we
have a plot in the objective functions space. Point L1 is already in the list. Point P1 will be
added to the list as an active point, since it is not comparable with L1 (the comparison radius
of L1 corresponds to the blue circle). This is a distinguishing feature of MultiGLODS, when
compared with DMS. In DMS, since point L1 dominates P1, point P1 would not be added
to the list, regardless of being located in a different part of the feasible region.

Alternatively, points close to points already stored, which dominate active points are also
added to the list. If the point dominates an active point and it is not dominated by any other
close point already in the list, it will be added to the list as active (see lines 5 and 6 in
Algorithm 2.2). This situation is represented in Fig. 2. In this case, point P2 is comparable
with L1, an active point already in the list, and dominates it. This means that P2 will be added
to the list as an active point and L1 will remain in the list, but it will change its status to
inactive. An active point already in the list could change its status to inactive, if it is dominated
by a new point added to the list (see line 4 in Algorithm 2.2). An inactive point will never
change its status to active.

A point can also be added to the list as inactive when it dominates an active point, but
it is dominated by another point (see line 6 in Algorithm 2.2). In Fig. 3 the blue point is
comparable both with points A5 and B2, dominates the active point B2, but it is dominated
by A5. This means that the blue point will be added to the list as an inactive point and point B2

will change its status to inactive. This proceduremotivates the definition ofmerging iteration.
The sequences of points indexed by Ai and Bi have been merged.

The possibility of adding points to the list that are dominated by other points already in the
list, since they are located in a different part of the feasible region is one of the key features that
distinguishesMultiGLODS fromDMS. Adding inactive points to the list, or keeping inactive
points in the list when they change the corresponding status, is another one. This will allow
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Fig. 2 Adding active points to the list inMultiGLODS: points close to some points already stored, dominating
active points and being nondominated. (Color figure online)

Fig. 3 Adding inactive points to the list in MultiGLODS: merging searches. (Color figure online)

the algorithm to track which parts of the feasible region have already been explored, avoiding
unnecessary initializations of new searches, unless that there is a clear evidence of an improve-
ment in the corresponding region (when a new point that dominates an active point is found).

The relevance of the active indicator ix and the step size parameter αx respects to the
poll step of the algorithm. Each time that this step is performed, one active point x will be
selected as a poll center and a local search around it will be conducted. This local search
corresponds to the test of directions belonging to a positive spanning set D [13], scaled by
the step size parameter αx . As it will be clear in the convergence analysis (see Sect. 3), the
set of poll directions is not required to positively span R

n (although for coherency with the
smooth case we will write it so in the algorithm below), and it is not necessarily drawn from
a finite set of directions. Opportunistic or complete approaches can be used in the polling
procedure. In the first case, the procedure will stop once that a new active point is added to
the list. In the latter, all poll directions will be tested.

Different strategies can be used for generating new points at the search step. Random
sampling [26], Latin hypercube sampling [23], Sobol sequences [19], Halton sequences [19]
or 2n-Centers [10] are some possibilities. The major requisite is using an asymptotically
dense sequence in a compact set. Additionally, points could be required to belong to an
implicit mesh, depending on the globalization strategy considered (see Sect. 3).
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As result of the two steps described, each iteration is classified as successful, unsuccessful,
ormerging. Successful iterations correspond to at least one active point added to the list. In this
case, the corresponding step size parameter could be maintained or increased. Unsuccessful
iterations occur when the list has no changes. In this case, it is mandatory that the step size
corresponding to the poll center would be decreased. Adding only inactive points to the list
corresponds to a merging iteration. In this case step size parameters are kept unchanged.

Comparison radius should always allow the comparison between the poll points and the
corresponding poll center. Thus, if after a successful iteration, as a consequence of updating
the step size parameter this property does not hold, the comparison radius will be increased
to an adequate value.

At each iteration, if the search step fails in adding a new active point to the list of points,
the poll step needs to be performed. The search step does not need to be executed at every
iteration (when it is not conducted, it will be considered as a failure). Different strategies could
be implemented to decide if the search step should be performed or not. Some possibilities
could consider the frequency of unsuccessful iterations or the size of the step size parameters
for active points.

A detailed description of the method proposed can be found in Algorithm 2.1.

Algorithm 2.1: MultiGLODS: Global and Local Multiobjective Optimization using
Direct Search
Initialization

Let D be a (possibly infinite) set of positive spanning sets, such that ∀d ∈ D ∈ D, 0 <

dmin ≤ ‖d‖ ≤ dmax . Choose α0 > 0, r0 ≥ dmaxα0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.
Set L0 = ∅.

For k = 0, 1, 2, . . .

1. Search step: Compute a finite set of distinct points Ak = {(x j ; 0; 0; 0) : FΩ(x j ) <

(+∞, . . . ,+∞)} (all x j should be in a mesh if ρ̄(·) ≡ 0, see Sect. 3.1). Call Lk+1 =
add(Lk,Ak) to possibly add some new points in Ak to Lk . If k = 0, set L0 = L1

and go to the poll step. Otherwise, if there is a new active point in Lk+1 declare the
iteration (and the search step) as successful and skip the poll step.

2. Poll step: Order the list Lk and select an active point (x;αx ; rx ; 1) ∈ Lk as the
current iterate, corresponding step size parameter and comparison radius (thus setting
(xk;αk; rk; ik) = (x;αx ; rx ; 1)).
Choose a positive spanning set Dk from the set D. Compute the set of poll points
Pk = {(xk + αkd;αk;αk‖d‖; 0) : d ∈ Dk ∧ FΩ(xk + αkd) < (+∞, . . . ,+∞)}.
Call Lk+1 = add(Lk,Pk) to possibly add some new points in Pk to Lk . If there is
a new active point in Lk+1 declare the iteration (and the poll step) as successful. If no
new point was added to Lk declare the iteration (and the poll step) as unsuccessful.
Otherwise declare the iteration (and the poll step) as merging.

3. Step size parameter and radius update: If the iteration was successful then
maintain or increase the corresponding step size parameters: αnew ∈ [α, γ α] and
replace all the new points (x;αx ; rx ; 1) in Lk+1 by (x;αnew; dmaxαnew; 1), if
dmaxαnew > rx , or by (x;αnew; rx ; 1), when dmaxαnew ≤ rx .
If the iteration was unsuccessful then decrease the corresponding step size param-
eter: αnew ∈ [β1αk, β2αk] and replace the poll center (xk;αk; rk; 1) in Lk+1 by
(xk;αnew; rk; 1).
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Using (3), let us denote by Dom(x) the subset of R
m corresponding to the images of the

set of points dominated by x . Algorithm 2.2 corresponds to the procedure used both in the
search and poll steps to add new points to the list.

Algorithm 2.2: L1 = add (L1, L2)

Procedure for adding new points, stored in L2, to the current list, L1.

forall the (x;αx ; rx ; 0) ∈ L2 do
1 if min

y∈L1
(‖x − y‖ − ry) > 0 then

2 L1 = L1 ∪ {(x;α0; r0; 1)}
else

if x /∈ L1 then
set αa = 0, ra = 0, idom = 0 and pdom = 0
forall the (y;αy; ry; iy) ∈ L1 do

3 if ‖x − y‖ − ry ≤ 0 then
if F(y) ∈ Dom(x) + ρ̄(αy) then

idom = idom + iy
4 iy = 0

if αy > αa then
αa = αy

ra = ry
end

else
if F(x) ∈ Dom(y) then

pdom = 1
end

end
end

end
if pdom = 0 then

5 ix = 1
end
if αa = 0 then

αa = α0

ra = r0
end

6 if (idom > 0 ∨ (pdom = 0 ∧ ρ̄(.) ≡ 0)) then
if αx = 0 then

7 L1 = L1 ∪ {(x;αa; ra; ix )}
else

8 L1 = L1 ∪ {(x;αx ; rx ; ix )}
end

end
end

end
end
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Function ρ̄(.) is related to the type of globalization strategy considered in the algorithm
(see Sect. 3). If globalization is based on the use of integer lattices, it represents the constant
zero function. When globalization results from requiring sufficient decrease for accepting
newpoints, ρ̄(.) ≡ ρ(.)will be a forcing functionρ : (0,+∞) → (0,+∞), i.e., a continuous
and nondecreasing function, satisfying ρ(t)/t → 0 when t ↓ 0 (see [20]). Typical examples
of forcing functions are ρ(t) = t1+a , for a > 0.

Considering integer lattices as globalization strategy allows an additional situation where
points are added to the list as active. This occurs when the new point is comparable with
other points already stored in the list (independently of being active or inactive points) and
it is not dominated by any of them (see line 6 in Algorithm 2.2).

When adding points to the list, the corresponding step size parameters and comparison
radius need to be defined. Similarly to GLODS [10], if the point was not comparable with any
of the points already in the list, meaning that it belongs to a part of the feasible region not yet
explored, the algorithm uses the initialization values (line numbered as 2 in Algorithm 2.2).
Otherwise, if the point was generated at the poll step, both parameters will be equal to the
ones of the poll center (line numbered as 8 in Algorithm 2.2). When the new point x was
generated in the search step, it inherits the parameters of the point y, presenting the largest
step size, comparable with it, for which F(y) ∈ Dom(x) + ρ̄(αy) (line numbered as 7 in
Algorithm 2.2).

3 Convergence analysis

The convergence analysis of MultiGLODS relies on the properties of the poll step, which
begins with the choice of a poll center from the active points stored in the list. Merging
iterations in MultiGLODS correspond to situations where no new active points are added to
the list and some stored active points change their status to inactive. Thus, it is crucial to
ensure that at each iteration of MultiGLODS there is always an active point in the list that
could be selected as poll center. This is a major difference in what respects to DMS, where
all the points kept in the list are candidates to poll centers.

Proposition 1 At the end of each iteration of Algorithm 2.1, all elements of the set of non-
dominated points in the list are active.

Proof Suppose not. Let z be one inactive point of the set of nondominated points in the list,
computed at the end of the current iteration. Two situations need to be analyzed:

– z could have been added as inactive to the list (and to the set of nondominated points),
during the current iteration;

– z was an active point already in the list (and in the set of nondominated points), but has
changed its status to inactive during the current iteration.

In the latter situation, there should have been a point x such that F(z) ∈ Dom(x)+ρ̄(αz) ⊆
Dom(x). Since z was active, x will be added to the list of points, contradicting the fact of z
being nondominated.

In the former situation, there should have been y already in the list, such that F(z) ∈
Dom(y), again contradicting the fact of z being nondominated. ��

Similarly to any other directional direct search method, the convergence analysis of
MultiGLODS starts by establishing the existence of a subsequence of step size parame-
ters that converges to zero. This will allow us to ensure the existence of at least one limit
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point for the sequence of iterates generated by the algorithm. The stationarity properties of
this limit point will be further analyzed in Sect. 3.4.

Two globalization strategies can be adopted in order to ensure the existence of a subse-
quence of step size parameters with the above mentioned property. The first considers that all
points generated by the algorithm lie in an implicit mesh (corresponding to an integer lattice)
and will be analyzed in Sect. 3.1. In this case ρ̄(.) ≡ 0. Another possibility is to exchange
the freedom in the type of points generated by the algorithm by a more strict condition when
accepting new points. In this case ρ̄(.) corresponds to a forcing function (see Sect. 3.2).

For establishing the results, we will need the following two assumptions.

Assumption 3.1 The set Ω ⊂ R
n is compact.

Assumption 3.2 The function F is lower bounded in Ω ⊂ R
n .

3.1 Using integer lattices

The type of positive spanning sets that can be used by the algorithm depend on the level of
smoothness present in the objective function. If the function is continuously differentiable,
a finite set of directions with appropriate integrality requirements will suffice [2,20].

Assumption 3.3 The set D = D of positive spanning sets is finite and the elements of D
are of the form Gz̄ j , j = 1, . . . , |D|, where G ∈ R

n×n is a nonsingular matrix and each z̄ j
is a vector in Z

n .

In the presence of nonsmooth functions, the integrality requirements should be respected
but additionally the union of the sets of directions (after normalization) considered through
the iterations needs to be asymptotically dense in the unit sphere [3].

Assumption 3.4 Let D represent a finite set of positive spanning sets satisfying Assump-
tion 3.3.

The set D is so that the elements dk ∈ Dk ∈ D satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.
2. The distance between xk and the point xk + αkdk tends to zero if and only if αk does:

lim
k∈K αk‖dk‖ = 0 ⇐⇒ lim

k∈K αk = 0,

for any infinite subsequence K .
3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are positive

spanning sets for R
n .

The third requirement above is included as part of the Mesh Adaptive Direct Search
(MADS) original presentation [3], for coherency with the smooth case, but it is not used in
the convergence analysis for nonsmooth objective functions.

Integrality requirements also impose conditions in the update of the step size parameter.

Assumption 3.5 Let τ > 1 be a rational number and mmax ≥ 0 and mmin ≤ −1 integers.
If the iteration is successful, then the step size parameter is maintained or increased by
considering αnew = τm

+
α, with m+ ∈ {0, . . . ,mmax }. If the iteration is unsuccessful, then

the step size parameter is decreased by setting αnew = τm
−
α, with m− ∈ {mmin, . . . ,−1}.

123



332 J Glob Optim (2018) 72:323–345

Notice that the step size update strategy proposed in Algorithm 2.1 complies to the one
of Assumption 3.5 by setting β1 = τm

min
, β2 = τ−1, and γ = τm

max
.

Additionally, the points generated by the search step need to lie in the implicit mesh
considered at each iteration by the algorithm (trivially all the poll points generated by the
algorithm will also lie in this implicit mesh).

Assumption 3.6 At iteration k, the search step in Algorithm 2.1 only evaluates points in

Mk =
⋃
x∈Ek

{x + αk Dz : z ∈ N
|D|
0 },

where Ek represents the set of all points evaluated by the algorithm previously to iteration k.

We are now in a position to establish the first result, regarding the sequence of step
size parameters generated by MultiGLODS. Since both successful and merging iterations
correspond to adding new feasible points to the list, the arguments consider are quite similar
to the ones used for stating the same type of result in DMS.

Theorem 1 Let Assumption 3.1 hold. Algorithm 2.1 under one of the Assumptions 3.3 or 3.4
combined with Assumptions 3.5–3.6 and ρ̄(·) ≡ 0 generates a sequence of iterates satisfying

lim inf
k→+∞ αk = 0.

Proof Let us assume that there is α∗ such that αk > α∗ > 0,∀k. Assumptions 3.3 or 3.4
combined with Assumptions 3.5–3.6 ensure that all points generated by Algorithm 2.1 lie in
an integer lattice (see [2,3]). The intersection of a compact set with an integer lattice is finite.
Since Ω is compact, there is only a finite number of different points that could be generated
by the algorithm. Successful or merging iterations correspond to at least one new feasible
point added to the list. Once a point is added to this list it will always remain on it (eventually
changing its status to inactive). Thus, the number of successful and merging iterations must
be finite, and consequently there is an infinite number of unsuccessful iterations and a finite
number of points in the list. The step size at unsuccessful iterations is reduced by at least
β2 ∈]0, 1[, which contradicts the existence of a lower bound for the step size parameter. ��
3.2 Imposing sufficient decrease

When the globalization strategy is based on imposing a sufficient decrease condition, there
is more flexibility in the update of the step size parameter and in the type of directions
that could be considered by the algorithm. In fact, the only requirement is now expressed
in Assumption 3.7, and it is trivially satisfied since we are considering bounded sets of
directions.

Assumption 3.7 The distance between xk and the point xk + αkdk tends to zero if and only
if αk does:

lim
k∈K αk‖dk‖ = 0 ⇐⇒ lim

k∈K αk = 0,

for all dk ∈ Dk and for any infinite subsequence K .

A similar result to the one of Theorem 1 can now be derived. Differently from DMS, we
start by establishing that after some iterations, a new active point added to the list has to be
compared with some points already stored in the list.
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Theorem 2 Let Assumptions 3.1–3.2 hold. Algorithm 2.1, when ρ̄(·) is a forcing function
and Assumption 3.7 holds, generates a sequence of iterates satisfying

lim inf
k→+∞ αk = 0.

Proof Assume that there is α∗ such that αk > α∗ > 0,∀k. Let us start by showing that there
is an infinite number of successful iterations.

Suppose not. Active points are added to the list only at successful iterations. Thus, the
number of active points in the list must be finite. At each merging iteration at least one of the
active points in the list changes its status to inactive. Thus, the number of merging iterations
is also finite.

Consequently, the number of unsuccessful iterations (where no points are added to the list)
needs to be infinite.At eachunsuccessful iteration the step size parameter of the corresponding
active poll center is reduced by at least β2 ∈]0, 1[, which contradicts the existence of the
lower bound α∗ > 0 for the step size.

The previous arguments allow us to conclude that there is an infinite number of successful
iterations. Let x represent a new feasible active point added to the list Lk , at iteration k.
Then, min

y∈Lk
(‖x − y‖ − ry) > 0 or there should have been an active point y ∈ Lk such that

‖x − y‖ ≤ ry and F(y) ∈ Dom(x) + ρ̄(αy).
Let us assume that for each successful iteration k there is always a new active point,

xk+1 ∈ Ω , to be added to Lk , such that min
y∈Lk

(‖xk+1 − y‖ − ry) > 0. Thus,

∀y ∈ Lk, ‖xk+1 − y‖ > ry ≥ dminαy > dminα∗ > 0.

Once a point is added to the point list it will always remain in it (eventually being inactive).
Thus, at each successful iteration the measure of

Ω\
⋃
k∈S

B(xk+1; dminα∗)

decreases by a strictly positive quantity. Here S represents the set of indexes corresponding
to successful iterations and B(xk+1; dminα∗) the closed ball of radius dminα∗, centered at
xk+1. Since Ω is compact there should have been k∗ ∈ N such that for each successful
iteration k ≥ k∗ and for each new feasible active point x added to Lk , there is an active
point y ∈ Lk , which changes the corresponding status to inactive, with ‖x − y‖ ≤ ry
and F(y) ∈ Dom(x) + ρ̄(αy). Points are only added to the list at successful and merging
iterations. For each point x added to Lk at a merging iteration, there should also have been
an active point y ∈ Lk , which changes the corresponding status to inactive, and such that
‖x − y‖ ≤ ry with F(y) ∈ Dom(x) + ρ̄(αy). Thus, each time that a point is added to the
list, it will add a hypercube of side no smaller than ρ∗ to the dominance region of an active
point already in the list, which changes the corresponding status to inactive. After a finite
number of iterations, a hypercube of side no smaller than ρ∗ would have been added to the
dominance region defined by all the points in the list. Since there is an infinite number of
successful iterations, this contradicts Assumption 3.2. ��
3.3 Refining subsequences, refining directions and generalized directional

derivatives

Convergence results for MultiGLODS are derived for limit points of the so-called refining
subsequences.
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Definition 2 A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is
said to be a refining subsequence if {αk}k∈K converges to zero.

Having established the existence of a subsequence of step size parameters converging to
zero, the updating rules of the step size parameter allow us to ensure the existence of at least
one convergent refining subsequence (see, for example, [8]).

Theorem 3 Let the conditions required for establishing Theorems 1 or 2 hold. Algorithm 2.1
generates at least one refining subsequence {xk}k∈K , converging to x∗ ∈ Ω .

MultiGLODS behavior will be analyzed at limit points of convergent refining subse-
quences, along refining directions. This last concept was introduced in [3], in the context of
MADS.

Definition 3 Let x∗ be the limit point of a convergent refining subsequence {xk}k∈K . If the
limit limk∈K ′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk , and if xk + αkdk ∈ Ω , for
sufficiently large k ∈ K ′, then this limit is said to be a refining direction for x∗.

Given the nonsmoothness present in the objective function, we will need to use a gen-
eralized definition of Pareto stationarity. This definition makes use of the Clarke-Jahn [18]
generalized directional derivative, computed for directions belonging to the tangent cone to
the feasible region or to its interior.

Definition 4 A vector d ∈ R
n is said to be a Clarke tangent vector to the set Ω ⊂ R

n at
the point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges
to x and for every sequence of positive real numbers {tk} converging to zero, there exists a
sequence of vectors {wk} converging to d such that yk + tkwk ∈ Ω .

The Clarke tangent cone to Ω at x (TCl
Ω (x)) is defined as the set of all Clarke tangent

vectors to Ω at x and it is a generalization of the tangent cone commonly used in Nonlinear
Programming (see, e.g., [24, Definition 12.2 and Fig. 12.8]).

The interior of this cone defines the hypertangent cone (T H
Ω (x)), which corresponds to

the set of hypertangent vectors to Ω at x .

Definition 5 A vector d ∈ R
n is said to be a hypertangent vector to the set Ω ⊂ R

n at the
point x in Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩ B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

The Clarke tangent cone can also be regarded as the closure of the hypertangent cone.
The Clarke-Jahn generalized directional derivative is well defined for functions locally

Lipschitz continuous. Function F(x) is said to be Lipschitz continuous near x if each fi (x),
i = 1, . . . ,m is Lipschitz continuous in a neighborhood of x .

In these conditions, the Clarke-Jahn generalized directional derivative can be defined for
a component of F , f j , in a direction d belonging to the hypertangent cone to Ω at x as,

f ◦
j (x; d) = lim sup

x ′ → x, x ′ ∈ Ω

t ↓ 0, x ′ + td ∈ Ω

f j (x ′ + td) − f j (x ′)
t

, j = 1, . . . ,m. (4)

The extension of this derivative to directions v in the tangent cone to Ω at x is computed by
taking a limit, i.e., f ◦

j (x; v) = limd∈T H
Ω (x),d→v f ◦

j (x; d), for j = 1, . . . ,m (see Proposition
3.9 in [3]).
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We are now in conditions of defining the type of stationarity results that we intend to
obtain for MultiGLODS.

Definition 6 Let F be Lipschitz continuous near a point x∗ ∈ Ω . We say that x∗ is a Pareto-
Clarke critical point of F inΩ if, for all directions d ∈ TCl

Ω (x∗), there exists a j ∈ {1, . . . ,m}
such that f ◦

j (x∗; d) ≥ 0.

When each component of the objective function is strictly differentiable, the previous
definition can be restated using the gradient vectors.

Definition 7 Let F be strictly differentiable at a point x∗ ∈ Ω . We say that x∗ is a Pareto-
Clarke-KKT critical point of F in Ω if, for all directions d ∈ TCl

Ω (x∗), there exists a j ∈
{1, . . . ,m} such that ∇ f j (x∗)�d ≥ 0.

3.4 Convergence results

Let us start by stating a first stationarity result, not for the whole set of directions belonging to
the Clarke tangent cone to the feasible region, but for refining directions in the hypertangent
cone. Crucial to establishing this result is the fact that the comparison radius always allows
the comparison between the poll center and the poll points. The proof follows the classical
reasoning of directional direct search, and in particular the one of DMS.

Theorem 4 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and let d ∈
T H

Ω (x∗) be a refining direction for x∗. Assume that F is Lipschitz continuous near x∗. Then
there exists a j ∈ {1, . . . ,m} such that f ◦

j (x∗; d) ≥ 0.

Proof Let {xk}k∈K be a refining subsequence converging to x∗ ∈ Ω and

d = lim
k∈K ′′ dk/‖dk‖ ∈ T H

Ω (x∗)

a refining direction for x∗, with dk ∈ Dk and xk + αkdk ∈ Ω, ∀k ∈ K ′′ ⊆ K .
Since F is Lipschitz continuous near x∗, the Clarke-Jahn generalized directional derivative

is well defined for each f j (x∗), j = 1, . . . ,m and we have:

f ◦
j (x∗; d) = lim sup

x → x∗, x ∈ Ω

t ↓ 0, x + td ∈ Ω

f j (x + td) − f j (x)

t

≥ lim sup
k∈K ′′

f j (xk + αk‖dk‖(dk/‖dk‖)) − f j (xk)

αk‖dk‖ + rk

= lim sup
k∈K ′′

f j (xk + αkdk) − f j (xk) + ρ̄(αk)

αk‖dk‖ − ρ̄(αk)

αk‖dk‖ + rk .

The first inequality follows from {xk}k∈K ′′ being a feasible refining subsequence and the fact
that xk+αkdk is feasible for k ∈ K ′′. The term rk is bounded above by ν||d−dk/‖dk‖‖, where
ν is the Lipschitz constant of F near x∗. Note, also, that the limit limk∈K ′′ ρ̄(αk)/(αk‖dk‖)
is 0 for both globalization strategies (Sects. 3.1 and 3.2). In the case of using integer lattices
(Sect. 3.1), oneuses ρ̄(·) ≡ 0.When imposing sufficient decrease (Sect. 3.2), this limit follows
from the properties of the forcing function and the existence of dmin , a strictly positive lower
bound for the norm of the poll directions.
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Since xk + αkdk corresponds to a point evaluated at the unsuccessful iteration k, it was
necessarily compared with the active poll center xk . Thus F(xk) /∈ Dom(xk +αkdk)+ ρ̄(αk),
meaning that there should be j (k) ∈ {1, . . . ,m} such that f j (k)(xk + αkdk) − f j (k)(xk) +
ρ̄(αk) > 0. Considering that the number of components of the objective function is finite,
by passing to a subsequence indexed in K ′′′ ⊆ K ′′, there exists j = j (d) such that

f ◦
j (d)(x∗; d) ≥ lim sup

k∈K ′′′

f j (d)(xk + αkdk) − f j (d)(xk) + ρ̄(αk)

αk‖dk‖ ≥ 0.

��

Assuming strict differentiability of the objective function we can state a similar result but
considering the gradient vectors of each component of F .

Corollary 3.1 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω and let
d ∈ T H

Ω (x∗) be a refining direction for x∗. Assume that F is strictly differentiable at x∗. Then
there exists a j ∈ {1, . . . ,m} such that ∇ f j (x∗)�d ≥ 0.

Proof The result follows immediately fromTheorem 4 by noticing that strict differentiability
implies that f ◦

j (x∗; d) = ∇ f j (x∗)�d (see [18]). ��

The previous results can now be extended to the whole Clarke tangent cone by assuming
density of the set of refining directions associated with x∗. For completeness, we include the
proof, which relies in the same arguments used to establish a similar result in DMS.

Theorem 5 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ Ω . Assume that
T Cl

Ω (x∗) �= ∅ and F is Lipschitz continuous near x∗. If the set of refining directions for x∗ is
dense in TCl

Ω (x∗), then x∗ is a Pareto-Clarke critical point.
In addition, if F is strictly differentiable at x∗, then this point is a Pareto-Clarke-KKT

critical point.

Proof Given a direction v ∈ TCl
Ω (x∗), for each j ∈ {1, . . . ,m} the Clarke-Jahn generalized

directional derivative can be obtained as

f ◦
j (x∗; v) = lim

d → v

d ∈ T H
Ω (x∗)

f ◦
j (x∗; d).

Since the set of refining directions for x∗ is dense in TCl
Ω (x∗) then v = limr∈R dr with dr a

refining direction for x∗ belonging to T H
Ω (x∗). Considering the result of Theorem 4 and since

the number of components of the objective function is finite, by passing to a subsequence
R′ ⊆ R we have v = limr∈R′ dr , with dr ∈ T H

Ω (x∗), and f ◦
j (v)(x∗; dr ) ≥ 0,∀r ∈ R′. The

first statement of the theorem results from considering limits of this sequence of generalized
derivatives. The second statement of the theorem results trivially. ��

4 Numerical experiments

In this sectionwe intend to illustrate the numerical behavior ofMultiGLODS. In particular,we
aim at stating its ability to approximate local and global Pareto fronts of a givenmultiobjective
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Table 1 Analytical problems
considered in the numerical
experiments

Problem n m l u

ZDT1 30 2 [0, . . . , 0] [1, . . . , 1]
ZDT2 30 2 [0, . . . , 0] [1, . . . , 1]
ZDT3 30 2 [0, . . . , 0] [1, . . . , 1]
ZDT4 10 2 [0, −5, . . . ,−5] [1, 5, . . . , 5]
ZDT6 10 2 [0, . . . , 0] [1, . . . , 1]
DTLZ1 7 3 [0, . . . , 0] [1, . . . , 1]
DTLZ2 12 3 [0, . . . , 0] [1, . . . , 1]
DTLZ3 12 3 [0, . . . , 0] [1, . . . , 1]
DTLZ5 12 3 [0, . . . , 0] [1, . . . , 1]
DTLZ7 22 3 [0, . . . , 0] [1, . . . , 1]
Deb213 2 2 [0.1, 0] [1, 1]
Deb218 2 2 [0, 0] [1, 1]
CAM1 2 2 [0.1, 0] [1, 1]
CAM2 2 2 [0.1, 0] [1, 1]

derivative-free optimization problem.Wehave considered a test setwith 14 bound constrained
analytical problems collected from the multiobjective optimization literature:

min F(x) ≡ ( f1(x), . . . , fm(x))

s.t. l ≤ x ≤ u
(5)

and a constrained real application problem related to styrene production [1,5]. Table1 reports
the dimensions (n), the number of components of the objective function (m), and the variable
bounds for the analytical problems.

As part of our test set, we have problems belonging to the ZDT [27] and the DTLZ [16]
collections, and also two additional problems described in [14] (Sects. 4.1 and 5.1.2), named
as Deb213 and Deb218, respectively. Additionally, the technique described in Sect. 4 of [14]
was used to generate two new biobjective problems, both presenting local and global Pareto
fronts. The goal of testing the two first collections is to state the quality of MultiGLODS as
a general multiobjective derivative-free optimization solver. Problems proposed in [14] are
useful to test its ability to identify local and global Pareto fronts of a given problem.

A Matlab numerical implementation of MultiGLODS is available at:

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/multiglods.

This implementationwas comparedwith version 0.3 ofDirectMultiSearch (DMS) [11].DMS
is a well-established algorithm, suited for derivative-free multiobjective optimization, which
has proved to be competitive with state-of-art solvers, includingNSGA-II [15], BIMADS [4],
and AMOSA [6]. Nowadays it is still used as benchmark for new multiobjective derivative-
free algorithms [21].

In order to access the real impact of the clever multistart strategy, both algorithms were
run with parameters similar to the defaults of DMS. Exception occurs in the use of a cache,
which was disabled for both algorithms. The idea is to access the value of each algorithmic
structure by itself, without any further improvements. Initialization considered a number of
points equal to the problem dimension, evenly spaced in a line joining the problem bounds.
Inspired by the defaults of GLODS, MultiGLODS additionally considered the center of the

123

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/multiglods


338 J Glob Optim (2018) 72:323–345

Fig. 4 Plot of function g, used in the definition of problems CAM1 (left) and CAM2 (right). (Color figure
online)

feasible region. As globalization strategy, both algorithms used integer lattices. Coordinate
directions were used as positive spanning sets and complete polling was performed.

Regarding MultiGLODS, each time that three consecutive unsuccessful iterations
occurred, the search step was performed, using Sobol sequences to generate a number of
feasible points equal to problem dimension. As poll center, MultiGLODS selected the active
point, not yet identified as a local Pareto point, presenting the largest step size. A point is
identified as a local Pareto point when the corresponding step size parameter is below 10−3.

The step size was initialized as n × maxi∈{1,...,n}(ui − li ) in MultiGLODS and was set
equal to 1 in DMS. Successful iterations kept constant the step size, which was halved at
unsuccessful ones.

Both algorithms would stop when amaximum of 20,000 function evaluations was reached
or when the step sizes for all points were below 10−3 (in the case ofMultiGLODS, only active
points were considered).

4.1 Additional multimodal multiobjective problems

According to [14], let us consider the biobjective optimization problem defined as:

min F(x1, x2) ≡
(
x1,

g(x2)

x1

)

s.t. (x1, x2) ∈ Ω ⊂ R
2,

(6)

where g(x2) > 0.
Theorem 1 in [14] states that this problem has local or global Pareto optimal solutions

(x1, x∗
2 ), where x

∗
2 corresponds to a local or global minimum of g(x2), respectively, and x1

can take any feasible value.
Using the proposed technique, we have generated problems CAM1 and CAM2, consid-

ering the function g defined as below,

g(x2) = 2 − e
−

(
x2−0.2
0.004

)2
− c1 e

−
(
x2−0.6
0.4

)2
− c2 e

−
(
x2−0.9
0.002

)2
.

For CAM1, c1 = 1.9 and c2 = 0, while in CAM2, c1 = 0.8 and c2 = 1.2. In both problems
x1 ∈ [0.1, 1] and x2 ∈ [0, 1]. Figure4 provides a graphical representation of function g for
CAM1 and CAM2, respectively.
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Comparing with the function g considered in [14], we see that for CAM1 the global
minimum is no longer in a narrow valley. Problem CAM2 presents three local minimums,
which correspond to two local and one global Pareto fronts.

4.2 Results on the ZDT and DTLZ collections

Starting with the ZDT collection, Fig. 5 represents the approximations to the Pareto front
generated by DMS and MultiGLODS.

As can be observed, the results obtained with each solver are very similar, support-
ing the quality of the final Pareto fronts generated by MultiGLODS. For problem ZDT6,
MultiGLODS presents some points far from the global Pareto front. This is a direct conse-
quence of the stopping criteria considered. If a higher number of function evaluations would
have been allowed, eventually these points would change their status to inactive, not being
part of the final approximation to the Pareto front generated by MultiGLODS. In the case
of problem ZDT4, MultiGLODS is able not only to generate an approximation to the global
Pareto front but also to some of the 219 local Pareto fronts reported in [27].

Figure6 reports the results obtained with both solvers for the DTLZ collection.
Thebehavior ofMultiGLODSfor problemsDTLZ1andDTLZ3 is quite peculiar. In fact, these
problems present several local Pareto fronts, all parallel to the global one [16]. MultiGLODS
is able to identify one of these local Pareto fronts and also to move to the global one, as we
can see in Fig. 7, where the plots are zoomed in.

Problem DTLZ7 presents four disconnected Pareto-optimal regions. MultiGLODS was
able to provided a quite good representation of each one of these areas. In problems DTLZ2
andDTLZ4, similarly to problemZDT6, the results are a consequence of the stopping criteria,
which considers a maximum number of function evaluations.

4.3 Results on the multimodal problems

Having stated the quality of the Pareto fronts generated by MultiGLODS, by comparison
with the results obtained with DMS in ZDT and DTLZ collections, we would like to test its
capability to identify local and global Pareto fronts of a given problem.

We had already a flavor of it, with the results reported for problems ZDT4, DTLZ1,
and DTLZ3. The last two problems present 3 objectives and are of dimension 7 and 12,
respectively, forwhich a computational budget of 20,000 function evaluations could somehow
be limited. So we decided to use the two dimension, biobjective problems reported in [14]
(Sects. 4.1 and 5.1.2) and the two additional problems described in Sect. 4.1. Figure8 presents
the final approximations to the Pareto fronts obtained with DMS and MultiGLODS.

In all problems, MultiGLODS was able to identify the global Pareto front. The identi-
fication of all local Pareto fronts was well succeeded in the majority of the situations. The
exception occurs in problem CAM1, where the nature of the narrow local minimum of func-
tion g prevented MultiGLODS from successfully identifying the corresponding local Pareto
front.

4.4 A chemical engineering problem of styrene production

In [1] the authors describe the simulation of a styrene production process and the correspond-
ing optimization problem. Basically, the styrene production process presents four phases:
reactants preparation, catalytic reactions, styrene recovery and benzene recovery, which have
been implemented in a black-box simulator using the Sequential Modular Simulation (SMS)
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Fig. 5 Approximations to the Pareto front generated by DMS and MultiGLODS for the ZDT collection. For
each problem, the support of the true global Pareto front is represented in yellow. (Color figure online)

paradigm. There are three objectives to be maximized: the net present value of the styrene
production process ( f1), the purity of the produced styrene ( f2) and the purity of the pro-
duced benzene ( f3). Eight variables define parameters of the simulation model. Variables
are subject to bounds and to nine other constraints related with industrial and environmental
regulations.
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Fig. 6 Approximations to the Pareto front generated by DMS and MultiGLODS for the DTLZ collection.
(Color figure online)

Two different approaches have been proposed for the problem. In [1], the authors consider
a single objective optimization problem by maximizing f1, defining upper bounds for f2 and
f3, and treating these last two objectives as constraints. Using the single objective derivative-
free optimization algorithm MADS, with a search step defined by a variable neighborhood
search, the authors obtained a single point as solution of the problem. In the process, a budget
of 10,000 function evaluations was considered and surrogates were used to guide the search
in the variable space.

In [5] a multiobjective derivative-free optimization approach was taken. MultiMADS
was applied to the three-objective optimization problem, generating an approximation to
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Fig. 7 Partial representation of the approximations to the Pareto front generated by DMS and MultiGLODS
for problems DTLZ1 and DTLZ3. (Color figure online)

Fig. 8 Approximations to the Pareto front generated by DMS and MultiGLODS for multimodal, two dimen-
sion, biobjective problems. (Color figure online)

the Pareto front of the problem comprising 22 points, when considering a budget of 30,000
function evaluations. None of the 22 points dominates the point generated byMADS, neither
the single objective solution dominates any of the 22 points generated by MultiMADS.
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Fig. 9 Approximations to the Pareto front of the styrene production problem generated by DMS,
MultiGLODS, MultiMADS and MADS, in the last case solving a single objective version of the problem.
(Color figure online)

We kept the settings used through the whole numerical section, in particular the budget of
20,000 function evaluations, and ran both DMS and MultiGLODS in the styrene production
problem. DMS ended without using the maximum number of function evaluations allowed,
generating an approximation to the Pareto front of the problem with 3 points. In the case of
MultiGLODS, the 20,000 function evaluations were required and it ended with 613 active
points. Figure9 represents the approximations to the Pareto front obtained by the four solvers.
The plot corresponds to the symmetric of the objective function, since it is a maximization
problem.

The final active points generated by MultiGLODS dominate all the solutions generated
both by MultiMADS and DMS. Results obtained with DMS indicate the existence of a local
Pareto front of the problem, which was also identified by MultiGLODS. Regarding the point
produced by MADS, as result of the single objective optimization, it is not dominated by the
final active points generated byMultiGLODS. In fact, it presents the best value for f1, which
is natural since a single objective optimization was performed in this objective. Although,
there are also active points generated by MultiGLODS which are not dominated by the point
generated by MADS. The best values obtained for f2 and f3 correspond to points generated
by MultiGLODS.

5 Conclusions

In this paper we have proposed, analyzed, and numerically tested a new algorithm for opti-
mizing multiobjective, multifront, derivative-free functions.

The new directional direct search method generalizes GLODS [10] to multiobjective
optimization and confers a global behavior to DMS [11]. Multistart is used to initialize new
searches, generally not conducted until the end, since they merge when start to be close to
each other. A comparison radius, directly related to the step size parameter, is the keystone
in this merging procedure. Points sufficiently close to each other are compared and only
nondominated points will remain active. In the end of the optimization process, the set of all
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active points will define the approximations to the Pareto fronts of the problem (local and
global).

Under the common assumptions of directional direct search, convergence results were
derived. Numerical experiments evidence the quality of the final solutions generated by the
new algorithm and its capability in identifying approximations to global and local Pareto
fronts of a given problem.
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