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Abstract Optimization problems whose objective function and constraints are quadratic
polynomials are called quadratically constrained quadratic programs (QCQPs). QCQPs are
NP-hard in general and are important in optimization theory and practice. There have been
many studies on solving QCQPs approximately. Among them, a semidefinite program (SDP)
relaxation is a well-known convex relaxation method. In recent years, many researchers have
tried to find better relaxed solutions by adding linear constraints as valid inequalities. On
the other hand, the SDP relaxation requires a long computation time, and it has high space
complexity for large-scale problems in practice; therefore, the SDP relaxation may not be
useful for such problems. In this paper, we propose a new convex relaxation method that is
weaker but faster than SDP relaxation methods. The proposed method transforms a QCQP
into a Lagrangian dual optimization problem and successively solves subproblems while
updating the Lagrange multipliers. The subproblem in our method is a QCQP with only one
constraint for which we propose an efficient algorithm. Numerical experiments confirm that
our method can quickly find a relaxed solution with an appropriate termination condition.

This research was done at The University of Tokyo before joining the company, not a research conducted by
the company.

B Akiko Takeda
atakeda@ism.ac.jp

Shinji Yamada
monta0410@hotmail.co.jp

1 Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

2 Department of Mathematical Analysis and Statistical Inference, The Institute of Statistical
Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

3 Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan

4 Present Address: Tokio Marine & Nichido Fire Insurance Co., Ltd., Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-018-0617-2&domain=pdf


314 J Glob Optim (2018) 71:313–339

Keywords Nonconvex quadratically constrained quadratic program · Lagrangian dual
optimization · Semidefinite program relaxation · Subgradient method · Quasi-convex
function

1 Introduction

We consider the following quadratically constrained quadratic program (QCQP):

minimize
x∈Rn

x�Q0x + 2q�
0 x + γ0

subject to x�Qi x + 2q�
i x + γi ≤ 0, i = 1, . . . , m,

(1)

where each Qi is an n × n symmetric matrix. Qi = O means a linear function. We call a
QCQP with m constraints m-QCQP. In the case Qi � O for every i = 0, . . . , m, (1) is a
convex program. However, in general, positive semidefiniteness is not assumed, and (1) is
NP-hard [23]. QCQPs are important in optimization theory and in practice.

QCQPs are fundamental nonlinear programming problems that appear in many applica-
tions such asmax-cut problems [24] and binary quadratic optimizations. A standard approach
for finding a global solution of (1) is the branch-and-bound (or cut) method, where a simple
relaxation, e.g., a linear programming (LP) relaxation problem [2], is solved in each iteration.
Audet et al. [5] proposed to introduce additional constraints, constructed using the reformula-
tion linearization technique (RLT), to the relaxation problem. Lagrangian bounds, i.e., bounds
computed by Lagrangian relaxation, have also been used in branch-and-bound methods in
order to reduce the duality gap [22,28,30]. The branch-and-bound (or cut) algorithm yields a
global solution by solving many relaxation subproblems, which restricts the size of QCQPs.

Another avenue of research has investigated tight relaxation problems for QCQPs. Among
the many convex relaxation methods, a semidefinite program (SDP) relaxation is well known
and have been extensively studied [11,19,29]. It is known that the an SDP relaxation can
be viewed as the Lagrangian dual problem of the original QCQP. The SDP relaxation has
been applied to various QCQPs that appear in combinatorial optimization problems [12,13]
as well as in signal processing and communications [19]. The SDP relaxation is powerful,
and it gives the exact optimal value for 1-QCQP having only one constraint such as the trust
region subproblem (TRS). Furthermore, recent studies such as [3] have proposed to add new
valid inequalities (e.g., linear constraints for matrix variables using the original upper and
lower bound constraints) to SDP relaxation problems. In particular, Zheng et al. [31,32]
proposed a decomposition–approximation scheme that generates an SDP relaxation at least
as tight as the ordinary one. Jiang and Li [16] proposed second order cone constraints as
valid inequalities for the ordinary SDP relaxation. Such methods aim at obtaining a better
relaxed solution even if they take more time to solve than the ordinary SDP relaxation.

However, an SDP relaxation including additional valid inequalities increases the problem
size, which leads to a longer computation time and often memory shortage errors for large-
scale problems. Here, Kim and Kojima [17] proposed a second-order cone programming
relaxation (SOCP relaxation), where valid second-order cone constraints derived from the
positive semidefinite inequality are added to the LP relaxation. Burer et al. [9] proposed
a “weaker but faster” method that uses a block matrix decomposition, compared to SDP
relaxations. Such faster relaxation methods are useful for large-scale problems, and they can
be repeatedly solved in, e.g., a branch-and-bound method.

In this paper, we propose a faster convex relaxation method that is not stronger than
SDP relaxations if valid constraints are not considered. Our method solves the Lagrangian
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dual problem of the original QCQP by using a subgradient method, though the Lagrangian
dual problem can be reformulated as an SDP and is solvable with the interior-point method.
Indeed, there are various studies that propose to solve the Lagrangian dual problems for
nonconvex problems, but most of them transform the dual problem into an SDP problem
[6] or a more general cone problem [18]. Here, to resort to more easily solved problems,
we divide the minimization of the objective function in the Lagrangian dual problem into
two levels and iteratively solve the inner problem as a 1-QCQP, which can be solved exactly
and efficiently. There are mainly two approaches to solving a 1-QCQP: one is based on
eigenvalue computation, the other is on the SDP relaxation. In particular, Moré and Sorensen
[20] proposed to iteratively solve a symmetric positive-definite linear system for TRS, while
Adachi et al. [1] proposed an accurate and efficient method that solves only one generalized
eigenvalue problem. In this paper, we propose a new relaxation method that can solve a
1-QCQP exactly and efficiently as a convex quadratic optimization problem. Furthermore,
we prove that the convex quadratic problem constructs the convex hull of the feasible region
of a 1-QCQP. Numerical experiments confirm that our convex quadratic relaxation method
for solving 1-QCQPs is faster than SDP relaxations and eigenvalue methods. They also show
that our method can quickly find a relaxed solution of an m-QCQP by iteratively solving a 1-
QCQPwith updated Lagrangemultipliers. By adding valid constraints to our formulation, our
method can sometimes find a better relaxed solution in a shorter computation time compared
with the ordinary SDP relaxation. The relaxation technique can be embeddedwithin a branch-
and-bound framework to find a global optimum to the original m-QCQP.

The remainder of this paper is organized as follows. We introduce SDP relaxations and
other related studies in Sect. 2. We describe our method and its some properties in Sects. 3
and 4. We present computational results in Sect. 5. We conclude the paper in Sect. 6. The
Appendix contains proofs of the presented theorems in Sects. 3 and 4.

Throughout the paper, we denote matrices by using uppercase letters such as “Q”, vectors
by using bold lowercase such as “q” and scalars by using normal lower case such as “γ ”. The
notation A � B or A � B implies that the matrix A − B is positive definite or semidefinite.
e means the all-one vector.

2 Existing SDP relaxation methods for m-QCQP

2.1 SDP relaxation

The Lagrangian dual problem of the original problem (1) is described as

max
ξ≥0

φ(ξ). (2)

Here, φ(ξ) is an optimal value function defined by

φ(ξ) := min
x

⎡
⎣ x�

(
Q0 +

m∑
i=1

ξi Qi

)
x + 2

(
q0 +

m∑
i=1

ξiqi

)�
x + γ0 +

m∑
i=1

ξiγi

⎤
⎦ , (3)

=
{

−q(ξ)�Q(ξ)†q(ξ) + γ (ξ), (if Q(ξ) � O),

−∞, (otherwise),
(4)

where Q(ξ) := Q0 + ∑m
i=1 ξi Qi , q(ξ) := q0 + ∑m

i=1 ξiqi , γ (ξ) := γ0 + ∑m
i=1 ξiγi and

“†” means the pseudo-inverse. Note that from (4), (2) is equivalent to
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max
ξ≥0

φ(ξ)

s.t. Q0 + ∑m
i=1 ξi Qi � O.

(5)

By considering −q(ξ)�Q(ξ)†q(ξ) + γ (ξ) as a Schur complement of

(
Q(ξ) q(ξ)

q(ξ)� γ (ξ)

)
, we

can equivalently rewrite the dual problem (5) as a semidefinite program (SDP)

max
ξ≥0,τ

τ

s.t.

(
Q(ξ) q(ξ)

q(ξ)� γ (ξ) − τ

)
� O,

(6)

which can be solved by using an interior-point method. It should be noted that the dual of
(6) is

min
x,X

Q0 · X + 2q�
0 x + γ0

s.t. Qi · X + 2q�
i x + γi ≤ 0, i = 1, . . . , m,

X � xx�
(7)

and (6) and (7) are equivalent under the Primal/Dual Slater condition.
The SDP relaxation is a popular approach to find a relaxed solution of (1). Sturm and

Zhang [27] proved that the SDP relaxation can always obtain the exact optimal value for
a 1-QCQP. Goemans and Williamson showed an approximation bound given by the SDP
relaxation formax-cut problems [13], andGoemans [12] applied theSDP relaxation to various
combinatorial problems. Their numerical experiments show that the SDP relaxation can find
a very tight relaxed solution for many kinds of problems. However, the SDP relaxation
has disadvantages in both computation time and space complexity because of the matrix
variable; it cannot deal with large-scale problems because of shortage of memory. Although
polynomial time algorithms, such as an interior-point method, have been established, they
often take a long time to solve an SDP relaxation problem in practice.

Remark 1 We propose a subgradient-based approach for (5) instead of applying the interior-
point method to the equivalent SDP (6) or (7) in this paper. Efficiently applying the ordinary
subgradient method to (5) is not straightforward. Indeed, after obtaining a subgradient vector
of φ(ξ), we need to project the vector onto the the set � := {ξ : ξ ≥ 0, Q0 + ∑m

i=1 ξi Qi �
O}. For the projection computation, we need to solve another SDP with similar matrix size
to (7). This direct application of a subgradient method to (5) is not a good idea.

We will construct a subset of � such that the projection of a vector onto the set is easy
and use the subset instead of �. The proposed approach may give loser relaxation than the
SDP relaxation to QCQPs, but our numerical experiments show that the proposed approach
combined with the reformulation linearization technique (RLT) can be better than the SDP
relaxation in terms of the tightness of the relaxation and computation time.

2.2 Stronger SDP relaxation using RLT

Anstreicher [3] used the reformulation linearization technique (RLT) to further strengthen
the SDP relaxation; new constraints are added to the ordinary SDP relaxation and the range
of the new variables Xi j , ∀i, j is restricted. Here, one assumes the original problem (1) has
box constraints, i.e., lower and upper bounds on each variable x j (l j and u j , respectively).
Note as well that even if there are no box constraints, we may be able to compute l j and u j by
using the original constraints if the feasible region is bounded. The inequality l j ≤ x j ≤ u j

(as a vector expression, l ≤ x ≤ u) leads to
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(xi − ui )(x j − u j ) ≥ 0 ⇐⇒ xi x j − ui x j − u j xi + ui u j ≥ 0, (8)

(xi − ui )(x j − l j ) ≤ 0 ⇐⇒ xi x j − ui x j − l j xi + ui l j ≤ 0, (9)

(xi − li )(x j − l j ) ≥ 0 ⇐⇒ xi x j − li x j − l j xi + li l j ≥ 0, (10)

for i, j = 1, . . . , n. By replacing xi x j with Xi j , we have

Xi j − ui x j − u j xi + ui u j ≥ 0, (11)

Xi j − ui x j − l j xi + ui l j ≤ 0, (12)

Xi j − li x j − l j xi + li l j ≥ 0. (13)

(11)–(13) are linear inequalities that include matrix variables Xi j . Therefore, by adding these
constraints, we can get a stronger relaxation. The disadvantage of RLT is that it increases
computation time because of the increased variables Xi j and additional constraints (11)–(13).

Many studies such as [16,26,31,32] have aimed at strengthening the relaxation by adding
valid inequalities other than (11)–(13). These methods give very tight bounds, but they tend
to entail large amounts of computation time.

2.3 Weaker SDP relaxation method by block decomposition

Burer et al. [9] aims to solve a relaxed problem faster than SDP relaxations, although it is a
weaker relaxation; as such, it shares a similar motivation as ours. First, [9] assumes that the
original problem has [0,1] box constraints (i.e. ∀i; 0 ≤ xi ≤ 1) in order to avoid a situation
in which the optimal value of a relaxation problem diverges. Then, by following [9], we
can compute a block diagonal matrix Di which satisfies Qi + Di � O for the matrix Qi

appearing in the objective function or the constraints. By using Di , we transform a quadratic
polynomial as follows,

x�Qi x + 2q�
i x + γi = −x� Di x + x�(Qi + Di )x + 2q�

i x + γi

and relax x� Di x to Di · X and X � O . As a whole, a relaxation problem is

min
x,X

−D0 · X + x�(Q0 + D0)x + 2q�
0 x + γ0

s.t. −Di · X + x�(Qi + Di )x + 2q�
i x + γi ≤ 0, i = 1, . . . , m,

Xk � xkx�
k , k = 1, . . . , r,

where r denotes the number of blocks of Di and Xk or xk denotes a partial matrix or vector
in X or x corresponding to each block of Di , ∀i . Note that in a similar way as (12), we have
new constraints Xii ≤ xi , i = 1, . . . , m for the matrix variable X from the box constraints.
Since we relax only the quadratic form for each block part, the matrix X only has block part
components. Therefore,we can consider the positive semidefinite constraint only for the block
parts: Xk � xkx�

k . The number of variables related to the positive semidefinite constraint is
reduced, which will shorten the computation time. We call this method Block-SDP and use
it in the numerical experiments in Sect. 5.

In [9], it is proposed to divide Di as evenly as possible, that is, by making the difference
between the largest block size and the smallest block size at most one for a given r .
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3 Proposed method

3.1 Assumptions

Before we explain our method, we will impose the following three assumptions.

Assumption 1 (a) The feasible region of (1) has some interior points.
(b) There exists at least one matrix Qi (i = 0, . . . , m) such that Qi � O .
(c) An optimal solution of QCQP (1) can not be obtained by solving the following uncon-

strained optimization problem

min
x

x�Q0x + 2q�
0 x + γ0. (14)

Assumption 1 (a) is the primal Slater condition, and (b) is a sufficient condition of the Dual
Slater condition of the original QCQP.

3.2 The whole algorithm

We further transform the Lagrangian dual problem (2) into

max
λ∈�s

max
μ≥0

φ(μλ), (15)

where �s := {λ ≥ 0 | e�λ = 1} is a simplex. Now we define ψ(λ) as the optimal value of
the inner optimization problem of (15) for a given λ ∈ �s:

ψ(λ) := max
μ≥0

φ(μλ). (16)

Note that (16) is the Lagrangian dual problem for the following 1-QCQP:

ψ(λ) = min
x

x�Q0x + 2q�
0 x + γ0

s.t. x�
(

m∑
i=1

λi Qi

)
x + 2

(
m∑

i=1
λiqi

)�
x +

m∑
i=1

λiγi ≤ 0.
(17)

There is no duality gap between (16) and its Lagrangian dual (17), since [27] proves that the
SDP formulation of (16) has the same optimal value as the 1-QCQP (17). We will show how
to exactly and efficiently solve the 1-QCQP (17) in Sect. 4.1. The Lagrangian dual problem
(2) can be written as

max
λ∈�s

ψ(λ). (18)

Here, we propose an algorithm which iteratively solves (17) with updated λ ∈ �s for
finding an optimal solution of the Lagrangian dual problem.�s is a convex set, andψ(λ) is a
quasi-concave function, as shown in Sect. 3.3. Therefore, we will apply the standard gradient
descent method to (18) for updating λ. The speed of convergence of gradient methods is slow
in general especially near optimal solutions, and therefore, we will obtain a relaxed solution
by using an appropriate termination criterion. Algorithm 1 summarizes the proposedmethod.
We divide the “max” for the Lagrange function into two levels and iteratively solve the

inner problem, 1-QCQP, which computes ψ(λ) with a given λ. Our method is not stronger
than the ordinary SDP relaxation as discussed in Sect. 4. We also explain the details of our
method (especially, the relationship between (Pk) and (27) or (28)) later in Sect. 4.
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Algorithm 1 Successive Lagrangian Relaxation (SLR)
Given Q0, . . . , Qm (∃i; Qi � O), q0, . . . , qm , γ0, . . . , γm tolerance ε and sufficiently small value
ψ(λ(−1)),

Step 1: Set k = 0, and choose arbitrarily an initial solution λ(0).
Step 2: Find an optimal solution x(k) and the optimal value ψ(λ(k)) of (Pk ):

ψ(λ(k)) = min
x

x� Q0x + 2q�
0 x + γ0 (Pk)

s.t. x�
⎛
⎝

m∑
i=1

λ
(k)
i Qi

⎞
⎠ x + 2

⎛
⎝

m∑
i=1

λ
(k)
i qi

⎞
⎠

�
x +

m∑
i=1

λ
(k)
i γi ≤ 0

by solving the convex problem (27) or (28).

Step 3: If

∣∣∣∣ψ(λ(k))−ψ(λ(k−1))

ψ(λ(k−1))

∣∣∣∣ < ε, then stop the algorithm. Otherwise, update λ(k) by Algorithm 2

shown in Sect. 4.2 and k ← k + 1. Go to Step 2.

3.3 Quasi-concavity of ψ(λ)

Objective functions of Lagrangian dual problems are concave with respect to Lagrange
multipliers (e.g. [7]). The function φ(μλ) with fixed λ is hence concave with respect to
μ, but ψ(λ) is not necessarily concave for λ. However, we can prove that ψ(λ) is a quasi-
concave function and has some of the desirable properties that concave functions have.

Before we prove the quasi-concavity of ψ(λ), we have to define the set �+,

�+ = {λ ∈ �s | ψ(λ) > φ(0)}, (19)

in order to explain the properties of ψ(λ). Note that φ(0) is the optimal value of the uncon-
strained problem (14) andψ(λ) ≥ φ(0) holds for all λ. We can also see that�+ is nonempty
if and only if the SDP relaxation value is larger than φ(0), i.e., OPTSDP > φ(0) holds.
This is obvious from OPTSDP = max{ψ(λ) | λ ∈ �s} (see 18 and 19). In other words,
OPTSDP = φ(0) means that the SDP relaxation gives us an optimal solution of (14).

From the definition of �+, we see that an optimal solution of (16) for λ ∈ �+, which we
denote by μ̄λ, is a positive value. When λ /∈ �+ (i.e. ψ(λ) = φ(0)), we can set μ̄λ to zero
without changing the optimal value and solution. By using such μ̄λ, we will identify (19)
and

�+ = {λ ∈ �s | μ̄λ > 0}. (20)

Now let us prove the quasi-concavity of ψ(λ) and some other properties.

Theorem 1 Let ψ(λ) be the optimal value of (16) and (x̄λ, μ̄λ) be its optimal solution.
Then, the following (i)–(iv) hold.

(i) The vector

( g̃λ)i = μ̄λ

(
x̄�

λ Qi x̄λ + 2q�
i x̄λ + γi

)
(21)

is a subgradient of ψ at λ, which is defined as a vector in the quasi-subdifferential (see
e.g., [14,15]):

∂ψ(λ) := {s | s�(ν − λ) ≥ 0, ∀ν; ψ(ν) > ψ(λ)}. (22)

(ii) ψ(λ) is a quasi-concave function for λ ∈ �s.
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Fig. 2 ψ(λ) and �+ when Q0 � O

(iii) �+ is a convex set.
(iv) If ψ(λ) has stationary points in �+, all of them are global optimal solutions of (18).

The proof is in the Appendix.
Note that the set of global solutions ofψ is convex because of the quasi-concavity ofψ(λ).

(iv) is similar to the property that concave functions have. Therefore, a simple subgradient
method such as SLR works well. SLR is an algorithm for finding a stationary point in �+,
which Theorem 1 (iv) proves to be a global optimal solution in �s .

Figures 1 and 2 are images ofψ(λ) for m = 2, where λ ∈ �s is expressed by one variable
α ∈ [0, 1] as λ = (α, 1−α)�. The vertical axis shows ψ(λ), and the horizontal one shows α

for a randomly generated 2-QCQP. We can make sure that ψ(λ) is a quasi-concave function
from these figures and also that ψ is not always a concave function even over �+.

There are subgradient methods for maximizing a quasi-concave function. If the objective
function satisfies some assumptions, the convergence of the algorithms is guaranteed. How-
ever, this may not be the case for the problem setting of (18). For example, in [14], ψ(λ)

must satisfy the Hölder condition of order p > 0 with modulus μ > 0, that is,

ψ(λ) − ψ∗ ≤ μ(dist(λ,�∗))p, ∀λ ∈ Rm,

123



J Glob Optim (2018) 71:313–339 321

where ψ∗ is the optimal value, �∗ is the set of optimal solutions and dist( y, Y ) denotes the
Euclidean distance from a vector y to a set Y . It is hard to check whether ψ(λ) satisfies the
Hölder condition. Ensuring the convergence of SLR seems difficult, but numerical exper-
iments imply that SLR works well and often achieves the same optimal value as the SDP
relaxation value.

4 Details of SLR

4.1 Subproblem of SLR: 1-QCQP

SLR needs to solve 1-QCQP (Pk). Here, we describe a fast and exact solution method for a
general 1-QCQP. First, we transform the original 1-QCQP by using a new variable t into the
form:

min
x,t

t

s.t. x�Q0x + 2q�
0 x + γ0 ≤ t,

x�Qλx + 2q�
λ x + γλ ≤ 0,

(23)

where

Qλ =
m∑

i=1

λ
(k)
i Qi , qλ =

m∑
i=1

λ
(k)
i qi , γλ =

m∑
i=1

λ
(k)
i γi ,

in the SLR algorithm. Here, we assume that (23) satisfies the following Primal and Dual
Slater conditions:

(Primal Slater condition) ∃x ∈ Rn s.t. x�Qλx + 2q�
λ x + γλ < 0

(Dual Slater condition) ∃σ ≥ 0 s.t. Q0 + σ Qλ � O

Indeed, (Pk) satisfies the Primal Slater condition because of Assumption 1 (a), and it also
satisfies the Dual Slater condition because either Q0 or Qλ is positive definite by the updating
rule of λ(k) explained in the next subsection. Here, we define

S : = {σ ≥ 0 | Q0 + σ Qλ � O},
which is a convex set of one dimension, that is, an interval. The Dual Slater condition implies
that S is not a point, and therefore, σ < σ̄ holds for

σ̄ := sup
σ∈S

σ, (24)

σ := inf
σ∈S

σ. (25)

We set σ̄ = +∞ when Qλ � O and σ = 0 when Q0 � O . We construct the following
relaxation problem of (23) using σ̄ and σ :

min
x,t

t

s.t. x�(Q0 + σ Qλ)x + 2(q0 + σqλ)
�x + γ0 + σγλ ≤ t,

x�(Q0 + σ̄ Qλ)x + 2(q0 + σ̄qλ)
�x + γ0 + σ̄ γλ ≤ t,

(26)

which will be shown to be equivalent to (23) later in Theorem 2. Note that in the SLR
algorithm, we keep either Q0 or Qλ positive semidefinite. When σ = 0 (i.e., Q0 � O), (26)
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Δ
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(x t )
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Q

Fig. 3 Image of 
 and 
rel

is equivalent to the following relaxed problem:

min
x,t

t

s.t. x�Q0x + 2q�
0 x + γ0 ≤ t,

x�(σ̂ Q0 + Qλ)x + 2(σ̂q0 + qλ)
�x + (σ̂ γ0 + γλ) ≤ σ̂ t,

(27)

where σ̂ = 1/σ̄ , and σ̂ can be easily calculated. On the other hand, when σ̄ = +∞ (i.e.,
Qλ � O), (26) is equivalent to

min
x,t

t

s.t. x�(Q0 + σ Qλ)x + 2(q0 + σqλ)
�x + γ0 + σγλ ≤ t,

x�Qλx + 2q�
λ x + γλ ≤ 0.

(28)

(28) can be viewed as dividing the second constraint of (26) by σ̄ and σ̄ → ∞.
The following theorem shows the equivalence of the proposed relaxation problem (26)

and the original problem (23).

Theorem 2 Under the Primal and Dual Slater conditions, the feasible region 
rel of the
proposed relaxation problem (26) is the convex hull of the feasible region 
 of the original
problem (23), i.e., 
rel = conv(
).

The proof is in the Appendix.
Theorem 2 implies that (26) gives an exact optimal solution of 1-QCQP (23) since the

objective function is linear. The outline of the proof is as follows (see Fig. 3). We choose an
arbitrary point (x∗, t∗) in 
rel and show that there exists two points P and Q in 
 which
express (x∗, t∗) as a convex combination of P and Q.We show in the Appendix how to obtain
P and Q of 
 for an arbitrary point (x∗, t∗) in 
rel. Using this technique, we can find an
optimal solution of 1-QCQP (23). By comparison, SDP relaxations can not always find a
feasible solution for the 1-QCQP (though it can obtain the optimal value).

(26) is a convex quadratic problem equivalent to 1-QCQP, which we will call CQ1. CQ1
can be constructed from a general 1-QCQP including the Trust Region Subproblem (TRS).
The numerical experiments in Sect. 5 show that CQ1 can be solved by a convex quadratic
optimization solver faster than by an efficient method for solving a TRS and the interior-point
method, and hence, solving CQ1 as subproblems can speed up SLR.
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Now let us explain how to calculate σ̂ or σ using a positive definite matrix, i.e., for both
cases when Q0 � O in (27) and Qλ � O in (28). We calculate σ̂ in (27) when Q0 � O as

follows. Let Q
1
2
0 be the square root of the matrix Q0 and Q

− 1
2

0 be its inverse. Then, σ̂ can be
calculated as

σ̂ =
∣∣∣∣min

{
σmin

(
Q

− 1
2

0 QλQ
− 1

2
0

)
, 0

}∣∣∣∣ ,

where σmin(X) is the minimum eigenvalue of X , because

σ Q0 + Qλ � O ⇐⇒ Q
− 1

2
0 (σ Q0 + Qλ)Q

− 1
2

0 � O

⇐⇒ σ I + Q
− 1

2
0 QλQ

− 1
2

0 � O.

Similarly, we can calculate σ in (28) as

σ =
∣∣∣∣min

{
σmin

(
Q

− 1
2

λ Q0Q
− 1

2
λ

)
, 0

}∣∣∣∣ ,

when Qλ � O .

4.2 Update rule of λ

Algorithm 2 Update rule of λ

Given λ(k) and a sufficiently small positive scalar δ,

Step 1: Calculate the gradient vector g(k) as g(k)
i = x(k)�Qi x(k) + 2q�

i x(k) + γi .

Step 2: Normalize g(k) and set the step size h. Update λ(k+1) as

λ(k+1) = proj�s (λ
(k) + hg(k)), (29)

where proj�s (a) := arg min
b∈�s

‖a − b‖2 is the projection onto �s.

Step 3: If Q0 � O or
∑m

i=1 λ
(k+1)
i Qi � O , terminate and return λ(k+1).

Step 4: Otherwise, find a minimum positive scalar α such that α
∑

i∈C Qi + ∑m
i=1 λ

(k+1)
i Qi � O

and update λ
(k+1)
i ← λ

(k+1)
i + α + δ for i ∈ C . After computing

λ(k+1) ← 1
∑m

i=1 λ
(k+1)
i

λ(k+1),

terminate and return λ(k+1).

Now let us explain the update rule ofλ, which is used in Step 3 ofAlgorithm1.Algorithm2
summarizes the procedure of updating λ. The whole algorithm, SLR, updates λ(k) and x(k)

in each iteration k = 1, 2, . . .. In order for (Pk) to have an optimal solution x(k), λ(k) needs
to be set appropriately so as to satisfy Q0 + μ

∑m
i=1 λ

(k)
i Qi � O for some μ ≥ 0. If the

input Q0 of the given problem satisfies Q0 � O , then Q0 +μ
∑m

i=1 λ
(k)
i Qi � O holds with

μ = 0, which makes (Pk) bounded.
On the other hand, in the case of Q0 � O , the optimal value of (Pk), ψ(λ(k)), possibly

becomes −∞ with inappropriately chosen λ(k), and we can not find an optimal solution. In
such case, we can not calculate g(k) in Step 1 of Algorithm 2 and the algorithm stops. To
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prevent this from happening, we use a subset �+ of �s so that ψ(λ(k)) does not become
−∞ and�+ does not change the optimum value of the Lagrangian dual problem (18). When
Q0 � O , �+ of (20) can be rewritten as

�+ =
{

λ ≥ 0 | e�λ = 1, ∃μ ≥ 0; Q0 + μ

m∑
i=1

λi Qi � O

}

under Assumption 1 (b). �+ is the set of λ for which ψ(λ) > −∞. To exactly solve the
problem (18), the projection computation in (29) should bedone for the set�+ when Q0 � O .
However, the projection computation can not be easily done because of the complicated
condition on μ. Therefore, when Q0 � O , we approximate �+ as

�′+ :=
{

λ ≥ 0 | e�λ = 1,
m∑

i=1

λi Qi � O

}
,

and keepλ(k) in�′+ by Step 4. It can be easily confirmed that�′+ is a convex set. By replacing
the feasible region �s of (18) by �′+ (⊆ �+), the relaxation can be weaker and the optimal
value is not necessarily equal to the SDP relaxation value. Thus, when Q0 � O , SLR may
be worse than it is when Q0 � O .

Now we give details on some steps in Algorithm 2.

Step 1: Theorem 1 (i) shows that a subgradient vector of ψ(λ) at λ(k) is

g̃λ(k) = μ̄λ(k) g(k),

where g(k)
i = x(k)�Qi x(k)+2q�

i x(k)+γi ,∀i . At the kth iteration of the algorithm,weuse g(k)

as the subgradient vector ofψ(λ) rather than g̃λ(k) for the following reasons.When μ̄λ(k) > 0,
we can use g(k) as a subgradient vector ofψ(λ) at λ(k). When μ̄λ(k) = 0 (i.e. λ(k) /∈ �+), Q0

should be positive semidefinite because of the constraint Q0 + μ
∑m

i=1 λi Qi � O , and the
optimal value of (17) equals that of (14) (= φ(0)). In this case, φ(0) is the smallest possible
value, but it is not the optimal one of the original problem (1) because an optimal solution
of the unconstrained problem (14), x̄, is not in the feasible region of (1), from Assumption 1
(c). Therefore, when μ̄λ(k) = 0, the algorithm needs to move λ(k) toward �+; precisely, λ(k)

is moved in the direction of g(k), although g̃λ(k) is the zero vector. It can be easily confirmed
that by moving λ(k) sufficiently far in this direction, the left side of the constraint of (Pk)
becomes positive and x̄ moves out of the feasible region of (Pk).

Step 2: We compute λ(k+1) with g(k) and h as in (29). We can easily compute the projection
onto �s by using the method proposed by Chen and Ye [10]. Here, the condition: ∃μ ≥
0; Q0+μ

∑m
i=1 λi Qi � O in�+ is ignored in the projection operation, but when Q0 � O ,

the resulting projected point λ(k+1) is in �+. On the other hand, when Q0 � O , the vector
λ(k+1) is not necessarily in �+ or �′+. In such a case, λ(k+1) is modified in Step 4 so as to
belong to �′+. Step 4 is a heuristic step; it is needed to keep λ ∈ �′+ when Q0 � O .

Now let us explain how to choose the step size h. Gradient methods have various rules
to determine an appropriate step size. Simple ones include a constant step size h = c or
a diminishing step size (e.g. h = c/

√
k), where k is the number of iterations (e.g., see

[8]). A more complicated one is the backtracking line search (e.g., see [4,21]). Although the
backtracking line search has been shown to performwell inmany cases, we use a diminishing
step size h = c/

√
k to save the computation time of SLR. The advantage of SLR is to

efficiently find a relaxed solution, so we will choose a simple policy for the step size h.
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Step 4: It is needed only when both conditions, Q0 � O and
∑m

i=1 λ
(k+1)
i Qi � O , hold.

We update the Lagrange multipliers corresponding to convex constraints, whose index set is
defined as C := {i | 1 ≤ i ≤ m, Qi � O}. When Q0 � O , Assumption 1 (b) assures that
C is non-empty.

Remark 2 Remark 1 explains that a direct application of the subgradient method to the
SDP (5) is not efficient because the projection computation onto the set � := {ξ : ξ ≥
0, Q0 + ∑m

i=1 ξi Qi � O} is not easy. As shown above, we can project a subgradient vector
onto a simple set �′ := {ξ : ξ ≥ 0} and modify the projected point so as to satisfy
Q0 +∑m

i=1 ξi Qi � O . We tried some heuristic modifications in numerical experiments, but
the resulting subgradient method with any of modifications does not converge properly.

Now we will discuss why the above subgradient method does not converge unlike our
method.

When the concerned problem has Q0 � O , the modification is not necessary for our
method, while it is necessary for the subgradient method. Even for the case of Q0 � O ,
the modification shown in Step 4 of Algorithm 2 is simple and μ in �+ is appropriately
determined by solving (Pk), which might give us a good approximation to the projection
onto �+. On the other hand, the modification in the subgradient method for satisfying Q0 +∑m

i=1 ξi Qi � O often drastically changes the projected vector because of Q0, which may
be a reason of unstable performance.

4.3 Setting an initial solution

The number of iterations of SLR depends on howwe choose an initial solution. In this section,
we propose two strategies for choosing it. Note that at an optimal solution λ, all elements
λi corresponding to convex constraints with Qi � O , i ∈ C , are expected to have positive
weights. Hence, we will give positive weights only for λi , i ∈ C (if it exists).

Here, we assume that (Qi , qi , γi ) in each constraint is appropriately scaled by a positive
scalar as follows. When the matrix Qi has positive eigenvalues, (Qi , qi , γi ) is scaled so that
the minimum positive eigenvalue of Qi is equal to one. If Qi has no positive eigenvalues, it
is scaled such that the maximum negative eigenvalue is equal to −1.
Equal weights rule The first approach is “equal” weights. It gives equal weights to λ

(0)
i

corresponding to Qi � O or if there are no Qi � O (which implies that Q0 � O), it gives
equal weights to all λ(0)

i .
More specifically, if the index set of convex constraints C is nonempty, we define λ(0) as

λ
(0)
i =

{
1

|C | , if Qi � O,

0, otherwise.
(30)

If C = ∅, we define λ(0) as

λ
(0)
i = 1

m
, i = 1, . . . , m. (31)

Schur complement rule The second approach uses the idea of the Schur complement. Note
that this rule only applies when there are some i (≥ 1) such that Qi � O . For the constraint
with Qi � O , we have

x�Qi x + 2q�
i x + γi ≤ 0

⇐⇒ (x + Q−1
i q)�Qi (x + Q−1

i qi ) ≤ q�
i Q−1

i qi − γi .
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The right-hand side ηi := q�
i Q−1

i qi − γi can be considered the volume of the ellipsoid

and the value −ηi can be viewed as the Schur complement of the block Qi of

(
γi q�

i
qi Qi

)
.

From Assumption 1 (a), the ellipsoid has positive volume and we have ηi > 0. Numerical
experiments show that constraints having small positive ηi tend to become active in the SDP
relaxation. Therefore, it seems reasonable to give large weights to the constraints whose
−ηi (< 0) are close to zero; that is, 1

|ηi | are large. Here, we consider the following rule:

For i ∈ C , calculate si := 1/|ηi |. We define λ(0) as

λ
(0)
i =

{
si∑m

i=1 si
if Qi � O,

0, otherwise.
(32)

Although the Schur complement rule also has no theoretical guarantee, numerical experi-
ments show their usefulness especially when Q0 � O .

4.4 RQT constraints

We can find a better optimal value of the Lagrangian dual problem (2) by adding a redundant
convex quadratic constraint constructed similarly to RLT (this is discussed in Sect. 2.2) to (1)
when there are box constraints and by applying SLR to the resulting QCQP. Since (9) holds
for 1 ≤ i = j ≤ n, we have

x2i − (ui + li )xi + ui li ≤ 0, i = 1, . . . , n. (33)

The summation of (33) for i = 1, . . . , n leads to

x�x − (u + l)�x + u�l ≤ 0. (34)

We call this method the reformulation quadraticization technique (RQT). Since (34) is a
convex quadratic constraint, it may be effective to make the SLR relaxation tighter. The
numerical experiments in Sect. 5 show that by adding (34), we could get a tighter optimal
value in some cases than SDP relaxations.

There are other ways of making new convex quadratic constraints. Furthermore, even
nonconvex constraints (like (8) or (10)) are possibly effective for tightening SLR. However,
in this study, we only considered (34) to save computation time.

5 Numerical experiments

Wecompared the performanceofSLR,SDP relaxation (6), andBlock-SDPshown inSect. 2.3.
We used MATLAB Ver. 8.4.0 (R2014b) for all the numerical experiments. We solved SDP
relaxation and Block-SDP by using the interior-point method (SeDuMi 1.3 [25] with the
tolerance 10−8 (initial setting)). We solved 1-QCQP (27) and (28) in the SLR algorithm by
using a convex quadratic optimization solver (CPLEXVer. 12.5). We used a laptop computer
with a 2.4 GHzCPU and 16GBRAM. In [9], there are no rules to decide the number of blocks
r of Block-SDP. In our experiments, we tried several values of r and chose r := 0.05 × n,
which seemed to work well.
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Fig. 4 Average computation time versus tolerance ε

5.1 Performance of SLR for random m-QCQP

First,we checked the performanceofSLR for randomm-QCQPgenerated in thewayofZheng
et al. [32]. In this subsection, we consider problemswithout box constraints; we compare SLR
(or the subroutine of solving CQ1) and SDP relaxation. In Sect. 5.3, we consider problems
including box constraints; we compare SLR, SDP relaxation, and Block-SDP.

5.1.1 Tolerance ε and computation time

We now investigate computation time of SLR for given tolerance values ε. We randomly
generated 30 instances of 10-QCQP, whose problem sizes were n = 30 and m = 10. Among
the m = 10 constraints, there were five convex ones. The objective functions of all instances
were strictly convex, i.e., Q0 � O .

The relationship between the tolerance ε and the computation time is shown in Fig. 4.
The smaller ε becomes, the longer the computation takes. In this setting, SLR could solve
the 10-QCQP faster than SDP relaxation when ε > 10−4. Hence, we set ε = 10−4 in what
follows.

5.1.2 Comparison of two initial-solution strategies

We compared the two strategies for choosing the initial solutions (30) (or (31)) and (32)
and checked the results for Q0 � O and Q0 � O . We only show results for Q0 � O
because both initial-solution rules gave almost the same results when Q0 � O . We randomly
generated 30 instances for each setting, where n = 100 and m = 10, and varied the number
of convex constraints from |C | = 1 to 9.

Note that SLR is not stronger than SDP relaxation and we do not know the exact optimal
value of each randomm-QCQP.Therefore,we checked the performance of SLRby comparing
its value with the optimal value of SDP relaxation. Here, we used the error ratio defined as

Ratio :=
∣∣∣∣

OPTSLR

OPTSDPrelax

∣∣∣∣ .

This indicator was used in all of the experiments described below. It is greater than or equal
to one since SLR is not stronger than the ordinary SDP relaxation (6). The performance of
SLR is said to be good when the ratio is close to one.
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Fig. 5 Comparison of two initial-solution strategies. a Average number of iterations (Q0 � O). b Average
error ratio (Q0 � O)

Figures 5a, b plot the number of iterations and the error ratio versus the number of convex
constraints. When there is only one convex constraint, an optimal solution λ for ψ(λ) usu-
ally has only one positive element corresponding to the convex constraint and all the other
elements are zero. In this case, SLR needs only a few iterations. When Q0 � O , the Schur
complement rule works well in terms of computation time and the error ratio as the number
of convex constraints increases. On the basis of the above considerations, we decided to use
the Schur complement rule in the remaining experiments.

5.1.3 Computation time and error for the number of variables n and the number of
constraints m

We checked the computation time of SLR by changing the number of variables n and the
number of constraints m, respectively. In this experiment of Fig. 6a–d, n was varied from 25
to 5000, and we set m = 15, of which 8 constraints were convex. We generated 30 instances
when n ≤ 250, ten instances when 250 < n ≤ 1000, and one instance when n ≥ 2500. In
this experiment, we set ε = 1.0−3 because large problems take a very long time to solve.

In Fig. 6e, f, we checked the computation time of SLRby varying the number of constraints
m. The number of constraints m was varied from 2 to 50, while the number of variables was
fixed as n = 100. Half of the constraints (i.e. ceil(m/2)) were convex. We generated 30
instances for each setting.

Case 1 Q0 � O . SLR performed well when Q0 � O (Fig. 6a, b). The computation time was
almost one order of magnitude smaller than that of SDP relaxation, and the error ratio was
less than 1.06. The relaxation precision suddenly deteriorated as the number of variables n
increased, but there were many instances with smaller n which SLR could obtain the optimal
value same as the SDP relaxation value. Furthermore, SLR was able to solve problems with
n = 5000, while SDP relaxation could not because of out of memory issue. Regarding varied
m, the error ratios were less than 1.0015, and the computation time was about one order of
magnitude smaller than that of SDP relaxation.
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Fig. 6 Computation time and error with varied number of variables n and Varied number of constraints m.
a Average computation time for n (Q0 � O). b Average error ratio for n (Q0 � O). c Average computation
time for n (Q0 � O). d Average error ratio for n (Q0 � O). e Average computation time for m (Q0 � O). f
Average error ratio for m (Q0 � O)

Case 2 Q0 � O . We replaced the objective function of each instance used in Case 1 by a
nonconvex quadratic function and conducted the same experiments in each case. Figure 6c,
d show the results for Q0 � O . The error rate of SLR deteriorated compared to the case of
Q0 � O , but it was still faster than SDP relaxation and the error ratio was about 1.1. Note that
we conducted only one experiment on n = 2500, 5000 to shorten the time of the experiment.
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Fig. 7 Comparison of three exact solution methods for 1-QCQP . a Average computation time (Q0 � O). b
Average computation time (Q1 � O)

Although the numerical results of varied m are omitted to save space in the paper, the trends
of time and error with respect to increased m were almost same to Fig. 6e, f except that the
error ratio was about 1.06.

SLR tends to give smaller error rates for QCQPs with Q0 � O than for QCQPs with
Q0 � O . This may be because we do no need to approximate the feasible region �+ when
Q0 � O .

5.2 Performance of CQ1 for solving 1-QCQP

We checked the performance of CQ1; transforming 1-QCQP of (Pk) to the convex quadratic
formulation (26) and solving it by the CPLEX solver. We compared CQ1, SDP relaxation,
and an eigen-computation-based method for random 1-QCQPs. For a 1-QCQP with Q1 �
O , Adachi et al. [1] proposed an accurate and efficient method that solves a generalized
eigenvalue problem only once. They called this method “GEP”. We ran their MATLAB code
for solving a 1-QCQP with Q1 � O . It should be noted that all of the methods can obtain the
exact optimal value of 1-QCQP. The computation time was plotted versus n. As described in
Sect. 5.1, we generated the 1-QCQP in the way of [32]. Figure 7a, b are double logarithmic
charts of n and the average computation time of 30 instances. Figure 7a shows that CQ1 is
about one order of magnitude faster than SDP relaxation for all n. Figure 7b shows that CQ1
is faster than GEP when n is large. Therefore, we see that solving a quadratic optimization
problem with two convex constraints (26) by the CPLEX is a good strategy for solving
1-QCQP of (Pk) in Algorithm 1.

5.3 Strengthened SLR by additional constraints

From the performance of SLR shown in Sect. 5.1, we confirmed that SLR is a “weaker but
faster” method than SDP relaxation. The numerical experiment in this subsection implies
that SLR including the RQT constraint (34) can be “stronger and faster” than ordinary SDP
relaxation: (6) and (7).

We randomly generated problems with box constraints as follows: We varied n from 30 to
2000 and set m = floor(0.08n) or m = floor(0.3n) including ceil(m/2) convex constraints.
We generated 30 instances when n ≤ 100, ten instances when 100 < n ≤ 1000 and
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Fig. 8 Effects of additional RQT constraint. a Average computation time for n and m. b Average error ratio
for n and m. c Average computation time for n and m. d Average error ratio for n and m.

one instance for the case of n = 2000. We added box constraints −1 ≤ xi ≤ 1, ∀i ,
to all the instances, which make it possible to generate additional constraints such as the
RLT constraints (12) and the RQT constraint (34). The following results are only for the
case in which the objective function is nonconvex because the RQT constraint affected the
performance of our method by much.

The results for instances with smaller number of constraints m = floor(0.08n) are shown
in Fig. 8a, b, while the results for instances with larger number of constraintsm = floor(0.3n)

are shown in Fig. 8c, d. “SLR+RQT” indicates that SLR includes the RQT constraint (34).
Block-SDP includes some RLT constraints (12) generated from the box constraints (see
Sect. 2.3). On the other hand, SDP relaxation includes none of additional constraints.

In Fig. 8b, d, the ratio is less than one. This implies that SLR can get better optimal values
than SDP relaxation by adding RQT constraints, i.e, SLR can be “stronger and faster” than
SDP relaxation. If all RLT constraints are added to SDPs, the interior-point method for such
SDPs will give the tighter relaxation than those three methods. However, the resulting SDPs
grow larger than those of ordinary SDP relaxation, which will be a serious problem when
solving them with the interior-point method. Indeed, the interior-point method could not
solve ordinary SDP instances with n = 103 because of out of memory issue. Therefore, if we
use the interior-point method for SDP relaxation of QCQPs, problem instances of QCQPs
might be restricted to less than n = 103.
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The performance ofBlock-SDP is highly influenced by the number of constraintsm.When
m is small (i.e., m = floor(0.08n)), Block-SDP performs closely to SLR+RQT in terms of
computation time and error ratio.Whenm = floor(0.3n), Block-SDP finds very good relaxed
solutions with almost the same computation time to the ordinary SDP relaxation. Block-SDP
could solve n = 103 when m = floor(0.08n)1 but could not solve instances of n = 2000
with both settings of m because of out of memory status.

5.4 Iterative application of SLR to max-cut problems

Max-cut problems [24] can be viewed as an application of 1-QCQP.A graph Laplacianmatrix
L can be obtained from a given undirected and weighted graph G. For the max-cut value for
G, we solve the following {−1, 1} integer program:

min
x

x�Lx s.t. xi ∈ {−1, 1}, i = 1, . . . , n. (35)

We relax (35) into

min
x

x�Lx s.t. − 1 ≤ xi ≤ 1, i = 1, . . . , n,

and then apply SDP relaxation and Block-SDP.
In SLR, the box constraints are replaced by the RQT constraint x�x ≤ n because SLR

needs at least one strictly convex constraint. Then the resulting problem is a 1-QCQP;

min
x

x�Lx s.t. x�x ≤ n. (36)

Therefore, the SLR for (36) is the same approach to CQ1 which solves 1-QCQP (Pk). Here
we identify CQ1 and SLR in this problem setting. Note that (36) can be regarded as a simple
minimum eigenvalue problem. An optimal solution is an eigenvector corresponding to the
minimum eigenvalue. However, our purpose is to check the computational result, and we use
SLR for (36).

We solved max-cut instances from [24]. Many randomly generated instances are shown
in [24], and the optimal values are known. The results are in Table 1. In this table, the “error”
is defined as

Error :=
∣∣∣∣
OPTmethod − OPT

OPT

∣∣∣∣ ,

where OPTmethod is the optimal value of each method and OPT is the exact optimal value.
In [24], the names of the instances indicate how they were generated as well as the number
of variables. For example, “g05_80”, “80” means the number of variables, and “g05” means
the density of edges and whether the weights of graph are all positive or include negative
values. The details are given in [24] and there are ten instances for each kind of problem. In
Table 1, “Time(s)” means the average time for ten instances, and the best methods among
SDP relaxation, Block-SDP, and SLR in terms of either average computation time or average
error are listed in bold.

Table 1 shows that SLR is “weaker” but “faster” than SDP relaxation. Block-SDP is
weaker and even slower than SDP relaxation in these problem settings. SLR is much faster
than SDP relaxation, so we could solve SLR many times with the time to solve an SDP

1 Block-SDP could not solve one of ten instances with n = 103 when m = floor(0.3n) due to the numerical
errors that would have been caused by large scale calculations.
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Table 1 Time and error for max-cut

Method SDP relaxation Block-SDP SLR Multiple SLR

Instance Error Time(s) Error Time(s) Error Time(s) Error Time(s)

g05_80 0.02 0.363 0.15 0.472 0.15 0.022 0.02 0.075

g05_100 0.02 0.504 0.13 0.545 0.14 0.014 0.01 0.093

pm1d_80 0.17 0.341 0.53 0.419 1.10 0.012 0.10 0.093

pm1d_100 0.17 0.487 0.52 0.504 1.01 0.020 0.09 0.114

pm1s_80 0.15 0.324 0.54 0.392 1.14 0.013 0.10 0.086

pm1s_100 0.14 0.490 0.50 0.491 1.08 0.016 0.12 0.107

pw01_100 0.05 0.478 0.19 0.550 0.62 0.015 0.04 0.099

pw05_100 0.03 0.509 0.13 0.579 0.17 0.015 0.02 0.096

pw09_100 0.02 0.498 0.14 0.611 0.09 0.017 0.01 0.103

w01_100 0.13 0.494 0.53 0.544 1.28 0.013 0.10 0.113

w05_100 0.17 0.482 0.51 0.556 0.92 0.020 0.10 0.114

w09_100 0.17 0.485 0.51 0.562 0.94 0.015 0.12 0.123

by the interior-point method. Accordingly, we tried to strengthen SLR by iterating it with a
certain rounding rule as follows. An optimal solution of SLR, x̄, satisfies x̄� x̄ = n because
the objective function is nonconvex. Consequently, there exists a component of x̄ whose
absolute value is more than one (otherwise, all the components are ±1, and x̄ is an exact
optimal solution for (35)). Then, we fix such a component as ±1 and solve a small problem
recursively. Note that if the objective function becomes positive (semi)definite by fixing some
of the components and there exists no xi whose absolute value is more than one, we set the
component which has the maximum absolute value of all the components to 1 or −1. We
perform this rounding until all the components are±1. Therefore, we have a feasible solution
of the original problem (35) and obtain an upper bound of the original optimal value, while
SDP relaxation, Block-SDP, and SLR find lower bounds. We call this rounding “Multiple
SLR” and show the results in the right-most column of Table 1. The results indicate that
Multiple SLR is still “faster” than SDP relaxation. Such a faster method is useful when we
want to solve a problem repeatedly.

6 Conclusions

In this paper, we proposed SLR, a new, fast convex relaxation for QCQP. SLR is a method for
solving the Lagrangian dual problem of a given QCQP. There have been various studies on
constructing Lagrangian dual problems for nonconvex problems and reformulating them as
semidefinite problems (SDPs). Instead of solving an SDP, our method divides the objective
function of the Lagrangian dual problem into two levels and iteratively solves a 1-QCQP.
We furthermore transform the 1-QCQP into a convex quadratic 1-QCQP called CQ1 whose
feasible region forms the convex hull of the feasible region of the original 1-QCQP. Hence,
we can obtain the exact optimal value of the 1-QCQP by solving CQ1. SDP relaxation can
also solve the 1-QCQP exactly, but CQ1 is much faster. Numerical experiments confirmed
this advantage of CQ1. CQ1 performed well for randomly generated 1-QCQP and max-cut
problems.
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In SLR, we successively solve a 1-QCQP with the Lagrange multiplier λ updated using
a gradient method. We proved that the objective function ψ(λ) is quasi-concave and has the
good property that all the stationary points in �+ are global optimal solutions, and thus,
simple gradient methods work well. SLR is a faster relaxation compared with the interior-
point method for SDP relaxation for large n and m. Furthermore, by adding a new valid
RQT constraint, we could obtain even a better optimal value than SDP relaxation for some
m-QCQP instances.

Our method can be regarded as a subgradient method that is applied to a quasi-concave
problem induced from the Lagrangian dual of an m-QCQP. To ensure convergence, the
quasi-concave problem must satisfy certain conditions, (e.g., the Hölder condition in [14])
but unfortunately, it is not easy to check whether our quasi-concave problem satisfies the
Hölder condition. In the future, we would like to investigate the global convergence of our
algorithm.

When the objective function is nonconvex, we need to approximate the feasible region
�+ of the Lagrangian dual problem, and as a result, the SLR becomes worse in performance
than that of solving m-QCQP with the convex objective function. We would like to improve
the performance of SLR for instances having nonconvex objective functions.

A Proofs of Theorems

Proof of Theorem 1

Proof The vector g̃λ of (21) can be found from

ψ(λ) = φ(μ̄λλ)

= x̄�
λ

(
Q0 + μ̄λ

m∑
i=1

λi Qi

)
x̄λ + 2

(
q0 + μ̄λ

m∑
i=1

λiqi

)�
x̄λ + γ0 + μ̄λ

m∑
i=1

λiγi .

We prove that the vector g̃λ is in the quasi-subdifferential ∂ψ defined by (22). Note that
in [14,15], the quasi-subdifferential is defined for a quasi-convex function, but ψ is quasi-
concave. Therefore (22) is modified from the original definition of ∂ψ for a quasi-convex
function. We further consider (22) as

∂ψ(λ) = {s | ψ(ν) ≤ ψ(λ), ∀ν; s�(ν − λ) < 0}
= {s | ψ(ν) ≤ ψ(λ), ∀ν; s�ν < s�λ} (37)

Now we show that g̃λ is in (37). When μ̄λ = 0, g̃λ = 0 satisfies (22) and g̃λ ∈ ∂ψ(λ) holds.
When μ̄λ > 0, it is sufficient to consider the vector

gλ :=
⎛
⎜⎝

x̄�
λ Q1 x̄λ + 2q�

1 x̄λ + γ1
...

x̄�
λ Qm x̄λ + 2q�

m x̄λ + γm

⎞
⎟⎠

instead of g̃λ because ∂ψ(λ) forms a cone. Then, since x̄λ is feasible for λ, we have

x̄�
λ

(
m∑

i=1

λi Qi

)
x̄λ + 2

(
m∑

i=1

λiqi

)�
x̄λ +

m∑
i=1

λiγi ≤ 0. (38)
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From the definition of gλ, we can rewrite (38) as

gλ
�λ ≤ 0. (39)

Then, we have to prove that for an arbitrary vector ν which satisfies gλ
�ν < gλ

�λ,

ψ(ν) ≤ ψ(λ)

holds. From (39), we get gλ
�ν ≤ 0 and it means that x̄λ is feasible for ν. This implies that

at an optimal solution x̄ν for ν, the optimal value of (17) is less than or equal to the one at
x̄λ. Therefore, we have ψ(ν) ≤ ψ(λ).

Next, we prove (ii)–(iv). First, φ(λ) defined by (3) is concave for λ. It is a general property
of the objective function of the Lagrangian dual problem (e.g. [7]). Furthermore, note that
ψ(λ) is the maximum value of φ(μλ) with respect to μ ≥ 0. Therefore, ψ(λ) ≥ φ(0) holds
for all λ ∈ �s.

We show (ii) first. Let λ1,λ2 (λ1 �= λ2) be arbitrary points in �s, and μ̄1 and μ̄2 be
optimal solutions of (16) with fixed λ1 and λ2, respectively. Without loss of generality, we
assume that ψ(λ1) ≥ ψ(λ2). Now, it is sufficient to prove that for any fixed α ∈ [0, 1],

ψ(λα) ≥ ψ(λ2), (40)

where λα := αλ1 + (1 − α)λ2. If λ1 /∈ �+ or λ2 /∈ �+ holds, we get ψ(λ2) = φ(0) and
(40) holds. Therefore, we only have to consider the case when both λ1 and λ2 are in �+,
implying that μ̄1 and μ̄2 are positive by (20). Since φ(λ) is concave for λ, we can see that
for any β ∈ [0, 1],

φ(ξ(β)) ≥ βφ(μ̄1λ1) + (1 − β)φ(μ̄2λ2)

= βψ(λ1) + (1 − β)ψ(λ2),

where ξ(β) := βμ̄1λ1 + (1 − β)μ̄2λ2. Accordingly, we can confirm that there exists

β̄ := μ̄2α

μ̄1(1 − α) + μ̄2α
∈ [0, 1]

which satisfies

ξ(β̄) = μ̄1μ̄2

μ̄1(1 − α) + μ̄2α
λα

For this β̄, we get

ψ(λα) = φ(μ̄λαλα)

≥ φ

(
μ̄1μ̄2

μ̄1(1 − α) + μ̄2α
λα

)

= φ(ξ(β̄))

≥ β̄ψ(λ1) + (1 − β̄)ψ(λ2)

≥ ψ(λ2), (41)

where μ̄λα is an optimal solution for λα . Therefore, (ii) holds.
We can easily prove (iii). In the above proof of (ii), we assume λ1,λ2 is in�+. Then, (41)

means that ψ(λα) ≥ ψ(λ2) > φ(0), and we get λα ∈ �+ for any α ∈ [0, 1].
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Lastly, we prove (iv). Let λ† be an arbitrary stationary point in �+, and let μ̄λ† be an
optimal solution of (16) for λ†. Moreover, x̄λ† denotes an optimal solution of φ(μ̄λ†λ

†).
From (21) and (20), we have

x̄�
λ†

Qi x̄λ† + 2q�
i x̄λ† + γi = 0, i = 1, . . . , m. (42)

On the other hand, it can be confirmed that
⎛
⎜⎜⎝

x̄�
λ†

Q1 x̄λ† + 2q�
1 x̄λ† + γ1

...

x̄�
λ†

Qm x̄λ† + 2q�
m x̄λ† + γm

⎞
⎟⎟⎠

is a subgradient vector for φ(ξ†), where ξ† = μ̄λ†λ
†. Hence, (42) implies that μ̄λ†λ

† is
a stationary point of φ. From the properties of concave functions, all stationary points are
global optimal solutions. Therefore, μ̄λ†λ

† is a global optimal solution of φ and λ† is also a
global optimal solution of ψ . ��

Proof of Theorem 2

Proof Let 
 be the feasible region for (x, t) of (23) and 
rel be the feasible region of the
relaxed problem (26). Let conv(
) be the convex hull of 
. We will prove that 
rel =
conv(
). In this proof, we write “a

conv←−− {b, c}” if
∃s ∈ [0, 1] s.t. a = sb + (1 − s)c

holds. From the definition, it is obvious that 
rel is convex and 
 ⊆ 
rel holds. Meanwhile,
the definition of the convex hull is the minimum convex set that includes 
, which implies
conv(
) ⊆ 
rel is obvious. The convex hull consists of all the points obtained as convex
combinations of any points in 
. Therefore, if the proposition,

∀z ∈ 
rel, ∃z1, z2 ∈ 
; z
conv←−− {z1, z2} (43)

holds, it leads to 
rel ⊆ conv(
) and we get 
rel = conv(
). To show (43), let us choose
an arbitrary point (x∗, t) ∈ 
rel and let t∗ be the lower bound of t for x∗ in 
rel. Since
(x∗, t) ∈ 
rel holds for all t ≥ t∗, if

∀(x∗, t∗) ∈ 
rel, ∃(x1, t1), (x2, t2) ∈ 
; (x∗, t∗) conv←−− {(x1, t1), (x2, t2)} (44)

holds, then for any δt ≥ 0, (x∗, t∗ + δt ) ∈ 
rel
conv←−− {(x1, t1 + δt ), (x2, t2 + δt )}. These

points are in 
, and therefore, it is sufficient to focus on the case of t = t∗.
To prove (44), we claim that if a point (x, t) ∈ 
rel satisfies both inequalities of (26) with

equality, then the point is also in 
. Since σ < σ̄ , we can see that x�Qλx + 2q�
λ x + γλ = 0

by setting the inequalities of (26) to equality and taking their difference. Then, we can easily
get x�Q0x+2q�

0 x+γ0 = t . Therefore, (x, t) is feasible for (23) and in
. In what follows,
we focus on when only one of the two inequalities is active.

Then, we have to prove (44) for when Qλ � O and Qλ � O . However, due to space
limitations, we will only show the harder case, i.e., when Qλ � O , implying 0 < σ̄ < ∞.
The proof of the other case is almost the same. In the following explanation, we want to find
two points in 
 (i.e., points which satisfy both inequalities of (26) with equality). Figure 3
illustrates 
 and 
rel. In the figure, we want to find P and Q.

The optimal solution (x∗, t∗) of the relaxation problem (26) satisfies at least one of the
two inequalities with equality. Here, we claim that the matrix Q0 + σ Qλ (σ ∈ {σ̄ , σ }) in the
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Fig. 9 The feasible region of
(τ, t)

τ

t

(τ∗, t∗)
t∗ = A + ατ∗

P
Q

active inequality has at least one zero eigenvalue and the kernel is not empty if (x∗, t∗) /∈ 


(the claim is proved at the end of this proof). We denote the matrix in the inactive inequality
as Q0 + σ ′Qλ (σ ′ ∈ {σ̄ , σ }). By using σ and σ ′, (x∗, t∗) satisfies (26) as follows:

{
x∗�(Q0 + σ Qλ)x∗ + 2(q0 + σqλ)

�x∗ + γ0 + σγλ = t∗,
x∗�(Q0 + σ ′Qλ)x∗ + 2(q0 + σ ′qλ)

�x∗ + γ0 + σ ′γλ ≤ t∗.
(45)

Since Q0 + σ Qλ (� O) has a zero eigenvalue, we can decompose x∗ into

x∗ = u∗ + τ ∗v∗ s.t. u∗ ∈ Ker(Q0 + σ Qλ)
⊥,

v∗ ∈ Ker(Q0 + σ Qλ), ‖v∗‖2 = 1,

τ ∗ ∈ R. (46)

Substituting these expressions into the constraints of (45), we get
{

(u∗ + τ ∗v∗)�(Q0 + σ Qλ)(u∗ + τ ∗v∗) + 2(q0 + σqλ)
�(u∗+τ ∗v∗) + γ0 + σγλ = t∗,

(u∗ + τ ∗v∗)�(Q0 + σ ′Qλ)(u∗ + τ ∗v∗) + 2(q0 + σ ′qλ)
�(u∗+τ ∗v∗)+γ0+σ ′γλ ≤ t∗.

(47)

By fixing u∗ and v∗, we can see that (47) is of the form,
{

A + ατ ∗ = t∗,
B + βτ ∗ + γ (τ ∗)2 ≤ t∗,

(48)

where (A, B, α, β, γ ) are appropriate constants. Here, we regard τ ∗ and t∗ in (48) as variables
(τ, t) and illustrate (48) inFig. 9.The feasible regionof (26) for fixedu∗ andv∗ is shownby the
bold line. Note that the line and the parabola have at least one intersection point (x∗, t∗). Here,
both points P(τ1, t1) andQ(τ2, t2) in Fig. 9 satisfy both formulas of (48)with equality, so these

points are in 
. Furthermore, it is obvious from Fig. 9 that (τ ∗, t∗) conv←−− {(τ1, t1), (τ2, t2)}.
Therefore, (44) holds for any (x∗, t∗).

Now let us check that γ > 0 and thereby show that the second formula of (48) actually
forms a parabola. In (48), γ = v∗�(Q0 + σ ′Qλ)v

∗ ≥ 0. However, if γ = 0, then v∗ ∈
Ker(Q0 + σ ′Qλ), so (Q0 + σ ′Qλ)v

∗ = 0 holds. Meanwhile, from the definition of v∗,
we have (Q0 + σ Qλ)v

∗ = 0. Since σ �= σ ′, we get v∗ ∈ Ker(Q0) ∩ Ker(Qλ), and this
contradicts the Dual Slater condition.

Finally, we prove that Q0 + σ Qλ (� O) has a zero eigenvalue if (x∗, t∗) /∈ 
. From the
definition of σ̄ and σ (see (24) and (25)), Q0 + σ̄ Qλ or Q0 + σ Qλ has a zero eigenvalue
if σ̄ or σ is positive. Moreover, from the Dual Slater condition, σ̄ > 0 holds, so Q0 + σ̄ Qλ

always has a zero eigenvalue. Therefore, we only have to consider the case when σ = 0, i.e.,
Q0 + σ Qλ = Q0, implying Q0 � O . If Q0 does not have a zero eigenvalue (i.e. Q0 � O),
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the claim does not hold. However, we can confirm that in this case (x∗, t∗) is already feasible
for (23) (i.e. (x∗, t∗) ∈ 
) and we do not need to consider this case. We can check its
feasibility for (23) by subtracting an equality with σ (= 0) from an inequality with σ̄ and
dividing the resulting inequality by σ̄ (> 0). ��

Remark 3 This proof suggests that if an optimal solution x∗ of (26) is found and x∗ is not
feasible for (23), we can find an optimal feasible solution of (23). If (x∗, t∗) is an optimal
solution of (26), then in Fig. 9, the slope α of the line A + ατ ∗ = t∗ is zero or (x∗, t∗) is
equal to the end point P or Q and is already feasible for (23) because t∗ is the minimum value
such that we can not obtain a t any smaller than t∗ in the bold line part in Fig. 9. In the former
case, we can find an optimal feasible solution of (23) by moving x∗ in the direction of ±v∗
defined in (46). We find an optimal feasible solution of (Pk) in this way in SLR.
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