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Abstract We propose a new deterministic global optimization algorithm for solving
mixed-integer bilinear programs. It relies on a two-stage decomposition strategy featuring
mixed-integer linear programming relaxations to compute estimates of the global optimum,
and constrained non-linear versions of the original non-convex mixed-integer nonlinear pro-
gram to find feasible solutions. As an alternative to spatial branch-and-bound with bilinear
envelopes, we use extensively piecewise relaxations for computing estimates and reducing
variable domain through optimality-based bound tightening. The novelty is that the number of
partitions, a critical tuning parameter affecting the quality of the relaxation and computational
time, increases and decreases dynamically based on the computational requirements of the
previous iteration. Specifically, the algorithm alternates between piecewise McCormick and
normalized multiparametric disaggregation. When solving ten benchmark problems from
the literature, we obtain the same or better optimality gaps than two commercial global
optimization solvers.

Keywords Mixed-integer nonlinear programming · Global optimization of quadratic
programs with bilinear terms · Piecewise linear relaxations · Optimality-based bound
tightening

1 Introduction

Weaim to solve a special class of nonconvexmixed-integer nonlinear programming (MINLP)
problems to ε-global optimality, where ε is a non-zero tolerance. ProblemP is amixed-integer
quadratically constrained problem (MIQCP) where nonlinearities are due to bilinear terms
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xi x j of continuous variables x with finite lower x L and upper xU bounds, and binary variables
y appear linearly in the constraints:

f ∗
P = min f0 (x, y)

s.t. fq (x, y) ≤ 0 ∀q ∈ Q/ {0}
fq (x, y) = ∑

(i, j)∈BL ai jqwi j + Bqx + Cq y + dq ∀q ∈ Q
wi j = xi x j ∀ (i, j) ∈ BL
0 ≤ x L ≤ x ≤ xU

x ∈ R
lx , y ∈ {0, 1}ly , w ∈ R

|BL|

(P)

BL is an (i, j)-index set defining all bilinear terms, Q represents the set of all functions
appearing in the constraints and objective function (q = 0), which excludes auxiliary equa-
tions defining new sets of bilinear variables w. The total number of original continuous
variables is lx , while the number of original binary variables is ly. We assume that P is
feasible with global optimal solution f ∗

P .
Many relevant engineering problems can be formulated as P. Others, closely resemble

P, the difference being the presence of constraints with exponential terms for estimating the
capital cost. Examples can be found in pooling problems [1–4], synthesis of general multi-
component process networks [5,6], design of water networks [7–11], short-term planning of
oil refineries [12,13], scheduling of crude-oil blending operations [14–16] and hydro energy
systems [17].

Nonconvex optimization problem P can present multiple local and global optima.
Gradient-based methods cannot guarantee finding a global solution and they do not tell,
at termination, how far the best feasible solution is from the best possible solution (i.e.,
the best estimate of the global optimum) [18]. Deterministic global optimization algo-
rithms are required for such purposes, with their development being a very active research
area.

Deterministic global optimization algorithms rely on a relaxation of P to compute esti-
mates of the global solution, on various techniques to iteratively improve such estimates, and
onmethods to compute feasible solutions. They aim to reduce the relative difference between
the best feasible and best possible solutions below ε. The quality of the best possible solution
depends on the tightness of the relaxation, which in turn depends on the size of the domain
of the variables (i.e., xU − x L ). The smaller the domain, the closer the relaxation is to the
original nonconvex function.

Spatial branch-and-bound (SBB) is the most common method to systematically reduce
the domain of the variables. In SBB, branching is applied on discrete variables, as well as
on continuous variables involved in nonlinear terms [19,20]. Branching occurs one vari-
able at a time and it generates two child nodes, each with a smaller domain than the parent
node, leading to potentially tighter relaxations. Whenever the best possible solution at a node
becomes worse than the best feasible solution, the node is fathomed (pruned). Cutting planes
and bound-tightening techniques have been incorporated in SBB algorithms to improve the
relaxation and reduce the number of nodes to explore. Although SBB guarantees conver-
gence to an ε-global solution, computational time can grow exponentially with problem
size.

The tightest linear relaxation for a bilinear term is given by McCormick envelopes [21].
They are generated by four inequalities that have a low computational cost. Many determin-
istic global optimization algorithms employ McCormick envelopes as their only relaxation
technique for bilinear terms [5,12,22,23]. However, McCormick envelopes usually provide
a weak relaxation when at least one of the variables involved in a bilinear term has a signif-
icantly large domain. This led to the development of piecewise linear relaxation techniques
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that improve the quality of the relaxation by partitioning the variables domain (the larger
the number of partitions, the tighter the relaxation). However, since piecewise linear relax-
ations introduce additional binary and continuous variables, there exists a trade-off between
tightness and the computational effort required to solve the MILP to optimality.

The piecewiseMcCormick relaxation [24–27] partitions the domain of one of the variables
involved in a bilinear term and constructsMcCormick envelopes for each partition. Themajor
drawback of piecewiseMcCormick is that the number of additional binary variables increases
linearlywith the number of partitions. This important issue fostered the development of relax-
ation techniques where the number of binary variables increases logarithmically with respect
to the number of partitions [2,28,29], with one example being normalized multiparametric
disaggregation. Piecewise linear relaxations have been used in SBB algorithms [2,30,31],
but they can also be deployed as an alternative to the SBB framework [13,28,32–34], as well
as in decomposition methods [26].

The semidefinite programming (SDP) relaxation of MIQCPs has also been extensively
studied. Problem (P) is a lifted reformulation, with extra variables wi j and non-convex
constraintswi j = xi x j . It can be relaxed as a pair of inequalities,W − xxT � 0 (convex) and
xxT −W � 0 (non-convex). In order to produce strong convex relaxations, Saxena et al. [35]
use the convex SDP inequality to derive convex quadratic cuts and exploit the non-convex
inequality to derive disjunctive cuts. Their cutting plane algorithm also relies on McCormick
envelopes to strengthen the initial relaxation of the MIQCP, later removing all non-binding
(at the solution of the convex relaxation) RLT inequalities when generating disjunctive cuts.
In the companion paper [36], Saxena et al. study methods that capture the strength of such
extended SDP relaxations but are defined only in the space of the x variables. By replacing
the RLT convexification of (P) with an alternative that splits matrix A, defining bilinear
terms xT Ax , as a difference of positive semidefinite and symmetric matrices, they show how
to project the extended RLT formulation in the original space by solving linear programs
(LPs). A similar procedure is performed when adding the convex inequality W − xxT � 0
to the extended RLT formulation, leading to the solution of SDPs rather than LPs. For the
GLOBALLib instances, relaxations from projected formulations are almost as strong as those
from [35], with the advantage of being solved two orders of magnitude faster.

In this work, we present a deterministic global optimization algorithm to solve MINLP
problems of type P. The main novelty is the use of a dynamic partitioning scheme for
piecewise relaxations, not only to compute the lower bound, but also for performing
optimality-based bound tightening (OBBT) for all variables appearing in bilinear terms [33].
The extensive use of OBBT contrasts with commercial global optimization solvers [37–
39], which apply some restricted version of it, always featuring the simplest bilinear
envelopes [40]. Dynamic partitioning refers to changing the number of partitions between
iterations. Although the same term has been applied in [34], there are major differences
between the two algorithms, as can be seen in Fig. 1.

Nagarajan et al. [34] assume that a local solution (x∗, y∗, w∗) to (P) is given and divide
their global optimization algorithm in two parts. In part one, a sequence of OBBT iterations
is performed to reduce the domain of all x variables. The procedure stops when bound
improvement in consecutive iterations falls below a specified tolerance. Part two involves
the solution of relaxation problems (PR) derived from piecewise McCormick envelopes.
The domain of bilinearly appearing variables xi and x j is partitioned in a non-uniform way.
Partitions are dynamically added around the current solution (local solution x∗ in the first
iteration and optimal solution from the relaxation problem x R in subsequent iterations) until
the normalized improvement on the lower bound LB from (PR) is less than a given tolerance,
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Fig. 1 Comparison of dynamic partitioning schemes

x R variables remain in the same partitions and the size of such partitions is already very small,
or the computation hits a time limit.

The algorithm proposed in this work does not assume a feasible solution is given. In the
first iteration, it solves a simple relaxation problem (McCormick envelopes) to try to find one
very quickly. This process is repeated in subsequent iterations to improve the upper bound
UB, and consequently the bounds from OBBT (step omitted from Fig. 1 since the focus is on
comparing the lower bounding procedure). The integration of OBBT and (PR) steps is the
first major difference compared to [34]. The second difference is that our algorithm relies on
univariate and uniform partitioning. Uniform partitioning, by giving the same importance to
all regions of the domain, may protect us against frequent x R movements from narrower to
wider partitions, meaning potentially fewer iterations at the expense ofmore partitions (larger
problems) per iteration. The next partitioning level is decided based on (PR)’s computational
requirements. Figure 1 assumes (PR) solves fast before reaching N = 8 partitions in iteration
4, coinciding with OBBT becoming ineffective. To further improve domain reduction, it
is thus worth to try piecewise relaxation strategies for OBBT, not considered in [34], by
selecting N = 2. Iteration 5 also backtracks to N = 4 for (PR), illustrating that dynamic
partitioning can go in both directions. Finally, and to benefit from the better scaling of
problem size with the number of partitions when reaching N = 10, the algorithm will
change the relaxation technique from piecewise McCormick to normalized multiparametric
disaggregation.
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Fig. 2 Bilinear function xi x j in [0, 1]
2

2 Computing lower bounds

If y variables remain binary and all original constraints q ∈ Q/ {0} are kept, the simplest
relaxation of P is obtained by removing equations wi j = xi x j . However, it is also the
weakest. Narrowing the domain of variables wi j to regions WRij will potentially lead to a
tighter relaxation. Since P is feasible, so is its relaxation PR. If f RPR is the global optimal
solution of PR, then f RPR ≤ f ∗

P , representing a lower bound on the global optimal solution
of P.

f RPR = min f0 (x, y)
s.t. fq (x, y) ≤ 0 ∀q ∈ Q/ {0}
fq (x, y) = ∑

(i, j)∈BL ai jqwi j + Bqx + Cq y + dq ∀q ∈ Q
wi j ∈ WRij ∀ (i, j) ∈ BL
0 ≤ x L ≤ x ≤ xU

x ∈ R
lx , y ∈ {0, 1}ly , w ∈ R

|BL|

(PR)

Three alternative ways of defining regions WRij for relaxation problem PR will be dis-
cussed next.

2.1 McCormick relaxation (SMCR)

The standard McCormick relaxation for bilinear function wi j = xi x j represented in Fig. 2,
is given by Eqs. (1–4). These equations define regions WRij that form the convex hull for
xi x j , see Fig. 3.

wi j ≥ xi x
L
j + x j x

L
i − x Li x

L
j ∀ (i, j) ∈ BL (1)

wi j ≥ xi x
U
j + x j x

U
i − xUi xUj ∀ (i, j) ∈ BL (2)

wi j ≤ xi x
L
j + x j x

U
i − xUi x Lj ∀ (i, j) ∈ BL (3)

wi j ≤ xi x
U
j + x j x

L
i − x Li x

U
j ∀ (i, j) ∈ BL (4)

2.2 Piecewise linear relaxations

Piecewise McCormick and normalized multiparametric disaggregation are well-known
examples of piecewise relaxation techniques that typically use the same number of parti-
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Fig. 3 Feasible region from McCormick envelopes for bilinear function xi x j in [0, 1]
2

tions N for every partitioned variable x j . Both introduce additional binary variables into the
problem, creating non-convex regionsWRij .

2.2.1 Piecewise McCormick relaxation (PMCR)

PiecewiseMcCormick uses binary variable z jn to identify the active (n) partition for variable
x j . The McCormick envelopes in Eqs. (1–4) can then benefit from tighter bounds x Lj ≤
x Ljn and xUjn ≤ xUj , computed by Eqs. (5–6). The mixed-integer linear relaxation can be
formulated as a disjunction and convex-hull reformulated [41] into Eqs. (7–15). Notice the
new continuous disaggregated variables x̂ jn and x̂i jn . The feasible region associated to PMCR
using 4 partitions is illustrated in Fig. 4. Notice that it is closer to the original bilinear function
(Fig. 2) than SMCR (Fig. 3).

x Ljn = x Lj +
(
xUj − x Lj

)
(n − 1)

N
∀ j : (i, j) ∈ BL, n ∈ {1, . . . , N } (5)

xUjn = x Lj +
(
xUj − x Lj

)
(n)

N
∀ j : (i, j) ∈ BL, n ∈ {1, . . . , N } (6)

wi j ≥
N∑

n=1

(
x̂i jn x

L
jn + x̂ jn x

L
i − z jnx

L
i x

L
jn

)
∀ (i, j) ∈ BL (7)

wi j ≥
N∑

n=1

(
x̂i jn x

U
jn + x̂ jn x

U
i − z jnx

U
i xUjn

)
∀ (i, j) ∈ BL (8)

wi j ≤
N∑

n=1

(
x̂i jn x

L
jn + x̂ jn x

U
i − z jnx

U
i x Ljn

)
∀ (i, j) ∈ BL (9)

wi j ≤
N∑

n=1

(
x̂i jn x

U
jn + x̂ jn x

L
i − z jnx

L
i x

U
jn

)
∀ (i, j) ∈ BL (10)

xi =
N∑

n=1

x̂i jn ∀ (i, j) ∈ BL (11)
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Fig. 4 Feasible region from piecewise McCormick relaxation with 4 partitions for bilinear term xi x j
in [0, 1]2

x j =
N∑

n=1

x̂ jn ∀ j : (i, j) ∈ BL (12)

N∑

n=1

z jn = 1∀ j : (i, j) ∈ BL (13)

x Li z jn ≤ x̂i jn ≤ xUi z jn ∀ (i, j) ∈ BL, n ∈ {1, . . . , N } (14)

x Ljnz jn ≤ x̂ jn ≤ xUjnz jn ∀ j : (i, j) ∈ BL, n ∈ {1, . . . , N } (15)

2.2.2 Normalized multiparametric disaggregation (NMDT)

Normalized multiparametric disaggregation provides an equivalent relaxation to PMCR but
can be orders ofmagnitudemore efficient computationally. However, the number of partitions
is restricted to powers of ten, i.e. N = 10−p , with p ∈ Z

− being the accuracy parameter
chosen by the user. The normalized [0, 1] domain of variable x j is discretized considering all
digits k ∈ {0, . . . , 9} of the decimal representation system and positions l ∈ {p, . . . ,−1}. It is
then linked to the real domain of x j through continuous variable λ j and global bounds x Lj and

xUj . Note that continuous variable �λ j allows λ j to take continuous values between discrete
points. The active partition for x j is identified by the non-zero values of (−p) binary variables
z jkl , one per position l. The number of binary variables per variable is thus 10 log10 N versus
N when using PMCR. Equations (16–26) provide the NMDT relaxation that also requires
continuous variables vi j , �vi j , and x̂i jkl . It is illustrated in Fig. 5 for p = −1 (N = 10),
which is already very similar to Fig. 2.

wi j = xi x
L
j + vi j

(
xUj − x Lj

)
∀ (i, j) ∈ BL (16)

x j = x Lj + λ j

(
xUj − x Lj

)
∀ j : (i, j) ∈ BL (17)

λ j = �λ j +
−1∑

l=p

9∑

k=0

10l · k · z jkl ∀ j : (i, j) ∈ BL (18)

0 ≤ �λ j ≤ 10p ∀ j : (i, j) ∈ BL (19)
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Fig. 5 Feasible region from normalized multiparametric disaggregation with p = −1 for bilinear term xi x j
in [0, 1]2

vi j =
−1∑

l=p

9∑

k=0

10l · k · x̂i jkl + �vi j ∀ (i, j) ∈ BL (20)

x Li �λ j ≤ �vi j ≤ xUi �λ j ∀ (i, j) ∈ BL (21)

�vi j ≤ 10p
(
xi − x Li

)
+ x Li �λ j ∀ (i, j) ∈ BL (22)

�vi j ≥ 10p
(
xi − xUi

)
+ xUi �λ j ∀ (i, j) ∈ BL (23)

xi =
9∑

k=0

x̂i jkl ∀ (i, j) ∈ BL, l ∈ {p, . . . ,−1} (24)

9∑

k=0

z jkl = 1 ∀ j : (i, j) ∈ BL, l ∈ {p, . . . ,−1} (25)

x Li z jkl ≤ x̂i jkl ≤ xUi z jkl ∀ (i, j) ∈ BL, l ∈ {p, . . . ,−1} , k ∈ {0, . . . , 9} (26)

3 Optimality-based bound tightening (OBBT)

For all three relaxation techniques described in Sect. 2, the volume of regionWRij depends on
bounds x Li , x

U
i , x Lj and x

U
j . It is thus desirable to strengthen such bounds (raise x

L
i and x Lj , and

decrease xUi and xUj ) to obtain a tighter relaxation (higher f RPR). One way to do it, is through
optimality-based bound tightening (OBBT). For each variable h ∈ BLV = {h| (i, j) ∈
BL ∧ (h = i ∨ h = j)} involved in a bilinear term, lower and upper bounds are computed
by solving one minimization and one maximization problem, respectively. These problems,
denoted as PRB, are like relaxation problem PR but with a different objective function
(now the variable to minimize/maximize) and an additional constraint, which imposes the
value of the objective function in P, f0 (x, y), to be less or equal than the current upper
bound UB.
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x Lh = min xh
(
xUh = max xh

)

s.t. f0 (x, y) ≤ UB
fq (x, y) ≤ 0 ∀q ∈ Q/ {0}
fq (x, y) = ∑

(i, j)∈BL
ai jqwi j + Bqx + Cq y + dq ∀q ∈ Q

wi j ∈ WRij ∀ (i, j) ∈ BL
0 ≤ x L ≤ x ≤ xU

x ∈ R
lx , y ∈ Y, w ∈ R

|BL|

(PRB)

Remark 1 Given thatmanyproblemsmayneed to be solved, the complexity of problemsPRB
should be manageable. RegionWRij will be generated from either the standard or piecewise
McCormick envelopes with a low number of partitions (N < 10). With the former, binary
variables are further relaxed, Y ∈ [0, 1]ly , to work with linear problems (LPs) instead of
MILPs (Y ∈ {0, 1}ly).

Other types of probing methods can be found in the literature that also solve bounded
relaxations of the problem to extract further information on the variables, e.g. to identify
conflicts between binary variables y [42]. They are not part of this work.

4 Generating upper bounds

Previous work has shown that an effective way to compute a good feasible solution to non-
convexMINLPproblemP, is to rely on a two-stageMILP/NLP strategy.Any feasible solution
to MILP problem PR can be used to extract the values x R , yR and wR of variables x , y and
w. Parameters yR will then replace binary variables y in P, reducing it to NLP problem PF.
PF will be solved by a local NLP solver, after initializing variables x and w with parameters
x R andwR , to facilitate convergence. Note that PF is a restricted version of P, and so it is not
necessarily feasible. If feasible, the optimal solution (x∗, y∗, w∗) of PF is an upper bound
UB on the global solution of P, i.e. f ∗

PF ≥ f ∗
P .

f ∗
PF = min f0 (x)

s.t. fq (x) ≤ 0 ∀q ∈ Q/ {0}
fq (x) = ∑

(i, j)∈BL
ai jqwi j + Bqx + Cq yR + dq ∀q ∈ Q

wi j = xi x j ∀ (i, j) ∈ BL
0 ≤ x L ≤ x ≤ xU

x ∈ R
lx , w ∈ R

|BL|

(PF)

5 Global optimization algorithm

We now propose a global optimization algorithm for the solution of any mixed-integer non-
linear program that can be written as problem P. It is summarized in Fig. 6 and detailed in
Tables 1 and 2.

Assumed given are the selection of partitioned variables x j in every bilinear term, variable
bounds x L and xU , and a variety of tuning parameters. Problem-specific settings include the
pre-specified values that the number of partitions can take when solving PR (NPR) and PRB
(NPRB), maximum computational time and relative optimality tolerance (e.g. TIMEmax

PR , εPR).
The other parameters will be named while describing the algorithm.
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Fig. 6 Flowchart of the proposed global optimization algorithm
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Following the initialization step, the algorithmcomputes the lower boundLB using the sim-
plest McCormick relaxation. In subsequent iterations, step 5 will typically involve piecewise
linear relaxations. Note that once OBBT loses efficiency (flag LASTPR = 1), the maximum
computational time TIMEmax

PR will be reset to the remaining time to run the algorithm. Step
5 solves one MILP problem of type PR, gathering a maximum of npool solutions in a pool.
If the optimal solution f RPR is higher than the lower bound, the latter is updated.

Remark 2 RegionWRij in problem PR is computed using piecewise McCormick envelopes
whenever NPR ∈ {1, 2, . . . , 9}. Normalized multiparametric disaggregation is used instead
for NPR ∈ {10, 100, 1000, . . .} (p ∈ {. . . , −3,−2,−1}).

Remark 3 The lower bound is updated using the best possible solution at termination for
problem PR and not the best-found feasible solution. The same is true for problem PRB,
when it is an MILP.

In step 6, we use the values
(
x R, yR, wR

)
of the variables in the previous solutions to help

computing upper bounds. A total of npool problems of type PF are solved in parallel using
npar threads. Amongst those that are feasible, the one with the lowest objective function f ∗

PF
can set the upper bound UB. Note that PF is solved by a local NLP solver and so this step is
much faster than steps 4–5. It is the reason why no execution-time constraints are enforced.

With the lower and upper bound, step 7 computes the relative optimality gap OptGap.
Step 8 stops the algorithm if the termination criteria is met, either a relative tolerance below
ε or a computational time (TIME) above maximum value TIMEmax . Decisions related to the
dynamic partitioning scheme are taken in step 9.

The details of step 9 can be found in Table 2. Two flags are used: NNnec
PR = 1 indi-

cates that we have the necessary conditions for increasing the number of partitions in
problem PR; NNPR = 1 gives the sufficient condition for selecting the next setting in{
NPR, f irst , . . . , NPR,last

}
, see 9c. These are the initial values for the first entry in 9a, which

checks the time spent solving PR (TIMEPR).
If greater or equal to TIMEmax

PR , it means that we should try to backtrack and reduce the
number of partitions in the next iteration to reduce the complexity of PR, unless we are
already in the coarsest setting NPR, f irst or have previously backtracked to NPR; either way,
we will definitely not increase NPR, i.e. NNPR = 0. The same is true if TIMEPR is within
TIMEmax

PR and the maximum time ratio trmax
PR , and LASTPR = 0. We also set NNnec

PR = 0 to
later decide how to improve the lower bound.

It the number of partitions did not increase in the previous iteration (NNPR = 0) and PR
was solved rather fast (below minimum time ratio trmin

PR ), we will try to generate a better
lower bound by rising NPR in the next iteration. This concludes step 9a.

Step 9b takes measures when the average domain reduction in OBBT is below the min-
imum target of ADRmin . This is not an issue if PR problems can be solved rather fast
(NNPR = 1), we simply avoid spending time in the next iteration with an inefficient OBBT
by making DOOBBT = 0. On the other hand, if we do not meet the necessary condition to
increase NPR (NNnec

PR = 0), we may need to move towards termination of the algorithm.
If the next possible value of NPRB is lower than NPR, then we might still be able to get

a good domain reduction by increasing NPRB. Counters of LP (CLP
PRB) and MILP (CMILP

PRB )
problems solved are then reset. Else, we increase the appropriate counter by one. We then
proceed to the last if-then-else. If we have already solved at least one MILP in OBBT and
found that ADR < ADRmin , then the most reasonable thing to do is to give all remaining time
to PR by making LASTPR = 1. If the domain reduction was low but we have been solving
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LPs in OBBT, then we also move towards the end while allowing one more OBBT run, now
solving MILPs, after selecting the next value of NPRB.

We then proceed to the next iteration in step 10. Steps 3 and 4 are the first procedures of
iteration I T but do not occur in the first iteration to quickly compute an optimality gap.

Step 3 involves a depth search and is detailed in Sect. 5.1.
Step 4 executes optimality-based bound tightening to reduce the variables domain. It is

triggered byDOOBBT = 1 and involves solving two PRB problems per variable, after setting
the number of partitions N to NPRB. Since the number of variables involved in bilinear terms
can be significantly large, it is much more efficient to solve the multiple instances of problem
PRB in parallel rather than sequentially (see results in Sect. 7.6). This procedure is repeated
until OBBT has been applied on all xh variables involved in bilinear terms. We then compute
the average domain reduction ADR (%) using Eq. (27).

ADR = 1

|BLV|
∑

h∈BLV

⎡

⎣

(
xU,previous
h − x L ,previous

h

)
−

(
xU,updated
h −x L ,updated

h

)

(
xU,previous
h −x L ,previous

h

) × 100

⎤

⎦

(27)

Remark 4 NPRB = 0 triggers the computation of relaxed region WRij of bilinear function
wi j = xi x j from the McCormick envelopes with binary variables relaxed (recall Remark 1).

5.1 Depth search method

MIQCPs have two sources of complexity: (1) a combinatorial source from binary variables;
(2) a non-convexity source from bilinear terms. A stronger combinatorial component is
associated to a higher difficulty finding the global optimal solution and can be addressed by
generating a larger number of feasible solutions for P. This should be done preferably in the
earlier stages of the global optimization algorithm, since a better upper bound (UB) helps
to improve the bounds computed by problem PRB. It is activated in the second iteration
(IT = 2) or when ADR < ADRmin , if general setting DODS = 1.

The depth search method works by dynamically increasing the number of partitions in
PR from the current NPR value. Note that it is not needed to solve PR to optimality since
the focus here is not on the lower bound. Because the MILP solver normally finds multiple
feasible solutions in the early nodes of the search tree, we stop at time TIMEmax

PR . Solutions
obtained after solving PR with more partitions are potentially better (higher f RPR), leading
to values of the model variables that are closer to the feasible region of P. As explained in
Sect. 4, these values are then used to initialize PF, potentially leading to a better UB. The
depth search method stops after I T max

DS increments in the number of partitions, resetting NPR

to its original value.
Overall, depth search is very similar to the search performed by the main algorithm.

However, it does not use OBBT and it always increases the number of partitions from one
iteration to the next.

6 Benchmark problems

Two different sets of MIQCP benchmark problems from the literature are used to evaluate
the performance of the proposed global optimization algorithm.
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Table 1 Global optimization algorithm
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Table 2 Global optimization algorithm—dynamic partitioning scheme

The first set deals with the short-term scheduling of a hydroelectric system [17], where the
aim is to maximize the daily profit considering hourly changing electricity prices and start-up
costs for the power plants. Power generation is modelled as a bilinear function of discharge
flowrate and head change, with binary variables identifying if a plant is producing energy on
a given hour (needed to enforce lower and upper bounds on power production and discharge
flowrate) and startups. Like in our previous global optimization studies [31,33], we consider
the original problem with 7 reservoirs (HYD7) and simpler versions with 2 (HYD2) and 4
reservoirs (HYD4).
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Table 3 MIQCP model statistics

Benchmark problem HYD2 HYD4 HYD7 SC1TP1–SC3TP1 SC1TP3–SC4TP3

Equations 573 1145 2003 1504 4526

Binary variables 96 192 336 12 36

Total variables 433 865 1513 1234 3716

Variables in bilinear terms 118 260 473 342 1132

Bilinear terms 192 384 672 476 1608

The second set consists of planning problems froma petroleum refinery [13]. The objective
is to minimize the total operating cost of the system that includes processing units with
alternative operating modes and storage tanks. Binary variables identify active modes and
products being blended. Bilinear terms appear as the product of volumetric flows and quality
properties in the material balances. We solve seven problems with different crude-oil supply
and product demand data. Three involve a single period of operation (SC1TP1-SC3TP1),
while in the others, the weekly time horizon is divided in three periods of fixed length
(SC1TP3-SC4TP3).

The model statistics in Table 3 show that the ratio between the number of binary variables
and bilinear terms varies significantly between the two sets of problems (1:2 vs. 1:50). For
the hydro problems, a stronger combinatorial component is associated to a higher difficulty
finding the global optimal solution and can be addressed by generating a larger number
of feasible solutions of P. We thus activate the depth search method (DODS = 1), with a
maximum of five increments in the number of partitions (I T max

DS = 5). The refinery problems
do not benefit from the time-consuming depth search method and so DODS = 0.

6.1 Tuning parameters

The optimization algorithm presented in Sect. 5 has a few parameters affecting its perfor-
mance.Most of the values selected were independent of problem type, while onewas tuned to
adjust to instance size. It is beyond the scope of this paper to present a thorough computational
study involving such parameters.

MILP problems PR were solved for a number of partitions NPR ∈ {1, 2, 4, 8, 10, 100,
1000}. The termination criteria were either a relative optimality tolerance εPR = 0.0001%
or a maximum time TIMEmax

PR equal to: 400s while OBBT is effective; or the remaining time
available, otherwise. The number of partitions NPR will increase in the next iteration if the
time solving PR divided by TIMEmax

PR is less or equal than trmin
PR = 0.05. On the other hand,

if the time ratio is greater of equal than trmax
PR = 0.75, NPR will not change. The solution

pool option of the MILP solver was active, with a pool capacity of npool = 60, thus leading
to a maximum of 60 instances of PF solved in parallel per iteration.

The OBBT step involves solving LPs, NPRB = 0, and MILP problems, NPRB ∈
{2, 3, 4, 5, 6, 7} (recall Remark 4). In the latter case, the relative tolerance for problems
PRB is εPRB = 0.0001%, while the maximum time TIMEmax

PRB is instance dependent: 130,
135, 145, 45 and 70s for problems HYD2, HYD4, HYD7, SC#TP1 and SC#TP3, respec-
tively. Amaximum of npar = 80 instances were solved in parallel and the minimum average
domain reduction to consider OBBT effective was ADRmin = 5%.

For the hydro problems, the algorithm terminates when the optimality gap ε ≤ 0.0001%
or upon reaching a wall time TIMEmax = 18,000 s. For the refinery problems, the values
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are 0.01%, and 3600/10,800s when dealing with one/three periods. The partitioned variables
in the hydro problems are the discharge flowrates. In the refinery problems, the partitioned
variables are the stream flowrates, the inventory levels in the storage tanks, and the quality
variables associated with the specific gravity.

7 Numerical results

All mathematical models and the global optimization algorithmwere implemented in GAMS
24.7.3, taking advantage of its parallel computing grid facility. The MILP problems were
solved by CPLEX 12.6.3, running in parallel deterministic mode and using up to 8 threads.
CONOPT 3.17A solved the NLP problems. The MINLP benchmark problems were also
solved by commercial global optimization solvers BARON 16.5 [37] and ANTIGONE
1.1 [39] using the same termination criteria. The former is centered around spatial branch-
and-bound, while the latter focuses more on solving piecewise linear relaxations, applying
bound tightening techniques, and generating different types of cutting planes. The hardware
consisted of a server with an AMD OpteronTM Processor 6386 SE (2.79GHz), 32available
cores, 64GB RAM, and running Windows Server 2008 R2 Enterprise.

7.1 Comparison to our previous algorithms

The global optimization algorithms in our previous work have used piecewise relaxations in
a different manner, see details in Table 4. They are responsible for the literature results in
Table 5.

Results in [31] for the hydro problems came from a spatial branch-and-bound algorithm
using the NMDT relaxation with NPR = 10 partitions. OBBTwas called in every node of the
tree, prior to solving the relaxation problem (as in the current work), and involved solving a
sequence of LPs (NPRB = 0).

The algorithm solving the refinery problems in [13] used dynamic partitioning in the
relaxation step as a replacement to spatial B&B, similarly to the one proposed in this work.
Thedifference is that the number of partitions only increased, until reaching the computational
time limit. Now, we enforce timing constraints per iteration to use the available time more
efficiently, backtracking on the number of partitions whenever the relaxation problem cannot
be solved to optimality. The two algorithms also share the parallel solution strategy for the
bound contracting problems. However, the current algorithm calls OBBT more often, once
per iteration and while domain reduction remains effective, instead of following the finding
of a better solution. More importantly, our new algorithm adjusts to problem complexity by
dynamically switching between McCormick and piecewise McCormick relaxations. In the
former case, binary variables y are relaxed, leading to LPs instead of the MILPs (NPRB = 1)
in [13].

7.2 Performance overview

Table 5 shows the optimality gap and computational time required by the different algo-
rithms, and results from the literature. The highlight is that the new algorithm always returns
the lowest optimality gap. It can solve four problems to the given tolerance, compared to
three problems by ANTIGONE and one by BARON. Our previous attempts with algorithms
featuring piecewise relaxation methods and optimality-based bound tightening solved none
of these benchmark problems to optimality. An ability to find the global optimal solution is
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also an important performance metric. The commercial global optimization solvers are doing
better in this respect, returning suboptimal solutions in three problems compared to our new
algorithms’ four. It is an indication that there is still room for improving the upper bounding
procedure.

BARON solves HYD2 three times slower, returning considerable larger gaps for the other
problems. The poorer performance in the refinery problems might be due to the large number
of variables involved in bilinear terms (see Table 3), and thus the potentially large number
of nodes to explore in spatial branch-and-bound. ANTIGONE is an overall better performer
than BARON and is considerable faster in the single period refinery problems. One possible
explanation for the latter behavior is that cutting planes, or other techniques, aremore efficient
at reducing the domain of model variables than OBBT, when the problem size is small.

7.3 More detailed performance information

To understand how the algorithm is solving the benchmark problems, we show in Table 6
information related to: the total number of iterations; total time spent solving problems PR
(step 5) and PF (step 6); executing OBBT (step 4) and depth search procedures (step 3);
number of PF and PRB instances solved; average domain reduction in first and last OBBT
call, with respect to the initial bounds; and number of partitions used in PR and PRB (final
setting).

Piecewise relaxations are explored further in HYD2, with the algorithm reaching the
maximum defined number of partitions for PR (NPR = 1000) and PRB (NPRB = 7). This is
not surprising, considering that HYD2 has the fewest bilinear terms and variables appearing
in bilinear terms (recall Table 3). As a consequence, we obtain the largest domain reduction
(99.5%). Notice that HYD2 is the only problem taking advantage of the relaxation from
multiparametric disaggregation.

The final OBBT domain reduction is strongly dependent on problem size, decreasing to
67 and 32.9% when the number of reservoirs in the hydro problems increases from 2 to 4
and 7, and from above 95% to below 86%when switching from the single to the three-period
refinery problems.

The time spent performing optimality-based bound tightening typically far exceeds the
time spent solving relaxation problems. The two exceptions are HYD4 and HYD7, for which
domain reduction became ineffective for NPRB = 3 and 2 (while reaching the TIMEmax

PRB
limit), and all remaining time was allocated to the final PR problems with NPR = 4 par-
titions. Refinery problems SC#TP3 exhibited a similar behavior, with the larger number of
PRB instances solved explaining the longer OBBT time. Options to improve the algorithm
performance for such problems involve extending the time limit and reducing the number of
PRB instances to be solved in parallel.

7.4 Closing the gap

The extensive use of time-consuming yet very efficient piecewise relaxation techniques by
our algorithm, is clearly visible when plotting the optimality gap as a function of wall time,
see Figs. 7 and 8. Recall from Fig. 6 that the optimality gap is only updated after a sequence of
procedures: OBBT (tightens the variable bounds); solving problem PR (computes the lower
bound, which may only improve with respect to the LB incumbent in the last moments of
solving the MILP to optimality); solving NLP problems PF (compute the upper bound). The
consequence is a stepwise profile with major drops in optimality gap compared to a smoother
profile from the commercial solvers. Notice that there is still some progress towards the end
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Fig. 7 Optimality gap versus
wall time for hydro problems

of the search (SC#TP3 problems in Fig. 8), when the solvers have already plateaued. One
disadvantage is that it may take a few hundred seconds to go below the gaps of ANTIGONE
and BARON.

7.5 Removing the effect of OBBT

The four problems that were solved by the proposed algorithm to global optimality have in
common the reduction of the domain of the variables involved in bilinear terms to less than
95% of the initial ranges, on average.We now test the performance of the commercial solvers
after setting the variables domain to the final range obtained by our algorithm. The influence
of the upper bound is also removed by initializing with the optimum.
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Fig. 8 Optimality gap versus wall time for refinery problems

The results in Table 7 show that the warm start helps ANTIGONE and BARON to solve
such four problems in less than a minute. Improvements for HYD4, HYD7 and the refinery
problems (with ANTIGONE) are minor. For the latter, BARON reduces the gap to less than
half the values in Table 5. Neither solver can reach optimality gaps as low as the proposed
algorithm, highlighting the importance of piecewise relaxations.

7.6 Sequential versus parallel OBBT

It remains to explain our choice for a parallel rather than a sequential implementation of
optimality-based bound tightening. Figure 9 shows the optimality gap versus time profiles
for refinery problems SC1TP1 and SC1TP3 and a fixed number of partitions in problems
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Table 7 Performance of
commercial solvers after warm
start

Problem Optimality gap (%) Wall time (s)

ANTIGONE BARON ANTIGONE BARON

HYD2 GO GO 49 3

HYD4 1.241 1.157 WTL WTL

HYD7 1.805 2.092 WTL WTL

SC1TP1 GO GO 3 3

SC2TP1 GO GO 3 4

SC3TP1 GO GO 3 8

SC1TP3 0.84 0.85 WTL WTL

SC2TP3 0.28 0.28 WTL WTL

SC3TP3 1.03 1.10 WTL WTL

SC4TP3 0.64 0.72 WTL WTL

Fig. 9 Optimality gap profiles for sequential versus parallel OBBT

PR (NPR = 2) and PRB, leading to the solution of LP (NPRB = 0) or MILP problems
(NPRB = 2).

Results for the easiest SC1TP1 problem show that there are no major differences between
the sequential and parallel implementations when solving LP problems. The optimality gaps
are better when optimizing the bounds for one variable after the other (as expected) and not
much time is lost compared to the parallel approach, for which the overhead of exchanging
information between the threads is high. After the second iteration, the gaps become very
similar and the lower computational time starts to be noticeable. Switching toMILP problems
improves the relaxation quality and makes the parallel implementation far more competitive,
with three iterations of OBBT taking less time and returning significantly smaller gaps than
one iteration with the sequential approach.

Sequential OBBT with a piecewise relaxation (NPRB = 2) is no longer an option for the
larger SC1TP3, i.e. three hours are not enough to complete one iteration. We can still tackle
one iteration with the parallel approach, but it is far more efficient to rely on the standard
McCormick relaxation.Overall, the benefits fromaparallel implementation ofOBBTbecome
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increasingly more important with the increase in the number of variables in bilinear terms
and the number of partitions in PRB.

8 Conclusions

This paper has presented a new global optimization algorithm formixed-integer quadratically
constrained problems that does not employ spatial branch-and-bound. The novel aspect is the
use of dynamic partitioning in piecewise relaxations, not only to compute lower bounds for
the problem beingminimized, but also to reduce the domain of the variables involved in bilin-
ear terms. Relaxations range from the simplest bilinear envelopes at the start, to univariate
piecewise McCormick, up to normalized multiparametric disaggregation, which is compu-
tationally more efficient for 10 partitions and beyond. The first type provides a quick lower
bound, with the algorithm then switching to piecewise relaxations to refine such estimate.
The number of partitions keeps increasing while the relaxation problem remains solvable
to the given tolerance within the specified time. In case of severe increase in complexity,
the algorithm backtracks to the previous setting, focusing more on optimality-based bound
tightening (OBBT). Heuristic rules are used to decide when to increase/decrease the number
of partitions in OBBT.

The algorithm has been designed to take advantage of parallel computing when doing
OBBT and computing upper bounds. Rather than reducing one at a time the domain of the
many variables that appear in bilinear terms, which leads to the tightest bounds, multiple
variables are handled simultaneously to reduce the computational wall time. A solution pool
is activated when solving the MILP relaxation problems, to generate alternative initialization
points for solving restrictedNLPs of the original non-convex problem that, if feasible, provide
upper bounds. These are also solved in parallel.

The algorithm has been tested on ten industrially relevant benchmark problems, three
hydroelectric scheduling problems with more discrete decisions and petroleum refinery plan-
ning problems with a larger number of bilinear terms. The computational results have shown
that more problems can be solved to ε-global optimality. For the other six problems, the final
optimality gaps were better than the values reported in the literature and lower than the ones
from state-of-the-art commercial global optimization solvers ANTIGONE and BARON. The
latter remained above our algorithm even when starting from a reduced variable range (from
our last OBBT iteration). It shows that as problem size increases, piecewise relaxations with
just 2 and 4 partitions can already provide tighter lower bounds than spatial branch-and-
bound. Commercial solvers should thus use them to a greater extent.
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