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Abstract
In this paper we propose an algorithm for solving the split feasibility problem x ∈ C, Ax ∈
Q with C being the solution set of an equilibrium problem and A can be nonlinear. The
proposed algorithm is a combination between the projection method for the equilibrium
problem and the gradientmethod for the inclusion Ax ∈ Q. The convergence of the algorithm
is investigated. A numerical example for a jointly constrained Nash equilibrium model in
electricity production market is provided to demonstrate the behavior of the algorithm.

Keywords Nonlinear split feasibility · Equilibria · Subgradient method · Quasiconvexity ·
Nash model

1 Introduction

In 1994, Censor and Elfving [12] first introduced the split feasibility problem in finite-
dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction. In this setting the problem is stated as

Find x∗ ∈ C : Ax∗ ∈ Q, (SFP)
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where C, Q are convex subsets in Rn , Rm respectively, and A : Rn → Rm is a linear
continuous mapping onRn . Problem (SFP) can also be applied to study intensity-modulated
radiation therapy and other practical problems see, for instance [8,10,11,13,15] and the refer-
ences therein. An important special case of Problem (SFP) is obtained whenC is the solution
set of the equilibrium problem given as

Find x∗ ∈ K : f (x∗, y) ≥ 0 ∀y ∈ K , (EP)

where K is a convex subset inRn and f is a monotone bifunction with f (x, .) being convex
on K and f (x, x) = 0 for every x ∈ K . It is well known that some important problems such
as optimization, variational inequality, Kakutani fixed point, saddle point ones and Nash
equilibrium model can be formulated equivalently in the form of (EP), see e.g. [7,35] and
the survey paper [6].

Some solution methods for solving split feasibility problem (SFP) when C and/or Q are
solution sets of some other problems such as fixed point, optimization, variational inequal-
ity, equilibrium ones have been developed see [2,9,14,18,23,33,34,38–40] and the survey
paper [31]. These methods either use the adjoint operator of A or are based upon a convex
mathematical programming formulation, and therefore they fail to apply to the case when
A is nonlinear. A nonlinear split feasibility problem with C and Q being the intersection of
convex subsets has been considered in [30], where the problem was equivalently formulated
as a differentiable mathematical program. Under the assumption that the objective function
of the latter program is convex, the problemwas further formulated as a cooercive variational
inequality that was solved by a splitting projection algorithm.

The purpose of this paper is to propose an algorithm for solving Problem (SFP) in finite
dimensional Euclidean spaces where C is the solution set of a paramonotone equilibrium
problem and A is a quasilinear operator defined by quasilinear functions. Quasilinear func-
tions play an important role inmathematics andmany real-life problems see e.g. [4,19,27,32].
The algorithm that we propose for Problem (SFP) is a combination between the projection
method for inclusion Ax ∈ Q and the gradient projection method for Problem (EP). This
algorithm can be considered as an extension to Problem (SFP) of the one by Santos and Sche-
imberg in [36] for (EP). The main difference between these algorithms is that our algorithm
uses an additional projection in order to handle the requirement Ax ∈ Q, where A may not
be linear. In the case of equilibrium problem (EP) considered in [36], the set Q ≡ Rn , then
our [36] algorithm collapses into the one in [36].

The paper is organized as follows. In the next section we recall some definitions and prop-
erties of quasiconvex and quasilinear functions. The algorithm and its convergence analysis
are presented in Sect. 3. An application to jointly constraint Nash equilibrium models is dis-
cussed and some computational results for a coupled constrained Nash–Cournot equilibrium
model in electricity production market are reported in the last section.

2 Preliminaries

The following lemmas will be used for validity and convergence of the algorithm.

Lemma 1 ([5], p. 61) Let C be a nonempty closed convex subset in a Hilbert space H and
PC (x) be the metric projection of x onto C. Then

(i) 〈x − y, PC (x) − PC (y)〉 ≥ ‖PC (x) − PC (y)‖2 ∀x, y ∈ H;
(ii) 〈x − PC (x), PC (x) − y〉 ≥ 0 ∀x ∈ H, y ∈ C .
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Lemma 2 ([1]) Let {vk} and {δk} be nonnegative sequences of real numbers satisfying vk+1 ≤
vk + δk with

∑∞
k=1 δk < +∞. Then the sequence {vk} is convergent.

The quasiconvex functions were first introduced by De Finetti in [20]. This class of
functions are widely used in optimization, game theory, economics and other fields.

Definition 1 ([4]) Let X ⊂ R
n be a convex set and ϕ : X → R.

(i) ϕ is called quasiconvex on X if its sublevel set

Sϕ,α = {x ∈ X : ϕ(x) ≤ α}
is convex for every α ∈ R.

(ii) ϕ is called quasiconvave on X if −ϕ is quasiconvex on X .
(iii) ϕ is called quasilinear on X if it is both quasiconvex and quasiconcave.

Two important quasilinear functions are ϕ(x) := log x and ϕ(x) := aT x+b
cT x+d

. The
first function is quasilinear on R++, while the second one is quasilinear on the set{
x : cT x + d �= 0

}
.

The following proposition provides a characterization of the quasiconvex functions that
will be used in the sequel.

Proposition 1 ([21]) The following statements are equivalent

(i) ϕ is quasiconvex on X.
(ii) For any x, y ∈ X and λ ∈ [0, 1] one has

ϕ(λx1 + (1 − λ)x2) ≤ max {ϕ(x1), ϕ(x2)} . (1)

Consequently, ϕ is quasilinear on X if and only if for every x, y ∈ X and λ ∈ [0, 1] we
have

min {ϕ(x1), ϕ(x2)} ≤ ϕ(λx1 + (1 − λ)x2) ≤ max {ϕ(x1), ϕ(x2)} . (2)

Theorem 1 ([4,21]) Suppose that ϕ : Rn → R is differentiable on an open convex set
containing X. Then ϕ is quasiconvex on X if and only if

x, y ∈ X , ϕ(y) ≤ ϕ(x) ⇒ ∇ϕ(x)T (y − x) ≤ 0. (3)

It is easy to see that if ϕi is quasiconvex on X for every i = 1, 2, . . . ,m, then ϕ(x) :=
maxi=1,2,...,m ϕi (x) is quasiconvex on X .

3 Algorithm and its convergence analysis

In this section we describe a projection method for solving the following split feasibility
problem

Find z ∈ K such that f (z, u) ≥ 0 ∀u ∈ K and F(z) ∈ Q, (NSEP)

where ∅ �= K ⊆ Rn is convex, f : K × K → R, ∅ �= Q ⊆ Rm and F is a map fromRn to
Rm .

In what follows we suppose that Problem (NSEP) admits a solution and that
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(A1) Q = Q1 × Q2 × · · · × Qm where Qi is a closed convex subset of R for every
i = 1, 2, . . . ,m;

(A2) F = (F1, F2, . . . , Fm) where Fi : Rn → R is quasilinear, i.e., both quasiconvex and
quasiconcave, and continuously differentiable on an open set containing K .

We recall some well known definitions on monotonicity of a bifunction see e.g. [24,26]

Definition 2 Let K be a convex set and S ⊆ K . A bifunction f : K × K → R is said to be

(a) monotone on K with respect to S if

f (x, y) + f (y, x) ≤ 0 ∀x ∈ S, y ∈ K ;
(b) pseudomonotone on K with respect to S if

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀x ∈ S, y ∈ K ;
(c) paramonotone on K with respect to S if

x ∈ S, y ∈ K : f (x, y) = f (y, x) = 0 ⇒ y ∈ S.

Paramonotone bifunctions have been introduced and studied in [24] and used in some
papers [36,40]. Clearly, f (x, y) := ϕ(y) − ϕ(x) is paramonotone for every function ϕ.
Another example for paramonotone bifunction is f (x, y) := 〈Ax + b, y − x〉 where A
is a (n × n)-nonsymmetric matrix such that Â = 1

2 (A + AT ) is positive semidefinite and

ker( Â) ⊂ ker(A). In [24] (Prop. 3.2), Iusem proved that f (x, y) := 〈Ax + b, y − x〉 is
paramonotone if and only if Â is positive semidefinite and ker( Â) ⊂ ker(A). Note that since
A is nonsymmetric, Ax + b can not be expressed as the gradient of any function.

Let Sol(EP) denote the solution set of the equilibrium problem

Find z ∈ K such that f (z, u) ≥ 0 ∀u ∈ K . (EP)

Then it is not hard to see that under Assumptions (A1), (A2), Problem (NSEP) can take the
form

min
x∈C max

i=1,2,...,m
|(I − PQi )(Fi (x))|2, (OP)

with C being the solution set of (EP). Moreover, the function pi (x) := |(I − PQi )(Fi (x))|2
is quasiconvex and hence, p(x) := maxi=1,2,...,m pi (x) is quasiconvex, too.

The use of the function p is motivated mainly by two facts. The first one is that the split
convex feasibility problem

find x ∈ C : Fx ∈ Q, (P)

introduced by Censor et al where C and Q are closed convex sets, has been considered in
a lot papers when F is a linear bounded mapping. In this case, there are two approaches to
solve the problem. The first one uses the adjoint operator of the linear mapping, while the
second one formulates the problem equivalently as a convex programming problem.However
both these approaches fail to apply to the case F is not linear. The second fact is that the
quasiconvex function and its properties were well studied in some references [19–21,32],
and some algorithms were developed to find a local or a global minimizer of a quasiconvex
function over a convex set, see [19,21,28,32]. Note that in Problem (OP), the feasible domain
C is not given explicitly, but the solution set of an equilibrium problem.

For each x ∈ K , let

I (x) := {i : pi (x) = p(x)},
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then we have the following lemma:

Lemma 3 Under the assumptions (A1) and (A2), it holds that

(i) The function pi is quasiconvex and differentiable on K ;
(ii) The function p is quasiconvex on K .

Proof (i) Since Fi is differentiable on K , then it is easy to see that pi (x) = |(I −
PQi )(Fi (x))|2 is also differentiable on K and

∇ pi (x) = 2(I − PQi )(Fi (x))∇Fi (x).

Since Fi is quasilinear on K for every i , then for any x1, x2 ∈ K and λ ∈ [0, 1] we have

min {Fi (x1), Fi (x2)} ≤ Fi (λx1 + (1 − λ)x2) ≤ max {Fi (x1), Fi (x2)} .

Hence, there exists α ∈ [0, 1] such that

Fi (λx1 + (1 − λ)x2) = αFi (x1) + (1 − α)Fi (x2).

It is well-known that the function |(I − PQi )(.)|2 is convex. Then one has
pi (λx1 + (1 − λ)x2)

= |(I − PQi )(Fi (λx1 + (1 − λ)x2))|2
= |(I − PQi ) [αFi (x1) + (1 − α)Fi (x2)] |2
≤ α|(I − PQi )(Fi (x1))|2 + (1 − α)|(I − PQi )(Fi (x2))|2
= α pi (x1) + (1 − α)pi (x2)

≤ max {pi (x1), pi (x2)} ∀x1, x2 ∈ K ,

which implies that pi is quasiconvex on K .
(ii) This assertion comes directly from (i) and the definition of p. ��

We need the following widely used assumptions for bifunction f .
(A3) For every x ∈ K , the function f (x, .) is convex, subdifferentiable, f (., x) is upper

semicontinuous on an open convex set containing K and f (x, x) = 0 for every x ∈ K .
(A4) The bifunction f is pseudomonotone on Kwith respect to the solution set S of

Problem (EP), that is

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0 ∀x ∈ S, y ∈ K .

For a fixed ε ≥ 0, let ∂ε
2 f (x, x) denote the ε-subdifferentiable of the convex function

f (x, .) at x , that is

∂ε
2 f (x, x) := {g : 〈g, y − x〉 ≤ f (x, y) − f (x, x) + ε ∀y}.

Note that since the function f (x, .) is convex and subdifferentiable on an open convex set
containing K , the ε-subdifferential mapping ∂ε

2 f (x, .)maps a bounded set in K to a bounded
set.

The algorithm then can be described as follows:

Algorithm 1.

Take a positive number δ and real sequences {δk}, {βk}, {εk} satisfying the conditions

δk > δ > 0, βk > 0, εk ≥ 0, ∀k ∈ N; (4)
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∞∑

k=1

εk < +∞,

∞∑

k=1

βkεk

δk
< +∞; (5)

∞∑

k=1

βk

δk
= +∞,

∞∑

k=1

β2
k < +∞; (6)

Step 0: Seek x1 ∈ K and let k := 1.
Iteration k: Given xk ∈ K . Take gk ∈ ∂

εk
2 f (xk, xk) and define

αk = βk

γk
where γk = max{δk, ‖gk‖}.

Compute yk = PK (xk − αkgk).
If ∇ pi (yk) = 0 ∀i ∈ I (yk) then take ĥk = 0;
Otherwise, take 0 �= hk ∈ co {∇ pi (yk), i ∈ I (yk)}, where co stands for the convex hull
notion. Set

ĥk = hk
‖hk‖

and compute

xk+1 = PK
(
yk − αk ĥk

)
,

then increase k by one and go to iteration k.

Remark 1 (i) If εk = 0, xk = yk and p(xk) = 0, then xk is an exact solution. So, we can
call xk is an ε-solution if εk ≤ ε, ||xk − yk || ≤ ε and p(xk) ≤ ε.

(ii) If Qi ≡ R for every i , then pi (x) = |(I − PQi )Fi (x)| = 0 for every i . Thus Problem
(NSEP) becomes the equilibrium problem (EP). In this case Algorithm 1 becomes the
one in [36] with exact projection. In fact, since ĥk = 0 for every k, the iteration k of
Algorithm 1 reads

Iteration k: Given xk ∈ K . Take gk ∈ ∂
εk
2 f (xk, xk) and define

αk = βk

γk
where γk = max{δk, ‖gk‖}.

Compute xk+1 = PK (xk − αkgk).

The proof of the lemma below can be done by a similar way as the one in [36].

Lemma 4 ([36]) For every k, the following inequalities hold

(i) αk‖gk‖ ≤ βk;
(ii) ‖yk − xk‖ ≤ βk .

The following lemmas will be used in the proof of the convergence for the proposed
algorithm.

Lemma 5 It holds that

‖xk+1 − z‖2 ≤ ‖yk − z‖2 − 2αk 〈̂hk, yk − z〉 + α2
k , ∀z ∈ K .

Proof By nonexpansiveness of PK , one has

||xk+1 − z||2 = ‖PK
(
yk − αk ĥk

) − z‖2
≤ ||yk − αk ĥk − z||2 = ||yk − z||2 − 2αk 〈̂hk, yk − z〉 + α2

k ∀z ∈ K .
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Lemma 6 (i) Under Assumptions (A1), (A2), (A3), for z ∈ K, it holds that

‖xk+1 − z‖2 ≤ ‖xk − z||2 + 2αk f (xk, z) − 2αk 〈̂hk, yk − z〉 + Ak, (7)

where Ak = 2(αkεk + β2
k ) + α2

k .

(ii) If there exist z ∈ K, ε > 0 and δ > 0 such that

p(y) < p(yk) − δ ∀y ∈ B(z, ε),

then
〈̂hk, yk − z〉 ≥ ε ∀k

whenever ĥk �= 0.

Proof (i) It is clear that,

‖yk − z‖2 = ‖z − xk + xk − yk‖2
= ‖xk − z‖2 − ‖xk − yk‖2 + 2〈xk − yk, z − yk〉
≤ ‖xk − z‖2 + 2〈xk − yk, z − yk〉.

Since yk = PK (xk − αkgk), we have

〈yk − xk + αkgk, z − yk〉 ≥ 0

⇔ 〈αkgk, z − yk〉 ≥ 〈xk − yk, z − yk〉.
Hence,

‖yk − z‖2 ≤ ‖xk − z‖2 + 2〈αkgk, z − yk〉
= ‖xk − z‖2 + 2〈αkgk, z − xk〉 + 2〈αkgk, xk − yk〉. (8)

From gk ∈ ∂
εk
2 f (xk, xk) it follows that

f (xk, z) − f (xk, xk) ≥ 〈gk, z − xk〉 − εk

⇔ f (xk, z) + εk ≥ 〈gk, z − xk〉. (9)

On the other hand, by Lemma 4, it holds that

〈αkgk, xk − yk〉 ≤ αk‖gk‖‖xk − yk‖ ≤ β2
k . (10)

From (8), (9) and αk > 0, it follows that

‖yk − z‖2 ≤ ‖xk − z‖2 + 2αk f (xk, z) + 2αkεk + 2β2
k , (11)

which, by Lemma 5, implies

‖xk+1 − z‖2 ≤ ‖xk − z||2 + 2αk f (xk, z) − 2αk 〈̂hk, yk − z〉 + Ak, (12)

where Ak = 2(αkεk + β2
k ) + α2

k .

(ii) Since z + εĥk ∈ B(z, ε), by the assumption, we have

p(z + εĥk) < p(yk).

Then from the definitions of p and I (yk), we obtain

pi (z + εĥk) < pi (yk) ∀i ∈ I (yk).

Applying Theorem 1 with ϕ = pi , y = z + εĥk , and x = yk we have

〈∇ pi (yk), z + εĥk − yk〉 ≤ 0, ∀i ∈ I (yk).
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Thus, since ĥk �= 0, ĥk = hk‖hk‖ with hk ∈ co {∇ pi (yk), i ∈ I (yk)}. So,
〈̂hk, z + εĥk − yk〉 ≤ 0.

Hence,

〈̂hk, yk − z〉 ≥ ε. ��
Before stating the convergence result of the algorithm we recall [16] that the directional

derivative of a local Lipschitz function ϕ : Rn → R at x in direction d is defined by

ϕ0(x, d) := lim sup
y→x,t↘0

ϕ(y + td) − ϕ(y)

t
.

The subdifferential (in Clarke’s sense) of f at x then is defined as

∂0ϕ(x) := {ξ ∈ Rn : ϕ0(x, d) ≥ 〈ξ, d〉 ∀d ∈ Rn}.
Note that, since p(x) := max{pi (x) : i ∈ I (x)}, and pi is locally Lipschitz, differentiable,
by Proposition 2.3.12 [16], we have ∂0 p(x) = co{∇ pi (x) : i ∈ I (x)}, where co stands for
the convex hull notion. As usual, we say that x∗ ∈ C is a stationary point of the problem
minx∈C ϕ(x) (or x∗ is a stationary point of ϕ overC), if 0 ∈ ∂0ϕ(x∗)+NC (x∗), in particular,
0 ∈ ∂0ϕ(x∗).

Let S denote the solution set of Problem (NSEP), then we have the following convergence
result:

Theorem 2 Under the assumptions (A1)–(A4) we suppose further that f is paramonotone
with respect to the solution set Sol(EP) and that the sequence {gk} is bounded. Then the
sequence {xk} converges to a solution of Problem (NSEP) or to a solution of equilibrium
problem (EP) which is also a stationary point of problem min{p(x) : x ∈ K }.

More precisely, let

J =
{
k| ĥk �= 0

}
, (13)

then

(i) If
∑

k∈J αk = +∞, the sequence {xk} converges to a solution of (NSEP).
(ii) If

∑
k∈J αk < +∞, the sequence {xk} converges to a solution x∗ of the equilibrium

problem (EP), which is also a stationary point of problem min{p(x) : x ∈ K }.

Remark 2 The condition for which the sequence {gk} is bounded has been given in [36]. Note
that in the variational inequality case where f (x, y) := 〈φ(x), y − x〉, the sequence {gk}
is bounded whenever φ is continuous. The condition

∑
k∈J αk = +∞ is satisfied if there

exists an integer number k0 such that ĥk �= 0 for k ≥ k0.

Proof (of the theorem) We divide the proof into several steps.
Step 1: First we prove that, in any case, the sequence {‖xk − z‖2} is convergent for all

z ∈ S, and hence {xk} and {yk} are both bounded.
In fact, since f is pseudomonotone on K with respect to the solution set of (EP), one has

f (yk, z) ≤ 0 ∀z ∈ Sol(EP).

On the other hand, since z is a minimizer of p, we have p(yk) ≥ p(z). Hence, from the
definitions of p and pi , it follows that

〈∇ pi (yk), z − yk〉 ≤ 0 ∀k.
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Since hk ∈ co {∇ pi (yk), i ∈ I (yk)} and ĥk = 0 or ĥk = hk‖hk‖ , one has

〈̂hk, z − yk〉 ≤ 0 ∀k.
Then, by virtue of Lemma 6 (i), we obtain

‖xk+1 − z‖2 ≤ ‖xk − z||2 + Ak ∀z ∈ S, (14)

where Ak = 2(αkεk + β2
k ) + α2

k . Since αk = βk
γk

with γk = max{δk, ‖gk‖},
+∞∑

k=1

αkεk =
+∞∑

k=1

βk

γk
εk ≤

+ ∞∑

k=1

βk

δk
εk < +∞.

Since δk > δ > 0,
+ ∞∑

k=1

α2
k =

+ ∞∑

k=1

β2
k

γ 2
k

≤
+ ∞∑

k=1

β2
k

δ2k
<

+∞∑

k=1

β2
k

δ2
,

which together with
∑+∞

k=1 β2
k < +∞ implies

+∞∑

k=1

Ak =
+∞∑

k=1

[
2(αkεk + β2

k ) + α2
k

]
< +∞.

Using Lemma 2, we see that {‖xk − z‖2} is convergent for every z ∈ S. Hence, {xk} is
bounded. Then, since yk = PK (xk − αkgk), by Lemma 1, the sequence {yk} is bounded too.

Now we consider two distinct cases.

(i) Case 1.
∑

k∈J αk = +∞.

Step 2(i): We show that, for z ∈ S,

lim inf
k∈J
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= 0.

Indeed, by Lemma 6(i), for every k, we have

2αk

[
〈̂hk, yk − z〉 − f (xk, z)

]
≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + Ak . (15)

Summing up we obtain

∞∑

k=1

2αk

[
〈̂hk, yk − z〉 − f (xk, z)

]
< +∞. (16)

Since z is a solution of Problem (NSEP), by pseudomonotonicity of f , we have f (xk, z) ≤ 0
and 〈̂hk, yk − z〉 ≥ 0. Hence,

∑

k∈J

αk

[
〈̂hk, yk − z〉 − f (xk, z)

]
< +∞. (17)

But from
∑

k∈J αk = +∞, it holds that

lim inf
k∈J
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= 0.

Step 3(i): We show that if z ∈ S and
{
xk j

}
is a subsequence of {xk} such that

ĥk j �=0 ∀ j,
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lim inf
k∈J
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= lim

j→∞

[
〈̂hk j , yk j − z〉 − f (xk j , z)

]
, (18)

and x∗ is a cluster point of
{
xk j

}
, then x∗ belongs to S.

Combining (18) with f (xk j , z) ≤ 0 and 〈̂hk j , yk j − z〉 ≥ 0, we obtain

lim
j→∞〈̂hk j , yk j − z〉 = lim

j→∞ f (xk j , z) = 0. (19)

Without loss of generality, we can assume that xk j converges to x∗ as j → ∞. Since f (., z)
is upper semicontinuous,

f (x∗, z) ≥ lim
j→∞ f (xk j , z) = 0.

By assumption (A4), f is pseudomonotone on K with respect to S, we have f (x∗, z) ≤ 0 if
z ∈ S. Thus, f (x∗, z) = 0. Again, by the pseudomonotonicity of f , f (z, x∗) ≤ 0. Hence,
f (z, x∗) = f (x∗, z) = 0. Then using the paramonotonicity of f , we can conclude that x∗
is a solution of (EP).
Now, it remains to prove that p(x∗) = 0. Indeed, otherwise, there exists α > 0 such that

p(x∗) > α.

Since lim j→∞ xk j = x∗ and limk→∞ ‖xk − yk‖ ≤ limk→∞ βk = 0, we have lim j→∞ yk j =
x∗. Thus,

lim
j→∞ p(yk j ) = p(x∗) > α > 0,

and therefore there exists j0 ∈ N such that

p(yk j ) >
α

2
∀ j ≥ j0.

Note that 0 = p(z) < α
2 for every z ∈ S. Since p is continuous, there exists ε > 0 such that

p(y) <
α

2
∀y ∈ B(z, ε).

Then p(y) < p(yk j ) for all j ≥ j0 and y ∈ B(z, ε). Since ĥk j �= 0 for every j , by applying
Lemma 6(ii), we obtain

〈̂hk j , yk j − z〉 ≥ ε ∀ j ≥ j0,

which contradicts with (19). Thus p(x∗) = 0, which means that x∗ ∈ S.
Step 4(i): Now we prove that {xk} converges to a solution of (NSEP).
In Step 1(i), we have seen that the sequence {‖xk − z‖} converges for every z ∈ S. Combining
this fact with Step 3(i) to obtain

lim
k→∞ ‖xk − x∗‖ = lim

j→∞ ‖xk j − x∗‖ = 0.

(ii) Case 2.
∑

k∈J αk < +∞
Step 2(ii): We show that, for z ∈ S,

lim inf
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= 0.
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Indeed, by Lemma 6, for every k, we have

2αk

[
〈̂hk, yk − z〉 − f (xk, z)

]
≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + Ak . (20)

Summing up we obtain

∞∑

k=1

2αk

[
〈̂hk, yk − z〉 − f (xk, z)

]
< +∞. (21)

By the assumption that {‖gk‖} is bounded, there exists L > δ such that ‖gk‖ ≤ L for every
k. Thus,

γk

δk
= max

{

1,
‖gk‖
δk

}

≤ L

δ
.

Hence,

αk = βk

γk
≥ δ

L

βk

δk
.

Since z is a solution of Problem (NSEP), by pseudomonotonicity of f , we have f (xk, z) ≤ 0
and 〈̂hk, yk − z〉 ≥ 0. The it follows from (21) that

∞∑

k=1

βk

δk

[
〈̂hk, yk − z〉 − f (xk, z)

]
< +∞. (22)

But from
∑∞

k=1
βk
δk

= +∞, it holds that

lim inf
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= 0.

Step 3(ii): We show that if z ∈ S and
{
xk j

}
is a subsequence of {xk} such that

lim inf
k→∞

[
〈̂hk, yk − z〉 − f (xk, z)

]
= lim

j→∞

[
〈̂hk j , yk j − z〉 − f (xk j , z)

]
,

and x∗ is a cluster point of
{
xk j

}
, then x∗ belongs to Sol(EP).

Indeed, without loss of generality, we can assume that xk j converges to x∗ as j → ∞. We
have

lim
j→∞

[
〈̂hk j , yk j − z〉 − f (xk j , z)

]
= 0.

Combining this with f (xk j , z) ≤ 0 and 〈̂hk j , yk j − z〉 ≥ 0, we obtain

lim
j→∞〈̂hk j , yk j − z〉 = lim

j→∞ f (xk j , z) = 0. (23)

By the same argument as in Step 3(i), we can show that x∗ is a solution of (EP).
Now, if there exists a subsequence of

{
k j

}
such that ĥk j �= 0, then by the same argument as

in Step 3(i), we can conclude that x∗ belongs to S. Otherwise, there exist j1 such that for all
j ≥ j1,

ĥk j = 0,

which implies that ∇ pi (yk j ) = 0 for all i ∈ I (yk j ). Note that
{
yk j

}
also converges to x∗.
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Step 4(ii):We prove that the sequence {‖xk − x∗‖} converges, and hence the whole sequence
{xk} converges to x∗.
Since x∗ ∈ K , by Lemma 6(i), one has

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk f (xk, x
∗) − 2αk 〈̂hk, yk − x∗〉 + Ak .

In Step 3(ii), we have shown that x∗ belongs to Sol(EP), and, by pseudomonotonicity of f ,

f (xk, x
∗) ≥ 0 ∀k.

So,
‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk 〈̂hk, yk − x∗〉 + Ak . (24)

Note that if k /∈ J , then ĥk = 0 and thus,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + Ak . (25)

If k ∈ J , then ĥk �= 0 and ‖ĥk‖ = 1, hence

〈̂hk, yk − x∗〉 ≥ −‖yk − x∗‖.
Note that {yk} is bounded, so there exists M > 0 large enough such that

‖yk − x∗‖ < M ∀k.
Then,

〈̂hk, yk − x∗〉 ≥ −M .

The it follows from (24) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2Mαk + Ak ∀k ∈ J . (26)

From (25) and (26), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + Bk,

where

Bk =
{
Ak + 2Mαk if k ∈ J ,

Ak otherwise.

Since
∑∞

k=1 Ak < +∞ and
∑

k∈J αk < +∞, we have

∞∑

k=1

Bk =
∞∑

k=1

Ak +
∑

k∈J

2Mαk < +∞.

Thanks to Lemma 2, we see that {‖xk − x∗‖2} is convergent, and hence {xk} converges to
x∗, as, by Step 3(ii), it has a subsequence converging to x∗. More precisely, if there exists
N0 such that ĥk �= 0 for every k ≥ N0, then by the same argument as in Case 1, we can show
that x∗ is a solution of Problem (NSFP). If ĥk = 0 for infinitely many k, then there exists an
infinite subsequence {yk j } such that ∇ pi (yk j ) = 0 for every j and i ∈ I (yk j ). Let

I0 := {i | i ∈ I (yk j ), ∇ pi (yk j ) = 0 for infinitely many j}.
Since∇ pi (yk j ) = 0 for infinitely many j , and I (yk j ) ⊆ {1, . . . ,m}, we have I0 �= ∅. Letting
j → ∞ we obtain ∇ pi (x∗) = 0 for every i ∈ I0. On the other hand, for i ∈ I0,

pi (x
∗) = lim

i→∞ pi (yk j ) = lim
i→∞ p(yk j ) = p(x∗),
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which implies I0 ⊆ I (x∗). Thus 0 ∈ co({∇ pi (x∗) = 0 i ∈ I0}) ⊆ co({∇ pi (x∗) = 0 i ∈
I (x∗)}) that means that x∗ is a stationary point of p over C . Since both sequences {xk}, {yk}
converging to x∗, the proof is complete. ��

4 Numerical experiments

In this section, we test our algorithm, denoted by NSEP and compare it with the MACEP
algorithm proposed in [37] for solving constrained equilibrium problems on 3 examples.
The first one is a differentiated jointly constrained Nash equilibrium model. The second is
an example taken from [37] for a Nash–Cournot model. In the last example, we consider
a NSEP problem where each function Fi (xi ) = log(ai xi + bi ) . The algorithms have been
code in Matlab 7.8 on a 8Gb RAM core i7.

Example 1 (Application to Jointly Constrained Nash Equilibrium Models)
Suppose that there are i = 1, . . . , n players participating in a game. Each player can take

an individual action, which is represented by a vector xi inR. All players together can take a
collective action x ∈ Rn . Each player i uses a payoff function fi which depends on actions
of other players. Then the Nikaido–Isoda function of the game is defined as

f (x, y) :=
n∑

i=1

(
fi (x) − fi (x[yi ])

)
, (27)

where the vector x[yi ] is obtained from x by replacing component xi by yi . Let Ki ⊂ R be
the strategy of player i . Then the strategy set of the game is K := K1 × · · · × Kn . We recall
that a point x∗ ∈ K is a Nash equilibrium point of the game if

fi (x
∗) = max

yi∈Ki
fi (x

∗[yi ]) ∀yi ∈ Ki , ∀i .

It is well known that x∗ is an equilibrium point if and only if f (x∗, y) ≥ 0 ∀y ∈ K . In
some practicalmodels an equilibrium point is required to satisfy certain additional constraints
defined as F(x) ∈ Q, where F is a mapping from Rn to Q with Q being a convex subset
in another space Rm . Clearly, the problem of finding such an equilibrium point can take the
form of Problem (NSEP).

To illustrate let us consider a model in electricity production where it is assumed that
a company possesses n-plants, each of them producing a type of electricity, for instance,
nuclear, solar, wind, hydro and thermoelectricity.

We suppose that the price for producing at plant i is an affine function given by
pi (x1, . . . , xn) := α −∑n

k=1 τik xk for every i , where α > 0 (in general large), τik > 0. This
price function arises in differentiated good models [22], where the users prefer the commod-
ity produced by one plant to the other ones, for example, many users prefer solar and wind
electricity to thermoelectricity or nuclear ones. Note that when tik = τ for every i and k, the
price function becomes the usual one. The profit made by plant i takes the form

fi (x) := pi (x1, . . . , xn)xi − ci (xi ), (28)

where ci (xi ) is the cost (including the fee for environmental pollution) for producing xi by
plant i . In general ci is an increasingly convex function. The convexity means that the cost
for producing a unit increases as the amount of the production gets larger.

Actually, the company seeks tomaximize its profit by choosing a correspondingproduction
level at each plant under the presumption that the production at other plants are parametric
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Table 1 Algorithm 1 with

βk = 7

2(k + 1)

n m Iter CPU-times (s)

10 5 248.11 7.2859

20 5 674.82 24.9143

30 5 1224.2 40.4671

40 5 1670 58.5344

50 5 2259.7 84.3867

input. Let Ki be the strategy set for plant i , that is the the production level xi must be chosen
in Ki . A commonly used approach to this model is based upon the famous Nash equilibrium
concept by using the Nikaido–Isoda function defined in (27). This function has been used to
models in electricity markets and others [17,25].

In practice the level of the production at each plant should satisfy a certain ratio, for exam-
ple, the ratio of hydroelectricity x1 and the total production

∑
j �=1 x j of all other electricity

types should be restricted in a given percent, that can be written as l1 ≤ x1∑
j �=1 x j

≤ u1, where

l1 and u1 are given constants. In this case, the problem of finding an equilibrium point that
satisfies joint constraints leads to a nonlinear split feasibility problem of the form (NSEP).
Coupled constraint models in electricity market and in the River Basin Pollution game was
considered in some papers, see e.g. [3,29,40] and the references therein.

We tested the proposed algorithm with the cost function given by

c j (x j ) := 1

2
r j x

2
j + q j x j , r j > 0

and the price functions

pi

⎛

⎝
n∑

j=1

x j

⎞

⎠ := 30 −
n∑

j=1

τi j x j ,

where r j , q j and each τi j are randomly generated in the interval [0, 20], [0, 3] and in [0, 1/n]
respectively. For these cost and price functions, by using Proposition 3.2 in [24], one can
check that the bifunction f defined by (27) with fi being given by (28) is paramonotone.

We took the strategy set Ki := [0, 6] for every i and we require that the ratio of each
type of electricity and the sum of all electricity production is less than fifty percent, which is
represented by the constraints 0 ≤ Fi (x) ≤ 0.5 for every i = 1, . . . ,m.

We choose the sequences of the parameters as

εk = 0, δk = 3, ∀k.
and we computed the model with m = 5 and different number n from 10 to 50 and

Fi (x) =
∑

k∈Ii xk∑n
j=1 x j

, i = 1, . . . ,m,

where Ii is the set of plants that produce type i of electricity.
The computational results are shown in Table 1 with different sizes, one hundred problems

have been tested for each size.We stopped the computation at iteration k if ‖xk − yk‖ ≤ 10−4

and p(xk) ≤ 10−4 or the number of iterations exceeds 20,000.
Figure 1 shows that the errors p(xk) and ‖xk − yk‖ both go to 0 as the number of iterations

k goes to +∞. We can see that in this example, both of the two errors decrease quickly as
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Fig. 2 Behavior of the error with different choice of parameter βk

the number of iteration k gets larger. However, in some cases, the value of function p(xk)
may not be monotone decreasingly. Nevertheless, for all tested problems, the value of the
function p at the stoping iterate is very small.

We also tested the algorithm with different values of βk : 7
2(k+1) ,

10
(k+1) ,

20
(k+1)

50
k+1 ,

100
k+1 .

We observe that the choice of the parameter βk plays a crucial role for efficiency of the
algorithm, in general, the difference ‖xk − yk‖ goes to 0 quite slow, when this parameter is
too small or too big, see Fig. 2.

Recently, the authors in [37] considered the equilibrium problem

Find x ∈ C ∩ D : f (x, y) ≥ 0 ∀y ∈ C, EP(f, C,D)

where C, D are convex subsets in Rn and f is a finite bifunction defined on an open set
containing C and D.

In order to compare our algorithm, denoted by NSEP, with the one, denoted by MACEP,
in [37] on the above example, we formulate Problem (NSEP) in the form of Problem
EP(C, D, f ) by taking C :≡ K , D := {x : F(x) ∈ Q}. and apply the algorithm MACEP in
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Table 2 MACEP versus NSFP
(n=10,k=5)

Iter. Cpu (s) Err.

MACEP 150 2.3349 0.0116

NSFP 150 4.2481 0.0012

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
NSEP vs MACEP

Iteration

E
rr

or

MACEP
NSFP

Fig. 3 Behavior of the MACEP and NSFP algorithms in error and iteration

[37] to solve the model. We try to use the same stopping criteria max{‖xk − yk‖, p(xk)} ≤
10−4, and see that the algorithm MACEP takes a lot of time even in the small dimension
n = 10, k = 5.

Table 2 reports the computed results in average on the first 150-iterations for these two
algorithms.

From the table, one can see that, for this example, the computational CPU time ofMACEP
algorithm is less than that of NSEP algorithm in the first 150-iterations, but the error obtained
by NSFP goes to zero more quickly than MACEP.
The plot about error of two algorithms can be seen in Fig 3:

Figure 3 shows that the errors of MACEP at the first 30 iterations decrease more quickly,
but from iteration 30, the NSFP is convergent to zero more quickly.

Example 2 ([37])
We test our algorithm on Example 4.3 in [37], where the bifunction is given by

f (x, y) = 〈Ax + χ5(y + x) + μ − α, y − x〉,

with

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 χ χ . . . χ

χ 0 χ . . . χ

χ χ 0 . . . χ

. . . . . . .

χ χ . . . . 0

⎞

⎟
⎟
⎟
⎟
⎠

10×10

, χ = 3, α = (2, 2, . . . , 2)T , μ = (3, 4, 5, 6, 7)T .
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Table 3 Example 2

Iter. Cpu (s) Err. xk1 xk2 xk3 xk4 xk5

MACEP 46 1.4078 8.8654 × 10−5 0.9466 0.9449 0.9425 0.9404 0.4510

NSFP 21 0.1551 4.8698 × 10−6 0.9467 0.9447 0.9426 0.9405 0.4509

As in Example 4.3 ([37]),

C = D =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ R
5,

x1 + x2 + x3 + 2x4 + x5 ≤ 10,
2x1 + x2 − x3 + x4 + 3x5 ≤ 15,
x1 + x2 + x3 + x4 + 0.5x5 ≥ 4.

By setting

Q = (−∞; 10] × (−∞; 15] × (4,+∞]

and F(x) = Mx where

M =
⎛

⎝
1 1 1 2 1
2 1 −1 1 3
1 1 1 1 0.5

⎞

⎠ ,

we can easily see that D = {x |F(x) ∈ Q}.
We choose x0 = (1; 2; 1; 1; 1) and λk = k/(k + 1), ρk = 1, βk = 40/k,

x0 = (1; 2; 1; 1; 1). The computed results are reported in table 3:

Example 3 We consider the (NSEP) problem where

K = [0, 6] × [0, 6] × · · · × [0, 6]
︸ ︷︷ ︸

10

,

F(x) = (F1(x1), . . . , F5(x5))

with Fi (xi ) = log(ai xi + bi ), a = (1, 2, 3, 4, 5), bi = 14 for all i = 1, . . . , 5, and

Q = [0, 3] × [0, 3] × · · · × [0, 3]
︸ ︷︷ ︸

5

.

The bifuction f is defined by

f (x, y) = 〈Px + q, y − x〉,
where q = (−28,−29,−27,−29,−29,−29,−28,−29,−28,−29),

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

23 10 3 7 6 4 7 10 2 2
1 23 8 2 9 10 1 9 9 5
4 3 14 1 10 9 5 4 5 3
1 6 7 21 6 9 7 5 3 8
2 10 4 4 20 4 10 3 9 3
8 8 2 10 6 15 9 8 8 9
8 9 5 10 1 9 14 9 9 9
9 5 4 3 5 10 8 24 3 4
6 5 8 9 7 7 5 6 20 5
1 6 8 9 6 3 10 6 7 20

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Table 4 Example 3 Iter. Cpu (s) Err.

MACEP 4415 70.4365 10−4

NSFP 737 15.4585 10−4

Table 5 Example 3 (cont.) Approximate solution

MACEP (0.3402, 0.2121, 0.9073, 0.4221,
0.6421, 0.3109, 0.2946, 0.3426,
0.1756, 0.1518)

NSFP (0.3466, 0.2203, 0.8904, 0.4399,
0.6305, 0.2709, 0.2648, 0.3585,
0.2040, 0.1703)

Note that this bifunction f satisfies all assumptions for ensuring convergence of both algo-
rithms. We take ρk = 3, βk = 7/2(k + 1), x0 = (3; 3; 3; 3; 3; 0; 0; 0; 0; 0) and test MACEP
and our algorithm. Computed results are reported in Tables 4 and 5.

5 Conclusion

We have proposed an algorithm for solving the split feasibility problem of finding a solution
x of a paramonotone equilibrium problem such that F(x) belongs to a convex set in another
space, where F can be a quasilinear mapping. The proposed algorithm is a combination
between the projection one for both the equilibrium and inclusion problems. Applications
to jointly constrained Nash equilibrium problem have been discussed and some preliminary
computational results for coupled constraint Nash–Cournot models in electricity production
have been reported.
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