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Abstract
The tensor complementarity problem is a special instance of nonlinear complementarity
problems, which has many applications. How to solve the tensor complementarity problem,
via analyzing the structure of the related tensor, is one of very important research issues. In
this paper, we propose a mixed integer programming approach for solving the tensor com-
plementarity problem. We reformulate the tensor complementarity problem as an equivalent
mixed integer feasibility problem. Based on the reformulation, some conditions for the solu-
tion existence and some solution properties of the tensor complementarity problem are given.
We also prove that the tensor complementarity problem, corresponding to a positive definite
diagonal tensor, has a unique solution. Finally, numerical results are reported to indicate the
efficiency of the proposed algorithm.

Keywords Tensor complementarity problem · Mixed integer programming · Unique
solution · Positive definite
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1 Introduction

The tensor complementarity problem, as a generalization of the linear complementarity
problem and a special instance of nonlinear complementarity problems, was proposed very
recently [17]. A tensor complementarity problem (TCP) can be formulated as follows: finding
x ∈ R

n such that

x ≥ 0, Axm−1 + q ≥ 0, xT (Axm−1 + q) = 0, (1)
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or showing that no such vector exists, where A = (ai1...im ) is an mth order n-dimensional
tensor whose entries ai1...im ∈ R for i j ∈ [n] := {1, . . . , n} and j ∈ [m] := {1, . . . ,m},
Axm−1 is a vector in R

n with the i th component as

(Axm−1)i :=
n∑

i2,...,im=1

aii2...im xi2 . . . xim

for i ∈ [n], and q ∈ R
n . The TCP problem (1) is denoted as TCP(A, q). When m = 2,

TCP(A, q) is just the well-known linear complementarity problem [4]. The notion of the
tensor complementarity problem was used firstly by Song and Qi [23] as an application
of structured tensors. Recently, many theoretical results about the solution properties of
TCP(A, q) have been developed [17], including existence of solution [7,8,19,22,24], global
uniqueness of solution [1,7], boundedness of solution set [3,5,20,21,24], stability of solution
[26], sparsity of solution [13], solution methods [12,25], and so on. Among them, Song and
Qi [22] discussed the solution of TCP(A, q)with a strictly semi-positive tensor. Che et al. [3]
discussed the existence and uniqueness of solution of TCP(A, q) with some special tensors.
Song andYu [20] obtained global upper bounds of the solution of theTCP(A, q)with a strictly
semi-positive tensor. Luo et al. [13] obtained the sparsest solutions to TCP(A, q) with a Z-
tensor. Gowda et al. [7] studied the various equivalent conditions for the existence of solution
to TCP(A, q) with a Z-tensor. Ding et al. [5] showed the properties of TCP(A, q) with a
P-tensor. Bai et al. [1] considered the global uniqueness and solvability for TCP(A, q)with a
strong P-tensor.Wang et al. [24] gave the solvability of TCP(A, q)with exceptionally regular
tensors. Huang, Suo and Wang [8] presented several classes of Q-tensors and discussed the
solvability of TCP(A, q) corresponding to Q-tensors. In addition, a practical application of
TCP(A, q) was given in [9]. To the best of our knowledge, the study on solution algorithms
for solving TCP(A, q) has few results. So how to design efficient solution methods for
TCP(A, q), via analyzing the structure of the related tensor, is one of very important research
issues.

As shown in the above, the tensor complementarity problem TCP(A, q) is a natural exten-
sion of the linear complementarity problem (LCP), which consists in finding a vector x ∈ R

n

that satisfies a certain system of inequalities

x ≥ 0, Ax + q ≥ 0, xT (Ax + q) = 0

for given q ∈ R
n and A ∈ R

n×n . The LCP problem has been a subject with a rich mathemat-
ical theory, a variety of algorithms, and a wide range of applications in applied science and
technology [4]. In past several decades, there have been numerousmathematical workers con-
cerned with LCPs [4,6]. There are so many well-established and fruitful methods for solving
LCPs. Among them, solving LCPs via integer programming problems is an interesting and
important approach [14,15]. The authors in [14,15] proved that how to solve an LCP prob-
lem or verify that a solution does not exist using different equivalent mixed zero-one integer
programming formulations. Especially, It was shown that in the general case, the number of
zero-one integer variables introduced is equal to the dimension of the LCP problem, and the
number of integer variables can be reduced if it was known that a solution exists. Motivated
by these interesting results, we will present a new approach to solve TCP(A, q) via solving a
mixed integer programming in this paper, which is the generalization of the method in [14].

In this paper, we extend the results in [14] to TCPs. We first show that TCP(A, q) is
solvable if and only if TCP(A, βm−1q) has a solution for β > 0. Based on this conclusion,
we reformulate TCP(A, q) as a zero-one mixed integer programming (MIP) problem and
establish the relationship between TCP(A, q) and the MIP problem. Using different mixed
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zero-one integer programming formulations, we present a necessary and sufficient condi-
tion for the solvability of TCP(A, q) and a sufficient condition to verify that a solution of
TCP(A, q) does not exist. We prove that TCP(A, q) is equivalent a mixed zero-one integer
feasibility problemwith n zero-one integer variables. It was proved that for the LCP problem,
when it is known that a solution exists, the number of integer variables can be reduced [14].
However, this result can not be extended to the TCP problem (refeqtcp) because the Hessian
matrix of the nonlinear function Axm−1 + q in TCP(A, q) is not constant like as LCP. In
addition, since TCP(A, q) with a positive definite tensor A has a nonempty and compact
solution set [3], a concrete bound is given in this paper. Specially, we also prove that if A
is a diagonal positive definite tensor then TCP(A, q) has a unique solution, which answers
Conjecture 5.1 in [3].

This paper is organized as follows. In Sect. 2, we list some preliminaries. In Sect. 3, we
propose a mixed integer programming approach to solve TCP(A, q) and some properties of
TCP(A, q) are given. Some numerical results are reported in Sect. 4. In the final section, we
give some conclusions.

2 Preliminaries

In this section, we recall some basic definitions and essential conclusions in tensor eigenvalue
theory, which are useful in the sequel.

Throughout this paper, we assume that m and n are integers, and m, n ≥ 2. Denote
R
n := {(x1, x2, . . . , xn)T : xi ∈ R, i ∈ [n]}, where R is the set of real numbers. Define

e := (1, . . . , 1)T ∈ R
n . The set of allmth order n-dimensional real tensors is denoted as Tm,n .

For any tensorA = (ai1...im ) ∈ Tm,n , if its entries ai1...im are invariant under any permutation
of their indices, then A is called a symmetric tensor. The set of all mth order n-dimensional
real symmetric tensors is denoted as Sm,n . For a tensor A = (ai1...im ) ∈ Tm,n , entries ai ...i
are called diagonal entries of A, for i ∈ [n]. The other entries of A are called off-diagonal
entries of A. A tensor A is called diagonal if all of its off-diagonal entries are zero. Clearly,
a diagonal tensor is a symmetric tensor.

LetA = (ai1...im ) ∈ Tm,n and x ∈ R
n . Denote ‖x‖ as 2-norm of x and xT as the transpose

of x . Define ‖x‖∞ = max{|x1|, . . . , |xn |} and

‖A‖∞ := max‖x‖∞=1
‖Axm−1‖∞. (2)

Apparently, we have ‖Axm−1‖∞ ≤ ‖A‖∞‖x‖m−1∞ for any x ∈ R
n [17].

Define

Axm :=
n∑

i1,...,im=1

ai1...im xi1 . . . xim .

Clearly,Axm is a homogeneous polynomial of degree m. IfAxm > 0 for all x ∈ R
n, x �= 0,

then we say that the tensorA is positive definite. Clearly, whenm is odd, there is no nontrivial
positive definite tensor. This is only meaningful for even-order tensors.

In the following, we recall the definitions of E-eigenvalues and Z-eigenvalues of tensors
in Tm,n [2,10,16]. Denote C

n := {(x1, x2, . . . , xn)T : xi ∈ C, i ∈ [n]}, where C is the set of
complex numbers. For a tensor A ∈ Tm,n , if there is a nonzero vector x ∈ C

n and a number
λ ∈ C such that
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Axm−1 = λx, xT x = 1, (3)

then λ is called an E-eigenvalue of A and x is called an E-eigenvector of A, associated with
λ. If the E-eigenvector x is real, then the E-eigenvalue λ is also real. In this case, λ and x
are called a Z-eigenvalue and a Z-eigenvector of A, respectively. For a symmetric tensor,
Z-eigenvalues always exist. It has been shown that for any tensor A ∈ Sm,n with even order
m,A is positive definite if and only if all its Z-eigenvalues are positive [16]. By [16, Theorem
5], for both the largest Z-eigenvalue λmax and the smallest Z-eigenvalue λmin of a symmetric
tensor A, we have

λmax = max
{
Axm : xT x = 1

}
(4)

and
λmin = min

{
Axm : xT x = 1

}
. (5)

3 Amixed integer programmingmethod

In this section, we first discuss the solution existence of TCP(A, q) corresponding to a
diagonal tensorA and we prove that the TCP(A, q)with a positive definite diagonal tensorA
has a unique solution, which gives a confirmed answer to [3, Conjecture 5.1]. We reformulate
the TCP(A, q) as amixed integer programming and gives a necessary and sufficient condition
for the solution existence of TCP(A, q). We also propose an approach to solve TCP(A, q)

via solving a mixed integer programming.
Clearly, TCP(A, q) is equivalent to the following constrained optimization problem with

optimal value 0,

min φ(x) := xT (q + Axm−1)

s.t. x ≥ 0, q + Axm−1 ≥ 0. (6)

It is easy to see that φ(x) ≥ 0 if the feasible region of (6) is nonempty, that is, the problem
(6) is bounded from below.

Based on the model (6), some properties of the solution set of TCP(A, q) are easily
obtained in some special cases:

• Let q ≥ 0. It is clear that x = 0 is a trivial solution of TCP(A, q) for any tensorA ∈ Tm,n .
So, in general, we assume that q � 0.

• Let A = (ai1...im ) ∈ Tm,n be a diagonal tensor. In this case, the constrained optimization
problem (6) is reduced as follows:

min
n∑

i=1

(ai ...i x
m−1
i + qi )xi

s.t. xi ≥ 0, ai ...i x
m−1
i + qi ≥ 0, i ∈ [n].

From the above model, we know that if there exists i0 ∈ [n] such that ai0···i0 ≤ 0 and
qi0 < 0, then TCP(A, q) is infeasible. Moreover, if for any i ∈ [n], qi ≥ 0, or qi < 0
and ai ···i > 0, then TCP(A, q) has a solution x∗ with the i th component:

x∗
i =

⎧
⎨

⎩

0, if qi ≥ 0.
( −qi
ai ···i

) 1
m−1

, if qi < 0 and ai ...i > 0.
(7)
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• In [3, Conjecture 5.1], Che, Qi and Wei proposed a conjecture that if a diagonal tensorA
is positive definite then TCP(A, q) has a unique solution. Here, we can give a confirmed
answer to this conjecture. Since the diagonal tensor A is positive definite, ai ...i > 0 for
i ∈ [n] and every solution x of TCP(A, q) satisfies

xi ≥ 0, ai ...i x
m−1
i + qi ≥ 0, (ai ...i x

m−1
i + qi )xi = 0, i ∈ [n]. (8)

When q ≥ 0, we claim x = 0. In fact, if there exists some i∗ ∈ [n] such that xi∗ > 0,
then ai∗...i∗x

m−1
i∗ + qi∗ > 0. This is a contradiction with (8). When q < 0, we know

xi =
( −qi
ai ···i

) 1
m−1

> 0, i ∈ [n].

In fact, if there exists some i∗ ∈ [n] such that xi∗ = 0, then ai∗...i∗x
m−1
i∗ +qi∗ = qi∗ < 0.

This is a contradiction with (8). In other cases, it follows from (8) that the i th component
of the solution x must be in the form:

xi =
⎧
⎨

⎩

0, if qi ≥ 0,
( −qi
ai ···i

) 1
m−1

, if qi < 0,

for i ∈ [n]. Hence, TCP(A, q), corresponding to a positive definite diagonal tensor A,
has a unique solution.

We summarize the above discussions in the following theorem.

Theorem 1 For a given TCP(A, q), if the vector q ≥ 0 then TCP(A, q) has a trivial solution.
If A be a diagonal tensor and there exists some i ∈ [n] such that qi < 0 and ai ...i ≤ 0, then
TCP(A, q) has no solution. Otherwise, TCP(A, q) with a diagonal tensor A has a solution
in the form of (7). Furthermore, if the diagonal tensor A is positive definite then TCP(A, q)

has a unique solution x∗ ∈ R
n with the i th component:

x∗
i =

⎧
⎨

⎩
0, if qi ≥ 0,
( −qi
ai ···i

) 1
m−1

, if qi < 0,
i ∈ [n].

Given a general TCP(A, q) with A ∈ Tm,n and q ∈ R
n , we now show that it can always

be solved by solving a mixed integer programming. Moreover, every tensor complementarity
problem can be written as an equivalent mixed integer feasibility problem. These results are
based on the following lemma.

Lemma 1 TCP(A, q) has a solution if and only if TCP(A, βm−1q) has a solution, where
β > 0 is a real number.

Proof We assume that x ∈ R
n is a solution of TCP(A, q). By (1) we have

xi ≥ 0, (Axm−1)i + qi ≥ 0, xi
(
(Axm−1)i + qi

) = 0, i ∈ [n]. (9)

For any β > 0, taking y = βx , (9) yields for i ∈ [n],
yi ≥ 0, (Aym−1)i + βm−1qi ≥ 0, yi

(
(Aym−1)i + βm−1qi

) = 0, i ∈ [n], (10)

which implies that y solves TCP(A, βm−1q). Hence, TCP(A, βm−1q) has a solution.
On the other hand, we assume that y ∈ R

n is a solution of TCP(A, βm−1q). Hence, (10)
holds. Let x = y/β, it follows from (10) that x satisfies (9). Hence, x solves TCP(A, q).
Thus, TCP(A, q) has a solution. 	
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Consider the following mixed integer programming (MIP):

max
α,y,z

αm−1

s.t. 0 ≤ Aym−1 + αm−1q ≤ e − z,

0 ≤ y ≤ z, α ≥ 0,

z ∈ {0, 1}n . (11)

Clearly, α = 0, y = 0 and z = 0 is a feasible solution of MIP (11). The following theorem
shows the relationship between TCP(A, q) and MIP (11).

Theorem 2 Let (α∗, y∗, z∗) be any optimal solution of MIP (11). If α∗ > 0, then x = y∗/α∗
solves TCP(A, q). If α∗ = 0, then TCP(A, q) has no solution.

Proof For any given A ∈ Tm,n and q ∈ R
n with q � 0, MIP (11) always has the feasible

solution α = 0, y = 0 and zi = 0 or 1 for i ∈ [n]. For any feasible solution (α, y, z) of MIP
(11), it follows from the feasibility constraints and (2) that

α ≤
(
1 + ‖A‖∞

‖q‖∞

) 1
m−1

. (12)

Hence, MIP (11) is feasible and bounded. Suppose MIP (11) has an optimal solution
(α∗, y∗, z∗) with α∗ > 0. Let x = y∗/α∗, then we have x ≥ 0 and

(α∗)m−1(Axm−1 + q) = A(y∗)m−1 + (α∗)m−1q ≥ 0 ⇒ Axm−1 + q ≥ 0.

Furthermore, for each i ∈ [n], either xi = 0 or (Axm−1)i +qi = 0, so that xT (Axm−1+q) =
0. That is, x solves TCP(A, q).

Let (α∗, y∗, z∗) be an optimal solution of MIP (11). If α∗ = 0, then we will show that
TCP(A, q) has no solution. Proof by contradiction, we assume that TCP(A, q) has a solution.
By Lemma 1, TCP(A, βm−1q) has a solution. That is, for any β > 0, there exists y ≥ 0 such
that

Aym−1 + βm−1q ≥ 0, yT (Aym−1 + βm−1q) = 0.

This implies that (β, y, z)with zi = 0 if yi = 0 and zi = 1 otherwise for i ∈ [n], is a feasible
solution of MIP (11). Hence, α∗ ≥ β > 0. This is a contradiction and hence TCP(A, q) has
no solution. 	


By Theorem 2, every feasible solution (α, y, z) with α > 0 of MIP (11) corresponds to a
solution of TCP(A, q). Therefore, solving MIP (11), we may generate several solutions of
TCP(A, q).

We now show that every tensor complementarity problem can be written as an equiv-
alent mixed integer feasibility problem. The next theorem gives a sufficient condition for
TCP(A, q) without solutions.

Theorem 3 Given a general TCP(A, q) with A ∈ Tm,n and q ∈ R
n, then TCP(A, q) has no

solution if the system of inequalities

0 ≤ Axm−1 + q ≤ τe − u, 0 ≤ x ≤ τ
m−2
1−m u, 0 ≤ u ≤ τe, τ ≥ 1, (13)

is infeasible.
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Proof We assume by contradiction that TCP(A, q) has a solution. By Lemma 1,
TCP(A, βm−1q) also has a solution for any β > 0. By Theorem 2, MIP (11) has an optimal
solution (α, y, z) with α > 0. Without loss of generality, we may assume that α ≤ 1 due to
(12). Hence,

0 ≤ Aym−1 + αm−1q ≤ e − z,

0 ≤ y ≤ z, z ∈ {0, 1}n,
0 < α ≤ 1.

In the above system, we set

τ = 1

αm−1 , x = y

α
, u = z

αm−1 .

Then (τ, x, u) is a solution to the following system

0 ≤ Axm−1 + q ≤ τe − u, 0 ≤ x ≤ τ
m−2
1−m u, u ∈ {0, τ }n, τ ≥ 1.

Hence, the system (13) is feasible, which is a contradiction. 	

By Theorem 3, if TCP(A, q) is solvable then the corresponding system (13) is feasible.

More generally, the following theorem gives a necessary and sufficient condition for the
solvability of TCP(A, q).

Theorem 4 Given a general TCP(A, q) with A ∈ Tm,n and q ∈ R
n, then TCP(A, q) is

solvable if and only if the system

0 ≤ Axm−1 + q ≤ τe − u, 0 ≤ x ≤ τ
m−2
1−m u,

u ∈ {0, τ }n, τ ≥ 1, (14)

is feasible.

Proof The necessary condition is easily obtained from the proof line of Theorem 3. We now
show the sufficient condition. Since the system (14) is feasible, let (x∗, u∗, τ ∗) be a feasible
point of (14). Clearly, we have

x∗ ≥ 0, A(x∗)m−1 + q ≥ 0.

Furthermore, when x∗
i > 0 for some i ∈ [n], we have u∗

i = τ ∗ and hence (Axm−1+q)i = 0.
Thus,

(x∗)T
(A(x∗)m−1 + q

) = 0.

Therefore, x∗ is a solution of TCP(A, q). That is, TCP(A, q) is solvable. This completes the
proof. 	


LetA ∈ Sm,n . By [3, Theorem 4.5], we know that ifA is positive definite then TCP(A, q)

is solvable for any q ∈ R
n and its solution set is nonempty and compact. Furthermore, the

following theorem gives a concrete bound.

Theorem 5 Let A ∈ Sm,n and q ∈ R
n. If A is positive definite, then the solution set of

TCP(A, q) is contained in the set

B =
{
x ∈ R

n : ‖x‖ ≤
( ‖q‖

λmin

) 1
m−1

}
,

where λmin is the smallest Z-eigenvalue of A.
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Proof Since A is positive definite, by Theorem 4.5 in [3], TCP(A, q) has a nonempty and
compact solution set. Let S be its solution set. In addition, byTheorem5 in [16], Z-eigenvalues
of A exist and the smallest Z-eigenvalue λmin > 0. Taking x ∈ S and x �= 0, we have

0 = xT q + Axm . (15)

Setting y = x/‖x‖, we have ‖y‖ = 1 and Axm = ‖x‖mAym . It follows from (5) that

Axm ≥ λmin‖x‖m . (16)

Combining (15) and (16), we obtain

0 ≥ Axm − ‖x‖‖q‖ ≥ λmin‖x‖m − ‖x‖‖q‖ = ‖x‖ (
λmin‖x‖m−1 − ‖q‖) ,

which yields

‖x‖ ≤
( ‖q‖

λmin

) 1
m−1

.

Hence, x ∈ B. This completes the proof. 	

Note that strictly semi-positive tensors were introduced very recently [19]. A tensor A ∈

Sm,n is called strictly semi-positive if for any x ≥ 0, x �= 0 there exists an index k ∈ [n]
such that xk(Axm−1)k > 0. Clearly, a positive definite tensor must be strictly semi-positive.
Hence, the result in the above theorem is regards as a special case of [20, Theorem 3.4].

4 Numerical experiments

In this section, we solve some examples of TCP(A, q) via solving the related MIP (11). We
consider the following examples for numerical experiments with the mixed integer program-
ming method. We implement all experiments using Global Solver in LINGO10 on a laptop
with an Intel(R) Core(TM) i5-2520M CPU(2.50GHz) and RAM of 4.00GB.

Example 1 Consider TCP(A, q), where q = (2, 2)T andA = (ai1i2i3) ∈ T3,2 with its entries
a111 = 1, a122 = −1, a211 = −2, a222 = 1 and other ai1i2i3 = 0.

By straightforward computation, we obtain that the TCP(A, q) in Example 1 has two
solutions (0, 0)T and (2,

√
6)T . Since q = (2, 2)T > 0, the solution (0, 0)T is trivial by

Theorem 1. The corresponding MIP is written as follows:

max
α,y,z

α2

s.t. 0 ≤ y21 − y22 + 2α2 ≤ 1 − z1,

0 ≤ −2y21 + y22 + 2α2 ≤ 1 − z2,

0 ≤ y1 ≤ z1, 0 ≤ y2 ≤ z2,

z1, z2 ∈ {0, 1}, α ≥ 0.

Running the LINGO code, we first obtain a solution of the above MIP:

α∗ = 0.7071068, y∗ = (0, 0)T , z∗ = (0, 0)T .

By Theorem 2, we obtain the trivial solution (0, 0). We adjust the range of α in the constraints
as 0 ≤ α < 0.5 and obtain another solution:

α∗ = 0.2, y∗ = (0.4, 0.4898979)T , z = (1, 1)T .
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Table 1 The numerical results for Example 1

Range Iter α∗ (y∗)T (z∗)T SOL-TCP

0 ≤ α 39 0.7071068 (0,0) (0,0) (0,0)

0 ≤ α ≤ 0.6 29 0.6000000 (0,0) (0,0) (0,0)

0 ≤ α ≤ 0.4 91 0.4000000 (0.8000000,0.9797959) (1,1) (2,
√
6)

0 ≤ α ≤ 0.2 87 0.2000000 (0.4000000,0.4898979) (1,1) (2,
√
6)

0 ≤ α ≤ 0.1 132 0.1000000 (0.2000000, 0.2449490) (1,1) (2,
√
6)

Table 2 The numerical results
for Example 2 Range Iter α∗ (y∗)T (z∗)T SOL-TCP

0 ≤ α 121 0 (0.5,0) (1,0) no

0 ≤ α ≤ 0.6 121 0 (0.5,0) (1,0) No

0 ≤ α ≤ 0.4 121 0 (0.5,0) (1,0) No

0 ≤ α ≤ 0.2 121 0 (0.5,0) (1,0) No

0 ≤ α ≤ 0.1 121 0 (0.5,0) (1,0) No

By Theorem 2, we obtain a solution of the TCP(A, q): x∗ = y∗/α∗ = (2, 2.4494895)T ≈
(2,

√
6)T . We try different range of α in the constrained region and obtain the two solutions.

The details are listed in Table 1, whereRange denotes the constraint onα inMIP, Iter denotes
total solver iterations, SOL-TCP denotes the solution of TCP(A, q).

Example 2 Consider TCP(A, q), where q = (−2,−3)T and A = (ai1i2i3) ∈ T3,2 with
a122 = −2, a211 = −1, and other ai1i2i3 = 0.

In this example, we have

Ax2 + q =
(−2x22 − 2

−x21 − 3

)
< 0

for any x ∈ R
2. Clearly, the TCP(A, q) has no solution. The corresponding MIP is written

as follows:

max
α,y,z

α2

s.t. 0 ≤ −2y22 − 2α2 ≤ 1 − z1,

0 ≤ −y21 − 3α2 ≤ 1 − z2,

0 ≤ y1 ≤ z1, 0 ≤ y2 ≤ z2,

z1, z2 ∈ {0, 1}, α ≥ 0.

Running the LINGO code of the above MIP, we obtain the global solution:

α∗ = 0, y∗ = (0.5, 0)T , z∗ = (1, 0)T .

By Theorem 2, the TCP(A, q) in Example 2 has no solution. We take different range of α in
the above MIP and always obtain the same result. The details are listed in Table 2.

Example 3 Consider TCP(A, q), where q = (0,−1)T and A = (ai1i2i3i4) ∈ T4,2 with
a1111 = 1, a1112 = −2, a1122 = 1, a2222 = 1, and other ai1i2i3i4 = 0.
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Table 3 The numerical results for Example 3

Range Iter α∗ (y∗)T (z∗)T SOL-TCP

0 ≤ α 22 1 (1,1) (1,1) (1,1)

0 ≤ α ≤ 0.8 116 0.8 (0.8001623,0.8) (1,1) (1.0002028,1)

0 ≤ α ≤ 0.6 101 0.6 (0.6001347,0.6) (1,1) (1.0002245,1)

0 ≤ α ≤ 0.4 111 0.4 (0.4005705,0.4) (1,1) (1.0014262,1)

0 ≤ α ≤ 0.2 92 0.2 (0.2009366,0.2) (1,1) (1.0046830,1)

Table 4 The numerical results with small perturbation for Example 3

Range Iter α∗ (y∗)T (z∗)T SOL-TCP

0 ≤ α 29 1 (0,1) (0,1) (0,1)

0 ≤ α ≤ 0.8 152 0.8 (0,0.8) (0,1) (0,1)

0 ≤ α ≤ 0.6 136 0.6 (0,0.6) (0,1) (0,1)

0 ≤ α ≤ 0.4 123 0.4 (0.4005468,0.4) (1,1) (1.001367,1)

0 ≤ α ≤ 0.2 96 0.2 (0.2003110,0.2) (1,1) (1.001555,1)

This example is taken from [1] and the TCP(A, q) has two solutions: x∗ = (0, 1)T and
x∗ = (1, 1)T . By simple calculating, we have

Ax3 + q =
(
x31 − 2x21 x2 + x1x22

x32 − 1

)

and its corresponding MIP:

max
α,y,z

α3

s.t. 0 ≤ y31 − 2y21 y2 + y1y
2
2 ≤ 1 − z1,

0 ≤ y32 − α3 ≤ 1 − z2,

0 ≤ y1 ≤ z1, 0 ≤ y2 ≤ z2,

z1, z2 ∈ {0, 1}, α ≥ 0.

Running the LINGO code of the above MIP, we obtain the global solution:

α∗ = 1, y∗ = (1, 1)T , z∗ = (1, 1)T .

By Theorem 2, we can obtain the solution x∗ = (1, 1)T . We change different range of α in
its LINGO code and always obtain the solution, and we don’t get another solution (0, 1). The
details are listed in Table 3.

We observe the related MIP model carefully and find the first constraint without the term
α. Thus, we add a small perturbation 10−5α3 and run the LINGO code again. Fortunately,
we obtain the following solution of the above MIP:

α∗ = 1, y∗ = (0, 1)T , z∗ = (0, 1)T .

By Theorem 2, we can obtain another solution x∗ = (0, 1)T . The details are listed in Table 4.
From Tables 3 and 4 , we see that Global Solver in LINGO10 is very sensitive to solve

mixed zero-one integer nonlinear optimization problems. The numerical results reported in
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the above tables show that our proposed approach is a good way to solve tensor comple-
mentarity problems. It would be much better if there are powerful solvers for mixed integer
nonlinear programming problems.

5 Concluding remarks

In this paper, we proposed a mixed zero-one integer nonlinear programming method to solve
the tensor complementarity problem TCP(A, q). For a diagonal tensorA, we gave conditions
to guarantee the solution existence of TCP(A, q). Specially, we proved that TCP(A, q)

with diagonal positive definite tensor A have a unique solution and then gave a confirmed
answer for [3, Conjecture 5.1]. We formulated TCP(A, q) as an MIP problem (11), based
on the MIP model, we shown that TCP(A, q) is equivalent to a mixed integer feasibility
problem. Moreover, we gave a sufficient condition for TCP(A, q) without solutions, and
also a necessary and sufficient condition for the solvability of TCP(A, q).

We proved that every feasible solution (α, y, z) with α > 0 of MIP (11) corresponds to a
solution of TCP(A, q). Therefore, by solvingMIP (11), we may generate several solutions of
TCP(A, q). We also reported some numerical results to show the efficiency of the proposed
approach.
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