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Abstract This paper presents a DIRECT-type method that uses a filter methodology to
assure convergence to a feasible and optimal solution of nonsmooth and nonconvex con-
strained global optimization problems. The filter methodology aims to give priority to the
selection of hyperrectangles with feasible center points, followed by those with infeasible
and non-dominated center points and finally by those that have infeasible and dominated
center points. The convergence properties of the algorithm are analyzed. Preliminary numer-
ical experiments show that the proposed filter-based DIRECT algorithm gives competitive
results when compared with other DIRECT-type methods.

Keywords Global optimization · DIRECT algorithm · Filter method

1 Introduction

In this paper, constrained global optimization (CGO) problems are addressed by proposing
the integration of a filter methodology, as outlined in [19], into a DIRECT-type method to
globally solve nonsmooth and nonconvex constrained optimization problems. The mathe-
matical formulation of the problem is:
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min
x∈Ω

f (x)

subject to h(x) = 0
g(x) ≤ 0

(1)

where f : Rn → R, h : Rn → R
m and g : Rn → R

p are nonlinear continuous functions
and Ω = {x ∈ R

n : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}. The feasible set of points
that satisfy all the constraints is denoted by F = Λ ∩ Ω where Λ = {x ∈ R

n : h(x) =
0 and g(x) ≤ 0}. Differentiability and convexity are not assumed and therefore many local
minimamay exist in F . Themost used and popular framework to solve problem (1) considers
a penalty term, which depends on a constraint violation measure and is combined with the
objective function to give the so-called penalty function. The penalty term aims to penalize
f when a candidate solution, x̄ , is infeasible, i.e., when x̄ /∈ F . Penalty functions require
the use of a positive penalty parameter that aims to balance function and constraint violation
values. Setting an initial value for the penalty parameter and tuning its values throughout
the iterative process are important issues that should be addressed in the algorithm, since the
performance is greatly affected by their values. In some cases, the optimal solution of the
problem is attained only when the penalty parameter approaches infinity. With exact penalty
functions, there exists a positive threshold such that for all parameter values smaller than
that threshold the CGO and an equivalent bound constrained (or unconstrained) problem
have the same global minimizers. An exact penalty approach combined with the DIRECT
algorithm (for solving the bound constrained global optimization subproblems) that uses
the derivatives of the involved functions for the penalty parameter updating is proposed in
[11]. Later, the authors in [12] use the exact penalty framework presented in [11] and enrich
the global search activity of DIRECT by using a derivative-free local search algorithm, in
a multistart framework, to speed the convergence, as well as, a derivative-free strategy for
the penalty parameter updating. Augmented Lagrangian functions are penalty functions for
which a finite penalty parameter value is in general sufficient to guarantee convergence to
the solution of the constrained problem [2]. Augmented Lagrangians for CGO problems
have been implemented and their convergence properties have been derived. For example, in
[4], the exact α-branch-and-bound method is used to find approximate global solutions to the
subproblems. In [5], the global convergence to aminimum is guaranteed using a nonmonotone
penalty parameter tuning and gradient-based approaches for solving the bound constrained
subproblems.

The use of the filter method to guarantee sufficient progress towards feasible and optimal
solutions of nonlinear constrained optimization has its origin in [19]. The filter technique
has been used since then in the context of a variety of problems, nonlinear optimization [38],
complementarity problems [44], nonlinear equations [22], inexact line search [29], trust
region [43], nonmonotone strategies [42,44], to name a few. Filter with stochastic methods
are new ideas recently proposed [24,37,39]. The issue concerned with the use of the filter
method in the context of derivative-free optimization has not been frequently addressed
[1,7,8,15,28,36].

In this paper, we aim to integrate the filter methodology into a DIRECT-type method
algorithm for solving CGO problems. The derivative-free and deterministic global optimizer
DIRECT [27] is a partition-based algorithm [34] that identifies potential optimal hyperrect-
angles and divides them further to produce finer and finer partitions of the hyperrectangles
[17,18,21,26,30,33]. It has been shown that the set of points sampled by the DIRECT algo-
rithm is dense in the search space [27]. Consequently, if f is continuous in a neighborhood
of the global minimum, the DIRECT algorithm can sample a point that is arbitrarily near the
global minimum. This guaranteed convergence makes it a reliable and interesting derivative-
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free global optimizer. In the present study, the use of the filter set aims to give priority to the
selection (for further division) of hyperrectangles with feasible center points that are more
promising relative to the objective function, followed by the selection of hyperrectangles with
infeasible and non-dominated center points, promising with respect to the constraint viola-
tion measure. Finally, the most promising hyperrectangles with infeasible and dominated
center points are selected by means of the constraint violation measure. The dimensions for
further division are selected based on a particular order that favors feasible trial points, and
infeasible and non-dominated trial points, against infeasible and dominated trial points.

The remainder of the paper proceeds as follows. Section 2 introduces theDIRECTmethod,
the filter set methodology, presents the new filter-based DIRECT algorithm and its conver-
gence properties. Section 3 contains the results of all the numerical experiments and the
conclusions are summarized in Sect. 4.

2 Filter-based DIRECT

The DIRECT (DIviding RECTangles) algorithm has been originally proposed to solve bound
constrained global optimization (BCGO) problems,

min
x∈Ω

f (x) (2)

where f is assumed to be a continuous function, by producing finer and finer partitions of
the hyperrectangles generated from Ω [27]. The algorithm is a modification of the standard
Lipschitzian approach, in which f must satisfy the Lipschitz condition

| f (x1) − f (x2)| ≤ K‖x1 − x2‖ for all x1, x2 ∈ Ω,

where the Lipschitz constant K > 0 is viewed as a weighting parameter that indicates how
much emphasis to place on global versus local search.DIRECT is known as a global optimizer
since it is able to explore potentially optimal regions to converge to the global optimum and
to avoid being trapped in local optima. It is a deterministic method that does not require
any derivative information or the value of the Lipschitz constant [23]. It searches (locally
and globally) by dividing all hyperrectangles that satisfy the following criteria, defining a
potentially optimal hyperrectangle (POH):

Definition 1 Given the partition {Hi : i ∈ I } of Ω , let ε be a positive constant and let fmin

be the current best function value. A hyperrectangle j is said to be potentially optimal if there
exists some rate-of-change constant K̂ > 0 such that

f (c j ) − K̂ d j ≤ f (ci ) − K̂ di , for all i ∈ I
f (c j ) − K̂ d j ≤ fmin − ε| fmin| (3)

where c j is the center and d j is a measure of the size of the hyperrectangle j .

In [27], d j is the distance from c j to its vertices. The use of K̂ intends to show that it is not the
Lipschitz constant. The second condition in (3) aims to prevent the algorithm from searching
locally a region where very small improvements are obtained. However, the results in the
literature show that DIRECT is fairly insensitive to the setting of the balance parameter ε,
and good results are obtained for values ranging from 10−3 to 10−7 [27]. The parameter ε

also prevents the hyperrectangle with best function value from being a POH. Identifying the
set of POH can be regarded as a problem of finding the extreme points on the lower right
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convex hull of a set of points in the plane [27]. A 2D-plot can be used to identify the set
of POH. The horizontal axis corresponds to the size of hyperrectangle and the vertical axis
corresponds to the f value at the center of hyperrectangle. Further details concerning the
DIRECT algorithm are available in [16,20,23]. In [27], the DIRECT algorithm for solving
the BCGO problem is described by the six main steps presented in Algorithm 2.1.

Algorithm 2.1 DIRECT

1. Initialization. Normalize the search space Ω to be an n-dimensional unit hypercube H0. Sample the
center point c1 of this hypercube and evaluate f (c1). Initialize fmin = f (c1), set (function evaluation
counter) FE = 1 and (iteration counter) k = 0. Set I0 = {0}. (The algorithm works in this normalized
space, referring to the original space only when objective function values are required.)

2. Selection. Given the partition {Hi : i ∈ Ik } of Ω , identify the set Ok ⊆ Ik of POH that are subregions
of Hk (see Definition 1).

3. Sampling. For any hyperrectangle j ∈ Ok , identify the set L j
k of dimensions with the maximum size,

sM . (Dividing the hyperrectangle only along its longest dimension(s) assures that the maximal size(s)

of the hyperrectangle is(are) decreased.) Let |L j
k | be the cardinal of L j

k . Let δ = 1/3sM . Sample the

function at points c j ± δei , for all i ∈ L j
k , where c j is the center of the hyperrectangle and ei is the i th

unit vector.

4. Division. Divide the hyperrectangle j containing c j into thirds along the dimensions in L j
k , using the

following “order”. First divide along the dimension m such that wm = minwi (for all i ∈ L j
k ) where

wi = min{ f (c j + δei ), f (c j − δei )} and then continue dividing until the dimension with the highest wi .

Set FE = FE + 2|L j
k |.

5. Iteration. Set Ok = Ok \ { j}. Set Ik = Ik
⋃

i=1,...,2|L j
k |+1

{ ji } \ { j} and update fmin = mini∈Ik f (ci ).

If Ok 	= ∅ go to 3.

6. Termination. Set k = k + 1. If stopping criteria are met, stop; otherwise go to 2.

2.1 DIRECT-type methods

Partition-based algorithms search for the global optima by using sequences of partitions of
the region Ω [34]. At each iteration, some sets are chosen to be further partitioned according
to different criteria. Some criteria rely on a priori knowledge of the objective function, and
others use a selection strategy that does not require any a priori knowledge on the objective
function [25]. The DIRECT algorithm and some of its variants are particular cases of a
partition-based algorithm (PBA) for GO [32]. Given any accuracy, a PBA can guarantee to
find a solution that is sufficiently near the global optimum of problem (2). It is efficient, in
the sense that it finds the regions of local minima in a few iterations. However, it requires
the sampling of a dense set of points to obtain a solution. Moreover, the computational effort
greatly increases as the accuracy increases.

In [34], PBA are explored and two new strategies for selecting the hyperrectangles (for
further partitioning) are presented. A partition strategy that does not require any knowledge
about the objective function, although it exploits information on the objective function gath-
ered during the iterative process is proposed. The main difference between the therein called
partition-based on estimation (PBE) algorithm and the DIRECT methods [18,21,26,27] is
that PBE iteratively estimates the global minimum value rather than the Lipschitz constant.

The robust DIRECT (RDIRECT) algorithm presented in [31] uses a bilevel strategy into
a modified DIRECT algorithm to overcome the difficulty related to the slow convergence

123



J Glob Optim (2018) 71:517–536 521

to achieve a high degree of accuracy. Since the second condition in (3) causes the original
DIRECT to be sensitive to the additive scaling of the objective function (as shown in [18]),
the robust version of DIRECT, meaning that it is insensitive to linear scaling of the objective
function, relies on the following definition of POH:

Definition 2 [31] Given ε > 0 and the index set of the hyperrectangles I . Let fmin be the
known minimal function value, and ci , di be the center and the size of the i th hyperrectangle.
Denote fcc as any convex combination of the objective function values gathered during
previous iterations by RDIRECT. If there is a constant K̂ > 0, such that the following
inequalities hold,

f (c j ) − K̂ d j ≤ f (ci ) − K̂ di , for all i ∈ I
f (c j ) − K̂ d j ≤ fmin − ε| fmin − fcc|, (4)

then the j th hyperrectangle is a POH.

The convex combination is given by

fcc =
k f∑

k=1

αk f (ck) with αk ∈ [0, 1] and

k f∑

k=1

αk = 1

where { f (ck)}k f
k=1 are the gathered f values. Possible choices for fcc include the maximal

value, the minimal value, the average or the median value of the gathered f values [31].
To improve the inefficient behavior of the PBA, the authors in [32] combine the PBA with
a multigrid algorithm. The work in [33] applies a multigrid approach to the robust version
of DIRECT algorithm [31], obtaining a multilevel robust DIRECT (MrDIRECT) algorithm.
Although additional parameters are required by this new version, the authors show that the
MrDIRECT is insensitive to the parameters.

Efficient and robust global optimization algorithms balance global and local search capa-
bilities. A DIRECT-type algorithm that is strongly biased towards local search is presented
in [21]. The authors state that the algorithm does well for small problems with a single global
minimizer and only a few local minimizers. It is common knowledge that DIRECT gets
quickly close to the global optimum but requires a lot more of computational effort to reach
a high accuracy solution. To overcome this inconvenience, Jones in [26] suggests the use of
a local optimizer by alternating between running DIRECT in the usual way and using a local
search algorithm starting from the solution produced by DIRECT. In fact, DIRECT can be
considered a good technique to select starting points for a local search method. The local
optimizer aims to reduce the value of fmin which, by affecting the selection of hyperrectan-
gles, improves the global search capability. At the same time, choosing a larger value of ε

will directly improve the global search [33].
The DIRECT version presented in [26] has been extended to handle nonlinear inequality

constraints by using an auxiliary function that combines information on the objective and
constraint functions. The value of the auxiliary function is zero at the global minimizer and
is positive at any point that has f > f ∗ or is infeasible, where f ∗ is the global minimum.
The main idea relies on modifying the method for the selection of the hyperrectangles. The
paper also addresses the use of integer variables.

Recently, two DIRECT-type algorithms with interesting ideas about the partition and
selection of hyperrectangles appear for the scientific community [10,35]. The authors in [10]
propose a DIRECT-type algorithm for BCGO problems and a DIRECT-type bilevel approach
for CGO. Their convergence properties are established. In theory, the lower level feasibility
problem, byminimizing a penalty function, is solved and then at the upper level, theminimum
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of f is obtained among all the solutions of the lower level problem. At each iteration,
the algorithm makes use of a derivative-free algorithm for non-smooth constrained local
optimization (DFNcon in [14]) starting from the center points of all identifiedPOHfor f which
are a subset of the POH for θ (the penalty function of the general constraints), with the aim of
improving fmin. Since DIRECT is good at locating promising regions of the search regionΩ ,
although its efficiency deteriorates as the dimension and the ill-conditioning of the objective
function increase [35], the authors in [35] propose DIRECT-type algorithms enriched by the
efficient use of derivative-free local searches combined with nonlinear transformations of the
feasible domain and, possibly, of the objective function.

2.2 The filter methodology

Given an approximation to the solution of the CGO problem (1), x (k), at iteration k, equality
and inequality constraint violation is measured by the non-negative function θ : Rn → R+,

θ(x (k)) = ‖h(x (k))‖1 + ‖g(x (k))+‖1 (5)

where g+ ∈ R
p is defined componentwise by max{0, gi }. The filter paradigm for solving a

constrained optimization problem reformulates the problem (1) into the bound constrained
bi-objective optimization problem

min
x∈Ω

(θ(x), f (x)). (6)

The filter method is an efficient methodology that builds a region of prohibited points, known
as dominated points, while minimizing the constraint violation, θ , and the objective function,
f . The concept of dominance arises from the multi-objective optimization area. According
to [19], the used definition is the following.

Definition 3 A point x , or the corresponding pair (θ(x), f (x)), is said to dominate y, or the
corresponding pair (θ(y), f (y)), denoted by x ≺ y, if and only if

θ(x) ≤ θ(y) and f (x) ≤ f (y),

with at least one inequality being strict.

A filter F is a finite set of pairs (θ(x), f (x)), none of which is dominated by any of the
others, and the corresponding points x are said to be non-dominated points.

The main ideas addressed by a filter methodology are the following.

(i) The filter is initialized by F = {(θU ,−∞)} where θU is an upper bound on the
acceptable constraint violation.

(ii) Slightly stronger convergence properties are obtained [6] when an envelope is added
around the filter, so that a point x (k), or the corresponding pair (θ(x (k)), f (x (k))), at
iteration k, is acceptable to the filter if, for all x (l) such that (θ(x (l)), f (x (l))) ∈ F (k),

θ(x (k)) ≤ βθ(x (l)) or f (x (k)) ≤ f (x (l)) − γ θ(x (k)) (7)

where β, γ > 0 are constants.
(iii) When a point is added to the filter, all the dominated points are removed from the filter.
(iv) When the constraint violation becomes sufficiently small, only a sufficient reduction

is enforced on f ,

f (x (k)) ≤ f (x (k−1)) − αΔ(k)

where α ∈ (0, 1) and Δ(k) > 0 tends to zero as k increases.
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As described in the next section, our algorithm implements some specific ideas from the filter
methodology.

2.3 Filter-based DIRECT algorithm

For solving the CGO (1), the authors in [10] define two problems. The feasibility problem
aims to minimize a penalty function subject to the bound constraints and the optimality
problem minimizes the objective function on the set of all the solutions to the feasibility
problem. While in [10], a bilevel approach is used, where the lower level problem is the
feasibility problem and the upper level is the optimality problem, our proposal minimizes
constraint violation θ and objective function f simultaneously, at the same level, using a
filter set methodology.

In the context of the bi-objective problem (6), to extend the concept of the “Selection”
step, where the indices of the hyperrectangles which are promising are identified, in the sense
that both θ and f are to be minimized, a definition of POH with respect to the function θ is
required. The definition presented in [10] is adopted.

Definition 4 Given the partition {Hi : i ∈ Ik} of Ω , let ε be a positive constant. A hyper-
rectangle j is said to be potentially optimal w.r.t. the function θ if there exists some constant
K̂ j > 0 such that

θ(c j ) − K̂ j

2
‖u j − l j‖ ≤ θ(ci ) − K̂ j

2
‖ui − li‖, for all i ∈ Ik

θ(c j ) − K̂ j

2
‖u j − l j‖ ≤ θmin − εθmin

(8)

where c j is the center of the hyperrectangle j and θmin = mini∈Ik θ(ci ).

The filter-based DIRECT algorithm for solving the CGO problem is described in
Algorithm 2.2.

In the herein presented filter method, the identification of dominated and non-dominated
points is crucial when they are infeasible. To identify the non-dominated points we modify
the sufficient decrease conditions shown in (7) and require only improvement in either θ or
f for a point to be acceptable to the filter, i.e., we use only the dominance conditions.
Furthermore, another specific property of our algorithm is related to the feasible points not

being added to the filter [1]. In Algorithm 2.2, points are added to F as they are generated.
Each time a trial point is generated and the corresponding f and θ values are evaluated, the
algorithmupdates the filter.Whether a point is acceptable to the filterwill depend onwhen it is
generated. This temporal property can cause the so called ‘blocking entries’ (in particular, of
infeasible points that are very near to feasibility). If the feasible points were added to the filter,
any infeasible point x with θ(x) < θ(x (l)) (for all x (l) such that (θ(x (l)), f (x (l))) ∈ F (k) and
θ(x (l)) > 0) and f (x) > f (x F ), (where (θ(x F ), f (x F )) ∈ F (k) and θ(x F ) = 0), would
not be acceptable to the filter. To avoid the problem of ‘blocking entries’, our filter contains
only infeasible points. This strategy aims to make the filter less conservative. However, the
feasible point with the least function value found so far is separately maintained and will
only be used to filter other feasible points.

Thus, using this filter methodology, the “Selection” step of the algorithm defines three
separate sets of indices in the partition of Hk :

– the set I Fk which corresponds to hyperrectangles with feasible center points, relative
to the general equality and inequality constraints, i.e., the center points that in practice
satisfy θ(c j ) ≤ θfeasible, for a sufficiently small positive tolerance θfeasible;
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Algorithm 2.2 Filter-based DIRECT

1. Initialization. Normalize the search space Ω to be an n-dimensional unit hypercube H0. Sample the
center point c1 of this hypercube and evaluate f (c1) and θ(c1). Initialize fmin = f (c1), θmin = θ(c1),
set ( f /θ evaluation counter) FE = 1 and (iteration counter) k = 0. Set I0 = {0}. Initialize F . Identify
the sets I Fk , I I−ND

k and I I−D
k .

2. Selection. Given the partition {Hi : i ∈ Ik where Ik = I Fk ∪ I I−ND
k ∪ I I−D

k } of Ω:

2.1 If I Fk 	= ∅, find OF
k ⊆ I Fk of POH w.r.t. f .

2.2 If I I−ND
k 	= ∅, find OI−ND

k ⊆ I I−ND
k of POH w.r.t. θ .

2.3 If I I−D
k 	= ∅, find OI−D

k ⊆ I I−D
k of POH w.r.t. θ .

3. Sampling.

3.1 For any hyperrectangle j1 ∈ OF
k , identify the set L j1

k of dimensions with the maximum size, sF .

Let |L j1
k | be the cardinal of L j1

k . Set δF = 1/3sF . Sample f and θ at points c j1 ± δF ei , for all

i ∈ L
j1
k . Update F with the trials points when appropriate using Definition 3.

3.2 For any hyperrectangle j2 ∈ OI−ND
k , identify the set L j2

k of dimensions with the maximum size,

sI−ND . Let |L j2
k | be the cardinal of L j2

k . Set δI−ND = 1/3sI−ND . Sample f and θ at points

c j2 ±δI−ND ei , for all i ∈ L
j2
k . UpdateF with the trials points when appropriate using Definition 3.

3.3 For anyhyperrectangle j3 ∈ OI−D
k , identify the set L j3

k of dimensionswith themaximumsize, sI−D .

Let |L j3
k | be the cardinal of L j3

k . Set δI−D = 1/3sI−D . Sample f and θ at points c j3 ± δI−D ei ,

for all i ∈ L
j3
k . Update F with the trials points when appropriate using Definition 3.

4. Division.

4.1 Divide the hyperrectangle j1 ∈ OF
k containing c j1 into thirds along the dimensions in L

j1
k , using the

rules of “preference point” and “preference order” described in Definition 5. Set OF
k = OF

k \ { j1}.
Set Ik = Ik

⋃

i=1,...,2|L j1
k |+1

{ ji } \ { j1}.
4.2 Divide the hyperrectangle j2 ∈ OI−ND

k containing c j2 into thirds along the dimensions in L j2
k using

the rules of “preference point” and “preference order” described in Definition 5. Set OI−ND
k =

OI−ND
k \ { j2}. Set Ik = Ik

⋃

i=1,...,2|L j2
k |+1

{ ji } \ { j2}.
4.3 Divide the hyperrectangle j3 ∈ OI−D

k containing c j3 into thirds along the dimensions in L
j3
k using

the rules of “preference point” and “preference order” described in Definition 5. Set OI−D
k =

OI−D
k \ { j3}. Set Ik = Ik

⋃

i=1,...,2|L j3
k |+1

{ ji } \ { j3}.

Set FE = FE + 2(|L j1
k | + |L j1

k | + |L j3
k |).

5. Iteration. Let Ok = OF
k ∪ OI−ND

k ∪ OI−D
k . If Ok 	= ∅ go to 3; otherwise set k = k + 1; update fmin

and θmin as follows:

5.1 Identify the sets I Fk , I I−ND
k and I I−D

k .

5.2 If I Fk 	= ∅, set fmin = f (cm ) and θmin = θ(cm ) such that m = argmini∈I Fk
f (ci ); otherwise

θmin = argmin
i∈I I−ND

k ∪I I−D
k

θ(ci ).

6. Termination. If stopping criteria are met, stop; otherwise go to 2.

– the set I I−ND
k which corresponds to hyperrectangles with center points that are infeasible

and non-dominated points;
– the set I I−D

k , corresponding to hyperrectangles that have infeasible and dominated center
points,
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where Ik = I Fk ∪ I I−ND
k ∪ I I−D

k and I Fk ∩ I I−ND
k = I Fk ∩ I I−D

k = I I−ND
k ∩ I I−D

k = ∅. We
note that, at iteration k, at least one of these sets is non-empty. Namely, one of the following
cases can occur: I Fk 	= ∅ and I I−ND

k = I I−D
k = ∅; I I−ND

k 	= ∅ and I Fk = I I−D
k = ∅; or

I I−ND
k 	= I I−D

k 	= ∅ and I Fk = ∅; or I Fk 	= I I−ND
k 	= I I−D

k 	= ∅.
To identify the set of POH, the three sets are handled separately. Our strategy is the

following. If there are hyperrectangles with feasible center points, i.e., I Fk 	= ∅, the objective
function values at the center points are used to define the convex hull and POH w.r.t. f are
identified. On the other hand, if there are hyperrectangles with infeasible and non-dominated
center points (I I−ND

k 	= ∅) then the constraint violation function θ is used instead, and POH
w.r.t. θ are identified. Further, if I I−D

k 	= ∅, meaning that hyperrectangles with infeasible
and dominated center points do exist, then the constraint violation function θ is used and
POH w.r.t. θ are identified. We note that handling I I−ND

k and I I−D
k separately to construct

the convex hull, POH with only non-dominated center points are identified when handling
I I−ND
k , while POH with only dominated center points are found when using I I−D

k .
If this separation of hyperrectangles with infeasible center points was not made, meaning

that the sets I I−ND
k and I I−D

k of hyperrectangles with infeasible center points are combined
into one set, only one set of POH w.r.t θ is identified. At a certain iteration, POH with
infeasible non-dominated and dominated center points will probably exist in the convex hull
w.r.t. θ . This is illustrated in Fig. 1a, b, c and d which contain the sample points produced on
iterations 7, 9, 15 and 34 (the last one) respectively, when solving Problem 5 available in [3].
The horizontal axis shows the sizes of the hyperrectangles and the vertical axis corresponds
to the θ values of their centers. Infeasible non-dominated points are marked with ‘+’ (blue)
and infeasible dominated points are marked with ‘×’ (red). The selected POH of the convex
hull are identified by a black circle. POH with non-dominated center points are the ones with
smallest sizes mostly.

Since the separation of the sets I I−ND
k and I I−D

k aimed to promote the exploration of the
non-dominated infeasible region in an expeditious manner, we show in the next section that
keeping these sets separate gives better results than using them combined into a single one.

When dividing the hyperrectangles in the “Division” step, the filter-based DIRECT algo-
rithm uses the following definition of “preference point” by dimension and “preference
order”.

Definition 5 The rules to define “preference point” by dimension for dividing hyperrectan-
gles are the following. A pool is created according to the properties feasibility/infeasibility
and non-dominance/dominance of each trial point generated by dimension, ti for i = 1, 2:

– if both trial points are feasible, the one with smallest f value is selected for the pool;
– if one trial point is feasible and the other is infeasible, the feasible point is selected for

the pool;
– if both trial points are infeasible and non-dominated (or both dominated), the one with

smallest θ value is selected for the pool;
– if both trial points are infeasible and only one is non-dominated, the non-dominated point

is selected for the pool, whatever its θ value.

After the rules for a “preference point” by dimension being established, the “preference
order” for division of the hyperrectangles is as follows (favoring dimensions with feasible
“preference points” against infeasible ones). Starting with the dimensions that were selected
by the feasibility property, first divide along the dimension m such that fm = min f (ti ) and
then continue dividing until the dimension with the highest f (ti ). Then, using the dimensions
that were selected by the infeasibility property, first divide along the dimension m such that
θm = min θ(ti ) and then continue dividing until the dimension with the highest θ(ti ).
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Fig. 1 Sets I I−ND
k and I I−D

k combined into one set -‘+’ (blue): non-dominated point; ‘×’ (red): dominated

point. a Based on I I−ND
k ∪ I I−D

k , POH on iteration 7. b Based on I I−ND
k ∪ I I−D

k , POH on iteration 9.

c Based on I I−ND
k ∪ I I−D

k , POH on iteration 15. d Based on I I−ND
k ∪ I I−D

k , POH on iteration 34. (Color
figure online)

For the purpose of evaluating the algorithm’s performance on test problems, we will
note the number of function evaluations when the algorithm finds a feasible point that is
sufficiently close to the known globally optimal function value. In particular, the algorithm
stops at iteration k when an approximate solution x (k) satisfying

θ(x (k)) ≤ η1 and

∣
∣ f (x (k)) − f ∗∣∣
max{1, | f ∗|} ≤ η2 (9)

is found, for sufficiently small tolerances η1, η2 > 0, where f ∗ is the best known solution
to the problem. However, if conditions (9) are not satisfied, the algorithm is allowed to run
until a target value of number of iterations, N Imax, (or a target value of function evaluations)
is reached.

2.4 Convergence properties

Borrowing the ideas presented in [10], we show that the filter-based DIRECT algorithm, as
described byAlgorithm 2.2, satisfies the everywhere dense convergence property.We present
the proposition for the more general case, i.e., all three types of hyperrectangles exist in the
partition Hk of Ω , k > 1, since the others are particular cases.
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Proposition 1 Consider the filter-based DIRECT algorithm, as described by Algorithm 2.2,
which selects

OF
k ={i ∈ I Fk : Hi is POH w.r.t. f } (10a)

OI−ND
k ={i ∈ I I−ND

k : Hi is POH w.r.t. θ} (10b)

OI−D
k ={i ∈ I I−D

k : Hi is POH w.r.t. θ} (10c)

where Ik = I Fk ∪ I I−ND
k ∪ I I−D

k and I Fk ∩ I I−ND
k = I Fk ∩ I I−D

k = I I−ND
k ∩ I I−D

k = ∅,
then

(i) All the sequences of sets/hyperrectangles {Hik } produced by the algorithm are strictly
nested, namely for every {Hik } there exists a point x̄ ∈ Ω such that

∞⋂

k=0

Hik = {x̄}.

(ii) For every x̄ ∈ Ω , the algorithmproduces a strictly nested sequenceof sets/hyperrectangles
{Hik } such that

∞⋂

k=0

Hik = {x̄}.

Proof Let si = ‖ui − li‖ be the diagonal length of the hyperrectangle Hi for all i ∈ Ik and
let

smax
F = max

i∈I Fk
si , smax

I−ND = max
i∈I I−ND

k

si and smax
I−D = max

i∈I I−D
k

si

be the three largest diagonal lengths in the three sets of the partition. Denote by I Fmax = {i ∈
I Fk : si = smax

F }, I I−ND
max = {i ∈ I I−ND

k : si = smax
I−ND} and I I−D

max = {i ∈ I I−D
k : si =

smax
I−D} the subsets of indices of hyperrectangles with the largest diagonal lengths in the three
sets of the partition. Let Ok = OF

k ∪ OI−ND
k ∪ OI−D

k and Ik,max = I Fmax ∪ I I−ND
max ∪ I I−D

max .
According to the Proposition 2 in [34], the convergence properties (i) and (ii) of our

algorithm follow by showing that for all k, I Fmax ∩ OF
k 	= ∅, I I−ND

max ∩ OI−ND
k 	= ∅ and

I I−D
max ∩ OI−D

k 	= ∅.
Let the three sets of indices Ī Fmax, Ī

I−ND
max , Ī I−D

max be defined by

Ī Fmax = { j ∈ I Fmax : f (c j ) = min
i∈I Fmax

f (ci )}

Ī I−ND
max = { j ∈ I I−ND

max : θ(c j ) = min
i∈I I−ND

max

θ(ci )}

Ī I−D
max = { j ∈ I I−D

max : θ(c j ) = min
i∈I I−D

max

θ(ci )}

For any l ∈ Ī Fmax, it is sufficient to choose a positive K̂ l
1 such that

K̂ l
1 > 2max

{
f (cl) − fmin + ε| fmin|

sl
, max
j∈I Fk \I Fmax

f (cl) − f (c j )

sl − s j

}

to obtain l ∈ OF
k (as defined in (10a)) so that Ī Fmax = OF

k ∩ I Fmax 	= ∅.
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Similarly, let l ∈ Ī I−ND
max be such that θ(cl) ≤ θ(ci ) for all i ∈ Ī I−ND

max . By choosing a
positive K̂ l

2 such that

K̂ l
2 > 2max

{
θ(cl) − θmin + εθmin

sl
, max
j∈I I−ND

k \I I−ND
max

θ(cl) − θ(c j )

sl − s j

}

to obtain l ∈ OI−ND
k (as defined in (10b)) so that Ī I−ND

max = OI−ND
k ∩ I I−ND

max 	= ∅.
The same is true for l ∈ Ī I−D

max such that θ(cl) ≤ θ(ci ) for all i ∈ Ī I−D
max , where a positive

K̂ l
3 is chosen such that

K̂ l
3 > 2max

{
θ(cl) − θmin + εθmin

sl
, max
j∈I I−D

k \I I−D
max

θ(cl) − θ(c j )

sl − s j

}

to obtain l ∈ OI−D
k (as defined in (10c)) so that Ī I−D

max = OI−D
k ∩ I I−D

max 	= ∅.
Therefore, for all k we have that Ok ∩ Ik,max 	= ∅, which concludes the proof. ��

3 Numerical experiments

This section aims to present, analyze and compare the results produced by the proposed
filter-based DIRECT algorithm with other DIRECT-based algorithms, implemented in the
Matlab™(Matlab is a registered trademark of the MathWorks, Inc.) programming language.
Unless otherwise stated, the parameter values for the algorithm are set as follows: ε = 10−4,
η1 = 10−4, η2 = 10−4 and θfeasible = 10−4.

We illustrate the performance of our algorithm on two small problems. First, we use a two-
variable problem, known as ‘Gomez #3’ problem (used in [26] to illustrate the performance
of the therein proposed DIRECT version), with global optimum value f ∗ = − 0.9711,
occurring at (0.109,− 0.623) to show the effectiveness of Algorithm 2.2:

min− 1≤x1,x2≤1
f (x1, x2) =

(

4 − 2.1x21 + x41
3

)

x21 + x1x2 + (− 4 + 4x22 )x
2
2

subject to − sin(4πx1) + 2 sin2(2πx2) ≤ 0.

Our filter-based DIRECT algorithm finds a solution within 1% of the known optimum after
219 function evaluations (9 iterations) and a solution within 0.01% after 733 function eval-
uations (18 iterations). In [26], it is mentioned that the function evaluations required in both
runs are 89 and 513 respectively. The center points sampled by our algorithm in both runs
are shown in Figs. 2a and 3a respectively. The points marked with ‘×’ (red) are infeasible
and the points marked with ‘+’ (blue) are feasible. The global minimum is displayed by a
black circle. We show in Figs. 2b and 3b the behavior of fmin (the function value of the best
solution to the problem found so far) as a function of function evaluations. The constraint
violation value is zero along the iterative process.

We now take Problem 8 available in [3] and show in the Fig. 4a all the sampled center
points of hyperrectangles generated by our algorithm when the sets I I−ND

k and I I−D
k are

analyzed separately. Figure 4b shows the pairs (θ , f ) corresponding to the center points of
the hyperrectangles: dominated points are marked with ‘×’ (red); non-dominated points (or
filter points) are marked with ‘+’ (blue). Based on the stopping conditions shown in (9),
the algorithm converges in 23 iterations and 881 function evaluations to the global solution
− 118.700976 (global minimum displayed by a black circle). On the other hand, Fig. 5a, b
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Fig. 2 Run stopping with a solution within 1% of f ∗. a ‘+’ (blue): feasible point; ‘×’ (red): infeasible point.
b Behavior of fmin as a function of function evaluations. (Color figure online)
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Fig. 3 Run stopping with a solution within 0.01% of f ∗. a ‘+’ (blue): feasible point; ‘×’ (red): infeasible
point. b Behavior of fmin as a function of function evaluations. (Color figure online)

show the center points of the hyperrectangles and the corresponding pairs (θ , f ) of dominated
and non-dominated points, when the sets I I−ND

k and I I−D
k are combined into a single set. The

global solution − 118.688470 is reached after 67 iterations and 3317 function evaluations.
As it is illustrated in the figures, one advantage of using these separate infeasible sets is the
gain in computational effort when exploring the infeasible region.

In the remaining numerical experiments, two sets of CGO problems are used. The first set
contains 20 problems, with n ranging from 2 to 6 and m + p ranging from 1 to 12 (details
in [3]). The second set contains 82 problems, with n ≤ 10, belonging to the GLOBALLib
collection of the COCONUT project [41]. They are the same problems used for the results
in Tables 1 and 2 of the report [9] (with the exception of problem ex736 due to a misprint in
the definition).

The results shown in Table 1—relative to the first set of problems—aim to show the
effectiveness of Algorithm 2.2 (the sets I I−ND

k and I I−D
k are analyzed separately) when

compared with the variant where the sets are combined into a single set. This experiment
analyzes the quality of the solutions produced by both algorithms when they stop with
N Imax = 20 and N Imax = 50 iterations. In the table, | fglob − f ∗| is used to check the
proximity of the objective function value of the obtained solution, fglob, to the best known
optimal solution ( f ∗ taken from [3]) and Vglob is the constraint violation, where Vglob =
max{‖h(x)‖∞, ‖g(x)+‖∞}. When N Imax = 20, we conclude that Algorithm 2.2 produces
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better errors on 11 problems, larger errors on three and tie values on six problems. On the
other hand, when N Imax = 50, Algorithm 2.2 gives better errors on 11 problems, larger
errors on four and tie values on five. However, as far as constraint violation is concerned,
there are 10 ties and six wins for the Algorithm 2.2 when N Imax = 20, and nine ties, one win
when N Imax = 50. Thus, the variant nearness to the optimal solution mostly is the approach
that relies on the separate analysis of the sets I I−ND

k and I I−D
k .

Using the same set of problems, but now using the stopping conditions in (9), the results
produced by Algorithm 2.2 are compared with those of [11], where an exact penalty based
algorithm (EPGO) uses the DIRECT algorithm to solve the BCGO problems. In Table 2,
fglob and Vglob have the same meaning of the previous table, NF is the number of function
evaluations and k is the number of DIRECT iterations required to reach the listed solution.
N Imax is set to 120 or 200 (depending on the problem). Problems 1, 2(a)–2(d), 5, 9, 13, 14
and 16 have been reformulated by some algebraic manipulation aiming to reduce the number
of variables and equality constraints. Furthermore, Problems 3(b) and 8 had their constraints
normalized. These procedures are common practice when the problem is hard to solve due
to having many equality constraints or different equality and inequality constraints scaling.

123



J Glob Optim (2018) 71:517–536 531

Ta
bl
e
1

C
om

pa
ri
so
n
ba
se
d
on

th
e
qu

al
ity

of
th
e
so
lu
tio

ns

Pr
ob
.

A
lg
or
ith

m
2.
2
-
se
pa
ra
te

II
−N

D
k

an
d
II

−D
k

II
−N

D
k

an
d
II

−D
k

co
m
bi
ne
d
in
to

on
e
se
t

f∗

N
I m

ax
=

20
N
I m

ax
=

50
N
I m

ax
=

20
N
I m

ax
=

50

|f g
lo
b

−
f∗

|
V
gl
ob

|f g
lo
b

−
f∗

|
V
gl
ob

|f g
lo
b

−
f∗

|
V
gl
ob

|f g
lo
b

−
f∗

|
V
gl
ob

1
7.
56
8e
+
01

5.
2e

−0
5

1.
21

4e
+
01

4.
4e

−0
5

7.
56

8e
+
01

5.
2e

−0
5

1.
42

5e
+
01

4.
3e

−0
5

0.
02

93
13

2(
a)

5.
40

9e
+
02

1.
3e
+
02

4.
66

6e
+
02

0.
0e
+
00

4.
28

2e
+
02

6.
4e
+
00

4.
39

2e
+
02

0.
0e
+
00

−4
00

.0
0

2(
b)

1.
43

4e
+
03

0.
0e
+
00

9.
67

6e
+
02

0.
0e
+
00

1.
01

7e
+
03

6.
4e
+
00

1.
02

2e
+
03

0.
0e
+
00

−6
00

.0
0

2(
c)

1.
21

9e
+
00

9.
3e
+
01

7.
70

4e
+
02

0.
0e
+
00

7.
79

0e
+
02

6.
4e
+
00

7.
71

1e
+
02

0.
0e
+
00

−7
50

.0
0

2(
d)

2.
33

4e
+
01

0.
0e
+
00

1.
37

2e
−0

1
0.
0e
+
00

6.
51

8e
+
01

0.
0e
+
00

1.
44

7e
+
01

0.
0e
+
00

−4
00

.0
0

3(
a)

2.
22

1e
−0

1
6.
9e

−0
4

1.
96

9e
−0

1
5.
2e

−0
5

2.
22

1e
−0

1
9.
7e

−0
4

2.
22

2e
−0

1
4.
4e

−0
5

−0
.3
88

80

3(
b)

2.
83

8e
−0

5
8.
9e

−0
5

3.
10

2e
−0

5
9.
9e

−0
5

2.
87

9e
−0

5
9.
5e

−0
5

2.
87

9e
−0

5
9.
5e

−0
5

−0
.3
88

81

4
8.
57

5e
−0

5
0.
0e
+
00

4.
97

3e
−0

5
0.
0e
+
00

8.
57

5e
−0

5
0.
0e
+
00

4.
97

3e
−0

5
0.
0e
+
00

−6
.6
66

6

5
2.
51

2e
−0

4
5.
9e

−0
3

6.
81

9e
−0

4
9.
6e

−0
5

6.
59

6e
−0

4
1.
4e

−0
2

6.
81

9e
−0

4
9.
6e

−0
5

20
1.
16

6
1.
11

4e
+
00

0.
0e
+
00

3.
68

6e
−0

3
9.
0e

−0
5

3.
04

7e
+
00

0.
0e
+
00

1.
10

0e
−0

3
4.
2e

−0
5

37
6.
29

7
3.
06

3e
−0

5
3.
1e

−0
5

6.
24

8e
−0

5
1.
0e

−0
4

1.
72

6e
−0

4
0.
0e
+
00

1.
04

9e
−0

4
0.
0e
+
00

−2
.8
28

4

8
5.
37

2e
−0

2
0.
0e
+
00

3.
62

3e
−0

3
9.
6e

−0
5

5.
79

6e
−0

1
0.
0e
+
00

7.
66

0e
−0

2
0.
0e
+
00

−1
18

.7
0

9
9.
64

8e
−0

3
0.
0e
+
00

2.
22

9e
−0

4
7.
5e

−0
5

1.
21

1e
−0

1
0.
0e
+
00

4.
05

1e
−0

2
0.
0e
+
00

−1
3.
40

2

10
1.
46

9e
−0

5
9.
5e

−0
5

2.
18

1e
−0

5
1.
0e

−0
4

2.
24

9e
−0

6
0.
0e
+
00

1.
46

9e
−0

5
5.
5e

−0
5

0.
74

17
8

11
0.
00

0e
+
00

0.
0e
+
00

0.
00

0e
+
00

0.
0e
+
00

0.
00

0e
+
00

0.
0e
+
00

0.
00

0e
+
00

0.
0e
+
00

−0
.5
00

00

12
6.
23

9e
−0

3
4.
6e

−0
5

1.
99

1e
−0

3
1.
0e

−0
4

2.
00

7e
+
00

6.
3e

−0
5

2.
00

7e
+
00

8.
6e

−0
5

−1
6.
73

9

13
1.
03

1e
+
02

1.
8e

−0
4

1.
69

3e
+
01

4.
3e

−0
5

1.
16

6e
+
02

4.
1e

−0
4

1.
16

6e
+
02

9.
1e

−0
5

18
9.
35

14
5.
70

8e
−0

3
0.
0e
+
00

1.
80

0e
−0

5
5.
0e

−0
5

1.
71

8e
−0

2
0.
0e
+
00

6.
14

7e
−0

5
8.
2e

−0
6

−4
.5
14

2

15
0.
00

0e
+
00

5.
0e

−0
5

0.
00

0e
+
00

5.
0e

−0
5

0.
00

0e
+
00

5.
0e

− 0
5

0.
00

0e
+
00

5.
0e

−0
5

0.
00

00

16
5.
52

1e
−0

6
0.
0e
+
00

5.
00

6e
−0

6
0.
0e
+
00

5.
52

1e
−0

6
0.
0e
+
00

5.
00

6e
−0

6
0.
0e
+
00

0.
70

49
2

123



532 J Glob Optim (2018) 71:517–536

Ta
bl
e
2

C
om

pa
ri
so
n
be
tw

ee
n
th
e
fil
te
r-
ba
se
d
D
IR

E
C
T
(A

lg
or
ith

m
2.
2)
,t
he

E
PG

O
in

[1
1]

an
d
th
e
D
F-
E
PG

O
in

[1
2]

Pr
ob
.

A
lg
or
ith

m
2.
2

E
PG

O
D
F-
E
PG

O

f g
lo
b

V
gl
ob

N
F

k
f g
lo
b

V
gl
ob

N
F

f g
lo
b

V
gl
ob

1
0.
39

88
95

1.
00

e−
04

25
,
42

5
20

0
0.
06

25
2.
35

e−
07

39
,
57

5
0.
06

25
6

2.
35

e−
07

2(
a)

−
22

.4
44

95
0.
00

e0
0

69
7,
16

9
20

0
−
13

4.
11

27
8.
43

e−
04

11
5,
10

7
−
13

4.
09

83
9

2.
17

e−
04

2(
b)

53
.6
86

74
0.
00

e0
0

42
1,
19

7
20

0
−
76

8.
45

69
5.
30

e−
04

12
0,

05
7

−
70

5.
13

18
4

1.
30

e−
03

2(
c)

−
38

.7
94

84
0.
00

e0
0

72
4,
33

7
20

0
−
82

.9
77

4
8.
43

e−
04

10
2,

01
5

−
82

.9
52

82
2.
17

e−
04

2(
d)

−
39

9.
96

61
3

0.
00

e0
0

16
,
71

5
59

−
38

5.
17

04
0.
00

e0
0

22
9,
77

3
−
39

9.
76

35
5

0.
00

e0
0

3(
a)

−
0.
38

31
70

6.
22

e−
05

11
09

,
99

5
12

0
−
0.
38

61
1.
02

e−
06

48
,
64

7
−
0.
38

61
2

3.
15

e−
06

3(
b)

−
0.
38

88
02

5.
98

e−
05

34
7

11
−
0.
38

88
0.
00

e0
0

34
49

−
0.
38

88
1

0.
00

e0
0

4
−
6.
66

62
09

0.
00

e+
00

54
3

15
−
6.
66

66
0.
00

e0
0

3,
54

7
−
6.
66

66
5

0.
00

e0
0

5
20

1.
15

93
43

7.
83

e−
05

1,
00

9
30

20
1.
15

93
1.
66

e−
04

14
,
08

7
20

1.
15

91
5

2.
49

e−
04

6
37

6.
30

02
44

0.
00

e+
00

13
23

31
0.
47

01
2.
05

e−
05

15
23

37
6.
29

26
6

0.
00

e0
0

7
−
2.
82

82
27

0.
00

e+
00

14
17

16
−
2.
80

58
0.
00

e0
0

13
,
18

7
−
2.
80

58
5

0.
00

e0
0

8
−
11

8.
70

09
76

0.
00

e+
00

88
1

23
−
11

8.
70

44
0.
00

e0
0

76
21

−
11

8.
70

47
6

0.
00

e0
0

9
−
13

.4
01

76
4

5.
58

e−
05

22
03

23
−
13

.4
02

6
1.
35

e−
04

68
,
17

7
−
13

.4
01

25
2.
16

e−
05

10
0.
74

18
33

1.
59

e−
05

58
7

15
0.
74

20
0.
00

e0
0

67
39

0.
74

17
8

0.
00

e0
0

11
−
0.
50

00
00

0.
00

e+
00

5
1

−
0.
50

00
0.
00

e0
0

35
79

−
0.
50

00
0

0.
00

e0
0

12
−
16

.7
38

79
7

2.
15

e−
05

66
55

10
0

−
16

.7
38

9
5.
36

e−
06

34
99

−
16

.7
38

87
9.
66

e−
06

13
19

5.
33

99
06

9.
90

e−
05

10
,
58

3
20

0
19

5.
95

53
9.
21

e−
04

80
85

19
5.
94

54
7

3.
28

e−
04

14
−
4.
51

39
63

0.
00

e+
00

19
67

30
−
4.
34

60
9.
22

e−
05

19
,
68

5
−
4.
35

23
3

3.
56

e−
06

15
0.
00

00
00

4.
95

e−
05

10
5

7
0 .
00

00
4.
94

e−
05

16
45

0.
00

00
0

4.
95

e−
05

16
0.
70

50
08

0.
00

e+
00

15
1

8
0.
71

81
2.
00

e−
04

22
,
59

3
0.
71

80
9

1.
11

e−
04

123



J Glob Optim (2018) 71:517–536 533

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

|f
glob

−f∗|/max(1,|f∗|)

filter−based DIRECT
DIRECT+DFNcon (local disabled)

DF−EPGO

2 4 6 8
x 104

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

τ
1 1.0001 1.0002 1.0003 1.0004 1.0005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

V
glob

filter−based DIRECT
DIRECT+DFNcon (local disabled)

DF−EPGO

2 4 6 8 10
x 104

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

τ
(a) (b)

Fig. 6 Performance profiles: filter-based DIRECT algorithm, DIRECT + DFNcon (local disabled) and DF-

EPGO. a Metric
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The results available in [12], an exact penalty approach that relies on DIRECT to solve
the BCGO problems, are also included in the comparison. For a fair comparison, the results
selected for the table correspond to the version denoted byDF-EPGO,which does not include
the local search phase (Table 1 in [12]). We note here that the values of NF are not provided
in the cited paper. Apart from the obtained solutions to the Problems 1, 2(a)–2(c) and 6, the
others are similar in the three algorithms. A simplistic analysis allows us to conclude that our
algorithm produces the best fglob on five problems and the second best on four problems;
EPGO produces the best solution on five problems and the second best on another six; and
DF-EPGO produces the best solution on nine problems and the second best on another nine.
Problem 15 is a tie.

The results relative to the second set of problems are compared with those obtained by
a two-level derivative-free DIRECT-type algorithm (DIRECT+DFNcon) published in [10].
The results therein published, as well as those available in the report [9], correspond to a
version that is enriched with a derivative-free local search procedure (the DFNcon proposed
in [14]). We have downloaded the code in Fortran 90 (double precision), available in http://
www.iasi.cnr.it/~liuzzi/1 and disabled the local search for a more fair comparison. The 82
problems were also coded in Fortran 90. The results reported in [12] (Table 3 in the cited
paper) that correspond to the algorithm DF-EPGO without the local search phase are also
included in this comparison. The comparisons are made by using a graphical procedure to
visualize the performance differences among the results produced by the three algorithms,
in relative terms on the 82 problems, known as performance profiles [13]. Each plot reports
(on the vertical axis) the percentage of problems solved with each algorithm that is within
a certain threshold, τ , (on the horizontal axis) of the best result. The performance profiles
of the values of the relative gap (as defined in (9)) are shown in the Fig. 6a. Figure 6b
corresponds to the metric Vglob. The higher the percentage the better. A higher value for
τ = 1 means that the corresponding algorithm achieves the lowest relative gap value (or
the smallest Vglob) mostly. Although we have imposed on our algorithm the limit on the
number of hyperrectangles, 500n(m + p) as shown in [9], the conditions referred to in (9)
are also used. It is possible to conclude that, regarding the relative gap, filter-based DIRECT

1 DIRDFN—DIRECTAlgorithmwith derivative-free localminimizations for constrained global optimization
problems (A Derivative-Free algorithm for general constrained global optimization problems - Copyright (C)
2016 G. Di Pillo, G. Liuzzi, S. Lucidi, V. Piccialli, F. Rinaldi).
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produces the best results in about 40% of the problems, i.e., the probability that filter-based
DIRECT gives the best result on a given problem is 0.4. Similarly, the probability that the
DIRECT + DFNcon (local disabled) gives the best result on a problem is about 0.1 and the
probability that the DF-EPGO gives the best result on a problem is 0.56. When the profiles
for Vglob are analyzed, we may conclude that the probability that the filter-based DIRECT
algorithm gives the best result is about 0.33, while the probability that the DIRECT+DFNcon

(local disabled) gives the best result on a given problem is about 0.65. The corresponding
probability for DF-EPGO is 0.42.

4 Conclusions

In this paper, a filter-based DIRECT method for solving nonsmooth and nonconvex CGO
problems is proposed. With the filter methodology, we aim to minimize the constraint vio-
lation and the objective function values simultaneously. In the DIRECT context, the filter
methodology gives priority to the selection of hyperrectangles with feasible center points,
followed by those with infeasible and non-dominated center points and finally by those
that have infeasible and dominated center points. To define the convex hull and the POH,
the hyperrectangles with infeasible center points are analyzed separately depending on the
non-dominance/dominance property, which in turn are addressed separately from those with
feasible centers. During hyperrectangles division, special rules to define a “preference point”
by dimension and a “preference order” are proposed. The convergence properties of the algo-
rithm are analyzed. The reported results show that the filter-based DIRECT method is able
to compete with other DIRECT-type methods.

A future idea to pursue is concerned with a new strategy that aims to progressively discard
a portion of the infeasible region of being explored since it is unlikely that the search may
return back to the feasible region from that part of the space. To improve the solution accuracy,
a local search procedure will be incorporated in the algorithm.
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