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Abstract Wedeal with a constrained vector optimization problem between real linear spaces
without assuming any topology and by considering an ordering defined through an improve-
ment set E . We study E-optimal and weak E-optimal solutions and also proper E-optimal
solutions in the senses of Benson and Henig. We relate these types of solutions and we
characterize them through approximate solutions of scalar optimization problems via linear
scalarizations and nearly E-subconvexlikeness assumptions. Moreover, in the particular case
when the feasible set is defined by a cone-constraint, we obtain characterizations by means
of Lagrange multiplier rules. The use of improvement sets allows us to unify and to extend
several notions and results of the literature. Illustrative examples are also given.
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1 Introduction

In the literature there exist a lot of papers and books dealing with optimization problems from
an algebraic point of view (see, for instance, [5] and the references quoted in [2]). Adán and
Novo introduced this research line in vector optimization studying these problems without
using topological tools [1–4]. So, in these papers, the initial and final spaces of the optimiza-
tion problems are not endowed with any topology. To overcome this fact, some algebraic
counterparts of the main topological tools are introduced, which exploit their geometrical
nature. Between them, let us underline the concept of vector closure (see [2]).

On the other hand, Chicco et al. [6], in the finite dimensional setting and via an improve-
ment set E⊂R

p (i.e., 0 /∈ E and E +R
p
+ = E , where Rp

+ denotes the nonnegative orthant),
defined the notion of E-optimal point—a kind of nondominated point with respect to the
ordering set E—that encompasses the concepts of Pareto efficiency and weak Pareto effi-
ciency. By definition, an improvement set can be considered as an approximation of the
ordering cone that does not contain the point 0, and because of that this type of sets are useful
to deal with approximate Pareto efficient points.

Later, this concept was studied by Gutiérrez et al. [9] in the framework of real locally
convex Hausdorff topological linear spaces to unify several notions and results on exact
and approximate efficient solutions of vector optimization problems. In [22], Xia et al. pro-
vided several characterizations of improvement sets via quasi interior, and in [18] Lalitha
and Chatterjee established stability and scalarization results in vector optimization by using
improvement sets. Notice that the nondominated solutionswith respect to an improvement set
are global solutions of the problem. In particular, under convexity assumptions, they can be
characterized by ε-subgradients (see [10,11])—recall that the ε-subdifferential of a convex
function is a global concept provided that ε > 0 (see [13])—.

Essentially, an improvement set E in an arbitrary ordered linear space is a free disposal
set (i.e., it coincides with its cone expansion E+K , where K is the ordering cone). This kind
of sets was introduced by Debreu [7] and they have been frequently used in mathematical
economics and optimization. So, one can find in the literature several previous concepts very
close to the notion of improvement set.

During the last years and motivated by the quoted contributions by Adán and Novo [1–
4] and Chicco et al. [6], approximate solutions of vector optimization problems have been
studied in the setting of linear spaces and via optimality concepts based on improvement sets
(see, for instance, [16,25–27]). In particular, by considering the so-called algebraic interior,
the vector closure and different generalized convexity assumptions, several characterizations
for weak and proper approximate solutions have been obtained through linear scalarizations
and Lagrangian type optimality conditions.

This work is a new contribution in the same direction. It is structured as follows: in Sect. 2,
the framework of the paper and somebasic algebraic and geometric tools are recalled or stated.
In Sect. 3, two new concepts of proper approximate efficient solution in the senses of Benson
and Henig are introduced. They are based on certain classes of improvement sets, and it is
proved that they encompass the more important exact and approximate Benson and Henig
efficiency concepts of the literature. The relationships between them and also with respect to
weak E-optimal solutions are derived. In Sects. 4 and 5, some characterizations of these three

123



J Glob Optim (2018) 70:875–901 877

notions are provided by linear scalarizations in problems with abstract constraints, and by
scalar Lagrangian optimality conditions in cone-constrained problems. At the end of Sect. 5
two illustrative examples show in detail the main results. Finally, in Sect. 6, the highlights of
the paper are collected.

The obtained results extend and improve other results published in the last years,
since they are obtained through very general concepts of efficient solution—recall that
they are based on arbitrary improvement sets—and by assuming new and weaker gen-
eralized convexity hypotheses. These assumptions, called E-subconvexlikeness, relatively
solid E-subconvexlikeness, generalized E-subconvexlikeness and relatively solid general-
ized E-subconvexlikeness, are suitable “approximate” extensions of well-known notions of
cone subconvexlikeness and generalized cone subconvexlikeness (see [2] and the references
therein). Moreover, let us underline that the Lagrangian optimality conditions are obtained
as particular cases of the previous linear scalarizations. To the best of our knowledge, this
approach is new in the setting of approximate efficiency.

2 Notations and preliminaries

Let Y be a real linear space and K⊂Y be a nonempty proper ({0} �= K �= Y ) convex cone
(we consider that 0 ∈ K ). In the sequel, Y is assumed to be ordered through the following
quasi order:

y1, y2 ∈ Y, y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K . (2.1)

We denote K0 := K\{0}. Moreover, we write Rp
+ to refer the nonnegative orthant of Rp

and R+ := R
1+.

Given a nonempty set A⊂Y , we denote by cone A, co A and span A the generated cone,
the convex hull and the linear hull of A, respectively. A cone D⊂Y is said to be pointed
iff D∩(−D) = {0}. The segment of extreme points a, b∈Y is denoted [a, b] (i.e., [a, b] :=
co{a, b}).

In order to avoid topological concepts we use algebraic counterparts. In particular, the
so-called algebraic interior (or core), relative algebraic interior and vector closure of the set
A (see [2]) are denoted, respectively, by cor A, icr A and vcl A, i.e.,

cor A := {a ∈ A : ∀v ∈ Y, ∃t0 > 0 such that a + tv ∈ A, ∀t ∈ [0, t0]} ,

icr A := {a ∈ A : ∀v ∈ span(A − A), ∃t0 > 0 such that a + tv ∈ A, ∀t ∈ [0, t0]} ,

vcl A := {y ∈ Y : ∃v ∈ Y,∀t0 > 0, ∃t ∈ (0, t0] such that y + tv ∈ A}
= {y ∈ Y : ∃v ∈ Y, ∃(tn)⊂R+\{0}, tn ↓ 0 such that y + tnv ∈ A, ∀n ∈ N} .

When cor A �= ∅ (respectively, icr A �= ∅) we say that A is solid (respectively, relatively
solid). Clearly, if cor A �= ∅ then cor A = icr A since span(A− A) = Y . Moreover, for each
nonempty set B⊂Y , the set A+ B is solid whenever A is solid. The set A is called vectorially
closed if A = vcl A.

Let us observe that vcl A⊂cl A (see [2, Proposition 1]), where cl A denotes the topological
closure of A, whenever Y is endowed with a topology. Although the vector closure is an
algebraic counterpart of the topological closure, they do not have the same properties. For
example, in general vcl vcl A �= vcl A (see [2, Example 2]) even if A is convex (see [5,
Example I.2.4]). In particular, this last example shows that, in general, it is not possible to
endow an arbitrary linear space with a locally convex topology in such a way that the vector
closure of any convex set coincides with the topological one.
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For the convenience of the reader, we provide the following three lemmas that will be
used in this work. In the first one, we gather several basic properties related to the vector
closure and the core of a set. The second lemma was stated in [2, Propositions 5 and 6] and
the third one is directly deduced from the results given in [2, Sections 2 and 3]. Both of them
show properties of the cone extension A + D.

Lemma 2.1 Let A⊂Y be convex. Then vcl A and cor A are convex and cor cor A = cor A.
Moreover, for each nonempty set M⊂Y it follows that vcl A + M⊂vcl(A + M) and if A is
solid, then cor A + M⊂cor(A + M).

Proof For the first part, see [14, Lemma 1.9]. On the other hand, the inclusion vcl A +
M⊂vcl(A + M) is obvious. Then, let us only prove cor A + M⊂cor(A + M).

Indeed, if a ∈ cor A and y ∈ M , then for each v ∈ Y there exists t0 > 0 such that
[a, a + t0v]⊂A. Therefore,

[a + y, a + y + t0v] = [a, a + t0v] + y ⊂ A + M

and a + y ∈ cor(A + M). �
Lemma 2.2 Let ∅ �= A⊂Y and let D⊂Y be a convex cone.

(i) If D is solid, then vcl(A + D) = vcl(A + cor D).
(ii) If D is solid, then

cor(A + D) = cor(A + cor D) = cor vcl(A + D) = vcl A + cor D = A + cor D.

(iii) vcl(cone A + D) = vcl cone(A + D).

Lemma 2.3 Let ∅ �= A⊂Y and let D⊂Y be a solid convex cone. If vcl(A + D) is convex,
then vcl cone(A + D) is convex.

Observe that if D is a solid convex cone, then fromLemmas 2.1 and 2.2(ii), we deduce that
cor D∪{0} is a convex cone, cor D+D = cor D and cor cor D = cor(cor D∪{0}) = cor D.

The following lemma will be needed along the work.

Lemma 2.4 Let ∅ �= A, B⊂Y and suppose that B is solid and convex. Then,

A ∩ cor B = ∅ ⇐⇒ vcl A ∩ cor B = ∅.

Proof Since A⊂ vcl A, implication ⇐� is obvious. Reciprocally, suppose by contradiction
that there exists y ∈ vcl A ∩ cor B. Since y ∈ vcl A, there exist (tn)⊂R+\{0}, tn ↓ 0, and
v ∈ Y such that y + tnv ∈ A, for all n ∈ N.

On the other hand, by Lemma 2.1 we have that y ∈ cor B = cor(cor B), and then there
exists n0 ∈ N such that y + tnv ∈ cor B, for all n ≥ n0. Hence, y + tnv ∈ A ∩ cor B, for all
n ≥ n0, obtaining a contradiction, and the proof is complete. �

The algebraic dual ofY is denoted byY ′.Moreover, the positive dual, and the strict positive
dual of a nonempty set A⊂Y are defined, respectively, by

A+ = {
λ ∈ Y ′ : λ(a) ≥ 0, ∀a ∈ A

}
,

A+s = {
λ ∈ Y ′ : λ(a) > 0, ∀a ∈ A\{0}} .

It is known that A+ is a vectorially closed convex cone and

(cone A)+ = (co A)+ = (vcl A)+ = A+.
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The following separation theorem for vectorially closed convex cones is due to Adán and
Novo [3, Theorem 2.2]. Let us observe that the hypothesis on the relative solidness of D
assumed in [3, Theorem 2.2] can be removed as a consequence of [3, Proposition 2.3].

Theorem 2.5 Let M, D be two vectorially closed convex cones in Y such that M is relatively
solid and D+ is solid. If M ∩ D = {0}, then there exists a linear functional λ ∈ Y ′\{0} such
that ∀d ∈ D, m ∈ M, λ(d) ≥ 0 ≥ λ(m) and furthermore ∀d ∈ D0, λ(d) > 0, i.e., λ ∈ D+s .

Note that assumption cor(D+) �= ∅ in Theorem 2.5 implies that D is pointed whenever Y ′
separates points in Y (see [14, Lemmas 1.25 and 1.27]).

In this paper, we consider the following vector optimization problem:

Min{ f (x) : x ∈ S}, (2.2)

where f : X → Y (recall that Y is ordered by the relation ≤K , see (2.1)), X is an arbitrary
decision space and the feasible set S⊂X is nonempty. We say that (2.2) is a Pareto problem
when Y = R

p and K = R
p
+.

In many situations, the feasible set S is defined in terms of a cone-constraint as follows:

S = {x ∈ X : g(x) ∈ −M}, (2.3)

where g : X → Z , Z is a real linear space and M⊂Z is a solid vectorially closed convex
cone. In this case we say that g satisfies the Slater constraint qualification if there exists a
point x̂ ∈ X such that g(x̂) ∈ − cor M .

The aim of this work is to introduce and study concepts of approximate optimal solution
for problem (2.2), where the approximation error is stated by an improvement set E⊂Y with
respect to K . Next we recall the definition of this kind of sets.

We say that a nonempty set E⊂Y is free disposal with respect to K (free disposal for
short, see [7]) if E + K = E .

Definition 2.6 A nonempty set E⊂Y is said to be an improvement set with respect to K
(improvement set for short) if 0 /∈ E and E is free disposal.

The class of improvement sets is very wide (see [9, Example 2.3]), and it will be denoted
by IK . See [6,9] for more details on these sets.

Proposition 2.7 Suppose that E ∈ IK . Then
(i) vcl E is free disposal.
(ii) If E is solid, then cor E ∈ IK .

Proof (i) We have just to check that vcl E + K⊂ vcl E , because the reciprocal inclusion is
clear. Let y ∈ vcl E and k ∈ K . Then there exist v ∈ Y and a sequence (tn)⊂R+\{0}, tn ↓ 0,
such that y + tnv ∈ E for all n ∈ N, and consequently

y + k + tnv = (y + tnv) + k ∈ E + K = E, ∀n ∈ N,

which proves that y + k ∈ vcl E .
(ii) As a consequence of Lemma 2.1 one has

cor E + K⊂ cor(E + K ) = cor E⊂ cor E + K ,

and hence cor E + K = cor E . �
The following lemma is also necessary.
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Lemma 2.8 Let ∅ �= A⊂Y and K ′⊂Y be a proper, solid and convex cone such that
K0⊂ cor K ′. Then,

(i) K0 + cor K ′ = K + cor K ′ = cor K ′.
(ii) cor K ′ ⊂ cone(A + cor K ′)0.
(iii) 0 /∈ A + cor K ′ ⇐⇒ (A + cor K ′) ∩ (−K ′) = ∅ ⇐⇒ (A + cor K ′) ∩ (−K ) = ∅.
(iv) If 0 /∈ A + cor K ′, then A + cor K ′ ∈ IK ∩ IK ′ ∩ I(cor K ′)∪{0}.

Proof (i) For each cone D⊂Y, D �= {0}, and for each solid convex cone M⊂Y we have
that

D + cor M = D0 + cor M. (2.4)

Indeed, by Lemmas 2.1 and 2.2(ii) it follows that

D0 + cor M ⊂ D + cor M⊂ vcl D0 + cor M = cor(vcl D0 + M)⊂ cor vcl(D0 + M)

= D0 + cor M.

Then,
cor K ′⊂K + cor K ′ = K0 + cor K ′⊂ cor K ′ + cor K ′ = cor K ′

and the proof of part (i) finishes.
(ii) Let us suppose that A �= {0}, since the result is obvious otherwise. By (2.4) we have

that

cor K ′⊂ cone A + cor K ′ = (cone A)0 + cor K ′⊂ cone(A + cor K ′)

and the result follows since 0 /∈ cor K ′.
(iii) Since cor K ′ + K ′ = cor K ′, it follows that

0 /∈ A + cor K ′ ⇐⇒ 0 /∈ (A + cor K ′) + K ′ ⇐⇒ (A + cor K ′) ∩ (−K ′) = ∅.

In the same way, as by part (i) we have that cor K ′ + K = cor K ′, we deduce that

0 /∈ A + cor K ′ ⇐⇒ 0 /∈ (A + cor K ′) + K ⇐⇒ (A + cor K ′) ∩ (−K ) = ∅.

(iv) It follows directly by part (i). �
Let D⊂Y be a proper convex cone and N⊂X be a nonempty set. We recall that a mapping

f : X → Y is said to be D-convex on N iff N is convex and

f (αx1 + (1 − α)x2) ≤D α f (x1) + (1 − α) f (x2), ∀x1, x2 ∈ N , ∀α ∈ (0, 1),

(here X is a real linear space), and it is D-convexlike (respectively, D-subconvexlike, with
D relatively solid) on N iff f (N ) + D (respectively, f (N ) + icr D) is convex. Moreover,
we say that f is v-closely D-convexlike (respectively, v-nearly D-subconvexlike) on N iff
vcl( f (N ) + D) (respectively, vcl cone( f (N ) + D)) is convex.

In the following proposition we gather several relations between these generalized con-
vexity notions.

Proposition 2.9 The following implications hold:

(i) f D-convex on N ⇒ f D-convexlike on N ⇒ f v-closely D-convexlike on N.
(ii) f D-convexlike on N ⇒ f v-nearly D-subconvexlike on N.
(iii) If D is solid, f D-convexlike on N ⇒ f D-subconvexlike on N ⇔ f v-closely D-

convexlike on N ⇒ f v-nearly D-subconvexlike on N.
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Proof Parts (i) and (ii) are easy to check. We prove part (iii). The first implication is clear.
For the second necessary condition, if f is D-subconvexlike on N , then f (N ) + cor D is
convex and by Lemma 2.1 the set vcl( f (N ) + cor D) is convex too. Moreover, observe that
by Lemma 2.2(i) one has vcl( f (N )+ D) = vcl( f (N )+ cor D), and the conclusion follows.

Reciprocally, by Lemma 2.2(ii) we know that f (N ) + cor D = cor vcl( f (N ) + D), and
since vcl( f (N ) + D) is convex, by Lemma 2.1 we deduce that f (N ) + cor D is convex
too. Finally, suppose that vcl( f (N ) + D) is convex. Then, by Lemma 2.3 we deduce that
vcl cone( f (N ) + D) is convex, and the last implication is proved. �

For a more complete study of these generalized convexity notions see, for instance, [2,
Section 3].

Additionally, we consider the next notions of generalized convexity. The first one is an
immediate translation of the nearly E-subconvexlikeness, introduced by Gutiérrez et al. [8,
Definition 2.3] in the framework of topological linear spaces. The second and third concepts
are new and they extend, respectively, the above concept of cone subconvexlikeness and the
so-called generalized cone subconvexlikeness (see [2] and the references therein). Recall that
if icr K �= ∅, then the mapping f : X → Y is said to be generalized K -subconvexlike on a
nonempty set N⊂X if the set cone f (N ) + icr K is convex.

Definition 2.10 Let ∅ �= E⊂Y . The mapping f : X → Y is said to be v-nearly E-
subconvexlike on a nonempty set N⊂X if vcl cone( f (N ) + E) is a convex set.

Definition 2.11 Let ∅ �= E⊂Y and suppose that K is relatively solid. Themapping f : X →
Y is said to be E-subconvexlike (respectively, generalized E-subconvexlike) on a nonempty
set N⊂X (with respect to K ) if f (N ) + E + icr K (respectively, cone( f (N ) + E) + icr K )
is a convex set.

Remark 2.12 Consider that K is relatively solid. Since K + icr K = icr K (see [2]), then for
all nonempty set A⊂Y it is easy to check that

cone(A + icr K ) + icr K = cone(A + K ) + icr K = cone A + icr K . (2.5)

Moreover, it is clear that icr K+icr K = icr K . Therefore, the notions of E-subconvexlikeness
and generalized E-subconvexlikeness reduce to the concepts of K -subconvexlikeness and
generalized K -subconvexlikeness by taking E = K or E = icr K .

Proposition 2.13 Let E⊂Y and N⊂X be two nonempty sets. We have the following impli-
cations:

(i) f E-subconvexlike on N ⇒ f generalized E-subconvexlike on N.
(ii) If E ∈ IK , f generalized E-subconvexlike on N ⇒ f v-nearly E-subconvexlike on N.
(iii) If K is solid and E ∈ IK , f is generalized E-subconvexlike on N ⇔ f is v-nearly

E-subconvexlike on N.

Proof For part (i) see [2], and part (ii) is a direct consequence of Lemma 2.1 and [2, Propo-
sitions 5(iii) and 6(i)].

On the other hand, by [2, Propositions 5(iii) and 6(i),(iv)] we see that

cor vcl cone( f (N )+ E) = cor vcl(cone( f (N ) + E) + cor K ) = cone( f (N )+ E)+cor K
(2.6)

and the sufficient condition of part (iii) follows by (2.6) and Lemma 2.1. �
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By Remark 2.12 we see that Proposition 2.13(iii) extends [25, Proposition 3.1].
In the following result we give sufficient conditions for the v-nearly E-subconvexlikeness

of the mapping f . For each y ∈ Y , f − y : X → Y denotes the mapping ( f − y)(x) =
f (x) − y, for all x ∈ X .

Theorem 2.14 Let ∅ �= E⊂Y be a convex free disposal set and N⊂X be a nonempty set.

(i) If f is K -convexlike on N, then f − y is v-nearly E-subconvexlike on N, for all y ∈ Y .
(ii) If K is solid and f is v-closely K -convexlike on N, then f − y is v-nearly E-

subconvexlike on N, for all y ∈ Y .

Proof (i) As f (N ) + K and E are convex, one has f (N ) + K + E = f (N ) + E is convex.
Hence, vcl cone( f (N ) − y + E) is convex for all y ∈ Y .

(ii) By assumptions it is clear that f (N ) − y + cor K + E is convex, and by Lemma 2.1
and Lemma 2.2(i) it follows that vcl( f (N )− y + E + K ) is convex. Thus, applying Lemma
2.3 the proof finishes. �

Finally, given a scalar function h : X → R and ∅ �= S⊂X , the set of ε-optimal (respec-
tively, sharp ε-optimal) solutions with error ε ≥ 0 of the scalar optimization problem

Min{h(x) : x ∈ S}
is denoted by argminS(h, ε) (respectively, argmin<

S (h, ε)), i.e.,

argminS(h, ε) = {x0 ∈ S : h(x0) − ε ≤ h(x),∀ x ∈ S}
(respectively, argmin<

S (h, ε) = {x0 ∈ S : h(x0) − ε < h(x),∀ x ∈ S\{x0}}).
We denote argminS h := argminS(h, 0), i.e., the set of exact minima of h on S.

Remark 2.15 It is clear that argminS(h, ε1)⊂ argminS(h, ε2) whenever 0 ≤ ε1 ≤ ε2.

For λ ∈ Y ′ and ∅ �= E⊂Y , we denote τE (λ) = infe∈E λ(e). Let us observe that λ ∈ E+ if
and only if τE (λ) ≥ 0.

3 Optimality notions with improvement sets

From now on we assume that K is vectorially closed and E ∈ IK . The E-optimality notion
due to Chicco et al. (see [6, Definition 3.1]) was introduced for Pareto problems, and it was
translated in [9] to problem (2.2) when Y is a topological linear space. Next we reformulate
this approximate optimality notion when Y is a real linear space.

Definition 3.1 A point x0 ∈ S is said to be an E-optimal (respectively, weak E-optimal)
solution of problem (2.2), denoted by x0 ∈ Op( f, S; E) (respectively, x0 ∈ WOp( f, S; E)),
if

f (S) − f (x0)) ∩ (−E) = ∅ (respectively, ( f (S) − f (x0)) ∩ (− cor E) = ∅).

Remark 3.2 (a) If cor E = ∅ then WOp( f, S; E) = S. Thus, in order to deal with nontrivial
sets of weak E-optimal solutions, we assume that E is solid whenever this kind of solutions
are considered.

On the other hand, observe that WOp( f, S; E) = Op( f, S; cor E). Moreover, if K is
pointed, then K0 ∈ IK and it is clear that Op( f, S; K0) is the set of (exact) minimal solutions
of problem (2.2). In this case we denote Op( f, S) := Op( f, S; K0).
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(b) Since E ∈ IK , it follows that

x0 ∈ Op( f, S; E) ⇐⇒ ( f (S) + K − f (x0)) ∩ (−E) = ∅
⇐⇒ ( f (S) + E − f (x0)) ∩ (−K ) = ∅.

Moreover, since cor E ∈ IK (see Proposition 2.7(ii)) we have that

x0 ∈ WOp( f, S; E) ⇐⇒ ( f (S) + K − f (x0)) ∩ (− cor E) = ∅. (3.1)

If additionally K is solid, then by Lemma 2.2(ii) we have cor E = E + cor K and

x0 ∈ WOp( f, S; E) ⇐⇒ ( f (S) + E − f (x0)) ∩ (− cor K ) = ∅. (3.2)

(c) By taking different sets E ∈ IK , the notion of E-optimal solution reduces to well-
known concepts of exact and approximate solution of problem (2.2), as it was shown in [9,
Remark 4.2] in the setting of topological linear spaces. For example, we can take as E the sets
Y\(−K ), K ∩ (Y\(−K )) and cor K , and then we obtain the set of ideal solutions, minimal
solutions and weak efficient solutions, respectively.

Moreover, if K is pointed and we consider E = q + K0, with q /∈ −K0, then E ∈ IK and
the notion of E-optimality given in Definition 3.1 reduces to the first part of [16, Definition
3.1]. Analogously, if K is solid and we consider q ∈ Y\(− cor K ), then E = q+cor K ∈ IK
and x0 ∈ S is a weak E-optimal solution of (2.2) if and only if ( f (S) − f (x0)) ∩ (−q −
cor K ) = ∅, which is equivalent to ( f (S) − f (x0) + q) ∩ (− cor K ) = ∅. This is the second
part of [16, Definition 3.1] and also the concept of q-weakly efficient point given in [25,
Definition 2.4].

On the other hand, approximate proper efficiency notions for vector optimization problems
defined on real linear spaces have been studied, for instance, by Zhou and Peng [25], Kiyani
and Soleimani-damaneh [16] and Zhou et al. [26,27]. In these papers, the authors focus
overall on approximate proper efficiency concepts in the senses of Hurwicz, Benson and
Henig.

Let us define

H := {E ∈ IK : vcl cone E ∩ (−K0) = ∅}
and for each E ∈ H,

G(E) :=
{
K ′⊂Y : K ′ proper, solid and convex cone,
K0⊂ cor K ′, E ∩ (− cor K ′) = ∅

}
.

Motivated by the works cited above and [11], we introduce the following two definitions.

Definition 3.3 Let E ∈ H. A point x0 ∈ S is said to be a Benson E-proper optimal solution
of problem (2.2) if

vcl cone( f (S) + E − f (x0)) ∩ (−K ) = {0}. (3.3)

We denote the set of all Benson E-proper optimal solutions of problem (2.2) by Be( f, S; E).

Definition 3.4 Let E ∈ H. A point x0 ∈ S is said to be a Henig E-proper optimal solution
of problem (2.2) if there exists K ′ ∈ G(E) such that x0 ∈ Op( f, S; E + cor K ′).

The set of all Henig E-proper optimal solutions of problem (2.2) will be denoted by
He( f, S; E).
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Remark 3.5 (a) In Definition 3.4, observe that E + cor K ′ ∈ IK (see Lemma 2.8(iv)) and
Op( f, S; E + cor K ′) = WOp( f, S; E + cor K ′), since cor(E + cor K ′) = E + cor K ′ by
Lemma 2.2(ii).

(b) From statement (3.3) we deduce that

vcl cone E ∩ (−K0) = ∅.

Analogously, by Lemma 2.4we know that E∩(− cor K ′) = ∅ �⇒ vcl cone E∩(−K0) = ∅.
Because of that, we consider E ∈ H in Definitions 3.3 and 3.4.

(c) If K is not pointed, then H = ∅. Indeed, take k ∈ K ∩ (−K0), and assume that there
exists E ∈ H. Choose a sequence (rn)⊂R+ such that rn ↑ +∞ and a fixed point e ∈ E .
Then e+ rnk ∈ E + K = E , and therefore r−1

n (e+ rnk) = k + r−1
n e ∈ cone E . As r−1

n ↓ 0
it follows that k ∈ vcl cone E . As k ∈ −K0, we achieve a contradiction to the fact that
vcl cone E ∩ (−K0) = ∅.

Thus, when we consider Benson or Henig E-proper optimal solutions, we assume that
K is pointed. In this case it is clear that K0 ∈ H. Other sets belonging to the class H are
cor K (respectively, icr K ) whenever K is solid (respectively, relatively solid), q + K0, for
all q ∈ K , and q + K , for all q ∈ Y\(−K ) whenever K+ is solid. Let us check this last
statement (in a similar way one can prove that q + K0 ∈ H, for all q ∈ Y\(−K0) whenever
K+ is solid). It is easy to prove that E = q + K ∈ IK . On the other hand, by applying
Theorem 2.5 to M = cone({q}) and D = −K we deduce that there exists λ ∈ K+s such that

λ(αq) ≥ 0 ≥ λ(z), ∀ z ∈ −K , ∀ α ≥ 0. (3.4)

Suppose that vcl cone(q+K )∩ (−K0) �= ∅ and consider z′ ∈ vcl cone(q+K )∩ (−K0). As
λ ∈ K+s then λ(z′) < 0. Moreover, there exist v ∈ Y and sequences (tn), (αn)⊂R+, tn ↓ 0,
and (kn)⊂K such that z′ + tnv = αn(q + kn), for all n. Therefore, by (3.4) we have that

λ(z′) = lim
n→+∞ λ(z′ + tnv) = lim

n→+∞ αn(λ(q) + λ(kn)) ≥ 0, (3.5)

that is a contradiction. Thus, vcl cone(q + K ) ∩ (−K0) = ∅ and q + K ∈ H.
(d) It is not hard to check that for all nonempty set A⊂Y ,

vcl cone(A + K0) = vcl cone(A + K ). (3.6)

Thus, when we choose E = K0, Definition 3.3 reduces to the concept of (exact) Benson
proper efficiency considered by Adán and Novo [3, Definition 3.1]. Analogously, by Lemma
2.8(i) we deduce that Definition 3.4 encompasses the notion of (exact) proper efficiency in
the sense of Henig via the set E = K0 (see [25, Definition 2.6 and Remark 2.3]). As a
consequence we denote Be( f, S) := Be( f, S; K0) and He( f ; S) := He( f, S; K0).

(e) By considering E = q + K0 and q ∈ K it follows that Definition 3.3 reduces to [16,
Definition 3.2] and [25, Definition 2.5], and Definition 3.4 reduces to [25, Definition 2.6].
Moreover, if K+ is solid, then [16, Definition 3.2] and [25, Definition 2.5] can be generalized
to vectors q ∈ Y\(−K0) by Definition 3.3 and the set E = q + K0.

In the following theoremwe relate Benson E-proper optimal solutions to weak E-optimal
solutions of problem (2.2).

Theorem 3.6 Let E ∈ H. It follows that Be( f, S; E)⊂WOp( f, S; E).

Proof Let x0 ∈ Be( f, S; E). Then, vcl cone( f (S) + E − f (x0)) ∩ (−K0) = ∅, which in
particular implies that

( f (S) + E − f (x0)) ∩ (−K0) = ∅. (3.7)
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Suppose, reasoning by contradiction, that x0 /∈ WOp( f, S; E). Then ( f (S) − f (x0)) ∩
(− cor E) �= ∅. Hence, there exist x ∈ S and e ∈ cor E such that f (x) − f (x0) = −e. Fix
an arbitrary point k ∈ K0. Since e ∈ cor E there exists t > 0 such that e − tk =: e′ ∈ E .
Thus, f (x) − f (x0) = −e′ − tk, i.e., f (x) + e′ − f (x0) = −tk ∈ −K0, which contradicts
(3.7). �
Remark 3.7 If x0 ∈ Be( f, S; E), we have in particular that ( f (S)− f (x0))∩(−E−K0) = ∅.
Thus, Be( f, S; E)⊂Op( f, S; E + K0) (note that E + K0 ∈ IK ).

However, the inclusion Be( f, S; E)⊂Op( f, S; E) does not hold, in general, as it is shown
in Example 3.15.

By taking into account Remark 3.7, it is clear that we can improve the conclusion of
Theorem 3.6 if

E⊂E + K0, (3.8)

which is equivalent to E = E + K0, since E ∈ IK . Indeed, we obtain the following result.

Theorem 3.8 Let E ∈ H. If (3.8) holds, then Be( f, S; E)⊂Op( f, S; E).

Remark 3.9 Many usual sets E ∈ H satisfy property (3.8), for instance:

(a) E := K0, since K0 + K0 = K0.
(b) E := cor K , whenever K is solid, since K is proper and by Lemma 2.2(ii) we know

that

cor K = cor K0 = cor(K0 + K ) = K0 + cor K .

(c) Let ∅ �= H⊂Y such that H + K0 ∈ H. Then E := H + K0 satisfies (3.8) since
(H + K0) + K0 = H + K0.
From part (a) and Theorem 3.8 we obtain the well-known inclusion Be( f, S)⊂Op( f, S)

(exact case).
Finally, taking into account Remarks 3.5(c) and 3.9(c), observe that Theorem 3.8 reduces
to [16, Proposition 3.3] when E = q + K0 and q ∈ K0.

With respect to the Henig E-proper optimal solutions of problem (2.2), from Definition
3.4 and Remark 3.5(a) we deduce that

He( f, S; E) =
⋃

K ′∈G(E)

Op( f, S; E + cor K ′) =
⋃

K ′∈G(E)

WOp( f, S; E + cor K ′).

In the following result, we establish equivalent formulations for this type of solutions. Let
us define O(E) := {K ′ ∈ G(E) : cor K ′ = K ′

0}.
Theorem 3.10 Let E ∈ H and x0 ∈ S. The following statements are equivalent:

(i) x0 ∈ He( f, S; E).
(ii) There exists K ′ ∈ O(E) such that x0 ∈ WOp( f, S; E + cor K ′).
(iii) There exists K ′ ∈ O(E) such that

vcl cone( f (S) + E − f (x0)) ∩ (−K ′) = {0}. (3.9)

Proof (i)�⇒ (ii). Since x0 ∈ He( f, S; E), there exists K ∈ G(E) such that x0 ∈
Op( f, S; E + cor K ). Then, the cone K ′ := cor K ∪{0} satisfies the conditions given in part
(ii).
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(ii)�⇒ (iii). Suppose that there exists K ′ ∈ O(E) such that ( f (S) − f (x0)) ∩ (−E −
cor K ′) = ∅. This is equivalent to ( f (S)+ E − f (x0))∩ (− cor K ′) = ∅, which implies that

cone( f (S) + E − f (x0)) ∩ (− cor K ′) = ∅.

Thus, by Lemma 2.4 applied to the sets cone( f (S)+ E − f (x0)) and cor(−K ′) = − cor K ′,
we deduce that

vcl cone( f (S) + E − f (x0)) ∩ (− cor K ′) = ∅,

which is equivalent to (3.9), since K ′
0 = cor K ′.

(iii)�⇒ (i). If there exists K ′ ∈ O(E) such that (3.9) holds, we deduce in particular that
( f (S) + E − f (x0)) ∩ (− cor K ′) = ∅, since K ′

0 = cor K ′, which clearly implies that
x0 ∈ Op( f, S; E + cor K ′), and then, x0 ∈ He( f, S; E), concluding the proof. �
Remark 3.11 (a) Observe that G(E) = ∅ ⇔ O(E) = ∅. The first implication is clear,

since O(E)⊂G(E). Reciprocally, suppose by contradiction that there exists K ∈ G(E).
Then, the cone K ′ := cor K ∪ {0} ∈ O(E) (see the proof of implication (i)�⇒ (ii) in
Theorem 3.10), and we reach the contradiction.

(b) The cones K ′ ∈ O(E) are, in addition, pointed since K ′
0 = cor K ′ and K ′ is proper.

(c) Theorem 3.10 is the algebraic counterpart of [11, Theorem 3.3(a)-(c)], where similar
equivalent statements are proved in the setting of topological linear spaces, by replacing
the algebraic conceptswith their topological counterparts (observe that condition E ∈ IK
is not required in the proof of Theorem 3.10).

In the next theorem, we show that the set of Henig E-proper optimal solutions is included
in the set of Benson E-proper optimal solutions. However, in general, the sets of Benson and
Henig E-proper optimal solutions are different (see Example 5.16).

Theorem 3.12 Let E ∈ H. It follows that He( f, S; E)⊂Be( f, S; E).

Proof Let x0 ∈ He( f, S; E). By Theorem 3.10(iii) there exists K ′ ∈ O(E) such that
vcl cone( f (S)+E− f (x0))∩(−K ′) = {0}, which in particular implies that vcl cone( f (S)+
E − f (x0)) ∩ (−K ) = {0}, since K⊂ cor K ′ ∪ {0} = K ′. Hence, x0 ∈ Be( f, S; E), and the
proof is finished. �
Remark 3.13 Theorem 3.12 reduces to [25, Proposition 2.1] by considering E = q + K0,
q ∈ K . Moreover, it encompasses [11, Theorem 4.7], which was stated in the topological
framework.

From the results stated above, we obtain the following corollary.

Corollary 3.14 Let E ∈ H. It follows that

He( f, S; E)⊂Be( f, S; E)⊂WOp( f, S; E).

Moreover, if E satisfies property (3.8), then

He( f, S; E)⊂Be( f, S; E)⊂Op( f, S; E).

In the next example, we show that, in general, the set of Henig E-proper optimal solutions
and, consequently, the set of Benson E-proper optimal solutions of problem (2.2) are not
included in the set of E-optimal solutions.

Example 3.15 Consider the following data: X = Y = R
2, f = Id, K = R

2+, E = {(x, y) ∈
R
2+ : x + y ≥ 1}, S = R

2+ and x0 = (1, 0). One has x0 ∈ He( f, S; E)⊂Be( f, S; E) but
x0 /∈ Op( f, S; E).
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4 Weak E-optimality and linear scalarization

In this section we give necessary and sufficient conditions for weak E-optimal solutions
of problem (2.2), with E ∈ IK , through linear scalarization, i.e., in terms of approximate
solutions of scalar optimization problems associated to (2.2), and under generalized convexity
assumptions. Moreover, when the feasible set is given by a cone-constraint (see (2.3)), we
also derive Lagrangian optimality conditions for this type of solutions.

In the following result we state necessary conditions for weak E-optimal solutions of
problem (2.2) through linear scalarization.

Theorem 4.1 Let x0 ∈ S. Assume that one of the following conditions holds:

(A1) f is v-closely K -convexlike on S and E is a solid convex set.
(A2) f − f (x0) is v-nearly E-subconvexlike on S and K is solid. If x0 ∈ WOp( f, S; E),

then there exists λ ∈ E+\{0} such that x0 ∈ argminS(λ ◦ f, τE (λ)).

Proof As x0 ∈ WOp( f, S; E), then by statements (3.1) and (3.2) it follows that

( f (S) + K − f (x0)) ∩ (− cor E) = ∅, (4.1)

( f (S) + E − f (x0)) ∩ (− cor K ) = ∅, (4.2)

whenever K is solid for statement (4.2).
From assumption (A1), statement (4.1) and by applying Lemma 2.4 we derive that

vcl( f (S) + K − f (x0)) ∩ (− cor E) = ∅.
As vcl( f (S)+ K − f (x0)) is a convex set since f is v-closely K -convexlike on S, by the

standard separation theorem (see, for instance, [14, Theorem 3.14]) there exist λ ∈ Y ′\{0}
and α ∈ R such that

λ( f (x) + k − f (x0)) ≥ α ≥ −λ(e), ∀ x ∈ S, k ∈ K , e ∈ E . (4.3)

By taking x = x0 and k = 0 it results 0 ≥ −λ(e) for all e ∈ E , and so λ ∈ E+\{0}. From
(4.3), by taking k = 0, it follows that λ(e) ≥ λ( f (x0))−λ( f (x)) for every e ∈ E, x ∈ S, and
so τE (λ) ≥ λ( f (x0)) − λ( f (x)) for every x ∈ S. In consequence, λ( f (x)) ≥ λ( f (x0)) −
τE (λ) for every x ∈ S, i.e., x0 ∈ argminS(λ ◦ f, τE (λ)).

On the other hand, if (A2) holds, we proceed in a similar way. From (4.2), by taking
into account that cor K ∪ {0} is a cone and by Lemma 2.4 we derive that [vcl cone( f (S) +
E − f (x0))] ∩ (− cor K ) = ∅. As f − f (x0) is v-nearly E-subconvexlike on S, the set
vcl cone( f (S)+ E − f (x0)) is convex and we can apply the separation theorem, from which
we see that there exists λ ∈ K+\{0} such that

λ( f (x)) − λ( f (x0)) + λ(e) ≥ 0, ∀x ∈ S, e ∈ E . (4.4)

In particular, if x = x0 we obtain λ(e) ≥ 0 for all e ∈ E , and so λ ∈ E+. From (4.4) the
conclusion follows. �
Remark 4.2 (a) Conditions (A1) and (A2) are independent. By Theorem 2.14(ii) and Propo-
sition 2.9(iii), if K is solid, E is convex and f is v-closely K -convexlike on S, then f − f (x0)
is v-nearly E-subconvexlike on S for each x0 ∈ S. However, in general, cor K may be empty
and cor E be nonempty. In the case that cor K �= ∅, (A2) is weaker than (A1).

(b) If K is solid and we choose E = q + cor K with q ∈ K , then E ∈ IK and Theorem
4.1, under assumption (A2), reduces to [25, Theorem 5.1]. Let us observe that the authors use
as generalized convexity condition that cone( f (S)− f (x0)+q)+ cor K is convex, which is
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equivalent to (A2). Indeed, let A := f (S) − f (x0) + q . If cone(A) + cor K is convex, then
by Lemma 2.1 and parts (i) and (iii) of Lemma 2.2 we see that assumption (A2) is satisfied.

Reciprocally, by applying parts (i) and (iii) of Lemma 2.2 to D = cor K ∪ {0} and by
(3.6) we see that

vcl(cone A + cor K ) = vcl(cone A + (cor K ∪ {0}))
= vcl cone(A + (cor K ∪ {0}))
= vcl cone(A + cor K ).

Therefore, by parts (i) and (ii) of Lemma 2.2 we deduce that

cor vcl cone(A + cor K ) = cor vcl(cone A + cor K ) = cone A + cor K ,

and so cone A + cor K is convex whenever assumption (A2) is fulfilled.
Moreover, observe that, in this case, cor E �= ∅ if and only if cor K �= ∅.
On the other hand, for the same set E and also under (A2), Theorem 4.1 reduces to [16,

Theorem 4.3], where it is assumed that cone( f (S) − f (x0) + q + K ) is convex, which is a
stronger condition than the v-nearly E-subconvexlikeness of f − f (x0).

Next lemma is well-known and easy to prove.

Lemma 4.3 If λ ∈ Y ′, a ∈ cor A and miny∈A λ(y) = λ(a), then λ = 0.

In the next theoremwegive sufficient conditions through linear scalarization for E-optimal
and weak E-optimal solutions of problem (2.2).

Theorem 4.4 Let λ ∈ E+\{0}. Then,
(i) argminS(λ ◦ f, τE (λ))⊂WOp( f, S; E).
(ii) argmin<

S (λ ◦ f, τE (λ))⊂Op( f, S; E).

Proof (i) Let x0 ∈ argminS(λ ◦ f, τE (λ)). Then,

λ( f (x)) ≥ λ( f (x0)) − τE (λ), ∀ x ∈ S. (4.5)

Suppose that x0 /∈ WOp( f, S; E). Then there exist x̂ ∈ S and ê ∈ cor E such that f (x̂) −
f (x0) = −ê. By applying (4.5) to x = x̂ it results

−λ(ê) = λ( f (x̂) − f (x0)) ≥ −τE (λ),

i.e., infe∈E λ(e) ≥ λ(ê), and so mine∈E λ(e) = λ(ê). This implies by Lemma 4.3 that λ = 0,
a contradiction.

(ii) Let x0 ∈ argmin<
S (λ ◦ f, τE (λ)). Then,

λ( f (x)) > λ( f (x0)) − τE (λ), ∀ x ∈ S\{x0}. (4.6)

Suppose that x0 /∈ Op( f, S; E). Then there exist x̂ ∈ S\{x0} and ê ∈ E such that f (x̂) −
f (x0) = −ê. By applying (4.6) to x = x̂ it follows that

−λ(ê) = λ( f (x̂) − f (x0)) > −τE (λ),

i.e., infe∈E λ(e) > λ(ê), which is a contradiction. �
Remark 4.5 Theorem 4.4 reduces to [16, Theorem 4.2]. Indeed, in this last theorem it is
assumed that λ ∈ K+\{0}, q ∈ K\{0} and λ(q) > 0. Thus, q /∈ −K and so Theorem 4.4
encompasses this result via the improvement set E = q + K .
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As a consequence of Theorems 4.1 and 4.4, we obtain the following characterization for
weak E-optimal solutions of problem (2.2) through linear scalarization and by assuming
generalized convexity assumptions.

Corollary 4.6 If either (A1) holds, or (A2) is fulfilled for all x0 ∈ S, then

WOp( f, S; E) =
⋃

λ∈E+\{0}
argminS(λ ◦ f, τE (λ)).

Remark 4.7 (a) In the topological framework, Corollary 4.6 under assumption (A2) reduces
to the vector-valued version of [24, Theorem 4.1], where additionally it is assumed that K is
pointed. Analogously, under assumption (A1) Corollary 4.6 reduces to [9, Corollary 5.4].

(b) In particular, if K is solid and we choose E = cor K , this corollary encompasses the
following well-known result (see, for instance, [1, Theorem 2.3] or [2, Theorem 2]):

Op( f, S; cor K ) =
⋃

λ∈K+\{0}
argminS(λ ◦ f ).

Now, we are going to derive Lagrangian optimality conditions for weak E-optimal
solutions of problem (2.2) and S defined by a cone-constraint (see (2.3)). The mapping
( f, g) : X → Y × Z is defined by ( f, g)(x) = ( f (x), g(x)). On the other hand, let us
observe that E × (M + z) ∈ IK×M for all z ∈ Z whenever E ∈ IK .

Lemma 4.8 The following implication holds:

x0 ∈ WOp( f, S; E) ⇒ x0 ∈ WOp(( f, g), X; E × (M + g(x0))).

Proof Suppose by contradiction that there exists x ∈ X such that ( f, g)(x) − ( f, g)(x0) ∈
− cor(E × (M + g(x0))). It is clear that

cor(E × (M + g(x0))) = cor E × (cor M + g(x0))

and so f (x) − f (x0) ∈ − cor E and g(x) ∈ − cor M . Therefore, x ∈ S and we deduce that
x0 /∈ WOp( f, S; E), which is a contradiction. �
Theorem 4.9 Let x0 ∈ S. Suppose that g satisfies the Slater constraint qualification and
assume that one of the following conditions holds:

(B1) ( f, g) is v-closely (K × M)-convexlike on X and E is a solid convex set.
(B2) ( f, g) − ( f (x0), 0) is v-nearly (E × M)-subconvexlike on X and K is solid.

If x0 ∈ WOp( f, S; E), then there exist λ ∈ E+\{0} and μ ∈ M+ such that

− τE (λ) ≤ μ(g(x0)) ≤ 0, (4.7)

x0 ∈ argminX (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0))). (4.8)

Proof Let x0 ∈ WOp( f, S; E). By Lemma 4.8 we have that x0 ∈ WOp(( f, g), X; E×(M+
g(x0))).

It is easy to check that E × (M + g(x0)) is a solid convex set whenever E is a solid
convex set, since M is assumed to be solid and convex, and ( f, g) − ( f, g)(x0) is v-nearly
E × (M + g(x0))-subconvexlike on X whenever ( f, g) − ( f (x0), 0) is v-nearly (E × M)-
subconvexlike on X .

Therefore, Theorem 4.1 can be applied under assumption (A1) (respectively, (A2)) if
hypothesis (B1) (respectively, (B2)) holds, and we deduce that there exists ξ ∈ (E × (M +
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g(x0)))+\{0} such that x0 ∈ argminX (ξ ◦ ( f, g), τE×(M+g(x0))(ξ)). Let us define λ ∈ Y ′ and
μ ∈ Z ′ as follows: λ(y) := ξ(y, 0), for all y ∈ Y , and μ(z) := ξ(0, z), for all z ∈ Z . Then
ξ(y, z) = λ(y) + μ(z), for all y ∈ Y and z ∈ Z and so

λ(y) + μ(z) + μ(g(x0)) ≥ 0, ∀ y ∈ E,∀ z ∈ M. (4.9)

As M is a cone, it follows that μ ∈ M+. In particular we have μ(g(x0)) ≤ 0, since x0 ∈ S.
By taking z = 0 in (4.9) we deduce that λ(y) ≥ −μ(g(x0)) ≥ 0, ∀ y ∈ E , and so λ ∈ E+
and τE (λ) ≥ −μ(g(x0)).

On the other hand, ξ ◦ ( f, g) = λ ◦ f + μ ◦ g and τE×(M+g(x0))(ξ) = τE (λ) + μ(g(x0)).
Thus,

x0 ∈ argminX (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0))). (4.10)

Finally it follows that λ �= 0. Indeed, if λ = 0 then μ ∈ M+\{0} and by (4.10) we see
that μ(g(x)) ≥ 0, for all x ∈ X . By the Slater constraint qualification there exists x̂ ∈ X
such that g(x̂) ∈ − cor M and so μ(g(x̂)) < 0, which is a contradiction. �
Remark 4.10 (a) Analogously as it was shown in Remark 4.2(a), assumptions (B1) and (B2)
are independent. However, if K is solid, then (B1)�⇒ (B2).

(b) Theorem 4.9 encompasses the vector-valued version of [21, Theorem 5.1], which was
stated in the setting of Banach spaces and by assuming that K is pointed. For it, consider
assumption (B1) and E = q + K0, q ∈ K . Let us observe that the approximation error in
[21, Theorem 5.1] is τE (λ) = 〈λ, q〉, which is bigger than the precision 〈λ, q〉 + μ(g(x0))
obtained via Theorem 4.9.

In the following result we state a sufficient condition for E-optimal and weak E-optimal
solutions of problem (2.2) with the feasible set S given by (2.3).

Theorem 4.11 Let x0 ∈ S. If there exist λ ∈ E+\{0} and μ ∈ M+ such that

− τE (λ) ≤ μ(g(x0)) ≤ 0,

x0 ∈ argminX (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0)))

(respectively, x0 ∈ argmin<
X (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0)))),

then x0 ∈ WOp( f, S; E) (respectively, x0 ∈ Op( f, S; E)).

Proof First, assume that x0 ∈ argminX (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0))). Then,

λ( f (x) − f (x0)) + μ(g(x) − g(x0)) + τE (λ) + μ(g(x0)) ≥ 0, ∀x ∈ X.

Therefore, for all x ∈ S,

λ( f (x)) − λ( f (x0)) + τE (λ) ≥ −μ(g(x)) ≥ 0,

since −g(x) ∈ M and μ ∈ M+. From here it follows that x0 ∈ argminS(λ ◦ f, τE (λ)), and
by Theorem 4.4(i) the conclusion is obtained.

The proof of the other part is similar by applying Theorem 4.4(ii). �
FromTheorems 4.9 and 4.11 we deduce the following characterization of weak E-optimal

solutions of problem (2.2) through linear scalarization.

Corollary 4.12 Let x0 ∈ S. Suppose that g satisfies the Slater constraint qualification and
that either (B1) or (B2) is satisfied. Then, x0 ∈ WOp( f, S; E) if and only if there exist
λ ∈ E+\{0} and μ ∈ M+ such that (4.7) and (4.8) are satisfied.

123



J Glob Optim (2018) 70:875–901 891

Remark 4.13 Given λ ∈ E+\{0} andμ ∈ M+, we denote by LE
λ,μ : X → R the well-known

scalar Lagrangian λ ◦ f + μ ◦ g, i.e.,

LE
λ,μ(x) := λ( f (x)) + μ(g(x)), ∀x ∈ X,

and we define

�E
λ,μ :=

{
x0 ∈ S : −τE (λ) ≤ μ(g(x0)) ≤ 0, λ( f (x0)) ≤ LE

λ,μ(x) + τE (λ), ∀x ∈ X
}

.

Suppose that g satisfies the Slater constraint qualification and that either (B1) holds, or
(B2) is satisfied for all x0 ∈ S. Then, by Corollary 4.12 it is easy to check that

WOp( f, S; E) =
⋃

λ∈E+\{0}
μ∈M+

�E
λ,μ.

In the precision τE (λ)+μ(g(x0)) obtained in Theorem 4.9, both the improvement set and the
constraint mapping take part. It is worth to note that this precision has allowed us to derive
the characterization of weak E-optimal solutions of problem (2.2) given in Corollary 4.12.

In Example 5.17 we apply this characterization to obtain the weak E-optimal solutions
of a particular vector optimization problem.

5 E-proper optimality and linear scalarization

In this sectionwe are going to derive necessary and sufficient conditions through linear scalar-
ization for Henig and Benson E-proper optimal solutions of problem (2.2) under generalized
convexity hypotheses. We also study the particular case in which the feasible set is given by
a cone-constraint (see (2.3)), obtaining in this case Lagrangian optimality conditions. Recall
that K is assumed to be vectorially closed and pointed (see Remark 3.5(c)).

The necessary conditions are based on the next new generalized convexity concepts.

Definition 5.1 Let ∅ �= E⊂Y and assume that K is relatively solid. The mapping f : X →
Y is said to be relatively solid E-subconvexlike (respectively, relatively solid generalized
E-subconvexlike) on a nonempty set N⊂X (with respect to K ) if f is E-subconvexlike
(respectively, generalized E-subconvexlike) on N (with respect to K ) and f (N )+ E + icr K
(respectively, cone( f (N ) + E) + icr K ) is relatively solid.

Proposition 5.2 If f is relatively solid E-subconvexlike on N, then f is relatively solid
generalized E-subconvexlike on N.

Proof By Proposition 2.13(i) we have that f is generalized E-subconvexlike on N whenever
f is E-subconvexlike on N . Then the result follows since for all nonempty set A⊂Y such
that A + icr K is convex, the next statement is true:

icr(A + icr K ) �= ∅ ⇒ icr(cone A + icr K ) �= ∅.

Indeed, it is easy to check that D := (cone A+icr K )∪{0} is a convex cone and cone A+icr K
is relatively solid whenever D is relatively solid. Then the result is proved if D is relatively
solid.

By [3, Proposition 2.3] we have that an arbitrary convex cone H⊂Y is relatively solid if
and only if H+ is relatively solid. Therefore, we have to prove that D+ is relatively solid.
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As A+icr K is convex and relatively solid, by [12, Lemma5.3]we see that cone(A+icr K )

is a relatively solid convex cone, and so cone(A + icr K )+ is relatively solid. Let us check
that D+ = cone(A + icr K )+, which finishes the proof.

Indeed, it is obvious that D+⊂ cone(A+ icr K )+. Reciprocally, let ξ ∈ cone(A+ icr K )+
and consider two arbitrary points y ∈ cone A and d ∈ icr K . If y �= 0, then there exists α > 0
and a ∈ A such that y = αa and it follows that

ξ(y + d) = ξ(α(a + (1/α)d)) ≥ 0,

since ξ ∈ cone(A+ icr K )+ and α(a+ (1/α)d) ∈ cone(A+ icr K ). Now suppose that y = 0
and consider an arbitrary point ā ∈ A. Then,

ξ(d) = lim
n→∞ ξ((1/n)(ā + nd)) ≥ 0,

since ξ ∈ cone(A+ icr K )+ and (1/n)(ā + nd) ∈ cone(A+ icr K ), for all n. Thus, ξ ∈ D+
and the proof finishes. �
Remark 5.3 (a) If K is solid and E ∈ IK , then f is relatively solid generalized E-
subconvexlike on N if and only if f is v-nearly E-subconvexlike on N (see Proposition
2.13(iii)).

(b) The concept of relatively solid E-subconvexlike mapping is more general than the
vector-valued version of the notion of relatively solid K -subconvexlike mapping introduced
in [12, Definition 3.5]. To be precise, the first one reduces to the second one by taking
E = icr K , since icr K + icr K = icr K .

Moreover, let us observe that icr K ∈ IK (in particular, 0 /∈ icr K since K is assumed to
be pointed).

In the following two results, we give necessary conditions for Benson and Henig E-proper
optimal solutions of problem (2.2) by means of linear scalarization.

Theorem 5.4 Let x0 ∈ S and E ∈ H. Suppose that K+ is solid, f − f (x0) is relatively solid
generalized E-subconvexlike on S. If x0 ∈ Be( f, S; E), then there exists λ ∈ K+s ∩ E+
such that x0 ∈ argminS(λ ◦ f, τE (λ)).

Proof As x0 ∈ Be( f, S; E) it follows that

vcl cone( f (S) − f (x0) + E) ∩ (−K ) = {0}. (5.1)

As K+ is solid, by [3, Proposition 2.3] we deduce that K is relatively solid. Since f − f (x0)
is relatively solid generalized E-subconvexlike on S, we have that cone( f (S) − f (x0) +
E) + icr K is relatively solid and convex. Then, by [2, Propositions 3(iii),(iv) and 4(i)] we
deduce that vcl(cone( f (S) − f (x0) + E) + icr K ) is relatively solid, vectorially closed and
convex. Moreover, by [2, Proposition 6(i)] and Lemma 2.2(iii) it follows that

vcl(cone( f (S) − f (x0) + E) + icr K ) = vcl cone( f (S) − f (x0) + E)

and this set is a cone. Then, by applying Theorem 2.5 to statement (5.1) we deduce that there
exists a linear functional λ ∈ K+s such that

λ(y) ≥ 0, ∀ y ∈ vcl cone( f (S) − f (x0) + E).

Hence, it is clear that

λ( f (x)) − λ( f (x0)) + λ(e) ≥ 0, ∀ x ∈ S,∀ e ∈ E . (5.2)
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From here, we deduce that λ ∈ E+ (by choosing x = x0). Moreover, (5.2) is equivalent
to

τE (λ) ≥ λ( f (x0)) − λ( f (x)), ∀ x ∈ S,

which means that x0 ∈ argminS(λ ◦ f, τE (λ)), concluding the proof. �
Remark 5.5 (a) By considering E = icr K we see that Theorem 5.4 encompasses the vector-
valued version of [12, Theorem 5.4]. This conclusion follows by Remark 5.3(b), Proposition
5.2 and by observing that Be( f, S) = Be( f, S; icr K ), since for all nonempty set A⊂Y we
have that (see [2, Proposition 6(i)], Lemma 2.2(iii) and (3.6))

vcl cone(A + K ) = vcl(cone A+K ) = vcl(cone A+icr K ) = vcl cone(A + icr K ). (5.3)

Moreover, note that Theorem 5.4 is based on a convexity assumption more general than the
convexity assumption used in [12, Theorem 5.4].

Analogously, Theorem 5.4 extends [3, Theorem 4.2] (see also [4]), where the v-nearly
K -subconvexlikeness of f − f (x0) is assumed.

(b) Let us suppose that K+ is solid and consider E = q + icr K with q ∈ Y\(−K0).
By (5.3) and Remark 3.5(c) it is clear that E ∈ H. Then, by applying Theorem 5.4 to this
improvement set we obtain [16, Theorem 4.6]. In this case, the relatively solid generalized
E-subconvexlikeness assumption states that the set cone( f (S) − f (x0) + q) + icr K (see
(2.5)) is relatively solid and convex.

Let us underline that the assumptions in [16, Theorem 4.6] are stronger than the ones of
Theorem 5.4. In particular, observe that K is assumed to be solid and so the generalized
convexity hypotheses of both results are equivalent (see Remark 5.3(a) and (5.3)).

(c) Theorem 5.4 is the algebraic counterpart of [8, Theorem 3.2] and [10, Theorem 2.9],
which were stated in the topological setting.

Theorem 5.6 Let x0 ∈ S and E ∈ H. Suppose that f − f (x0) is v-nearly E-subconvexlike on
S. If x0 ∈ He( f, S; E), then there exists λ ∈ K+s ∩E+ such that x0 ∈ argminS(λ◦ f, τE (λ)).

Proof By Theorem 3.10(iii) there exists K ′ ∈ O(E) such that

vcl cone( f (S) + E − f (x0)) ∩ (− cor K ′) = ∅.

Then, since f − f (x0) is v-nearly E-subconvexlike on S, the set vcl cone( f (S)+E− f (x0))
is convex and by [14, Theorem 3.14] there exists λ ∈ K ′+\{0} ∩ E+ such that (5.2) holds,
which is equivalent to say that x0 ∈ argminS(λ ◦ f, τE (λ)).

On the other hand, as λ ∈ K ′+\{0} and K0⊂ cor K ′, we deduce that λ ∈ K+s , and the
proof is complete. �
Remark 5.7 Theorem 5.6 is the algebraic counterpart of [11, Theorem 4.5], which was stated
in the topological setting.

The next result provides a sufficient condition for Henig E-proper optimal solutions of
problem (2.2) through linear scalarization.

Theorem 5.8 Let E ∈ H. If there exists λ ∈ K+s∩E+ such that x0 ∈ argminS(λ◦ f, τE (λ)),
then x0 ∈ He( f, S; E).

Proof Consider the cone

K ′ := {y ∈ Y : λ(y) > 0} ∪ {0}.
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It is easy to see that K ′ is proper, convex and solid, with cor K ′ = K ′\{0} and K0⊂ cor K ′.
Moreover, since λ ∈ E+ it also follows that E ∩ (−K ′\{0}) = ∅, so K ′ ∈ O(E).

We have that x0 ∈ Op( f, S; E + cor K ′). Indeed, suppose on the contrary that there exist
x̄ ∈ S and ē ∈ E such that

f (x̄) + ē − f (x0) ∈ − cor K ′.

From here, we have

λ( f (x̄)) + τE (λ) − λ( f (x0)) ≤ λ( f (x̄)) + λ(ē) − λ( f (x0)) = λ( f (x̄) + ē − f (x0)) < 0,

which contradicts the hypothesis. Thus, x0 ∈ Op( f, S; E + cor K ′), which implies by defi-
nition that x0 ∈ He( f, S; E), as we want to prove. �
Remark 5.9 Theorem 5.8 reduces to [25, Theorem 5.2] by taking E = q + K0, q ∈ K (see
Remark 3.5(e)), and it is the algebraic counterpart of [11, Theorem 4.4].

As a direct consequence of Theorems 3.12, 5.4, 5.6 and 5.8 we obtain the next corollary. Part
(iii) reduces to the vector-valued version of [12, Corollary 5.5] by considering E = icr K
(see Remark 5.3(b)). Observe that the generalized convexity assumption of Corollary 5.10
with E = icr K is more general than the one considered in [12, Corollary 5.5].

Corollary 5.10 The following statements hold:

(i)
⋃

λ∈K+s∩E+
argminS(λ ◦ f, τE (λ))⊂He( f, S; E)⊂Be( f, S; E).

(ii) Suppose that f − f (x0) is v-nearly E-subconvexlike on S, for all x0 ∈ S. Then,
⋃

λ∈K+s∩E+
argminS(λ ◦ f, τE (λ)) = He( f, S; E).

(iii) Suppose that K+ is solid and f − f (x0) is relatively solid generalized E-subconvexlike
on S, for all x0 ∈ S. Then,

⋃

λ∈K+s∩E+
argminS(λ ◦ f, τE (λ)) = He( f, S; E) = Be( f, S; E).

Next, we study problem (2.2) with the feasible set given in (2.3) and we obtain the
following Lagrangian results.

Theorem 5.11 Let x0 ∈ S and E ∈ H. Suppose that ( f, g)−( f (x0), 0) is v-nearly (E×M)-
subconvexlike on X and g satisfies the Slater constraint qualification. If x0 ∈ He( f, S; E),
then there exist λ ∈ K+s ∩ E+ and μ ∈ M+ such that

− τE (λ) ≤ μ(g(x0)) ≤ 0, (5.4)

x0 ∈ argminX (λ ◦ f + μ ◦ g, τE (λ) + μ(g(x0))). (5.5)

Proof Let x0 ∈ He( f, S; E). By Theorem 3.10 we deduce that there exists K ′ ∈
O(E) such that x0 ∈ WOp( f, S; E + cor K ′). By Lemma 2.8(iv) we see that E ′ :=
E + cor K ′ ∈ IK ′ . Let us check that ( f, g) − ( f (x0), 0) is v-nearly (E ′ × M)-
subconvexlike on X . Indeed, by the generalized convexity assumption we have that the
cone vcl cone(( f, g)(X) − ( f (x0), 0) + E × M) is convex, and so

Q := vcl cone(( f, g)(X) − ( f (x0), 0) + E × M) + (cor K ′ × cor M)
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is also convex, since K ′ and M are solid convex cones. By Lemma 2.2(ii) it is clear that

Q = cone(( f, g)(X) − ( f (x0), 0) + E × M) + (cor K ′ × cor M)

= cone(( f, g)(X) − ( f (x0), 0) + E ′ × M) + (cor K ′ × cor M).

Therefore, ( f, g) − ( f (x0), 0) is relatively solid generalized (E ′ × M)-subconvexlike on X
(with respect to the cone K ′ × M in Y × Z ) and by Remark 5.3(a) it follows that ( f, g) −
( f (x0), 0) is v-nearly (E ′ × M)-subconvexlike on X .

By applying Theorem 4.9, we deduce that there exist λ ∈ E ′+\{0} and μ ∈ M+, such
that

− τE ′(λ) ≤ μ(g(x0)) ≤ 0,

x0 ∈ argminX (λ ◦ f + μ ◦ g, τE ′(λ) + μ(g(x0))).

Let us check that λ ∈ K+s ∩ E+ and τE ′(λ) = τE (λ), which finishes the proof. Indeed, as
λ ∈ E ′+\{0} it is clear that λ ∈ K ′+\{0}, since cor K ′ ∪ {0} is a cone and (cor K ′)+ = K ′+.
Thus, λ ∈ K+s , since K0⊂ cor K ′, and so τE (λ) = τE ′(λ) and λ ∈ E+, since τE ′(λ) ≥ 0. �
Theorem 5.12 Let x0 ∈ S and E ∈ H. Assume that K+ is solid, f − f (x0) is relatively solid
generalized E-subconvexlike on S, ( f, g) − ( f (x0), 0) is v-nearly (E × M)-subconvexlike
on X and g satisfies the Slater constraint qualification. If x0 ∈ Be( f, S; E), then there exist
λ ∈ K+s ∩ E+ and μ ∈ M+ such that (5.4) and (5.5) hold.

Proof By applying successively Theorem 5.4 and Corollary 5.10(i) we have that x0 ∈
He( f, S; E), and then the result follows by applying Theorem 5.11. �
Theorem 5.13 Let x0 ∈ S and E ∈ H. If there exist λ ∈ K+s ∩ E+ and μ ∈ M+ such that
(5.4) and (5.5) hold, then x0 ∈ He( f, S; E).

Proof By hypothesis, λ( f (x)) + μ(g(x)) + τE (λ) + μ(g(x0)) ≥ λ( f (x0)) + μ(g(x0)) for
all x ∈ X . Hence, for all x ∈ S,

λ( f (x)) − λ( f (x0)) + τE (λ) ≥ −μ(g(x)) ≥ 0,

since g(x) ∈ −M and μ ∈ M+. From here, x0 ∈ argminS(λ ◦ f, τE (λ)), and by Theorem
5.8 the conclusion is obtained.

Remark 5.14 In [8, Theorem 3.8] the authors obtained, in the topological setting and for a
kind of approximate proper solutions in the sense of Benson, Lagrangian optimality condi-
tions similar to these in Theorem 5.12. It is worth to note that the precision τE (λ)+μ(g(x0))
attained in Theorem 5.12 is better than the approximation error given in [8, Theorems 3.8],
and this improvement let us just derive a characterization of Benson and Henig E-proper
optimal solutions of problem (2.2) through scalar Lagrangian conditions (see Corollary 5.15
below).

From Theorems 3.12, 5.11, 5.12 and 5.13 we deduce the next corollary.

Corollary 5.15 Let E ∈ H. The following holds:

(i)
⋃

λ∈K+s∩E+
μ∈M+

�E
λ,μ⊂He( f, S; E)⊂Be( f, S; E).

Suppose that ( f, g)−( f (x0), 0) is v-nearly (E×M)-subconvexlike on X, for all x0 ∈ S,
and g satisfies the Slater constraint qualification.

123



896 J Glob Optim (2018) 70:875–901

(ii) We have that
⋃

λ∈K+s∩E+
μ∈M+

�E
λ,μ = He( f, S; E).

(iii) If additionally K+ is solid and f − f (x0) is relatively solid generalized E-subconvexlike
on S, for all x0 ∈ S, then

⋃

λ∈K+s∩E+
μ∈M+

�E
λ,μ = He( f, S; E) = Be( f, S; E).

Nextwe illustrate the above resultswith an example in the setting of an infinite dimensional
space, which furthermore shows that the sets Be( f, S; E) and He( f, S; E) are, in general,
different.

Example 5.16 Let Y = R
N = {(ai )i∈N} be the linear space of all sequences of real numbers

and K the v-closed convex cone of nonnegative sequences, i.e.,

K = {(yi )i∈N ∈ Y : yi ≥ 0 ∀i}.
Consider the family en ∈ Y , n ∈ N, defined by en = (δin)i∈N, where δin = 1 if i = n and
δin = 0 if i �= n.

(i) First, we prove that

K+ = {(bi )i∈N ∈ K : ∃i0 such that bi = 0 ∀i > i0}.
Indeed, let λ ∈ K+, βi := λ(ei ) ≥ 0, a = (ai )i∈N ∈ K and L = λ(a) ∈ R+. One has
a = ∑n

i=1 ai e
i + ān , for all n, where ān := a − ∑n

i=1 ai e
i ∈ K . Then

λ(a) =
n∑

i=1

aiβi + λ(ān) = L ,

and since λ(ān) ≥ 0, it follows that
∑n

i=1 aiβi ≤ L ∀n, i.e., it is bounded. Therefore, the
series of positive numbers

∑∞
i=1 aiβi is convergent and consequently

aiβi → 0 ∀(ai ) ∈ K . (5.6)

This property implies that there exists i0 such that βi = 0 ∀i > i0. Indeed, if for each n ∈ N

there exists in > i0 such that βin > 0, then we select ain = β−1
in

and ai = i for i �= in . For
this sequence, the subsequence (ain )n∈N satisfies ainβin = 1 and this contradicts (5.6).

In consequence, we identify λ = (βi )i∈N.
(ii) Second, we prove that

Y ′ = P := {(bi )i∈N : bi ∈ R and ∃i0 such that bi = 0 ∀i > i0}.
Let λ ∈ Y ′ and define I+ := {i ∈ N : λ(ei ) > 0} and I− := {i ∈ N : λ(ei ) < 0}. The
sets I+ and I− are finite. Suppose that I+ is an infinite set. Then we consider the linear space
Y1 = R

I+ and its natural ordering cone K1 and we restrict λ to Y1 and so λ ∈ K+
1 . Reasoning

as above we conclude that only a finite numbers of λ(ei ), i ∈ I+, are non null, which is a
contradiction. Similarly if we assume that I− is an infinite set (we consider −λ instead of λ).

Let us observe that the map λ ∈ Y ′ �→ (λ(ei )) ∈ P is an isomorphism of linear spaces.
(iii) K+s = ∅. Indeed, if λ ∈ K+s then λ = (λi )i∈N and there exists i0 such that λi = 0

for all i > i0. Choosing ei0+1 ∈ K\{0} we have λ(ei0+1) = 0, which is a contradiction.
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(iv) Now we consider X = Y , S = K , f = Id and x0 = 0 ∈ S. It is easy to check that
0 ∈ Be( f, S) since S = K is a pointed v-closed convex cone.However, 0 /∈ He( f, S). Indeed,
it is clear that f − f (x0) is v-nearly K -subconvexlike on S. If we assume that 0 ∈ He( f, S),
by Theorem 5.6 there exists λ ∈ K+s such that 0 ∈ argminS(λ◦ f ). But this is a contradiction
since K+s = ∅.

Moreover, in this case,

G(K0) = ∅ ⇔ He( f, S) = ∅ ⇔ 0 /∈ He( f, S).

The first left to right implication is clear by the definition of (exact) Henig proper optimal
solution, and the second one is obvious. Moreover, if 0 /∈ He( f, S), by Theorem 3.10 there
does not exist K ′ ∈ O(K0) such that K ∩ (−K ′) = {0}. If O(K0) �= ∅ then there is
K ′ ∈ O(K0) and by Remark 3.11(b) we know in particular that K ′ is pointed. Hence, K ′

0 ∩
(−K ′) = ∅, which implies that K0 ∩ (−K ′) = ∅, since K0⊂ cor K ′ = K ′

0, a contradiction.
Finally, by Remark 3.11(a) we deduce that G(K0) = ∅.

(v) It holds that cor(K+) = ∅. Indeed, suppose that b ∈ cor(K+). Then for each v ∈ Y ′
there exists t0 > 0 such that b + tv ∈ K+ for all t ∈ [0, t0]. As b ∈ Y ′ there exists i0 such
that bi = 0 for all i > i0. Choose v = −ei0+1. Then b + tv /∈ K+ ∀t > 0 because the
(i0 + 1)-th component is negative.

As a consequence, Theorem 5.4 is not applicable.
(vi) cor K = ∅. Indeed, let a ∈ cor K . If ai = 0 for some i , then we choose v = −ei and

we have a + tv /∈ K ∀t > 0. Hence we can assume that ai > 0 for all i . Then we choose
v = (−iai )i∈N and there does not exist t0 > 0 such that a + t0v ∈ K , since it should verify
ai + t0(−iai ) ≥ 0 for all i , or equivalently, t0 ≤ 1/ i for all i , which is impossible.

(vii) Nowwe consider the spaceP and its natural ordering cone D := {(yi )i∈N ∈ P : yi ≥
0 ∀i}. One hasP ′ = Y (that is, the bidual of Y is itself), D+ = K but now D+s = {(ai )i∈N ∈
Y : ai > 0 ∀i}. Let problem (2.2) be with f = Id : P → P , S1 = D and x0 = 0 ∈ S1.
One has 0 ∈ He( f, S1). Indeed, if we select λ = (1, 1, 1, . . . ) ∈ D+s it result that λ(y) ≥ 0
∀y ∈ S1 and by Theorem 5.8 the result follows.

As a consequence, 0 ∈ Be( f, S1) by Theorem 3.12.

Next, we provide an illustrative example in which we calculate the E-optimal, weak
E-optimal and the Benson and Henig E-proper optimal solutions of a given problem.

Example 5.17 Consider problem (2.2) with the following data: X = Y = R
2, Z = R, f :

R
2 → R

2 is given by f (x, y) = (x, y), g : R2 → R is given by g(x, y) = ϕ(x) − y, where
ϕ(x) = x2 if x ≤ 0 and ϕ(x) = 0 if x > 0, E = {(x, y) ∈ R

2 : y ≥ 0, x + y ≥ 1}, K =
R
2+, M = R+. We wish to obtain the weak E-optimal solutions, and the Benson and Henig

E-proper optimal solutions.
It is clear that E is a convex improvement set with respect to R

2+, E+ = {(λ1, λ2) ∈
R
2+ : λ2 ≥ λ1}, ( f, g) is (R2+ ×R+)-convex onR2, f isR2+-convex onR2 and g satisfies the

Slater constraint qualification. Clearly, by Proposition 2.9, Theorem 2.14 and Remark 5.3(a),
( f, g)− ( f (x0), 0) is v-nearly E ×M-subconvexlike onR2 and f − f (x0) is relatively solid
v-nearly E-subconvexlike on S for all x0 ∈ S.

Let (a, b) ∈ S be a feasible point and suppose that (a, b) ∈ WOp( f, S; E) or (a, b) ∈
Be( f, S; E). We are going to apply Theorems 4.9 and 5.12. We have to find multipliers
λ = (λ1, λ2) ∈ E+\{0} and μ ≥ 0 satisfying the conclusions of the above theorems.

Condition (4.8) becomes

λ1x + (λ2 − μ)y + μϕ(x) − λ1a − λ2b + τE (λ) ≥ 0, ∀(x, y) ∈ R
2.
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From here, it follows that μ = λ2. Therefore, the above expression is equivalent to

λ1x + λ2ϕ(x) − λ1a − λ2b + τE (λ) ≥ 0, ∀x ∈ R. (5.7)

We have that λ2 �= 0, because in the other case, since λ2 ≥ λ1 ≥ 0 it would be λ1 = 0 and
then λ = 0, which is a contradiction. For λ ∈ E+ one has τE (λ) = infe∈E λ(e) = λ1 (since
the minimum is attained at (1, 0) ∈ E). In consequence, by dividing by λ2 in (5.7) we can
assume that λ2 = 1 and 0 ≤ λ1 ≤ 1. Thus, (5.7) is written as

λ1x + ϕ(x) − λ1a − b + λ1 ≥ 0 ∀x ∈ R,

and this expression can be divided into two parts:

x2 + λ1x + (1 − a)λ1 − b ≥ 0, ∀x ≤ 0, (5.8)

λ1x + (1 − a)λ1 − b ≥ 0, ∀x > 0. (5.9)

As λ1 ≥ 0, equation (5.9) is equivalent to (1 − a)λ1 − b ≥ 0, and this condition is deduced
from (5.8) by choosing x = 0.

On the other hand, condition (5.4), i.e. μg(a, b) + τE (λ) ≥ 0, reduces to λ2(ϕ(a) − b) +
λ1 ≥ 0, which (taking into account that we can assume λ2 = 1) can be expressed in the
following way

a2 − b + λ1 ≥ 0 if a ≤ 0, (5.10)

−b + λ1 ≥ 0 if a > 0. (5.11)

Inequality (5.11) is also a consequence of (5.9) by choosing x = a, and inequality (5.10) is
a consequence of (5.8) by choosing x = a. The quadratic function

h(x) = x2 + λ1x + (1 − a)λ1 − b, ∀ x ≤ 0,

has the (global) minimum at the point x = −λ1/2 ≤ 0, and the minimum is

h

(−λ1

2

)
= λ21

4
+ λ1

−λ1

2
+ (1 − a)λ1 − b = −λ21

4
+ (1 − a)λ1 − b.

So, condition (5.8) is satisfied if and only if − λ21
4 + (1 − a)λ1 − b ≥ 0, i.e., if

λ21

4
+ (a − 1)λ1 + b ≤ 0. (5.12)

The quadratic function ψ(λ1) := λ21
4 + (a − 1)λ1 + b has the (global) minimum at the point

qa := 2(1 − a).
Case (i) qa ≥ 1, that is, 2(1 − a) ≥ 1, or equivalently a ≤ 1/2.
As ψ is strictly decreasing on [0, 1], there is a solution λ1 ∈ [0, 1] satisfying (5.12) if

ψ(1) ≤ 0 ⇔ 1

4
+ a − 1 + b ≤ 0 ⇔ b ≤ 3

4
− a.

Hence if a ≤ 1/2, b ≤ 3
4 − a and (a, b) ∈ S, we can take λ1 = 1, λ2 = 1.

Case (ii) 0 < qa < 1, i.e., 0 < 2(1 − a) < 1, or equivalently 1/2 < a < 1.

Theminimumofψ isψ(qa) = 4(1−a)2

4 +(a−1)·2(1−a)+b = b−(a−1)2, and so (5.12)
is satisfied if and only if b − (a − 1)2 ≤ 0, that is, b ≤ (a − 1)2. In this case, we can choose
λ1 = qa and λ2 = 1. Let us observe that 0 < λ1 < 1, and so λ = (λ1, λ2) ∈ K+s ∩ E+.

Case (iii) qa ≤ 0, i.e., a ≥ 1.

123



J Glob Optim (2018) 70:875–901 899

There is a solution of (5.12) with λ1 ∈ [0, 1] and b ≥ 0 (remember that (a, b) ∈ S) if
and only if b = 0 and λ1 = 0, since ψ is strictly increasing on [0, 1] and ψ(0) = b. Hence
λ = (0, 1) ∈ E+\K+s satisfies (5.12).

Taking into account that the line b = 3/4−a, with a ≤ 1/2, and the parabola b = a2 meet
at (−3/2, 9/4), the above can be summarized as follows: for the points (a, b) that satisfy

(i)

{
a2 ≤ b ≤ 3

4 − a

− 3
2 ≤ a < 0

or

{
0 ≤ b ≤ 3

4 − a

0 ≤ a ≤ 1
2

or (ii)

{
0 ≤ b ≤ (a − 1)2

1
2 < a < 1

(5.13)

there exist λ ∈ K+s ∩ E+ and μ = 1 ∈ M+ satisfying the necessary conditions of Theorem
5.12. Moreover, it is easy to check that all these points (a, b) also satisfy the sufficient con-
ditions of Corollary 5.15(iii) (the inequality above can be reverted). Therefore, Be( f, S; E)

is the set of all points (a, b) satisfying (5.13). We know that they are also weak E-optimal
points by Theorem 3.6. In addition, for the points

(iii) (a, 0), ∀ a ≥ 1, (5.14)

there exist λ = (0, 1) ∈ E+ and μ = 1 ∈ M+ satisfying the necessary conditions of
Theorem 4.9. Moreover, it is easy to check that the points of (5.14) also satisfy the sufficient
conditions of Theorem 4.11, and so they are weak E-optimal points too, and all of them
(5.13)–(5.14) make the set WOp( f, S; E) up.

Finally, for the points (a, b) satisfying

(i)

{
a2 ≤ b < 3

4 − a

− 3
2 < a < 0

or

{
0 ≤ b < 3

4 − a

0 ≤ a ≤ 1
2

or (ii)

{
0 ≤ b < (a − 1)2

1
2 < a < 1

(5.15)

there exists λ1 ≥ 0 such that ψ(λ1) < 0, and so there exist λ ∈ E+ and μ ∈ M+ satisfying
the assumptions of Theorem 4.11 with strict inequality, i.e., (a, b) ∈ argmin<

X (λ ◦ f + μ ◦
g, τE (λ) + μ(g(x0))), and therefore (a, b) ∈ Op( f, S; E). Let us note that the points (a, b)
such that

b = 3

4
− a with − 3

2
≤ a ≤ 1

2
or b = (a − 1)2 with

1

2
< a < 1 or b = 0 with a ≥ 1

are not E-optimal (this is proved by checking the definition), and so the set Op( f, S; E) is
just defined by (5.15).

In the next figure, we have drawn the sets Be( f, S; E),WOp( f, S; E) and Op( f, S; E).

According to Corollary 5.15(iii), we have He( f, S; E) = Be( f, S; E).
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Moreover, note that if we change E by E1 = {(x, y) ∈ R
2 : y ≥ 0, x + y > 1},

then Op( f, S; E1) = WOp( f, S; E), WOp( f, S; E1) = WOp( f, S; E) and Be( f, S; E1) =
He( f, S; E1) = Be( f, S; E).

Remark 5.18 In several recent papers, constrained set-valued vector optimization problems
as (2.3) are considered, i.e., f and g are assumed to be set-valued mappings and the feasible
set S is given by S = {x ∈ X : g(x) ∩ (−M) �= ∅}. In this framework, different optimality
conditions for approximate solutions are established under the assumption 0 ∈ g(x0), see for
example [23, Theorems 4.1 and 4.2], [24, Theorem 5.1], [26, Theorem 5.1] and [27, Theorem
3.1].

This assumption is very restrictive for dealing with approximate solutions. For instance,
in Example 5.17, one can see that only the points in the boundary of the feasible set satisfy
such condition. However, we have proved that there are many approximate solutions that do
not satisfy it (see the figure above). For these points such results are not applicable even if
E = q + K or E = K0.

6 Conclusions

In this paper, we study notions of approximate solution for optimization problems defined on
real linear spaces without considering any topology, that is, just by using algebraic structures.

Specifically, we study approximate weak solutions and approximate proper solutions in
the sense of Benson and Henig, where the error is determined by an improvement set E . This
kind of sets frequently appears in the literature, because they are very used in economics and
optimization.

We establish the relationships between these three types of solutions and we characterize
them in terms of approximate solutions of associated scalar optimization problems, under
generalized convexity assumptions. Moreover, when the feasible set is given by a cone-
constraint, we also characterize these solutions by means of scalar Lagrangian optimality
conditions.

Note that the scalarization techniques employed to characterize these solutions are linear.
In a forthcoming paper, we are interested in obtaining other characterizations of approximate
weak/efficient/proper solutions with respect to an improvement set. To carry this line out, the
use of the approaches to derive optimality conditions due to Mordukhovich (see [20, Chapter
5]) or the so-called “smallest strictly monotonic functional” frequently used in mathematics
(see [15,19]) will be very interesting, as well as the comparison of the results obtained by
means of these different techniques.

The results presented in this work extend to the algebraic setting several well-known
results obtained in topological frameworks. On the other hand, in the literature the most usual
notions of approximate efficiency and proper efficiency are defined in the Kutateladze sense
(see [17]), i.e., by means of a vector. These concepts are particular cases of the corresponding
notions introduced in this paper. Moreover, it is worth to underline that the use of a unique
vector formeasuring the error can cause in practice sets of approximate solutions that contains
points too far from the efficient set. This fact was shown in [10,11].

One more research line is to study conditions on the set E in the algebraic setting in order
to avoid the above problem and to derive saddle point results for the solutions stated in this
paper.
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