
J Glob Optim (2018) 71:193–211
https://doi.org/10.1007/s10898-017-0589-7

GOSH: derivative-free global optimization using
multi-dimensional space-filling curves

Daniela Lera1 · Yaroslav D. Sergeyev2,3

Received: 6 June 2017 / Accepted: 18 November 2017 / Published online: 27 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Global optimization is a field of mathematical programming dealing with finding
global (absolute) minima of multi-dimensional multiextremal functions. Problems of this
kind where the objective function is non-differentiable, satisfies the Lipschitz condition with
an unknown Lipschitz constant, and is given as a “black-box” are very often encountered in
engineering optimization applications. Due to the presence of multiple local minima and the
absence of differentiability, traditional optimization techniques using gradients and working
with problems having only one minimum cannot be applied in this case. These real-life
applied problems are attacked here by employing one of the mostly abstract mathematical
objects—space-filling curves. A practical derivative-free deterministic method reducing the
dimensionality of the problem by using space-filling curves and working simultaneously
with all possible estimates of Lipschitz and Hölder constants is proposed. A smart adaptive
balancing of local and global information collected during the search is performed at each
iteration. Conditions ensuring convergence of the new method to the global minima are
established. Results of numerical experiments on 1000 randomly generated test functions
show a clear superiority of the new method w.r.t. the popular method DIRECT and other
competitors.

Keywords Global optimization · Space-filling curves · Derivative-free methods ·
Acceleration · Lipschitz functions

B Yaroslav D. Sergeyev
yaro@dimes.unical.it

1 Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy

2 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della
Calabria and the Institute of High Performance Computing and Networking of the National
Research Council of Italy, Via Pietro Bucci 42C, 87036 Rende, CS, Italy

3 Department of Software and Supercomputing, Lobachevskiy University of Nizhni Novgorod,
Gagarin Av. 23, Nizhni Novgorod, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0589-7&domain=pdf

194 J Glob Optim (2018) 71:193–211

1 Introduction

Many real-world optimization problems are stated as a global optimization problem since
functions describing these applications are often multiextremal, non-differentiable, and hard
to evaluate even at one point (see, for example [17,21,22,31,34,35,47,52]). In this paper,
we focus our attention on continuous global optimization problems

min{F(y) : y ∈ S = [a, b]}, (1.1)

where S is a hyperinterval in RN and the objective function F(y) can be multiextremal,
non-differentiable, and given as a “black-box”, i.e., any information regarding its analyti-
cal representation or any other data describing its structure is not available. However, it is
supposed that F(y) satisfies the Lipschitz condition

|F(y′) − F(y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ S, (1.2)

with an unknown Lipschitz constant L , 0 < L < ∞, in the Euclidean norm. This statement
canbevery often encountered in practice and in the literature there exist numerousmethods for
dealingwith the problem (1.1), (1.2) (see, e.g., [1,3–5,13,17,21,23,32–34,41,47,48,51,52]).

In this paper, we consider the applied problem (1.1), (1.2) by using one of the mostly
abstract mathematical objects—space-filling curves introduced by Peano in 1890 and inde-
pendently by Hilbert in 1891 (even though we use Hilbert’s version of the curves, the
traditional terminology for this kind of objects is “Peano curves” due to the priority of
Peano). The curves under consideration emerge as the limit objects generated by an iterative
process. They are fractals constructed using the principle of self-similarity. It is possible to
prove that the curves fill in the hypercube S ⊂ RN , i.e., they pass through every point of
S (this fact gave rise to the term “space-filling curves”). It is known that it is possible to
reduce the dimension of the global optimization problem (1.1), (1.2) by using the curves
and to move from a multivariate problem to a univariate one (see studies in this direction in
[2,38,44–47]).

More precisely, it can be shown (see [2,45,47]) that, by using space-filling curves,
the multi-dimensional global minimization problem (1.1), (1.2) can be turned into a one-
dimensional problemand that finding the globalminimumof theLipschitz function F(y), y ∈
S ⊂ RN , is equivalent to determining the global minimum of the one-dimensional function
f (x) over the interval [0, 1], i.e., it follows

f (x) = F(p(x)), x ∈ [0, 1], (1.3)

where p(x) is the Peano curve. Moreover, the Hölder condition

| f (x ′) − f (x ′′)| ≤ H |x ′ − x ′′|1/N , x ′, x ′′ ∈ [0, 1], (1.4)

holds (see [47]) for the function f (x) with the constant

H = 2L
√
N + 3, (1.5)

where L is the Lipschitz constant of the original multi-dimensional function F(y) from
(1.1), (1.2). In Fig. 1-right, the reduced function in one dimension corresponding to the test
function in two dimensions from Fig. 1-left is shown. Clearly, a numerical approximation of
the Peano curve is used in computations for the reduction. Thus, one can try to attack the
problem (1.1), (1.2) by proposing algorithms for minimizing Hölderian function (1.3), (1.4)
in one dimension.

123

J Glob Optim (2018) 71:193–211 195

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

Fig. 1 A two-dimensional function from [10] satisfying the Lipschitz condition together with an approxima-
tion of level 5 to Peano curve (left) and the corresponding univariate Hölderian function (right). Dots show
points on the curve where the objective function has been evaluated

It can be seen from the statement of the original problem (1.1), (1.2) that the only available
information regarding themulti-dimensional function F(y) is that F(y) satisfies theLipschitz
condition (1.2) with an unknown constant L . As a result, the way the Lipschitz information
is used by an optimization algorithm becomes crucial for its performance, convergence, and
speed. In the literature there exist several methods to estimate L (see [4,11,12,15–18,42–
44,47,50]), and it is known that an overestimation of L may slow down the search whereas
an underestimate of the constant can lead to loss of the global solution. Let us briefly describe
methods used to estimate L .

First, there exist algorithms that for thewhole domain S use the same a priori given estimate
of L or its adaptive estimate recalculated during the search at each iteration (see, e.g., [4,
17,18,33,34,36,43,44,47]). This approach does not take into account any local information
about the behavior of the objective function over small subregions of the domain S. This
drawback can slow down the search significantly. A more advanced approach proposed
originally in [39,40] suggests to adaptively approximate local Lipschitz constants L̃(Dj) in
different subregions Dj ⊂ S of the search region S during the process of optimization.
This procedure performs a local tuning on the behavior of the objective function balancing
global and local information obtained during the search (see also interesting hybridization
ideas in [49,50]). It has been shown in [20,24,39,44,47] that the local tuning techniques
can lead to a significant acceleration of the global search. Another interesting approach that
has been introduced in [19] in the popular method called DIRECT uses at each iteration
several estimates of the Lipschitz constant L simultaneously. This way to deal with Lipschitz
information attracts a wide interest of researchers (see, e.g., [6–9,19,23,29–33]) and is under
scrutiny in this work, as well.

In this paper,we propose to usePeano curves and instead of using theLipschitz information
in many dimensions to work with the Hölder information in one dimension trying to obtain
several estimates of theHölder constant using theDIRECTmethodology. It should be stressed
that such a transposition of the approach is not trivial at all. In fact, in the literature (see [14,
24,25,27,28,44]) there exist several methods estimating global and local Hölder constants
whereas the usage of the DIRECT approach encounters a number of serious difficulties (see
[26]) in the context of Hölder optimization. In Sect. 2, we describe a strategy that solves
them and allows us to work with several estimates of the Hölder constant at each iteration.
Then, a two-phases procedure intended to accelerate the search is presented in Sect. 3. A

123

196 J Glob Optim (2018) 71:193–211

new algorithm using both discoveries for solving the problem (1.1), (1.2) and its convergence
properties are described in Sect. 4. Section 5 presents results of numerical experiments that
compare the new method with its competitors on 1000 test functions randomly generated by
the GKLS-generator from [10]. Finally, Sect. 6 contains a brief conclusion.

2 Two ways to represent Hölderian minorants

Due to the use of the Peano space-filling curves, the N -dimensional problem (1.1), (1.2)
is turned into the one-dimensional problem (1.3), (1.4) with the one-dimensional objective
function f (x) from (1.3) satisfying the Hölder condition (1.4) with a constant 0 < H < ∞
over the interval [0, 1]. It follows from (1.4) that, for all x, z ∈ [0, 1] we have

f (x) ≥ f (z) − H |x − z|1/N . (2.1)

This fact means that the function

G(x) = f (z) − H |x − z|1/N ,

with z ∈ [0, 1] fixed, is a minorant (or support function) for f (x) over [0, 1], i.e.
f (x) ≥ G(x), x ∈ [0, 1].

Analogously, if we consider subintervals di = [ai , bi], 1 ≤ i ≤ k, belonging to [0, 1] we
obtain that the following function

Gk(x) = gi (x), x ∈ [ai , bi], 1 ≤ i ≤ k, (2.2)

gi (x) =
{
g−
i (x) = f (mi) − H(mi − x)1/N , x ∈ [ai ,mi],
g+
i (x) = f (mi) − H(x − mi)

1/N , x ∈ [mi , bi], (2.3)

mi = (ai + bi)/2 (2.4)

is a discontinuous nonlinear minorant for f (x) (see Fig. 2) and the values Ri , 1 ≤ i ≤ k, are
lower bounds for the function f (x) over each interval di , 1 ≤ i ≤ k. These values are called
characteristics of intervals and can be calculated as follows if an overestimate H1 ≥ H of
the Hölder constant H is given

Ri = Ri (H1) = min
x∈[ai ,bi]

gi (x) = f (mi) − H1|(bi − ai)/2|1/N . (2.5)

As was mentioned in the introduction, the DIRECT algorithm (see [19]) uses at each
iteration several estimates of the Lipschitz constant for selecting a suitable set of subintervals
in the central points of which to evaluate the objective function. This selection can be easily
done thanks to a smart representation of the intervals in a diagram in two dimensions. This
representation is the core point of DIRECT and can be done since the Lipschitz information
is used by this method to produce piece-wise linear minorants. In order to use the same
methodology in the framework of the Hölderian optimization it is necessary to be able to
find a suitable representation of intervals, as well.

Let us try to do this following the idea of DIRECT and show that a simple transposition
from Lipschitz to Hölder world does not work. We represent in a two-dimensional diagram
each interval di = [ai , bi] by a point with coordinates (hi , f (mi)), where hi = 0.5(bi − ai)
andmi is from (2.4) exactly asDIRECT does. In Fig. 3-left, we have represented five different
intervals dA, dB , dC , dD , and dE by the points A, B,C, D, and E , respectively. If we consider
a fixed overestimate H1 of the Hölder constant, we can observe the corresponding nonlinear

123

J Glob Optim (2018) 71:193–211 197

a
i−1 b

i−1
=a

i
m
i

b
i
=a

i+1
b
i+1

f(m
i
)

g
i

−(x) g
i

+(x)

R
i

f(x)

Fig. 2 Hölder support functions

support functions (2.3) (shown in blue solid lines) related to these intervals. The characteristic
RA(H1) of the interval represented by the dot A is obtained as the intersection of the curve
(2.3) constructed at the point A with the vertical coordinate axis. It can be seen that the best
(the lowest) characteristic is RD(H1) and the interval dD would be subdivided at the next
iteration if H1 is chosen as the estimate for H . However, the choice of RD(H1) is not easy
since, as it can be seen from Fig. 3-left, the curves constructed using the estimate H1 intersect
one another in various ways.

In addition, remind that we do not know the real value of H and wish to try all possible
estimates of H from zero to infinity. The auxiliary functions corresponding to the second
estimate H2 are shown in Fig. 3-left by red dashed lines. They produce again a lot of inter-
sections among themselves and with the curves corresponding to H1. It becomes clear that
the selection of the lowest characteristic for all possible estimates of H even with such a
small number of intervals becomes complicated and it is unclear how to select intervals by
varying estimates of the Hölder constant from 0 to infinity.

In order to overcome this difficulty and to give a more transparent procedure for selection
of the best characteristics, a different representation of the intervals is proposed. The idea
consists of the usage of the metric of Hölder instead of the Euclidean one in the construction
of the diagram.More precisely, a generic interval di = [ai , bi] belonging to a current partition
{Dk} at the kth iteration is represented by a dot Pi with the coordinates (pi , wi) where

pi = |(bi − ai)/2|1/N , wi = f (mi), (2.6)

and mi is from (2.4).
In Fig. 3-right, the representation of the same five intervals considered in Fig. 3-left can be

observed in the newmetric. A great simplification can be clearly seen since there are no more
nonlinear curves and intersections between them for each fixed estimate of H . The obtained
diagram is very similar to that used by the DIRECT method, in the Lipschitzian case [19]. In
Fig. 3-right, the characteristic RA(H1) of the interval represented by the point A is exactly
the intersection of the line passing through A with slope H1 and the vertical coordinate axis.
Notice that, as expected, the values in the vertical coordinate axis coincide with those of
Fig. 3-left. The selection of intervals with the best characteristics corresponding to different
estimates of H becomes so much easier and is discussed in the following two sections.

123

198 J Glob Optim (2018) 71:193–211

0 1 2 3 4 5 6 7 8

−30

−20

−10

0

10

20
A

B

C

D
E

f(m
i
)

h
i

R
A
(H

2
)

R
A
(H

1
)

0 0.5 1 1.5 2 2.5 3 3.5

−30

−20

−10

0

10

20
B

A

C

D

E

f(m
i
)

R
A
(H

2
)

R
A
(H

1
) p

i

Fig. 3 Representation of intervals in the Euclidean metric (left) and in the Hölderian metric (right)

Fig. 4 The nondominated
intervals dA, dB , dC , dE , dG and
dI are represented by dots
A, B,C, E,G and I

9 8 7 6 5 4 3 2 1

A

B

C

D

G
E

H
F

I

3 Selection of intervals: two-phase approach

In this section, we describe in detail the intervals selection procedure that will be used in the
method to be introduced in Sect. 4. As was already said above, at each iteration k the method
should select in a suitable way a promising set of subintervals in which it intends to intensify
the search and execute new trials (trial is evaluation of f (x) at a point x that is called trial
point). To accelerate the search, a two-phase technique that balances the global and local
information collected during the work of the method is introduced.

In order to describe the selection procedure let us discuss Fig. 4 that shows a possible
scenario at a generic iteration k of the algorithm. The interval [0, 1] [remind that since Peano
curves are applied, the search is performed over the one-dimensional interval [0, 1] (see
1.3)] is subdivided into subintervals di = [ai , bi], i = 1, . . . , I (k), belonging to the current
partition Dk . Each interval is represented by a point in the two-dimensional diagram in Fig. 4,
with coordinates given by (2.6), and is characterized, for each fixed value of H , by a lower
bound given by Ri from (2.5). Points with the same abscissa represent intervals that have the
same width. In Fig. 4, there are nine different groups of intervals corresponding to the points
A, B, …, I . At each iteration k ≥ 1 of the method each group of intervals receives a positive
integer index l = l(k). The first group of large intervals (the column of the dot A in Fig. 4)
gets the index l = 1, and the subsequent intervals are identified progressively by indices 2,

123

J Glob Optim (2018) 71:193–211 199

3, 4, …etc. So, in Fig. 4 there are nine groups with indices 1, 2, …, 9. The index 9 is referred
to the group of intervals with minimal width (column of the point I).

For any fixed value H of the Hölder constant, it is easy (see Fig. 3-right where lower
bounds for H = H1 and H = H2 are shown) to identify the interval corresponding to the
minimal lower bound with respect to the other intervals in the current partition. By varying
the value of H from 0 to infinity, the method should select a set of intervals corresponding to
the smallest lower bound from (2.5) for some particular estimate of the Hölder constant H .
These intervals should be partitioned during the next iteration and are called nondominated
intervals and it can be easily seen that they are located on the lower-convex hull of the set
of dots representing the intervals. In Fig. 4 the nondominated intervals are identified by
points located at the bottom of each group with the same horizontal coordinate, that is points
A, B,C, E,G and I . In practice, to determine these intervals algorithms for identifying
the convex hull of the dots can be used, for example, the algorithm called Jarvis march, or
gift wrapping, see [37]. Notice that the points H, F , and D do not represent nondominated
intervals even though they are the lowest in their groups. This happens because (see, e.g., the
point F) the point G dominates F at smaller values of Hölder constant H and the point E
dominates F at higher values of H .

The two phases (that can interchange each other several times during the work of the
method) are the following: investigation of large unexplored intervals in order to find attrac-
tion regions of local minimizers that are better than the current best found solution (global
phase) and a local improvement of the current best found solution (local phase). In order
to explain their functioning let us remind that all the intervals on the diagram (see Fig. 4)
are ordered in the increasing order from smaller to larger intervals along the horizontal axis.
Thus, well explored zones of the search region corresponding to attraction regions of already
visited local minima are located on the left-hand part of the diagram (small intervals) whereas
unexplored zones of the domain are represented on the right-hand part of the diagram (large
intervals). If during the work of the global phase a better solution than the current one has
been obtained, then the method switches to the local phase in order to improve the new best
record. After several improving steps the method switches back to the global phase and the
search of new promising minima continues until the satisfaction of a stopping rule.

During the global phase the new algorithm exploresmainly large intervals, thus it identifies
the set of nondominated intervals not among all groups of intervals but only among some
groupswith indices lower than a calculated “middle index” r . This index represents a separator
between the groups of large intervals and small ones. The global phase is performed until a
function value improving the current minimal value on at least 1% is obtained. When this
happens, the method switches to the local phase in the course of which the obtained new
solution is improved locally. In the case when the algorithm is not switched to the local phase
during more than a fixed number IglobMax of iterations (the improvement of the current
minimum is still not found by exploring large intervals), it performs one “security” iteration
in which determines nondominated intervals considering all groups of intervals present in
the diagram.

Thus, during each iteration of the global phase the algorithm identifies a set of nondomi-
nated intervals. The subdivision of each of these intervals is performed only if a significant
improvement on the function values with respect to the current minimal value fmin(k) is
expected, i.e., once an interval dt ∈ {Dk} becomes nondominated, it can be subdivided only
if the following condition is satisfied

Rt (H̃) ≤ fmin(k) − ξ, (3.1)

123

200 J Glob Optim (2018) 71:193–211

where the lower bound Rt = Rt (H̃) is from (2.5) and the parameter ξ prevents the algorithm
from subdividing already well-explored small subintervals.

During the local phase improving the just found new best solution the algorithm always
explores three intervals: the interval containing the best current point (best interval) and the
intervals located on the right and on the left of it. This phase finishes when the width of at
least one of these intervals is less than a given accuracy. After the end of the local phase the
algorithm switches back to the global phase and tries to find better solutions that can be located
far away from the current best point. Notice that during the local phase a security iteration
is carried out after performing a fixed number I locMax of iterations without switching
to the global phase. This is done in order to avoid a too long concentrating of efforts at
local minima that are not global solutions. As before, at the security iteration nondominated
intervals among all groups of intervals present in the diagram are taken into consideration.

Once the selection phase (local or global) has been concluded, the chosen intervals are
subdivided in order to produce new trial points by the following partition strategy. At a
generic iteration k, let Sk be the set of the intervals to be partitioned and dt = [at , bt] be an
element of Sk represented by the corresponding point in the diagram at Fig. 4. Each interval
dt of the set Sk is subdivided into three equal parts

[at , bt] = [at , ut] ∪ [ut , vt] ∪ [vt , bt], (3.2)

of the length (bt − at)/3, with

ut = at + (bt − at)/3, vt = bt − (bt − at)/3. (3.3)

The three new generated intervals are added to the current partition {Dk} and to the
diagram in Fig. 4 and the interval [at , bt] is deleted from both. Finally, two new trials, f (c1)
and f (c2), are executed at the central points of the new intervals [at , ut] and [vt , bt], where

c1 = (at + ut)/2, c2 = (vt + bt)/2. (3.4)

Notice that the midpoint of the third interval [ut , vt] is also the midpoint of the initial
interval [at , bt] and, therefore, the function f (x) has already been calculated in it at previous
iterations.

We conclude this section by reminding that the objective function f (x) is obtained by
applying Peano curve that theoretically is introduced as a limit object being a fractal con-
structed using principles of the self-similarity. In practice, computable approximations of the
Peano curve are used. Let us denote them by pM (x), where M is the level of approximation
of the curve (see the approximations with M = 5 in Fig. 1, respectively). The choice of the
level M of the curve is essential to obtain a good performance of the method: in fact, a level
that is too low can be insufficient to fill in the domain in an appropriate way creating so a risk
to lose the optimal solution. On the other hand, when the value of M increases, the function
in one dimension becomes more oscillating, especially if the dimension N of the original
problem (1.1) grows up (see [28] for a detailed discussion). With increasing the dimension
N , the width of intervals selected for partitioning can become very small (remind that we are
in [0, 1] and the metric of Hölder is used) and even get close to the computer precision. For
these reasons it is required an additional check of the width of the interval before subdivision.
Namely, the interval dt = [at , bt] is partitioned only if the following condition is satisfied

bt − at > δ, (3.5)

where δ is a parameter of the method.

123

J Glob Optim (2018) 71:193–211 201

4 The GOSH algorithm

In this section, a new algorithm calledGOSH(Global Optimization algorithmworking with
a Set of estimates of the Hölder constant) is presented.

To describe the algorithm formally, we need to specify some notations. Suppose that at
an iteration k ≥ 1 a partition {Dk} of D = [0, 1] has been obtained. Suppose also that each
interval di ∈ {Dk} is represented by a dot in the two-dimensional diagram from Fig. 4 and
each group of intervals with the same width is numbered by the same integer index: this
index is an integer positive number that varies between imax(k) (index that identifies the
column of the larger intervals) and imin(k) (index of the column of the smaller intervals).
The following notations are also adopted:

fmin(k) is the best function value (the “record” value) at the iteration k, and xmin(k) is
the corresponding coordinate.
dmin(k) is the interval containing the point xmin(k).
f prec(k) is the old best record. It serves to memorize the record fmin(k) at the start of
the current phase (local or global).
Lcount and Gcount are counters of iterations performed during the local and global
phases, respectively.
I locMax and IglobMax aremaximal allowed numbers of iterations that can be executed
during the local and global phases, respectively, before making the general security
iteration (inwhich thenondominated intervals are selected from the entire searchdomain).
phase is a flag specifying the current phase. It is equal to “loc” and “glob” in the local
and global phases, respectively.
pM (x) is the M-approximation of the Peano curve.
Sk is the set of intervals, Sk ⊂ Dk , that will be subdivided and the corresponding set J k

is the set of their indices.
jloc is a flag that takes into account the fact that the set Sk can be empty. In this case
jloc = 0, otherwise jloc = 1.

We are ready now to describe the algorithm.

Algorithm GOSH

Step 0. (Initialization). Set the current iteration number k := 1.
Split the initial interval D = [0, 1] in three equal parts and set x1 = 1/6, x2 = 1/2,
x3 = 5/6 and compute the values of the function z j = f (x j) = F(pM (x j)), j = 1, 2, 3.
Set the current partition of the search interval D1 = {[0, 1/3], [1/3, 2/3], [2/3, 1]}.
Set the current number of intervals I = 3 and the current number of trials T = 3.
Set fmin(1) = min{z1, z2, z3}, and xmin(1) = argmin{ f (xi) : i = 1, 2, 3}.
Set phase = loc, Lcount = Gcount = 0.
After executing k iterations, the iteration k + 1 consists of the following steps.

Step 1. (Intervals selection) Identify the set Sk , Sk ⊂ Dk , and the corresponding set J k as
follows.

Step 1.1 (Global phase) if (phase == glob) then
if (Gcount < IglobMax)

Determine nondominated intervals that satisfy conditions (3.1)
and (3.5) by considering only groups of intervals with indices
going from imax(k) up to r(k) = �(p(k) + imax(k))/2�,

123

202 J Glob Optim (2018) 71:193–211

where �x� denotes the integer part of x and p(k) is the index
of the group the interval dmin(k) belongs to.
Gcount = Gcount + 1

elseif (Gcount == IglobMax)
Determine nondominated intervals that satisfy conditions (3.1)
and (3.5) by considering all the groups of intervals with indices
between imax(k) and p(k)
Gcount = 0

endif
Step 1.2 (Local phase) if (phase == loc) then

jloc = 1
if (Lcount < I locMax)

Determine the interval dmin(k) and the two intervals, denoted by
drmin(k) and dlmin(k) located on the right and on the left of it,
respectively. They are selected only if the condition (3.5) is
satisfied.
Lcount = Lcount + 1

elseif (Lcount == I locMax)
Determine nondominated intervals that satisfy conditions (3.1)
and (3.5) by considering all the groups of intervals with indices
between imax(k) and p(k).
Lcount = 0

endif
endif
Include found intervals in the set Sk and their indices in the set J k .
If Sk = ∅ then jloc = 0 and go to Step 3.

Step 2. (Subdivision of intervals) Set Dk+1 = Dk and perform Steps 2.1–2.3.

Step 2.1 (Interval selection). Select a new interval dt = [at , bt] from Sk such that

t = argmax
j∈J k

{b j − a j }.

Step 2.2 (Subdivision and sampling). Subdivide interval dt in three new equal
subintervals, named dt1, dt2, dt3 of the length (bt − at)/3 following (3.2), (3.3) and
produce two new trial points accordingly to (3.4).
Eliminate the interval dt from Dk+1, i.e., set Dk+1 = Dk+1 \ {dt }, and update Dk+1

with the insertion of the three new intervals, i.e.,

Dk+1 = Dk+1 ∪ {dt1} ∪ {dt2} ∪ {dt3}.
Increase both the current number of intervals I = I + 2, and the current number of
trials T = T + 2.
Update the current record fmin and the current record point xmin , if necessary.
Set amp(j) = (bt − at)/3, j ∈ J k .

Step 2.3 (Next interval). Eliminate the interval dt from Sk , i.e., set Sk = Sk \ {dt } and
J k = J k \ {t}.
If Sk �= ∅, then go to Step 2.1. Otherwise calculate amploc = min j∈J k amp(j) and go
to Step 3.

Step 3. (Switch)
if (fmin(k) ≤ f prec(k) − 0.01 · | f prec(k)|)

123

J Glob Optim (2018) 71:193–211 203

f prec(k) = fmin(k)
if (phase == glob) then Lcount = 0 endif
phase = loc

elseif (phase == loc .&. amploc ≥ δ′ .&. jloc == 1)
phase = loc

else
if (phase == loc) then Gcount = 0 endif
phase = glob

endif
Step 4. (End of the current iteration). Increase the iteration counter k = k + 1. Go to Step

1 and start the next iteration.

Different stopping criteria can be used in the GOSH algorithm introduced above. One of
them will be introduced in the next section presenting numerical experiments.

Let us make some comments upon the introduced method. Step 1 is the phase of selection
of the intervals that, as was said above, can be either global or local. Suppose that at a
generic iteration k of the algorithm the situation is that shown in Fig. 4, with 9 different
groups of intervals, and assume that the interval dmin(k) containing the current minimum
point xmin(k), belongs to the group of intervals identified by the index 7 (so exactly the point
G). If phase = loc then 3 intervals will be selected: dmin(k), that corresponds to the point
G in the diagram Fig. 4 and the intervals located to the right and to the left of it in [0, 1],
respectively. Notice, that the latter two intervals, namely drmin(k) and dlmin(k), can belong
to two different groups of intervals in the diagram and not necessarily to the group with
the index 7. In contrast, if the situation where phase = glob takes place then the separator
index r is calculated where r = � 7+1

2 � = 4 and the nondominated intervals are searched only
among the groups of intervals from index 1 to index 4. In this example, intervals represented
by the points A, B, and C at the diagram in Fig. 4 will be selected and split in three parts.
Dots A, B, and C will disappear from the diagram and there will be three new points in the
column of B, three in the column of C , and three in that of D.

If in the local phase it happens that Lcount = I locMax (or, analogously, in the global
phase Gcount = IglobMax) then nondominated intervals among all groups of intervals are
retrieved. Thus, in the diagram at Fig. 4 intervals represented by points A, B,C, E,G, and
I will be split. The three intervals obtained by the interval dI will be represented by three
points in the newly created column with the index 10. Notice that only intervals that satisfy
condition (3.5) are selected for the further subdivision. It should be also emphasized that in
Step 3, at the situation phase = loc, the local exploration continues until the width of at
least one of the 3 selected intervals is smaller than a fixed δ′ ≥ δ, with δ from (3.5).

Let us consider now convergence properties of the GOSH algorithm. The first result
discusses a connection between the original multi-dimensional problem and the reduced
univariate one. To obtain the latter problem and to go to the interval [0, 1], an approximation
pM (x) of the Peano curve of a fixed level M is applied and in the course of the algorithm
a lower bound U∗

M of the multi-dimensional function F(y) is calculated along the curve.
In order to return to the original problem (1.1), (1.2) in N dimensions, it is important to
understand how a lower bound for F(y) over the entire domain [a, b] in RN can be obtained
from U∗

M . The following theorem gives the answer to this problem.

Theorem 4.1 Let U∗
M be a lower bound along the space-filling curve pM (x) for a multi-

dimensional function F(y), y ∈ [a, b] ⊂ RN , satisfying Lipschitz condition with constant
L, i.e.,

U∗
M ≤ F(pM (x)), x ∈ [0, 1].

123

204 J Glob Optim (2018) 71:193–211

Then the value

U∗ = U∗
M − 2−(M+1)L

√
N

is a lower bound for F(y) over the entire region [a, b].
Proof See [28] or the recent monograph [44] for the proof of this result. ��

Theorem 4.1 is important because it links themulti-dimensional problem (1.1), (1.2) to the
one-dimensional problem (1.3), (1.4), so we can concentrate our attention on the convergence
properties in the one-dimensional interval [0, 1]. Let us suppose that the maximal number
of generated trial points tends to infinity, and prove that the infinite sequence of trial points
generated by the GOSH converges to any point of the one-dimensional search domain. This
kind of convergence is called everywhere dense convergence.

Theorem 4.2 If δ = 0 in (3.5), then for any point x ∈ [0, 1] and any η > 0 there exists an
iteration number k(η) ≥ 1 and a trial point xi(k), k > k(η), such that |x − xi(k)| < η.

Proof In the selection Step 2 of the algorithm the two phases, local and global, are alternated.
In the local phase of GOSH an interval is subdivided only if its width is greater than a fixed
δ′ > 0, δ′ from Step 3 of GOSH . When the width of the selected interval becomes less than
δ′, the algorithm switches to the global phase. Since it is assumed that δ = 0 in (3.5), and
since the one-dimensional search region has a finite length and δ′ is a positive finite number,
then there exists a finite iteration number j = j (δ′) such that, for all iterations greater than
j , only the global phase will be used during the work of the GOSH .

In the global phase the algorithm GOSH always selects for partitioning at least one
interval dt from the group of largest intervals (in Fig. 4 the group with index 1). In fact,
there always exists a sufficiently large estimate H∞ of the Hölder constant H , such that the
interval dt is the nondominated interval with respect to H∞, and condition (3.5) is satisfied.
Therefore, at each iteration, the intervals with the largest width will be partitioned into three
subintervals of the length equal to a third of the length of the subdivided interval. Notice
that each group of intervals contains only a finite number of intervals since the interval is
finite and all its subintervals have a finite length. Thus, after a sufficiently large number of
iterations k > k(η), all the intervals of the group with the maximal width will be partitioned.
Such a procedure will be repeated with a new group of the largest intervals (the group with
index 2 in Fig. 4) and so on until the largest intervals of the current partition will have the
length smaller than η. As a result, in the neighborhood of radius η of any point in [0, 1] there
will exist at least one trial point generated by the GOSH . ��

5 Numerical experiments

In this section, results of some numerical experiments are presented. The new algorithm
GOSH has been compared with the original DI RECT method [7] and its locally-biased
modification LBDirect proposed in [8,9]. In order to show the usefulness of the two-
phase approach, the GOSH has been compared with its simplified version (called CORE
hereinafter) that does not apply the local phase at all and only the global phase is used.

Ten different classes of functions generated by the GKLS-generator, a free software down-
loadable from http://wwwinfo.deis.unical.it/~yaro/GKLS.html and described in [10] have
been used in the experiments. This generator constructs classes of multi-dimensional and
multiextremal test functions with known global and local minima: each function is obtained

123

http://wwwinfo.deis.unical.it/~yaro/GKLS.html

J Glob Optim (2018) 71:193–211 205

Table 1 Description of 10
classes of randomly generated
test functions used in the
numerical experiments

Class Difficulty N f ∗ m d r∗

1 Simple 2 −1.0 10 0.90 0.20

2 Hard 2 −1.0 10 0.90 0.10

3 Simple 3 −1.0 10 0.66 0.20

4 Hard 3 −1.0 10 0.90 0.20

5 Simple 4 −1.0 10 0.66 0.20

6 Hard 4 −1.0 10 0.90 0.20

7 Simple 5 −1.0 10 0.90 0.40

8 Hard 5 −1.0 10 0.90 0.30

9 Simple 6 −1.0 10 0.90 0.40

10 Hard 6 −1.0 10 0.90 0.30Each class contains 100 functions

by a paraboloid, systematically distorted by polynomials. Each class contains 100 test func-
tions with the same number of local minima. In order to generate a specific class, only five
parameters should be defined by the user (see Table 1), and it possible to generate harder or
simpler test classes very easily. For example, a more difficult test class can be obtained either
by decreasing the radius r∗ of the attraction region of the global minimizer or by increasing
the distance d from the paraboloid vertex to the global minimizer. In Table 1 we can see a
complete description of the 10 classes that we have used in the experiments, for a total of
1000 test functions, in dimensions N = 2, 3, 4, 5, and 6. For each dimension two different
classes, a simple class and a hard one, have been generated. The number of local minima
m was taken equal to 10 and the global minimum f ∗ was fixed to −1 for all the classes. In
Fig. 1-left, an example of the test function no. 4 belonging to the class 1 is shown.

Let us describe the stopping rules used in the experiments. First, the tested algorithms
stopped their work when the maximal number of trials Tmax , equal to 106 was reached.
Remind, that the GKLS generates problems with known minima. This gives the possibility
to use the vicinity of trials to the global minimizer as a measure of success of the work
of algorithms and to construct an appropriate stoping rule. Let us denote as y∗

i the global
minimizer of the i-th function of a test class, 1 ≤ i ≤ 100. Then, the following condition
can be applied.

Stopping criterionAmethod stops its work on the i-th function of a class when it generates
a trial point falling in a ball Bi having a radius ρ and the center at the global minimizer of
the i-th function, i.e.,

Bi = {y ∈ RN : ‖y − y∗
i ‖ ≤ ρ}, 1 ≤ i ≤ 100. (5.1)

In the experiments, the radius ρ in (5.1) was fixed equal to 0.01
√
N for classes 1, 2, 3, 4,

and 5, and 0.02
√
N for classes 6, 7, 8, 9, and 10. It should be added also that the parameter

ξ in (3.1) was fixed as follows

ξ = 10−4 · | fmin(k)|,
where fmin(k) is the current best function value. This choice has been considered by many
authors (see [8,9]), in particular, it has been used in the DI RECT method [7] with the
most robust results. For this reason, in our experiments the same value was used, as well.
Notice that for the DI RECT and LBDirect methods it is recommended (see, e.g., [7]) to
verify stopping conditions after the end of each iteration and this rule has been used in our
experiments since the usage of the rule (5.1) gives an insignificant improvement only.

123

206 J Glob Optim (2018) 71:193–211

The value of the parameter δ in (3.5) was fixed equal to 10−4 for classes 1 and 2, 10−7

for classes 3 and 4, 10−9 for the class 5, 10−10 for classes 6 and 7, 10−11 for classes 8, 10
and equal to 10−12 for the class 9. The parameter δ′ in Step 3 of the algorithm GOSH was
chosen equal to δ.

In the algorithms GOSH and CORE , an M-approximation of the Peano curve has been
considered. In particular the levelM of the curvemust be chosen taking inmind the constraint
NM < K , where N is the dimension of the problem and K is the number of digits in the
mantissa depending on the computer that is used for the implementation (see [44] for more
details). In our experiments we had K = 52, thus the value M = 10 has been used for classes
1–8 and M = 8 for classes 9 and 10.

In theGOSH algorithmwemust fix the parameters IglobMax and I locMax , in Steps 1.1
and1.2, that specify themaximal allowednumber of iterations executedon theglobal and local
phase, respectively, before making the general security iteration, in which the nondominated
intervals in the entire domain are selected. Different choices of these parameters can affect
the speed of the search towards the global solution. For this reason, a sensitivity analysis
with 6 different values of the parameters IglobMax and I locMax for each class has been
executed. The obtained results are shown in Table 2. For each class the average and the
maximal number of function evaluations calculated for all the 100 functions is reported. The
best results are shown in bold.

Table 3 shows results of experiments comparing the behavior of the GOSH method with
the algorithmsCORE , DI RECT , and LBDirect on the 10 classes of test functions. Taking
into account the sensitivity analysis, the following values of the two parameters of GOSH
have been chosen: I locMax = 5 for classes 1, 5, 8, I locMax = 10 for classes 4, 6, 7 and
I locMax = 15 for classes 2, 3, 9, 10. IglobMax was fixed equal to 5 for classes 1, 2, 3,
5, 8, 9, IglobMax = 15 for the class 10 and equal to 20 for classes 4, 6 and 7. The values
of these two parameters corresponding to the best result in relation to the column “Max” of
Table 2 have been chosen.

Table 3 illustrates results of experiments with all the 10 classes and the four methods.
Notice that in the column “Average” the symbol “ >′′ means that, after performing Tmax

iterations, the global minimum has not been found for all functions of the class. The column
“Max” reports the maximum number of function evaluations required to satisfy the stopping
criterion for all the 100 functions of the class: the notation 1000000(i) means that after
evaluating 1000000 trials, themethodwas not able to find the global solution for “i ′′ functions
of the considered class. The best results are shown in bold.

Finally, in Fig. 5 the behavior of the four methods for the function no. 55 of the class 2
is shown. In the first row Fig. 5a shows 1541 trials generated by DIRECT to find the global
minimum of the problem and (b) 2281 trials produced by the LBDirect. In the second row
Fig. 5c shows 597 trial points calculated by the CORE and (d) 269 produced by the GOSH
algorithm to solve the same problem. Trial points chosen by the “local-phase” strategy are
shown in red.

6 A brief conclusion

The problem of global minimization of a multi-dimensional, non-differentiable, and multi-
extremal function satisfying the Lipschitz condition over a hyperinterval, with an unknown
Lipschitz constant has been considered in this paper. An approach based on the reduction of
the dimension by using numerical approximations to space-filling curves in order to pass from

123

J Glob Optim (2018) 71:193–211 207

Table 2 Results of the sensitivity analysis

N IlocMax IglobMax Average Maximum
Simple class Hard class Simple class Hard class

2 5 5 180.70 560.00 521 1691

5 15 191.16 565.32 1009 3345

10 5 184.50 563.10 531 1683

15 5 184.50 563.10 531 1683

15 15 194.36 569.29 1017 3337

10 20 197.96 568.44 1199 3367

3 5 5 895.12 1733.94 3895 7335

5 15 930.55 1683.20 6389 6651

10 5 917.52 1745.14 3879 7337

15 5 920.44 1784.74 3839 7347

15 15 961.82 1698.24 6379 6655

10 20 977.94 1693.02 6769 6589

4 5 5 8904.92 18, 523.44 139, 409 207, 665

5 15 10074.92 17, 625.32 243, 635 197, 053

10 5 8892.94 18, 553.14 139, 469 207, 675

15 5 8904.48 18541.28 139, 465 207, 589

15 15 10, 084.68 17, 633.54 243, 417 197, 119

10 20 10, 956.02 17466.18 309, 549 194, 499

5 5 5 6437.50 18, 154.77 37, 829 107, 637

5 15 6441.84 18, 108.82 38, 319 121, 363

10 5 6063.46 18, 166.36 29, 319 107, 749

15 5 6434.54 18, 361.00 37837 107, 757

15 15 6437.98 18, 158.98 38277 122, 413

10 20 6130.40 18, 401.63 27, 113 157, 107

6 5 5 25, 271.45 99, 318.66 151, 651 565, 015

5 15 26, 968.77 104, 292.00 299, 723 538, 787

10 5 25, 348.27 99, 285.62 150, 357 565, 231

15 5 25, 265.09 99, 262.50 149, 281 565, 031

15 15 27, 007.13 10, 4281.72 299, 541 538, 751

10 20 28, 276.60 109, 029.94 373, 875 616, 875

The best values are shown in bold

the original Lipschitz multi-dimensional problem to a univariate one satisfying the Hölder
condition has been used. It has been shown that it is possible to organize a simultaneous
work with multiple estimates of the Hölder constant. Such a kind of techniques has been
proposed for Lipschitz optimization in 1994 in [19] and for a long time created difficulties in
the framework of Hölder global optimization. A geometric technique working with a number
of possible Hölder constants chosen from a set of values varying from zero to infinity has
been proposed and an accelerating “two-phase” technique that performs a smart balancing
of the local and global information has been introduced. Conditions ensuring convergence
of the method GOSH to the global minimizers have been established. Extensive numerical
experiments executed on 1000 test functions have shown a very promising performance of

123

208 J Glob Optim (2018) 71:193–211

Ta
bl
e
3

R
es
ul
ts
of

nu
m
er
ic
al
ex
pe
ri
m
en
ts
on

10
00

ra
nd

om
ly

ge
ne
ra
te
d
te
st
fu
nc
tio

ns

C
la
ss

A
ve
ra
ge

nu
m
be
r
of

tr
ia
ls

M
ax
im

al
nu

m
be
r
of

tr
ia
ls

D
IR

E
C
T

L
B
D
ir
ec
t

C
O
R
E

G
O
SH

D
IR

E
C
T

L
B
D
ir
ec
t

C
O
R
E

G
O
SH

1
20

8.
54

30
4.
28

17
4.
24

18
0.
70

11
59

26
65

56
5

52
1

2
10

81
.4
2

12
91

.7
0

62
2.
60

56
3.
10

32
01

42
45

17
49

16
83

3
11

40
.6
8

18
93

.0
2

11
53

.6
4

92
0.
44

13
,3
69

20
,7
79

52
67

38
39

4
>
42

,3
34

.3
6

52
45

.7
2

20
77

.6
0

16
93

.0
2

1,
00

0,
00

0(
4)

32
60

3
98

09
65

89

5
>
47

,7
68

.2
8

21
,9
32

.9
4

10
,6
28

.8
6

89
04

.9
2

1,
00

0,
00

0(
4)

17
9,
38

3
16

2,
18

3
13

9,
40

9

6
>
95

,9
08

.9
9

74
,1
93

.5
3

25
,8
75

.1
6

17
,4
66

.1
8

1,
00

0,
00

0(
7)

37
2,
63

3
31

9,
49

3
19

4,
49

9

7
>
33

,8
78

.0
9

31
,9
55

.0
6

73
06

.0
4

61
30

.4
0

1,
00

0,
00

0(
3)

14
66

23
36

,8
19

27
,1
13

8
>
14

9,
57

8.
61

>
93

,8
76

.7
7

28
,3
91

.7
0

18
15

4.
77

10
00

00
0(
13

)
1,
00

0,
00

0(
1)

15
3,
32

3
10

7,
63

7

9
>
24

4,
38

2.
63

18
4,
26

6.
74

33
,3
66

.1
4

25
,2
65

.0
9

1,
00

0,
00

0(
23

)
87

36
17

16
1,
57

7
14

9,
28

1

10
>
54

9,
16

5.
37

>
44

1,
28

2.
91

13
2,
41

5.
20

10
42

81
.7
2

1,
00

0,
00

0(
49

)
1,
00

0,
00

0(
19

)
70

7,
54

3
53

8,
75

1

In
th
e
co
lu
m
n
“A

ve
ra
ge
”
th
e
sy
m
bo

l“
>
”
m
ea
ns

th
at
,a
ft
er

pe
rf
or
m
in
g
T m

a
x
ite

ra
tio

ns
,t
he

gl
ob

al
m
in
im

um
ha
s
no

tb
ee
n
fo
un

d
fo
r
al
lf
un

ct
io
ns

of
th
e
cl
as
s.
T
he

co
lu
m
n
“M

ax
”

re
po

rt
s
th
e
m
ax
im

um
nu

m
be
r
of

fu
nc
tio

n
ev
al
ua
tio

ns
re
qu

ir
ed

to
sa
tis
fy

th
e
st
op

pi
ng

cr
ite

ri
on

fo
r
al
l
th
e
10

0
fu
nc
tio

ns
of

th
e
cl
as
s:
th
e
no

ta
tio

n
10

00
00

0(
i)

m
ea
ns

th
at

af
te
r

ev
al
ua
tin

g
1,
00

0,
00

0
tr
ia
ls
,a

m
et
ho

d
w
as

no
ta
bl
e
to

fin
d
th
e
gl
ob

al
so
lu
tio

n
fo
r
“i
”
fu
nc
tio

ns
of

th
e
co
ns
id
er
ed

cl
as
s.
T
he

be
st
re
su
lts

ar
e
sh
ow

n
in

bo
ld

123

J Glob Optim (2018) 71:193–211 209

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c)

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d)

Fig. 5 Function No. 55, class 2. a 1541 trials generated by DIRECT and b 2281 by LBDirect. c 597 trials
calculated by CORE and d 257 produced by the GOSH. Trial points chosen by the “local-phase” strategy are
shown in red by the symbol “*”

the proposed algorithm with respect to its direct competitors, in particular for hard problems.
Thus, one of themostly abstract mathematical objects – space-filling curves—have been used
to develop a practical derivative-free global optimization algorithm that can be successfully
used in numerical computations.

Acknowledgements The authors thank the unknown reviewers for their very useful comments that have
allowed the authors to improve the manuscript. The research of Ya. D. Sergeyev was supported by the Rus-
sian Science Foundation, project No 15-11-30022 “Global optimization, supercomputing computations, and
applications”.

References

1. Barkalov, K.A., Gergel, V.P.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016)
2. Butz, A.R.: Space filling curves and mathematical programming. Inf. Control 12(4), 313–330 (1968)
3. Calvin, J.M., Žilinskas, A.: One-dimensional p-algorithm with convergence rate o(n−3+δ) for smooth

functions. J. Optim. Theory Appl. 106(2), 297–307 (2000)
4. Evtushenko,Y.G., Posypkin,M.:Adeterministic approach to global box-constrained optimization.Optim.

Lett. 7(4), 819–829 (2013)

123

210 J Glob Optim (2018) 71:193–211

5. Famularo, D., Pugliese, P., Sergeyev, Ya D.: A global optimization technique for checking parametric
robustness. Automatica 35, 1605–1611 (1999)

6. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36(4), 597–608
(2006)

7. Gablonsky, M.J.: DIRECT v2.04 FORTRAN code with documentation. Technical report (2001). http://
www4.ncsu.edu/ctk/SOFTWARE/DIRECTv204.tar.gz

8. Gablonsky, M. J.: Modifications of the DIRECT algorithm. Technical report, Ph.D thesis, North Carolina
State University, Raleigh, NC (2001)

9. Gablonsky,M.J., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37
(2001)

10. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya D.: Algorithm 829: Software for generation of classes
of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw.
29(4), 469–480 (2003)

11. Gergel, V.P., Gergel, V.A.A.V.: Adaptive nested optimization scheme for multidimensional global search.
J. Glob. Optim. 66(1), 35–51 (2016)

12. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization.
Proced. Comput. Sci. 51, 865–874 (2015). (International Conference on Computational Science ICCS
2015—Computational Science at the Gates of Nature)

13. Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a
series of observations. Stat. Interface 10(1), 59–70 (2016)

14. Gourdin, E., Jaumard, B., Ellaia, R.: Global optimization of Hölder functions. J. Glob. Optim. 8, 323–348
(1996)

15. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimization scheme. AIP Conf.
Proc. 1738, 400010 (2016)

16. Grishagin, V.A., Israfilov, R.A., Sergeyev, Ya D.: Convergence conditions and numerical comparison
of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318,
270–280 (2018)

17. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers,
Dordrecht (1995)

18. Horst, R., Tuy, H.: Global Optimization—Deterministic Approaches. Springer-Verlag, Berlin (1996)
19. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant.

J. Optim. Theory Appl. 79, 157–181 (1993)
20. Kvasov, D.E., Pizzuti, C., Sergeyev, Ya D.: Local tuning and partition strategies for diagonal GOmethods.

Numer. Math. 94(1), 93–106 (2003)
21. Kvasov, D.E., Sergeyev, Ya D.: Lipschitz global optimization methods in control problems. Autom.

Remote Control 74(9), 1435–1448 (2013)
22. Kvasov, D.E., Sergeyev, Ya D.: Deterministic approaches for solving practical black-box global optimiza-

tion problems. Adv. Eng. Softw. 80, 58–66 (2015)
23. Kvasov, D.E., Sergeyev, Ya D.: A univariate global search working with a set of Lipschitz constants for

the first derivative. Optim. Lett. 3(2), 303–318 (2009)
24. Lera, D., Sergeyev, Ya D.: Global minimization algorithms for Hölder functions. BIT 42(1), 119–133

(2002)
25. Lera, D., Sergeyev, Ya D.: Acceleration of univariate global optimization algorithms working with Lips-

chitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)
26. Lera, D., Sergeyev, Ya D.: Deterministic global optimization using space-filling curves and multiple

estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23, 328–342 (2015)
27. Lera, D., Sergeyev, Ya D.: An information global minimization algorithm using the local improvement

technique. J. Glob. Optim. 48(1), 99–112 (2010)
28. Lera, D., Sergeyev, Ya D.: Lipschitz and Hölder global optimization using space-filling curves. Appl.

Numer. Maths. 60, 115–129 (2010)
29. Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting localminimizations for the solution

for large-scale global optimization problem. Comput. Optim. Appl. 45(2), 353–375 (2010)
30. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48(1),

113–128 (2010)
31. Paulavičius, R., Chiter, L., Žilinskas, J.: Global optimization based on bisection of rectangles, function

values at diagonals, and a set of Lipschitz constants. J. Glob. Optim. (2017). https://doi.org/10.1007/
s10898-016-0485-6

32. Paulavičius, R., Sergeyev, Ya D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for
expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)

123

http://www4.ncsu.edu/ctk/SOFTWARE/DIRECTv204.tar.gz
http://www4.ncsu.edu/ctk/SOFTWARE/DIRECTv204.tar.gz
https://doi.org/10.1007/s10898-016-0485-6
https://doi.org/10.1007/s10898-016-0485-6

J Glob Optim (2018) 71:193–211 211

33. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer,
New York (2014)

34. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Imple-
mentations and Applications). Kluwer Academic Publishers, Dordrecht (1996)

35. Pintér, J.D.: Global optimization: software, test problems, and applications. In: Pardalos, P.M., Romeijn,
H.E. (eds.) Handbook of Global Optimization, vol. 2, pp. 515–569. Kluwer Academic Publishers, Dor-
drecht (2002)

36. Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math.
Math. Phys. 12(4), 57–67 (1972). (in Russian: Zh. Vychisl. Mat. Mat. Fiz., 12(4) (1972), pp. 888–896)

37. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer-Verlag, New York
(1993)

38. Sagan, H.: Space-Filling Curves. Springer, New York (1994)
39. Sergeyev, Ya D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4),

858–870 (1995)
40. Sergeyev, Ya D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math.

Phys. 35(5), 705–717 (1995)
41. Sergeyev, YaD., Daponte, P., Grimaldi, D.,Molinaro, A.: Twomethods for solving optimization problems

arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)
42. Sergeyev, Ya D., Grishagin, V.A.: Sequential and parallel algorithms for global optimization. Optim.

Methods Softw. 3, 111–124 (1994)
43. Sergeyev, Ya D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal

Approach. Springer, New York (2017)
44. Sergeyev, Ya D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling

Curves. SpringerBriefs in Optimization. Springer, New York (2013)
45. Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-Statistical Algorithms.

Nauka, Moscow (1978). (In Russian)
46. Strongin, R.G., Sergeyev, Ya D.: Global optimization: fractal approach and non-redundant parallelism. J.

Glob. Optim. 27, 25–50 (2003)
47. Strongin, R .G., Sergeyev, Ya D.: Global Optimization with Non-Convex Constraints: Sequential and

Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). (2nd ed., 2012; 3rd ed., 2014,
Springer, New York)

48. Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial
basis functions. J. Glob. Optim. 48(1), 173–182 (2010)

49. Žilinskas, A., Žilinskas, J.: Parallel hybrid algorithm for global optimization of problems occurring in
MDS-based visualization. Comput. Math. Appl. 52(1–2), 211–224 (2006)

50. Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression.
J. Glob. Optim. 56(2), 265–277 (2013)

51. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)
52. Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

123

	GOSH: derivative-free global optimization using multi-dimensional space-filling curves
	Abstract
	1 Introduction
	2 Two ways to represent Hölderian minorants
	3 Selection of intervals: two-phase approach
	4 The GOSH algorithm
	5 Numerical experiments
	6 A brief conclusion
	Acknowledgements
	References

